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Abstract 
For patients with acute respiratory distress syndrome (ARDS), mechanical ventilation (MV) is an 

essential therapy in the intensive care unit. ARDS is diverse condition, the impact of which varies 

across patients. Every patient has different optimal ventilator settings that may change over the 

course of treatment, and there is no consensus on how these optimal settings should be found. 

In particular, the optimal level of positive end expiratory pressure (PEEP) is widely debated.  

PEEP that is too high or low can cause damage to healthy alveoli, leading to ventilator induced 

lung injury (VILI). VILI is associated with increased mortality, extended ICU stay, and high cost. 

The use of mathematical models to determine patient-specific ventilator settings can reduce the 

incidence of VILI. There have been many models developed to capture pulmonary mechanics, 

but they have limitations in lack of ability to capture all relevant physiology, or in complexity and 

difficulty of implementation. The focus of this research is the development of a model of 

pulmonary mechanics that does not suffer from many of the disadvantages of previous models.  

A nonlinear autoregressive (NARX) model was developed using a complex data set, and contains 

terms that enable it to fit to all features of the pressure waveform. It captures recruitment and 

distension across many increasing PEEP steps via an elastance vs. pressure curve that is defined 

by basis functions. Flow dependent terms allow it to capture viscoelastic effects and fit to an 

end-inspiratory pause. This model, and slight variations on it were tested on three cohorts of 

data in total. In many cases the model was compared with the well validated and extensively 

used first order model (FOM).  

Various investigations supported the choice of the NARX model terms. This included using the 

model for interpolation across a recruitment manoeuvre. The interpolated NARX model fit was 

consistent across different types of patients, while the FOM performed worse in patients 

experiencing over-distension at high pressure. Another comparison with the FOM found that the 

NARX model could more reliably capture expected changes in resistance with PEEP. The NARX 

model could also identify independent inspiratory and expiratory elastance, due to the flow 

dependent terms that the FOM does not have.  

The NARX model is flexible in its implementation. While it is normally identified in real time 

using the simple linear least squares method, it was also able to be combined with a modified 

Gauss – Newton parameter identification method for a spontaneous breathing application. In 

this case, anomalies in the pressure waveform caused by intermittent patient efforts were able 

to be removed to enable a more accurate identification of patient parameters.  
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Aside from patient-specific parameter identification, the main potential clinical use of the NARX 

model is in predicting the effects of changes in PEEP. An extrapolation of the elastance curve 

allowed pressure at higher PEEP levels to be predicted. By using partial recruitment manoeuvres 

as the training data, the NARX model predicted pressure waveforms at higher PEEP levels with 

significantly lower residuals than the FOM. Since large PEEP changes are not recommended 

clinically, the most relevant results were the predictions for small PEEP increases of 2 cmH2O. In 

this scenario the NARX model accuracy was very high. 

A statistical classification analysis used the prediction methodology to test the ability of the 

NARX model to detect when alveolar over-distension is likely to occur with PEEP increases. The 

analysis considered a pressure threshold above which the risk of over-distension is high. False 

negatives are potentially much more harmful to patients than false positives, as a false negative 

means a failure to detect when over-distension will occur with a PEEP increase. Thus, sensitivity 

was a more important metric than specificity in the analysis. In most scenarios, the NARX model 

threshold detection had a very high sensitivity and outperformed the FOM, even when 

compared to a separate method designed to produce the best prediction outcomes from the 

FOM. However, on one cohort, the parameterisation of the NARX model had to be reduced by 

reducing the number of basis functions in order to outperform the FOM over large prediction 

horizons.  

An adaptation of the NARX model aimed to capture differences between COPD patients with 

resultant high auto-PEEP, and non-COPD patients. The adaptation replaced the flow dependent 

terms with basis functions that enabled linear resistance changes to be captured throughout a 

recruitment manoeuvre. The model parameters were able to distinguish between the two 

groups. At low pressure, the high auto-PEEP group had significantly higher modelled resistance, 

and had elastance curves that indicated a greater proportion of un-recruited lung units. Both of 

these outcomes were expected due to the airway narrowing and airway closures known to occur 

in COPD patients. 

As in MV, model based glycaemic control can allow personalised care, reduce mortality and 

improve clinical outcomes. Hence, a side project was undertaken to investigate whether the 

basis function approaches developed for MV could have potential applications in glycaemic 

control. The concept was applied to a glucose model to identify a time varying insulin sensitivity 

(SI) in ICU patients over multiple days. Parameterisation of the model was varied by varying the 

ratio of basis functions to data points, and this ratio influenced the identified SI profiles that 
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were used to build SI prediction distributions. An analysis determined the appropriate level of 

parameterisation that resulted in accurate and precise predictions.  

The glucose model, the NARX model, and its adaptations all captured clinically relevant patient-

specific parameters. The NARX model in particular overcame many of the limitations of previous 

models, due to the novel use of basis functions to describe elastance, and the use of terms that 

fit an end-inspiratory relaxation. It achieved this over a range of cohorts that represented a wide 

variety of patient physiologies and ventilation protocols. The data fitting and prediction 

outcomes indicate that it has high potential to be useful in diagnosis and disease tracking in a 

clinical setting.  
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Part 1: Introduction 
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Chapter 1 Background 

1.1 Respiration 

In healthy humans, breathing is primarily accomplished by the contraction and relaxation of the 

diaphragm and intercostal muscles. In inspiration, contraction of these muscles causes the 

diaphragm to move down and the ribcage to move upwards and outwards. The resulting volume 

increase in the thoracic cavity causes a pressure drop, and air flows from the area of higher 

pressure outside the body to lower pressure in the lungs. Normal expiration is a passive process, 

and depends on the elasticity of the lungs and chest wall (Figure 1.1).  

 

Figure 1.1. Inspiratory and expiratory processes (Won et al., 2014). 

During breathing, air travels through the nose / mouth, through the pharynx, through the larynx, 

and then into the trachea. From the trachea, air passes into the bronchial tree, which consists of 

the right and left primary bronchi, branching into smaller secondary and tertiary bronchi. These 

branches lead to bronchioles and terminal bronchioles that connect to the alveoli (Figure 1.2). 

The trachea and primary bronchi have rings of cartilage that prevent the airways from 

collapsing. In the secondary and tertiary bronchi, the rings are replaced by strips of cartilage. 

Around the bronchioles, smooth muscle allows for constriction and dilation. A large amount of 

elastic connective tissue surrounds and supports the alveoli and other structures.  
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Figure 1.2. Anatomy of the lungs (G.J. Tortora, 2011). 

Alveoli are the site of gas exchange of oxygen and carbon dioxide between air in the lungs and 

the blood capillaries in the walls of each alveolus. Each alveolus has a diameter of 0.2 to 0.3 mm, 

and are covered with a fluid film which contains surfactant, secreted by some alveolar cells. 

Surfactant decreases the surface tension of the water in the fluid film, which would otherwise 

provide a force that would collapse the alveoli at the end of expiration (Daniels and Orgeig, 

2003).  

By preventing the collapse of alveoli, the fluid film has the effect of increasing pulmonary 

compliance. Compliance (C) is the ability of the lungs to expand, and is defined as the change in 

volume (V) that can be achieved in the lungs per unit of pressure (P) change: 

 
𝐶 = 

Δ𝑉

Δ𝑃
 

 1.1 

 

Low compliance represents a stiff lung that requires extra work to bring in a normal volume of 

air. Elastance (E) is the inverse of compliance, and is a measure of the tendency of the lung to 

recoil towards its original dimensions after a distending force is removed: 

 
𝐸 =

1

𝐶
= 

Δ𝑃

Δ𝑉
 

1.2 

 

Elastance varies in healthy lungs for various reasons, such as age and body position. Elastance is 

an important metric as it increases as a result of many lung diseases, including acute respiratory 

distress syndrome (ARDS).  
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1.2 Acute Respiratory Distress Syndrome 

ARDS was first described in 1967 by Ashbaugh et al. (1967). It is a diverse condition, but is 

generally characterised as an inflammatory response in the lungs, resulting in pulmonary 

oedema, alveolar injury, alveolar collapse, and abnormally low oxygen concentration in the 

blood (hypoxemia). It can involve loss of surfactant, fluid accumulation in airspaces, and the 

release of cytokines in response to the inflammation. The Berlin definition of ARDS is the latest 

iteration of the ARDS definition, published in 2012, and it classifies three categories of ARDS 

depending on the degree of hypoxemia: mild, moderate, and severe (The ARDS Definition Task 

Force, 2012). 

ARDS can be caused by numerous factors, including smoke inhalation, pneumonia, sepsis, and 

trauma. ARDS is life threatening as it results in reduced gas exchange and poor oxygenation of 

the blood. Studies have found mortality rates that range from 30% to 70% (Bersten et al., 2002, 

Phua et al., 2009, Zambon and Vincent, 2008). Patients with ARDS often incur much greater 

medical costs, due to the need for mechanical ventilation to maintain adequate gas exchange 

(Dasta et al., 2005, Zilberberg et al., 2008).  

In ARDS lungs, a convex pressure dependent elastance shape is common (Harris, 2005). For 

sedated ARDS patients, elastance initially decreases when pressure at the airway opening is 

increased from atmospheric level. The recruitment of lung units leads to lung volume increasing 

faster than what may be expected for equivalent pressure changes at higher ventilation 

pressures. When most of the recruitable lung volume has already been opened up, pressure 

begins to stretch the already recruited units and elastance begins to increase with pressure. 

Convex elastance is concurrent with a sigmoidal pressure – volume relationship (Figure 1.3). 
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Figure 1.3. The inspiratory limb of the pressure – volume curve. Below the lower inflection point, increased pressure 
may recruit alveoli (represented by ovals and circles). Between the lower and upper inflection points, open alveoli 
distend with pressure. Above the upper inflection point, alveoli may over-distend and become injured (Miller et al., 

2012). 

Both the inter-patient and intra-patient physiology can vary greatly in ARDS, due to the disease 

progression over time, and due to different underlying causes of ARDS. At a particular time, each 

patient will have a unique elastance, or pressure – volume shape, but certain features can be 

used to characterise patient condition. For example, patients with emphysema may have 

decreased elastance due to the loss of elastic alveolar tissue, resulting in a lung that is easy to 

distend and a P – V curve that is concave to the pressure axis at low volume (Papandrinopoulou 

et al., 2012). Patients with fibrosis or pneumonia may have a higher elastance due to a stiffer 

lung (Light, 1999). In this case, a higher pressure than normal is required to give the same 

increase in volume. 

1.3 Mechanical Ventilation 

Mechanical ventilation (MV) is critical in the treatment of ARDS. MV does not cure the 

underlying disease, but provides essential breathing assistance when the patient’s spontaneous 

breathing efforts are not sufficient. Negative pressure ventilators first appeared in the 1800s, 

and consisted of a chamber that housed the whole patient apart from the head (Kacmarek, 

2011). Sub-atmospheric pressure was delivered around the body to replace the work of 

respiratory muscles.   Modern ventilators instead use positive pressure to push air into the 

airways. An endotracheal tube is inserted through the mouth and provides an unrestricted 

passageway for air into the trachea. Alternatively, a tube can be inserted through an artificial 
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opening in the neck. Air is pushed into the airway until the ventilator terminates the breath, 

then the elastic recoil of the chest and lungs pushes air out by passive exhalation.  

MV settings are often chosen based on ad hoc preferences of clinicians. Two frequently utilised 

MV modes are volume controlled ventilation and pressure controlled ventilation. In volume 

controlled mode, the volume of air displaced between inspiration and expiration (tidal volume, 

Vt) is fixed. Air is delivered with a constant flow, and when a flow sensor measures that the pre-

set Vt has been applied, the ventilator cycles to exhalation. In pressure controlled mode, the 

pressure delivered is constant during a set inspiratory time, and the flow decelerates 

exponentially. For some patients, particularly those with high airway resistance, there is 

potential for dangerously high peak pressures to be reached in volume controlled mode 

(Campbell and Davis, 2002).  In pressure controlled mode, peak airway pressure is limited, 

reducing the risk of high pressure injuries. Additionally, the decreasing flow pattern may allow 

air to be more evenly distributed in the lungs, resulting in improved gas exchange (Cadi et al., 

2008). However, Vt is variable in pressure controlled mode, and may change depending on 

changes to patient state. Patients must be monitored to ensure appropriate Vt is being 

delivered. 

If a patient is able to initiate breaths, an assist control (AC) mode can be used in which the 

ventilator delivers support with a set tidal volume when it detects the patient’s efforts. AC mode 

will periodically provide a breath if the patient does not initiate. Alternatively, synchronized 

intermittent mandatory ventilation (SIMV) assists some breaths and lets the patient draw some 

breaths on their own (Singer and Corbridge, 2009b). AC mode is undesirable for patients who 

breath rapidly as hyperinflation may occur (Groeger et al., 1989). SIMV reduces this risk, 

however the patient work of breathing is increased compared to AC mode, and is thus 

unsuitable for patients with respiratory muscle weakness (Sassoon et al., 1994). 

In addition to the ventilation mode, a variety of other ventilator parameters can be set, including 

respiratory rate, fraction of inspired oxygen (FiO2), inspiratory time, and peak allowable 

inspiratory pressure. An important parameter is positive end expiratory pressure (PEEP), which 

maintains positive airway pressure through the whole breathing cycle and helps to prevent 

alveolar collapse at the end of expiration.  

A recruitment manoeuvre (RM) is a common MV procedure in ARDS patients, in which pressure 

is briefly increased to open collapsed alveoli. There are a variety of different RM techniques. In 

the sustained inflation technique, a continuous pressure of 40 cmH2O is applied for up to 1 

minute. Another common RM is a stepped increase in pressure every five to ten breaths until a 
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peak pressure of 40 – 50 cmH2O is reached. Then pressure is gradually stepped down again, and 

some PEEP is applied to keep the recruited lung units open. The most effective RM technique is 

unknown, and may vary in different circumstances (Pelosi et al., 2010). 

Since the degree of damage is different in every patient, and since ARDS is commonly combined 

with another underlying disease, standardising and optimising ventilator treatment is a 

challenge. Additionally, optimal ventilator settings will change over time as the disease 

progresses. Clinicians often rely on experience to select settings, and inexperienced clinicians 

may use a one-size-fits-all approach that will not be the optimal solution for most patients.  

Figure 1.4 shows pressure, volume, and flow waveforms for a MV patient over a single breath in 

volume controlled mode. In this case, an end-inspiratory pause is performed, in which the flow is 

stopped for a short time at the end of inspiration, and expiration is prevented. This manoeuvre 

allows the plateau pressure (PP) to be determined. PP is the pressure applied to small airways 

and alveoli, and can be measured as the airway pressure at the end of the inspiratory pause.  

 
Figure 1.4. Mechanical ventilation waveforms. 

1.4 Ventilator Induced Lung Injury 

Ventilator induced lung injury (VILI) is damage that occurs due to the ventilator. There are two 

well-known ways in which VILI can occur. Firstly, alveoli can be over-distended and ruptured due 
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to high tidal volumes (volutrauma) or high pressure (barotrauma). Secondly, an injury known as 

atelectrauma can be caused by shear forces from alveoli that cyclically open and close with each 

breath. 

Damage to alveolar cells, and especially the rupture of cell membranes and cell death, results in 

local and systemic inflammatory responses (Ranieri et al., 1999) (Rock and Kono, 2008). 

Biological mediators associated with inflammation can lead to organ failure, and ultimately 

death of the patient (Lionetti et al., 2005), and this is most likely the method by which VILI 

increases mortality of ARDS patients (Whitehead and Slutsky, 2002). Most deaths in ARDS 

ultimately do result from multiple system organ failure, rather than respiratory failure (Ferring 

and Vincent, 1997). Alveolar rupture can additionally lead to conditions such as pneumothorax, 

pulmonary interstitial emphysema, and pneumomediastinum. In these disorders, air has 

escaped the lungs and has collected somewhere outside of the normal air spaces.   

Patients with ARDS are at greater risk of VILI than others, due to the heterogeneous nature of 

ARDS lungs. Some areas may be collapsed or filled with fluid, while other lung units are healthy. 

For a given tidal volume, the collapsed areas may be underinflated, while the healthy alveoli are 

simultaneous overinflated (Gattinoni et al., 2003).  

Suboptimal PEEP is often the cause of VILI. In particular, PEEP that is too high can cause the 

over-distension of alveoli, and low PEEP can cause atelectrauma, as well as insufficient 

oxygenation. Other negative effects of PEEP can include disuse atrophy of the diaphragm 

muscle, and hypotension caused by impeded venous return due to increased pressure in the 

pleural cavity.  

1.5 Lung Protective Strategies 

A protective lung strategy to reduce the chances of VILI in ARDS patients uses a low tidal volume 

(Vt ~6 ml/kg predicted body weight), limited plateau pressure (PP < 30 cmH2O), limited peak 

airway pressure (PIP < 50 cmH2O) and a low level of PEEP. In particular, the ARDSNet trial found 

that a tidal volume of 6 ml/kg of predicted body weight reduced mortality by 22% compared to a 

Vt of 12 ml/kg . Several studies suggest that PP should not exceed 30 – 35 cmH2O. (Hager et al., 

2005, Shiu and Rosen, 2006). PIP over 50 cmH2O is associated with increased risk of alveolar 

rupture, and pneumothorax (Petersen and Baier, 1983). However, over-distension can often 

occur at 40 cmH2O (Schranz et al., 2012b). 

The optimal PEEP for avoiding VILI is more ambiguous, however setting PEEP at the point of 

minimum elastance theoretically provides the best trade-off between maximising recruitment 
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and avoiding over-distension. In particular, Carvalho et al. (2007) found that PEEP titrated to the 

point of minimum elastance corresponded to the greatest amount of normally aerated areas, by 

reducing the amount of lung units that were either collapsed or hyper-inflated. 
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Chapter 2 Models 

2.1 First Order Model 

The first order model (FOM), or single compartment model, describes airway pressure as a linear 

combination of a constant resistance and constant elastance (Bates, 2009). In an electrical 

analogy, this model consists of a resistor and capacitor in series, where the voltage represents 

airway pressure, and current represents air flow (Figure 2.1). The FOM is described by: 

 
𝑃 = 𝑅𝑉̇ + 𝐸𝑉 + 𝑃0 2.1 

 where E is respiratory system elastance (cmH2O/L), R represents resistance of the trachea or 

endotracheal tube, bronchi, and bronchioles (cmH2O.s/L), V is inspired volume (L), 𝑉̇ is the flow 

(L/s), and P0 represents PEEP (cmH2O). 

 
Figure 2.1. First order lung model. 

A constant resistance is assumed because the endotracheal tube and bronchioles do not stretch 

much during MV. However, in some situations this may be an unreasonable assumption. If the 

severity of ARDS changes over time, small airways may collapse or open up, which could 

substantially alter the overall resistance. Variable resistance within one breathing cycle has been 

shown to occur in a high proportion of ARDS patients (Mols et al., 2001). Variable resistance at 

different PEEP levels has been observed and attributed to the opening and closing of some 

airways (van Drunen et al., 2013). Furthermore, a constant elastance does not match known 

patient behaviour. In particular, ARDS lungs have a very non-linear elastance due to the 

recruitment of collapsed alveoli at low pressure and distension at high pressure.  

The FOM is the most frequently used model for most applications. This model, or simple 

derivatives of it, are the most likely to be used in current ventilators to calculate patient 

parameters. For example, in the CURE Soft trials the FOM is used over inspiratory data to 

calculate elastance for each breathing cycle (Szlavecz et al., 2014). Despite the assumptions it 

makes, and despite a wealth of proposed alternative models, the FOM is very popular, implying 

that the alternative models are not providing much further benefit. Therefore, the performance 

of the pulmonary model developed in this thesis is frequently compared to the FOM. 

 



11 
 

2.2 Viscoelastic Model 

As extensions to the single compartment model, several two compartment models were 

proposed (Otis et al., 1956, Mead, 1969, Mount, 1955). Experimental data showed that the two 

compartment model proposed by Mount (1955) was found to be the most physiologically 

plausible of these options (Bates et al., 1988). It describes a uniformly ventilated alveolar 

compartment surrounded by viscoelastic tissue, and the electrical analogy consists of an 

additional parallel circuit of a resistance and elastance in series with the FOM (Figure 2.2). 

Viscoelasticity means that the tension generated in lung tissue following a sudden stretch will 

adapt slowly over time. This property is due to elastic energy stored in the lung in inspiration 

that slowly dissipates over time as structural elements of the lung rearrange to lower energy 

levels. Viscoelasticity causes airway pressure to exponentially decrease during an end-inspiratory 

pause. Unlike the FOM, the viscoelastic model can capture this behaviour. 

 
Figure 2.2. Viscoelastic lung model. 

The viscoelastic model is limited in its abilities to describe all fundamental physiology in 

respiratory mechanics. Most importantly, it does not capture alveolar recruitment or over-

distension (Schranz et al., 2012a). Another disadvantage is that physiologically plausible values 

for resistance and elastance are not always identifiable, depending on the parameter 

identification method used, and the presence of noise in the data. Additionally, the model can 

be sensitive to the initial values used in gradient based identification, which can lead to incorrect 

parameters being computed (Schranz et al., 2012a). 

2.3 Edrs Model  

The Edrs model is a different extension to the FOM, and includes a dynamic elastance term 

(Chiew et al., 2011, van Drunen et al., 2014): 

 
𝑃 = 𝑅𝑉̇ + 𝐸𝑑𝑟𝑠𝑉 + 𝑃0 2.2 

 

 



12 
 

where Edrs is a time varying lung elastance that varies during each breath of MV. Edrs allows the 

changes occurring due to recruitment and distension to be seen dynamically within each breath. 

This gives a more detailed view of the patient’s lung condition and severity of ARDS compared 

with the FOM. Minor extensions were later implemented by Knörzer et al. (2014) and Laufer et 

al. (2017) which added corrective terms to the dynamic elastance for different PEEP levels. 

Resistance is still assumed to be constant in the Edrs model. Additionally, the expiratory part of 

the breathing cycle is ignored, as Edrs is calculated from inspiration data only.  

2.4 Expiratory Time Constant Model 

The expiratory time constant model (van Drunen et al., 2013) uses expiration data to determine 

a parameter (ζ) that is directly proportional to passive respiratory system elastance: 

 
𝑉̇(𝑡) =  𝑉̇0𝑒

−𝜁𝑡  2.3 

 where 𝑉̇0 is the value of maximum expiratory flow. The system time constant (τ) is given by: 

 
τ = 

1

𝜁
 2.4 

 
If the parameter ζ is increasing, it implies that elastance is increasing. Setting PEEP at minimum τ 

(i.e. minimum elastance) would theoretically provide the optimal PEEP for that patient. 

However, the expiratory time constant model is only valid when resistance is constant. If this 

assumption is violated, there will be a poor correlation between ζ and respiratory elastance, and 

the model will not be useful. Additionally, the use of expiratory data only means that the model 

is ignoring information about patient state that exists in the inspiratory part of the breath. 

2.5 Alveolar Recruitment Model 

Hickling’s alveolar recruitment model (Hickling, 1998) describes the lung as a collection of lung 

units, divided into horizontal compartments, where lower compartments experience higher 

superimposed pressure due to the weight of the lung (Figure 2.3). The opening and closing of 

alveoli in this model are assumed to be governed by normally distributed threshold opening 

pressures (TOP) and threshold closing pressures (TCP). TOP is the critical pressure at which a 

previously collapsed alveoli unit is recruited during inspiration. TCP is the critical pressure at 

which a previously recruited unit collapses during expiration. The mean and standard deviation 

of the TOP and TCP distributions change as the patient’s condition evolves. 
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Figure 2.3. Graphical representation of the alveolar recruitment model (Sundaresan et al., 2009). 

2.6 Minimal Model 

The minimal model (Sundaresan et al., 2009) is based on Hickling’s description of the alveolar 

recruitment model. It also includes a sigmoid based curve that gives the volume of a lung unit 

once it is recruited: 

 
𝑉 = 

𝑎

1+ 𝑒𝑏(−𝑃+𝑐) + d 2.5 

 
where a is the height of the curve, b defines the curvature, c is the midpoint, and d is a minimum 

volume. This curve is used to represent viscoelastic effects of recruited alveoli, improving the 

accuracy of the model.  

For a given PEEP, pressure and volume measurements are used to calculate TOP and TCP. 

Changes in these values with PEEP yield information about patient state. For example, a 

decrease in mean TOP with increased PEEP implies recruitment is occurring. An increase in TCP 

with PEEP implies that PEEP is preventing de-recruitment. This information can be used to 

determine an optimal patient-specific PEEP. 

An earlier version of the minimal model used four different types of lung units, instead of one 

(Yuta et al., 2004). The model was highly physiologically representative, but required up to 42 

parameters to be identified, most of which were impractical or impossible to obtain clinically. 

The minimal model was therefore created as a simplified version. The identification of the 

minimal model is greatly simplified. However, physiological detail is lost, such as the ability to 

identify the number of healthy and ARDS affected lung units for each patient.  

Though the minimal model is comparatively easy to identify, it still has the disadvantage of 

requiring an unusual intervention from ICU staff that interrupts the patients’ breathing pattern. 

In particular, the fitting method requires briefly deflating the lungs to atmospheric pressure. This 

interruption may be undesirable for some patients, and recording deflation data requires a 

separate data acquisition system, or specialised ventilator.  
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2.7 Pressure Dependent Recruitment Model 

The pressure dependent recruitment model (PRM) (Schranz et al., 2012b) uses the alveolar 

recruitment model and combines it with an alveolar distension model (Salazar and Knowles, 

1964). The alveolar distension model describes the pressure – volume relationship using an 

exponential function: 

 
𝑉 =  𝑉𝑚𝑎𝑥(1 − 𝑒−𝑝𝑎𝐾) 

 

2.6 

 
where Vmax is the maximum pulmonary volume, pa represents alveolar pressure, and K describes 

the speed at which compliance decreases with increasing pressure. 

The PRM is ultimately a pressure dependent compliance function embedded in the structure of 

the FOM. As in Hickling’s model, it describes n = 30 layers of alveolar units that are recruited 

once the appropriate pressure is exceeded. Once a layer is recruited, the layer compliance 

contributes to the overall lung compliance. However, the compliance of each layer decreases 

exponentially as pressure increases. The PRM is shown in Equation 2.7. 

 
𝑃 = 𝑅𝑉̇ + 𝑝𝑎  

𝑝̇𝑎 = [𝐶𝐹𝑅𝐶𝑒−𝐾𝑝𝑎 + 𝐶𝐿 ∑ 𝐻𝑛𝑒−𝐾(𝑝𝑎−𝑇𝑂𝑃−𝑆𝑃𝑛)

30

𝑛=1

]

−1

𝑉̇ 

2.7a 

 

2.7b 

CFRC is the overall initial compliance of the alveoli that are open at the beginning of inspiration. CL 

is the initial compliance of a recruited layer. Hn takes the value 1 to represent a layer of units 

that are recruited, or 0 if the layer is not recruited. In addition to the TOP, the superimposed 

pressure SPn must be exceeded to recruit a specific layer. SPn increases linearly as the layer 

number increases. 

Resistance in this model is assumed constant, and the model is generally only identified on 

inspiration data. However, the main disadvantage of the PRM has been its issues with 

identifiability (Schranz et al., 2012c, Raue et al., 2009). Where recruitment or over-distension 

effects are not observed in the measured data, identifiability of one or more of the five PRM 

parameters is impaired. It is a particular disadvantage that the model requires evidence of over-

distension of the lungs, as the high pressures that lead to over-distension may result in VILI. 

2.8 Finite Element Modelling  

In finite element analysis (FEA), a particular geometry is subdivided into smaller components 

that combine into a structure that represents the entire system. In pulmonary modelling, FEA 
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has been used to model the physical structure of the lungs, including the bronchial tree and 

vascular structure (Perzl et al., 1996, Bradley et al., 1997, Tawhai et al., 2000, Tawhai et al., 

2004, Burrowes et al., 2005, Montesantos et al., 2016). Information about patient-specific lung 

geometry must first be obtained via patient scans, such as magnetic resonance imaging (MRI) or 

more recently, computed tomography (CT) scans. This information is then used to discretise the 

domain into the small elements by a meshing process. The use of small elements can enable an 

accurate physical representation.  

The mesh models can be used to simulate behaviour, such as ventilation distribution, and 

pulmonary dysfunctions (Tgavalekos et al., 2005, Kim et al., 2015). FE models of the lungs have 

also been used to model respiratory motion (Werner et al., 2009, Villard et al., 2005, Eom et al., 

2010, Al-Mayah et al., 2008). 4D-CT scans are used to create a mesh, and FE analysis can then be 

used to solve a model that simulates the motion of lung inflation and deflation. This type of 

model has applications in tumour treatment. In radiation therapy, an assumption that the 

tumour location and shape remains constant will be violated by respiration. FE models can 

predict localised deformation of the lungs and surrounding tissues and reduce tumour targeting 

errors (Eom et al., 2010).  

FE models have also utilised electrical impedance tomography (EIT) scans (Gong et al., 2015). EIT 

uses a number of electrodes placed on the patient’s skin that measure the relationships 

between voltage and current across the geometry. For modelling pulmonary tissue, the 

conductivity distribution in a cross section of the thorax is estimated. EIT can visualise shifts in 

body fluids and lung aeration as pressure changes. Luepschen et al. (2008) uses EIT and FE 

analysis to model levels of fluid in the lungs.  

The effectiveness of FE models depends heavily on the quality of the geometric information 

obtained by the scan, and the accuracy of the FE mesh. A good quality mesh can be difficult to 

create. Meshes generated from CT images especially can have a dense arrangement of elements 

with irregular geometries. Smoothing methods can be used to create a more regular mesh, 

though detail and accuracy will be lost (Brock et al., 2005, Werner et al., 2008, Villard et al., 

2004). 

Compared with the lumped parameter pressure – flow based models, FE model validation can 

be a more ambiguous process. Validation involves comparison with the scan data, where 

anatomical reference points must be chosen, and their distance measured from corresponding 

points on the model. CT scan based FE models have been consistent with anatomic 

measurements. However, the generation of these models is more expensive and more 
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dangerous due to the radiation used in CT scans. EIT based models are more appropriate for real 

time bedside monitoring of ARDS patients, though EIT has limitations in that it requires precise 

electrode placement (Boyle and Adler, 2011, Sabine et al., 2015) and lacks the spatial resolution 

of CT scans. 

2.9 Summary 

There are a wide range of physiologically and clinically relevant pulmonary models. However, 

there remains significant debate about the best model that fits all modes of ventilation. The 

models presented here have not been able to consistently describe recruitment and distension 

effects across PEEP changes. The simpler models, such as the FOM and viscoelastic model, are 

limited in their ability to describe all relevant respiratory mechanics. As a general rule, more 

complex models can capture more physiological behaviour, but are much less practically useful. 

Complex models often have issues with identifiability, so they cannot be relied upon to generate 

accurate patient-specific models. Ambiguity in parameter values ultimately leads to lower 

confidence in the ability of a model to predict patient responses to changes in therapy, and thus 

lower confidence in its use for decision support.  
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Chapter 3 Mathematics and Statistics 

3.1 Parameter Identification 

Parameter identification (ID) methods are used to determine the parameters of a mathematical 

model that allow it to most closely describe measured data. This section describes the 

parameter ID methods used in the thesis. It is not intended to provide an overview of all 

parameter ID methods. Linear regression was used to identify the NARX model and FOM in 

almost all scenarios. The Gauss – Newton (GN) method was used to identify the NARX model and 

FOM in Chapter 9, and the glucose model in Chapter 13 and Chapter 14. 

3.1.1 Linear Least Squares 

Linear least squares aims to find the parameter values that result in the best fit between 

measured data and the model output. As a general example, consider a system of linear 

equations: 

 

𝑦𝑖  = ∑𝑎𝑗𝑥𝑖,𝑗

𝑚

𝑗=1

  (𝑖 = 1,2, … ,𝑁) 

 

3.1 

 

where there are N number of (x, y) paired data points and m unknown coefficients. For N > m, 

the system is overdetermined. The system can be defined in matrix form: 

 
𝐀𝐱 = 𝐛 

 

3.2 

 where 

 

𝐀 = [

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑚

𝑥2,1 𝑥2,2 … 𝑥2,𝑚

⋮ ⋮ ⋱ ⋮
𝑥𝑁,1 𝑥𝑁,2 ⋯ 𝑥𝑁,𝑚

] ; 

𝐱 = [𝑎1 𝑎2 … 𝑎𝑚]𝑇 ; 

and = [𝑦1 𝑦2 … 𝑦𝑁]𝑇 . 

 

 

 

Then the objective is to find the coefficients which fit the equation best, i.e. to minimise the 

objective function: 

 

Ψ = √∑ (𝑦𝑖 − 𝑦̂𝑖)2
𝑁

𝑖=1
 

 

3.3 
 

where 𝑦𝑖 are the values of the measured data, and 𝑦̂𝑖 are the values of the model at the 

corresponding times.  
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If N < m, the model is non-identifiable. If N ≥ m, there are many methods of finding the optimal 

parameters. By iterating through values for each parameter, a contour plot of Ψ can be created, 

which can graphically show the minimum. If N = m, Equation 3.4 can be used. If A is non-square 

then Equation 3.5 can be used. Generally, when N > m, the most convenient method of solving a 

linear least squares problem is to use the Matlab backslash operator, which invokes different 

algorithms depending on the structure of A.  

 
𝐱 =  𝐀−1𝐛 

 

3.4 

 
𝐱 =  (𝐀T𝐀)−1𝐀T𝐛 

 

3.5 

3.1.2 Gauss – Newton 

Gauss – Newton (GN) is a gradient descent method, used for nonlinear least squares problems. It 

is an iterative method, in which parameter values are updated each iteration, depending on a 

rule that utilises the error between the measured data and model output. 

The first step in GN is to choose initial parameter values (x0), and a small value for the 

perturbation (Δx). The model is first forward simulated at the initial values. Then, the iterative 

process that updates the parameter set (x) at each iteration, i, is given by: 

 
𝐱𝑖+1 = 𝐱𝑖 − (𝐉T𝐉)

−1
𝐉T𝚿 

 

3.6 

where 

 

 𝐉 =

[
 
 
 
 
 
𝛿𝜓1

𝛿𝑥1

𝛿𝜓1

𝛿𝑥2
⋯

𝛿𝜓1

𝛿𝑥𝑚

𝛿𝜓2

𝛿𝑥1

𝛿𝜓2

𝛿𝑥2
…

𝛿𝜓2

𝛿𝑥𝑚

⋮ ⋮ ⋱ ⋮
𝛿𝜓𝑁

𝛿𝑥1

𝛿𝜓𝑁

𝛿𝑥2
⋯

𝛿𝜓𝑁

𝛿𝑥𝑚]
 
 
 
 
 

 ; 

 

 
 

 

and 𝚿 = [

𝑦̂1 − 𝑦1

𝑦̂2 − 𝑦2

⋮
𝑦̂𝑁 − 𝑦𝑁

] . 

 

Ψ is the residual vector, calculated as the difference between the measured data (𝑦1 … 𝑦𝑁) and 

the model output at the sample times (𝑦̂1 … 𝑦̂𝑁). J is the Jacobian, which is a matrix of first order 

partial derivatives.  

The GN algorithm steps the parameters in the direction that reduces Ψ. This process repeats for 

a set number of iterations, chosen such that the parameter values have converged. GN typically 

converges quickly, however the method may not work well if the function is flat in the region 
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around the minimum.  The initial values, and the size of the perturbation are important settings, 

as they can determine whether or not convergence is achieved, and whether convergence 

occurs at a local or global minimum. 

3.2 Autoregressive Modelling 

A typical form of an autoregressive model with exogenous inputs (ARX) is given by (Billings, 

2013): 

 
𝑌(𝑡) =  ∑ 𝑑𝑖𝑌(𝑡−𝑖) +  ∑ ∑ 𝑒𝑗,𝑖𝑖𝑗𝑖 𝑋𝑗(𝑡1−𝑖) +  𝑓  3.7 

 
where Y is the measured output, X is a known system input, j is the index of system inputs, and i 

is the index of the past inputs and outputs. The coefficients to be identified are d, e, and f. The 

system output is essentially a linear combination of previous values of the output, and the 

current and previous values of the inputs.  

To identify the unknown parameters, a matrix system of equations must be generated: 

 
𝐀𝐱 = 𝐛 3.8 

 where 

 

𝐀 = [

𝑌(𝑡−1) 𝑌(𝑡−2) … 𝑌(𝑡−𝑖−1) 𝑋1(𝑡0) 𝑋1(𝑡−1) … 𝑋1(𝑡−𝑖) 𝑋2(𝑡0) … 1
𝑌(𝑡0) 𝑌(𝑡−1) … 𝑌(𝑡−𝑖) 𝑋1(𝑡1) 𝑋1(𝑡0) … 𝑋1(𝑡1−𝑖) 𝑋2(𝑡1) … 1

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑌(𝑡𝑁−1) 𝑌(𝑡𝑁−2) … 𝑌(𝑡𝑁−𝑖−1) 𝑋1(𝑡𝑁) 𝑋1(𝑡𝑁−1) … 𝑋1(𝑡𝑁−𝑖) 𝑋2(𝑡𝑁) … 1

]; 

𝐱 =  [𝑑1 𝑑2 … 𝑑𝑖 𝑒1,1 𝑒1,2 … 𝑒1,𝑖 𝑒2,1 … 𝑓]𝑇;  

and 𝐛 = [𝑌(𝑡0) 𝑌(𝑡1) … 𝑌(𝑡𝑁)]𝑇. 

 
The number of data points is given by N. Terms that have negative values of t will be set to zero, 

as these measurements do not exist. The equation is easily solved for x using linear regression. 

The number of previous input and output data points, i, must be decided. This value determines 

the number of model parameters, and is dependent on the nature of the particular system. A 

general rule is to use as few parameters as possible while ensuring the model adequately 

describes the system. If i is small, all important features may not be captured and incorporated 

into the model. However, too many parameters can cause the model to capture measurement 

noise, and will result in reduced predictive capabilities. Note also that the value of i may need to 

be different for the inputs and output. 

Equation 3.1 has one output only, though some ARX systems have multiple outputs. The 

equation may also include linear or nonlinear functions of the inputs and outputs. The addition 
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of these nonlinear terms, (generating a NARX model), will depend on characteristics of the 

system, which may or may not be initially known. By providing a number of candidate nonlinear 

terms, parameter ID can determine which terms are appropriate, and the underlying behaviours 

of the system can be determined.  

3.3 ARX Model Structure Selection 

There are many methods to choose between different ARX model structures. For linear systems, 

criteria such as the Akaike Information Criterion (AIC) or Minimum Descriptive Length (MDL) 

may be used, both of which consider a trade-off between complexity of the model and 

complexity of the data (Lind and Ljung, 2008).  

In the AIC method, the AIC value is found for each of a set of candidate models. The formula 

takes into account the residuals of the model fit and the measurement noise assumed to be 

present. The AIC values give a relative measure of how probable each model is to be the model 

that minimises information loss, and is closest to the true process that generated the data 

(Burnham and Anderson, 2002). This method is discussed further in section 3.5.4. Closely related 

to AIC is the Bayesian Information Criterion (BIC), which gives a greater penalty for highly 

parameterised models compared to AIC (Schwarz, 1978).  

MDL uses the idea of data compression (Rissanen, 1978). Regularity in data can be used to 

compress the data, and the model that captures the most regularity in the data can achieve the 

best compression. The best model of the candidate set is considered to be the one for which the 

description of the model plus the model’s description of the data is minimal. 

Of these three methods, the most appropriate option is debated. If the true model is in the 

candidate set, BIC is more likely than AIC to select it (Burnham and Anderson, 2002). However, 

normally, a good assumption is that none of the candidates are the exact true model, in which 

case AIC is more appropriate (Yang, 2005). Some studies suggest AIC has performance 

advantages over BIC (Burnham and Anderson, 2004). However, AIC can have a tendency to 

favour more complex models that over-fit the data. MDL methods avoid over-fitting, (Grünwald, 

2007) however they can be very computationally intensive. 

An important criterion is the model – data residuals. Low residuals are important, but low 

systemic bias in residuals is also key. While one model might best fit the data, an alternative 

model with a worse fit might be more appropriate if residual bias is less. This is increasingly 

important if the model is to be used for prediction. Also, if residuals are too low, the model may 

be over parameterised. In this situation, the model parameters are capturing noise rather than 
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useful physiological dynamics, and the model’s predictive capability is likely to be poor. By 

testing different terms and analysing the model fit, parameter values, and predictive power, the 

most useful model structure can be found. Ultimately, the specific system and the purpose of 

the model influence how the structure will be determined. 

3.4 Basis Functions 

Basis functions are used to approximate multivariable functions by linear combinations of terms 

that are based on a single univariate function. They are often used to approximate nonlinear 

behaviour that might be too difficult to evaluate otherwise. Any continuous function can be fit 

with arbitrary accuracy by a sum of a sufficiently large number of basis functions. Global basis 

functions e.g. polynomials affect the whole input space. Often local basis functions are more 

appropriate, such as Gaussian functions, or basis – spine (b-spline) functions.  

Zero order b-spline functions are square functions, defined: 

 ∅𝑖,0(𝑃) =  {
1      𝑖𝑓 𝑃𝑖  ≤ 𝑃 <  𝑃𝑖+1

0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 3.9 

 where Pi are division points (also known as knots) that subdivide the interval 0 ≤ P ≤ Pmax. Basis 

functions of higher degrees (d) are defined recursively (de Boor, 1972): 

 
∅𝑖,𝑑(𝑃) =  

𝑃 − 𝑃𝑖

𝑃𝑖+𝑑 − 𝑃𝑖
∅𝑖,𝑑−1(𝑃)  +  

𝑃𝑖+𝑑+1 − 𝑃

𝑃𝑖+𝑑+1 − 𝑃𝑖+1
∅𝑖+1,𝑑−1(𝑃) 3.10 

 

Figure 3.1 shows examples of zeroth, first, and second order basis functions. If the degree is 

zero, the basis functions are all step functions, each one spanning the distance between two 

adjacent knots. Basis functions of higher orders overlap, and a basis function of degree d is non-

zero on d + 1 knot spans. The functions sum to 1 at every point.  
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Figure 3.1. Basis functions for 0 ≤ P ≤ 50 with Pi = [0, 10, 20, 30, 40, 50] cmH2O. 

A model containing a linear combination of basis functions can also be interpreted as a simple 

type of artificial neural network (Coelho and Krohling, 2006, Botzheim et al., 2007). The basis 

function parameters, determined by parameter ID, are like the neuron weights, and the basis 

functions are like the activation functions that convert weights into an output activation. 

3.5 Statistics 

3.5.1 Residuals 

One of the most important methods of assessing model suitability is observation of the 

residuals. For a given sample point, the model – data residual is the difference between the 

model output at that point, and the measured data point. This is distinct from the error, which is 

the difference from the true value of a quantity, which is unobservable due to measurement 

noise.  

The root mean square (RMS) residual is a commonly used measure in the analysis of model fits. 

It is defined: 

 

RMS =  √
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁

𝑖=1

𝑁
 

  

3.11 
 

The RMS value aggregates the magnitudes of the residuals for all the sample times into a single 

measure. When a model is used for prediction, the RMS difference between model prediction 
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and measured data provides a single measure of predictive power. Comparison of RMS values 

between models must always be over the same variable, as the value is scale dependent.  

3.5.2 Statistical Tests 

Several statistical test are commonly used to compare two different sets of data. Popular test 

include the t-test (one sample, two sample, or paired), the Kolmogorov – Smirnov test (K-S test), 

and the Wilcoxon signed-rank test. 

The t-test is used to determine if two sets of data are significantly unlikely to be drawn from the 

same normal distribution (Dodge, 2008). A one sample t-test evaluates whether the data is 

significantly unlikely to come from a distribution with a particular mean. This can be used to test 

for bias in residuals. In particular, biased residuals will have a mean that is significantly different 

from zero. 

A paired t-test evaluates the hypothesis that two matched samples come from distributions with 

equal means. It can be used to compare something that has been tested twice e.g. the same 

subjects being tested on two different treatments, or to compare the performance of two 

different models on the same data set. In contrast, a two sample t-test tests the hypothesis that 

two independent samples come from distributions with equal means. This form of the test is 

used when two separate sets of samples are obtained, one from each of the two populations 

being compared. The two sample t-test could be used to compare model parameters for two 

groups of patients with different diagnoses.  

The signed-rank test is a non-parametric test that can be used as an alternative to the t-test 

when the population cannot be assumed to be normally distributed (Wilcoxon, 1945). It can be 

used on model residuals in an interpolation or extrapolation context. If a model is being tested 

over data it has not been trained on, we cannot assume residuals will be normally distributed 

because the model fit to the unknown data might be bad. Thus, in such cases the signed-rank 

sum test is an appropriate test for bias. 

The K-S test is used to compare distributions (Massey, 1951). A one sample K-S test compares a 

sample with a reference distribution, whereas a two sample K-S test compares two empirical 

distributions with each other. The null hypothesis is that the samples are drawn from the same 

distribution. The two sample K-S test may be used to strengthen an argument about the 

performance of two different models, based on an analysis of residuals that may or may not be 

normally distributed. A model with biased residuals will have a significantly different residual 

distribution to a model with unbiased residuals.  
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3.5.3 Correlations, R2, and Bland-Altman 

The Pearson correlation coefficient, R, is a measure of the linearity of the relationship between 

two variables (Sharma, 2005). It has a value between +1 and -1, where +1 indicates perfect 

positive linear correlation, 0 indicates no linear correlation, and -1 is perfect negative linear 

correlation. The interpretation of the correlation coefficient depends on the context, and the 

amount of noise or confounding factors expected in the data. The value of R can be misleading if 

outliers are present, or if performed on a small subgroup of the population that does not 

represent the full population. The formula for R is given by Equation 3.12, where N is the 

number of (x, y) data points. 

  
𝑅 = 

𝑁(∑𝑥𝑦) − (∑𝑥)(∑𝑦)

√[𝑁 ∑𝑥2 − (∑𝑥)2][𝑁 ∑𝑦2 − (∑𝑦)2] 
 

  

3.12 
 

In regression analysis, the coefficient of determination (R2) is often used. R2 ranges from 0 to 1, 

and it indicates the proportion of variance in the dependent variable that is predictable by the 

independent variable. It indicates the strength of the equation which is used to predict the value 

of the dependent variable, and can give a measure of the goodness of fit of a model.  

If there is a bias between two variables, a Bland – Altman plot allows this to be more easily 

observed (Altman and Bland, 1983). The X axis is the average of the paired measurements, and 

the Y axis is the difference between these measurements. This type of plot is commonly used to 

compare two methods that are designed to measure the same parameter. Even if there is a high 

correlation between the two methods, this does not necessarily mean the methods have a high 

agreement. A Bland – Altman plot quantifies agreement by constructing limits of agreement 

around the mean difference, or bias. Limits of agreement usually designate two standard 

deviations from the mean difference, within which 95% of the differences of the second method, 

compared to the first one, fall (Giavarina, 2015). The Bland – Altman method does not say 

whether these limits are clinically acceptable or not. Ultimately, clinical context determines 

whether the two methods have a high enough agreement. 

3.5.4   Akaike Information Criterion 

The Akaike information criterion (AIC) provides a theoretical method of model selection, based 

on the trade-off between the goodness-of-fit of the model, and model complexity (Burnham and 

Anderson, 2002):  

 
AIC =  −2 ln(𝐴) + 2𝐵 3.13 
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where B is the number of model parameters and ln(A) is the log-likelihood function. The 

MATLAB normlike function can be used to calculate the log likelihood, using model – data 

residuals and the expected measurement noise as inputs.  

The AICc correction increases the penalty on higher model complexity, and decreases the 

probability of selecting a model with too many parameters: 

 
AICc = AIC + 

2𝐵(𝐵 + 1)

𝑁 − 𝐵 − 1
 3.14 

where N is the number of data points. AICc should be used when the number of data points is 

not many times larger than B2 (Hurvich and Tsai, 1989, Anderson et al., 1994). 

When comparing models, the model with the minimum AIC or AICc value is assumed to be the 

best model. It says nothing about the absolute quality of the models, only their relative quality.  

3.5.5 Statistical Classification 

A binary classifier is an algorithm that determines which of two categories that a certain 

observation belongs to (Ting, 2011). A confusion matrix is a 2 x 2 table that allows visualisation 

of the classifier algorithm’s performance. The table reports the number of true positives (TP), 

true negatives (TN), false positives (FP), and false negatives (FN). From this table, the accuracy of 

the classifier can be calculated as: 

 
Accuracy =  

∑TP + ∑TN

∑ total population
 3.15 

 
The accuracy gives the proportion of tests that the classifier got correct. However, accuracy is 

not a reliable metric when the number of samples in different classes varies. Often, a more 

useful way of assessing the classifier is to calculate the sensitivity and specificity: 

 
Sensitivity =  

∑TP

∑TP + ∑FN
 3.16 

  
Specificity =  

∑TN

∑TN + ∑FP
 3.17 

 
Sensitivity measures the proportion of positives that are correctly identified, and specificity 

measures the proportion of negatives that are correctly identified. A highly sensitive classifier 

rarely gives a false negative, and a highly specific classifier rarely gives a false positive.  

In the context of model performance assessment, this classification method can be used to 

compare binary predictive capabilities. Each model is a different classifier, which may predict at 

different times if a certain clinically important threshold is exceeded.  
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The results of the confusion matrix can be used to create receiver operating characteristic (ROC) 

curves. A ROC curve plots the true positive rate (sensitivity) against the false positive rate (1 – 

specificity), for different discrimination thresholds. Points above the diagonal represent results 

that are better than random, and the best possible predictor would result in a ROC curve that 

consists of a point at the upper left corner, where sensitivity and specificity both equal 1.  

When choosing between different classifiers, generally, the one with the largest area under the 

curve (AUC) has the best overall performance (Hanley and McNeil, 1982). If the AUC is similar, 

specific characteristics of the ROC curves may be considered. For a given AUC, one classifier 

might perform better when a high sensitivity is important, whereas a different classifier might 

perform better when high specificity is required. In a medical application, a highly sensitive test 

might be favoured for initial screening purposes, so that presence of a disease is rarely missed. 

Further tests might be more specific so as to avoid unnecessary treatment (Lalkhen and 

McCluskey, 2008). 

For a given classifier, the optimal threshold can be calculated as the point on the ROC curve 

closest to (0, 1). A similar method, the Youden index, is the point on the ROC curve that is the 

furthest from the diagonal 1:1 line. In the context of optimal threshold choice, the costs of false 

positives and false negatives must again be considered, and setting the threshold to create 

either a more sensitive or more specific test might be appropriate (Schisterman et al., 2005).  
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Chapter 4 Pulmonary Data 

4.1 Cohort1 

Cohort1 came from a clinical study that was conducted from 2000 to 2002 in the eight German 

hospital ICUs (Stahl et al., 2006). Measurements were taken from 28 ARDS patients, aged 17 to 

77 years. The cause of ARDS varied among patients, and included pneumonia, lung contusion, 

and brain injury. Patients were ventilated for varying lengths of time, with the minimum being 

two days.  

The volume controlled mode of ventilation was used, with the tidal volume targeted at 8 ± 2 

mL/kg body weight. Inspiratory time and flow rate were set to obtain and end-inspiratory pause 

of ≥ 0.2 seconds. The breathing rate varied. Sedatives were titrated to achieve a Ramsay 

sedation score of 4 – 5, and neuromuscular blocking drugs were administered as needed. 

Therefore, patient breathing efforts did not occur.  

Patients were ventilated with Evita4Lab systems. Flow was measured with a calibrated Fleisch 

No. 2 pneumotachograph connected to a differential pressure transducer. Pressure at the airway 

opening was measured by a piezoresistive pressure transducer. Volume was calculated by 

continuous integration of the flow with adjustment for volume drift, so that volume at the end 

of expiration was zero. Data was sampled at 125 Hz, and then later reduced to 62.5 Hz to reduce 

noise in the data and improve the speed of simulations. This was achieved by decimating the 

signal by a factor of two. Low pass filtering was not required as the data was greatly 

oversampled according to the Nyquist criterion (Lyons, 2001).  

Patients were first ventilated at zero PEEP for approximately five minutes. Then, 27 of the 28 

patients underwent a RM in which PEEP was increased in steps of 2 cmH2O after every 10 

breaths. This process continued until a peak inspiratory pressure of approximately 50 cmH2O 

was reached (Figure 4.1).  The protocol was approved by the local ethics committee of each 

participating institution, and informed consent was obtained from the patient or their legally 

authorised representative. 
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Figure 4.1. Airway pressure data for one patient of Cohort1. Full RM (left), and a single breath at PEEP = 0 cmH2O 
(right). 

4.2 Cohort2 

Cohort2 came from a pilot Clinical Utilisation of Respiratory Elastance (CURE) software trial, 

conducted in the Christchurch Hospital ICU, New Zealand, between September 2013 and 

November 2014 (Davidson et al., 2014). Measurements were collected from ten ARDS patients, 

aged 18 to 88 years with a mean of 50.3 years. Diagnoses included pneumonia, aspiration, and 

pancreatitis.  

Pressure and flow were recorded with a Puritan Bennett 840 ventilator at a sampling rate of 50 

Hz. Volume was calculated from continuous integration of the flow, with compensation for 

volume drift. Seven of the patients were ventilated in pressure controlled mode, and three in 

volume controlled mode. No end-inspiratory pause was used. The breathing rate was 

approximately 18 breaths per minute. Patients were fully sedated.  

The patients underwent RMs in which PEEP was increased in steps of 2 cmH2O. PEEP at the 

beginning of the RM varied between 8 cmH2O and 16 cmH2O for different patients. The RMs 

contained between four and nine PEEP step increases. The maximum pressure reached for each 

patient ranged between 36 cmH2O and 52 cmH2O. Some patients underwent multiple RMs 

during the trial, thus 19 data sets were obtained. Figure 4.2 shows one of the data sets. Ethics 

approval for the study and use of collected data was granted by the New Zealand South Regional 

Ethics Committee. 
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Figure 4.2. Airway pressure data for one patient of Cohort2. Full RM (left), and a single breath at PEEP = 15 cmH2O 
(right). 

One further data set was obtained from this study. This patient was ventilated using a SIMV 

ventilator in volume controlled mode, and exhibited rarely seen M-waves in the pressure data 

due to spontaneous breathing efforts (Figure 4.3). The data has a constant PEEP of 17 cmH2O 

and spans approximately 80 minutes. Around 65% of the breathing cycles contained some 

degree of M-wave shape. 

 

Figure 4.3. Cohort2 M-wave patient pressure data showing an M-wave and a normal breath. 

4.3 Cohort3 

Cohort3 came from a study conducted in the Christchurch Hospital ICU, New Zealand, between 

February 2010 and September 2010 (Sundaresan et al., 2011). Measurements were collected 

from ten ARDS patients, aged 22 to 88. Four patients had a high auto-PEEP, which is a condition 
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caused by incomplete expiration resulting in accumulation of air in the lungs. High auto-PEEP 

was defined as an auto-PEEP ≥ 5 cmH2O. The remaining six patients had low auto-PEEP < 5 

cmH2O. All patients with high auto-PEEP were independently diagnosed with COPD, as was one 

patient with low auto-PEEP. Table 4.1 summarises patient information, including diagnoses and 

measured auto-PEEP. 

Patients were ventilated in volume controlled mode, with a constant tidal volume of 6 ml/kg or 

500 ml, whichever was lower. No end-inspiratory pause was used. The breathing rate varied 

between patients. Muscle relaxants were used to prevent spontaneous breathing efforts.  

Patients were ventilated with a Puritan Bennett PB840 ventilator, and a Hamilton Medical flow 

sensor was attached to a calibrated pneumotachometer to obtain pressure and flow 

measurements at a sampling rate of 50 Hz. Volume was calculated by continuous integration of 

the flow, with compensation for volume drift. 

At PEEP = 0 cmH2O, an expiratory hold was performed to measure auto-PEEP. In this manoeuvre, 

the exhalation valve is closed so that the flow is stopped, and the airway pressure rises as 

alveolar and airway pressure equilibrates. The measured pressure at the airway opening is then 

the auto-PEEP. After the expiratory hold manoeuvre, a RM was performed, in which PEEP began 

at 0 cmH20, and was increased in steps of 5 cmH2O. Patients underwent PEEP increases between 

three and six times. Peak airway pressure was limited to 45 cmH2O.  Data was available for one 

breath per PEEP level, after steady state was achieved. Breaths at each PEEP were concatenated 

to obtain the data set for each patient (Figure 4.4). The study was approved by the Upper South 

Island Regional Ethics Committee.  

Table 4.1. Cohort3 Patient Information. 

Patient  Sex Age (years) Diagnosis Auto-PEEP (cmH2O) 

1 F 61 Peritonitis, COPD 7 

2 M 22 Trauma 2 

3 M 55 Aspiration 0 

4 M 88 Pneumonia, COPD 9 

5 M 59 Pneumonia, COPD 8 

6 M 69 Trauma 2.3 

7 M 56 Legionnaires 2 

8 F 45 Aspiration 0 

9 M 37 H1N1, COPD 12 

10 M 56 Legionnaires, COPD 3 
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Figure 4.4. Cohort3 pressure data for one low auto-PEEP patient (left), and one high auto-PEEP patient (right). 

4.4 Summary 

All three data sets provide pressure and flow data from ARDS patients. Across the three cohorts, 

many different patient conditions are represented. There is a wide range of patient ages, 

diagnoses, and time spent on MV. Cohort3 in particular had a large number of COPD patients, 

which were much less common in Cohort1 and Cohort2. The cohorts also differ in the specific 

ventilation protocol and RM method, and both pressure controlled and volume controlled 

modes are represented. 

Cohort1 is the most complex due to the administration of the end-inspiratory pause, and the 

longer RMs that generated airway pressure ranges from zero to 50 cmH2O. Cohort1 provides a 

wealth of features for a potential new model to capture. However, it is an older data set, 

collected between 2000 and 2002, whereas the Cohort2 and Cohort3 data was collected much 

more recently (2013 and 2010 respectively). Cohort2 and Cohort3 are less complex but are 

useful as they may better represent modern ICU equipment and practices.  

These data sets will be used throughout the thesis to develop a pulmonary model, validate 

model components, and assess predictive performance. A model capable of handling all patient 

conditions and ventilation scenarios present in the data would potentially be of significant 

clinical value. 
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Part 2: NARX Model 
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Chapter 5 NARX Model Design 

5.1 Introduction 

This chapter describes the development of the initial form of the NARX model. A justification of 

each of the NARX model terms is provided, and the result of fitting the NARX model to the 

Cohort1 data is shown. The FOM was used as a comparison for these results. The content of this 

chapter was published in Langdon et al. (2016b). 

5.2 Model Description 

The NARX model used here was based on the structure of the FOM. The FOM was adapted with 

pressure dependent b-spline basis functions, and time dependent resistance coefficients: 

 
𝑃(𝑡) =  ∑𝑎𝑖∅𝑖,𝑑(𝑃(𝑡))𝑉(𝑡)

𝑀

𝑖=1

+ ∑𝑏𝑗𝑉̇(𝑡−𝑗)

𝐿

𝑗=0

+ 𝑃0(𝑡) 5.1 

where: ai and bj are the parameters to be identified. M is the number of basis-functions to be 

used, i is the index of a particular basis function of degree d, ai is the coefficient for a given basis 

function, and ∅𝑖,𝑑(𝑃(𝑡)) is the basis function value for a given pressure measurement. The sum 

of the basis functions multiplied by their ai coefficients defines elastance.  

 
𝐸(𝑃) =  ∑𝑎𝑖∅𝑖(𝑃)

𝑀

𝑖=1

 5.2 

There are j = 0…L bj coefficients that capture the effect of airway resistance and pressure 

responses that occur due to changes in flow (e.g. pressure equalisation in the relaxation phase). 

The subscript -j in the second term refers to the previous time sample. Thus, each P(t) is 

calculated from information from the previous L data points. The FOM is replicated with M = L = 

1, and d = 0.  

Equation 5.1 can be rewritten over time to generate a matrix system of equations, and the 

coefficients (ai, bj) are determined by linear least squares.  

 𝐀𝐱 = 𝐛 5.3 
 where: 

A = 

[
 
 
 
 
∅1,𝑑(𝑃𝑎𝑤(𝑡0))𝑉(𝑡0) ∅2,𝑑(𝑃𝑎𝑤(𝑡0))𝑉(𝑡0) … ∅𝑀,𝑑(𝑃𝑎𝑤(𝑡0))𝑉(𝑡0) 𝑉̇(𝑡0) 𝑉̇(𝑡−1) … 𝑉̇(𝑡−𝐿)

∅1,𝑑(𝑃𝑎𝑤(𝑡1))𝑉(𝑡1) ∅2,𝑑(𝑃𝑎𝑤(𝑡1))𝑉(𝑡1) … ∅𝑀,𝑑(𝑃𝑎𝑤(𝑡1))𝑉(𝑡1) 𝑉̇(𝑡1) 𝑉̇(𝑡0) … 𝑉̇(𝑡1−𝐿)
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

∅1,𝑑(𝑃𝑎𝑤(𝑡𝑁))𝑉(𝑡𝑁) ∅2,𝑑(𝑃𝑎𝑤(𝑡𝑁))𝑉(𝑡𝑁) … ∅𝑀,𝑑(𝑃𝑎𝑤(𝑡𝑁))𝑉(𝑡𝑁) 𝑉̇(𝑡𝑁) 𝑉̇(𝑡𝑁−1) … 𝑉̇(𝑡𝑁−𝐿)]
 
 
 
 

; 
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b = [

𝑃𝑎𝑤(𝑡0)
𝑃𝑎𝑤(𝑡1)

⋮
𝑃𝑎𝑤(𝑡𝑁)

]; and x =  

[
 
 
 
 
 
𝑎1

⋮
𝑎𝑀

𝑏1

⋮
𝑏𝐿 ]

 
 
 
 
 

. 

This approach contrasts substantially with existing pulmonary models. In particular, the 

treatment of elastance as a function of pressure using basis functions has not previously been 

undertaken. 

5.3 Model Justification 

Appropriate values for L, d, and M were determined, and the results are presented in this 

section. Undertaking a full grid search process was not necessary. Residuals were not the only 

factor considered in optimal parameter selection, and the consequences of varying L, d, and M 

were independent. In this section, each model component is justified separately, with the other 

parameters used in the final NARX model formulation. Ultimately, L = 350, d = 1, and M = 5 were 

the most appropriate values. 

Two out of the 27 data sets in Cohort1 were excluded from the optimisation process, due to 

outlier behaviour. The two patients exhibited no end-inspiratory pressure changes to increases 

in PEEP up to 8 cmH2O. After a PEEP of 8 cmH2O, the end-inspiratory pressure increased with 

PEEP as expected. This behaviour was caused by an unusually high auto-PEEP of around 8 

cmH2O. It is likely that this behaviour was caused by chronic obstructive pulmonary disease 

(COPD). For an individual with COPD it is likely that blockages on the bronchial pathway would 

be altered during a RM. Thus the assumption that patient state would not change during the 

clinical protocol was violated. These patients were excluded to remove their influence on 

optimal model selection.  

5.3.1 Justification of L 

The value of L was varied from 1 to 500 in steps of 10 (L = [1, 10, 20, …, 500]), with constant 

values of M = 5, and d = 1. Convergence was assumed when the RMS residuals reduced by less 

than 0.5% for each step in L. Table 5.1 shows the L value required to meet this condition for each 

of the 25 patient data sets. Table 5.1 also records the L value as a percentage of the number of 

data points in one breath for each patient. Overall, Table 5.1 indicates that there were generally 

very small reductions in the RMS residuals for L > 350. The residuals at L = 350 have zero bias 

overall (one sample t-test p < 0.05). The cumulative distribution (CDF) plot also indicates a 
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difference between L = 1, L = 100, and L = 350, but no further improvement from increasing L to 

500 (Figure 5.1).  

The order of the model may be considered large, however the number of data points per data 

set was on the order of 104. Thus, the number of parameters used for fitting the model is small 

compared to the number of data points. Furthermore, the measurement noise was estimated 

using a steady state region at the end of expiration of a breath. The CDF plot (Figure 5.2) shows 

that the NARX model residuals are significantly larger than the estimated measurement noise. 

Therefore we are confident that the NARX model is not over-parameterised and is not fitting to 

noise.  

Table 5.1. L value required for RMS residual convergence. M = 5, d = 1. 

Patient L required for RMS convergence % of one breath 

1 200 101 

2 310 99 

3 160 106 

4 320 102 

5 260 104 

6 350 102 

7 190 101 

8 230 98 

9 270 100 

10 190 102 

11 210 100 

12 380 101 

13 380 121 

14 240 102 

15 180 106 

16 270 101 

17 250 120 

18 380 101 

19 200 106 

20 270 101 

21 190 126 

22 260 104 

23 210 123 

24 210 100 

25 290 93 
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Figure 5.1. CDFs for the residuals of all 25 patients for L = 1, 100, 350, 500. M = 5, d = 1.The lines for L = 350 and L = 
500 coincide. 

 
Figure 5.2. CDF of the estimated measurement noise, and the NARX residuals for all 25 patients. L = 350, M = 5, d = 1. 

5.3.2 Justification of d 

Zeroth, first, and second order basis functions were tested in the NARX model with constant 

values of L = 350, and M = 5.  Table 5.2 shows that using first order basis functions reduce the 

RMS residuals by an average of 8.9% compared to zeroth order basis functions. There was on 

average only a 0.6% difference between the RMS residuals for first and second order basis 
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functions. The paired signed-rank test confirmed that there were significant changes in the RMS 

values across zeroth and first order basis functions. However, the changes in RMS from first to 

second order basis functions were insignificant at p = 0.05. Figure 5.3 shows that there is little 

variation in the residuals for first and second order basis functions.  

Figure 5.4 shows an example of the zeroth, first, and second order basis functions multiplied by 

their coefficients at each point. This figure again shows that first and second order basis 

functions produced a similar result, whereas the same number of zeroth order step functions 

was unable to capture the same elastance behaviour. 

Table 5.2. RMS residuals (cmH2O) for zeroth, first, and second order basis functions. M = 5, L = 350. 

Patient d = 0 d = 1 d = 2 

1 0.9553 0.8578 0.8632 

2 1.0023 0.9770 0.9653 

3 0.6498 0.5258 0.5200 

4 0.8370 0.7624 0.7587 

5 1.0867 0.9712 0.9665 

6 0.8003 0.7617 0.7605 

7 1.0068 0.9568 0.9549 

8 1.2049 1.1573 1.1612 

9 0.9570 0.8942 0.9098 

10 0.8442 0.7487 0.7491 

11 1.2181 1.1894 1.1854 

12 1.2362 1.1938 1.1932 

13 1.7830 1.6986 1.7025 

14 1.2728 1.0441 1.0348 

15 2.3161 2.2983 2.2990 

16 2.0036 1.7150 1.7045 

17 1.3103 1.2568 1.2558 

18 1.7823 1.7648 1.7610 

19 0.7187 0.6692 0.6728 

20 0.8891 0.8322 0.8365 

21 0.8079 0.7239 0.7172 

22 0.8524 0.7705 0.7694 

23 0.8906 0.7866 0.7851 

24 0.9510 0.9190 0.9192 

25 0.9775 0.8632 0.8761 
 

    Paired signed-rank              0.00001                  0.34                        
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Figure 5.3. CDFs for the residuals of all 25 patients for d = 0, 1, 2. M = 5, L = 350. 

 
Figure 5.4. Elastance through pressure for one patient, d = 0, 1, 2. M = 5, L = 350. 

5.3.3 Justification of M 

The number of basis functions was tested with M = [2, 5, 10, 15], with constant values of L = 350, 

and d = 1. Table 5.3 shows that there was on average a 5.5% reduction in RMS residuals between 

M = 2 and M = 5, a 3.2% reduction between M = 5 and M = 10, and 1.2% between M = 10 and M 

= 15. The paired signed-rank test found significant changes in RMS across increasing resolution 
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from 2 to 5, from 5 to 10, and from 10 to 15 (p < 0.05). However, Figure 5.5 shows that the CDFs 

for M = 5, 10, and 15 are almost identical.  

While M had a significant effect on the size of the RMS residuals above M = 2, the magnitude of 

the changes was minimal. Hence, the stability and descriptive interpretation of the ai coefficients 

were also investigated to determine an appropriate value for M. In particular, it is expected that 

in the range of typical MV, patient elastance will be a relatively smooth function of pressure. 

Figure 5.6 shows that the elastance shape becomes more erratic and unstable for M = 10 and 15, 

compared with M = 5. This behaviour does not match the expected mechanical and physiological 

behaviour of ARDS lungs during PEEP step increases, and suggests the model becomes practically 

non-identifiable with M = 10 and M = 15. Ultimately, a value of M = 5 was thus chosen as a 

reasonable value for the 25 patient data sets. 

Table 5.3. RMS residuals (cmH2O) for M = 2, 5, 10, 15. L = 350, d = 1. 

Patient M = 2 M = 5 M = 10 M = 15 

1 1.0951 0.8578 0.8353 0.8378 

2 1.0335 0.9770 0.9287 0.9043 

3 0.8577 0.5258 0.5209 0.5229 

4 0.9798 0.7624 0.7266 0.7281 

5 1.2759 0.9712 0.9386 0.9338 

6 0.9078 0.7617 0.7501 0.7521 

7 1.0858 0.9568 0.9496 0.9337 

8 1.3733 1.1573 1.1433 1.1284 

9 1.1076 0.8942 0.8369 0.8390 

10 0.9285 0.7487 0.7433 0.7451 

11 1.2483 1.1894 1.1662 1.1644 

12 1.2367 1.1938 1.1692 1.1592 

13 2.0653 1.6986 1.6821 1.6804 

14 1.3822 1.0441 1.0258 1.0217 

15 2.3632 2.2983 2.2703 2.2587 

16 1.8756 1.7150 1.5120 1.4746 

17 1.2676 1.2568 1.2500 1.2486 

18 1.7782 1.7648 1.7354 1.7308 

19 0.8159 0.6692 0.6603 0.6643 

20 0.9903 0.8322 0.8091 0.7995 

21 0.9891 0.7239 0.7029 0.6940 

22 0.8073 0.7705 0.7629 0.7656 

23 0.8266 0.7866 0.7854 0.7984 

24 1.0105 0.9190 0.9009 0.9005 

25 1.1616 0.8632 0.8540 0.8563 

    Paired signed-rank             0.00001              0.00001                 0.09 
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Figure 5.5. CDFs for the residuals of all 25 patients for M = 2, 5, 10, 15. L = 350, d = 1. 

 
Figure 5.6. Elastance for one patient for M = 2, 5, 10, 15. L = 350, d = 1. 
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5.4 Modelling Results 

The NARX model and FOM were identified on the entire 8 – 10 minutes of each data set in 

Cohort1. The NARX mean RMS residual was 1.05 (90% CI: 1.02 – 1.07) cmH2O. The FOM mean 

RMS residual was 1.87 (90% CI: 1.83 – 1.91) cmH2O. The two sample K-S test implied that the 

FOM and NARX model RMS residuals were from different distributions with p < 0.01. The CDF 

plots also demonstrate that residuals are reduced when the NARX model is used, compared with 

the FOM (Figure 5.7). 

 

Figure 5.7. CDF for the RMS residual values (left), and exact residuals (right) for all 27 data sets. 

For one patient, a breath that is representative of the whole data set was plotted by averaging 

all of the breaths. The mean residuals relative to the breath were superimposed at uniformly 

distributed points (Figure 5.8). The same process was carried out for particular PEEP steps 

(Figure 5.9). The FOM was unable to fit well to the expiratory part of the breath, or to the 

relaxation during the end-inspiratory pause. The NARX model was able to capture all parts of the 

breath equally well. The NARX model was also able to fit the data at each PEEP step equally well, 

whereas the FOM was unable to match the tidal pressure change as PEEP increased.  

 

Figure 5.8. Mean residuals relative to one patient’s average breath at all PEEP for the NARX model (left) and FOM 
(right). Error bars are the standard error. 
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Figure 5.9. Mean residuals plotted relative to one patient’s average breath at PEEP = 0, 8, 16 cmH2O for the NARX 
model (left), and FOM (right). 

As a further validation of the NARX model, the model was identified while excluding the final 

breath of each PEEP level. The measured data was them compared to the forward simulation of 

the model for those breaths. Figure 5.10 shows this result for one patient at a PEEP of 0, 4, 8, 12, 

and 16 cmH2O, and the resulting RMS residuals for these individual breaths. The RMS residuals 

at each PEEP are comparable (within 0.05 cmH2O) to the RMS residuals obtained when fitting 

the NARX model to the entire data set.  
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Figure 5.10. NARX model validation for one patient over a single breath at PEEP = 0, 4, 8, 12, 16 cmH2O. 

5.5 Discussion 

The NARX model with parameters L = 350, d = 1, and M = 5 successfully fit 25 of the patient data 

sets with very low unbiased residuals compared to the FOM. The model also successfully 

predicted airway pressure at each PEEP for single breaths that were excluded from the training 

data sets (Figure 5.10). The model was able to describe all parts of the breath, in particular the 

end-inspiratory pause and expiratory relaxation, where the simple FOM typically fails to capture 

this nonlinear patient-specific behaviour. The NARX model was also able to fit inspiration, 

expiration, and relaxation during the end-inspiratory pause simultaneously, quickly, and easily. 

These capabilities exceed all other current identifiable models.  

The NARX model was identified with linear least squares, which is a very simple and robust 

parameter ID method. Though the model is complex, the ID method is very simple compared to 

other complex models, such as the PRM (Schranz et al., 2012b). It is thus much easier to apply 

within a computational framework for real-time use at the bedside. Other models with simple ID 

methods have generally lacked the parameterisation to capture all of the behaviour that the 

NARX model can, indicating the increased potential of this model and method.  

The NARX model uses basis functions as a simple way to capture the nonlinear pressure 

dependent respiratory system elastance. Nonlinear elastance is related to the idea that different 

compartments of the lungs are recruited as airway pressure is increased, as proposed by 

(Hickling, 1998), and supported by multiple in vivo studies (Carney et al., 1999, Schiller et al., 
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2003). ARDS lungs commonly exhibit a sigmoidal pressure – volume response due to the 

recruitment phases of collapsed alveoli, and over-distension occurring at a lower volume 

compared to healthy lungs (Figure 1.3). This behaviour is concurrent with the convex elastance / 

pressure relationship (Figure 5.4) which was typical of all results.  

Capturing nonlinear elastance is useful because it can be used to help identify the pressures at 

which there is a higher elastance that corresponds to a stiffer, less healthy lung. Setting PEEP at 

the point that results in the lowest elastance could potentially give the best compromise 

between recruitment and distension (Carvalho et al., 2007). Thus, finding this elastance curve 

over a RM could result in setting PEEP at an optimal patient-specific level.  

The E(P) curve enables the NARX model to fit the data well across all PEEP steps. As PEEP 

increases to the range where over-distension occurs, the tidal pressure increases, and the shape 

of the breath also changes. The inspiratory curve changes from concave downwards at low PEEP 

(Figure 5.9, PEEP = 0) to concave upwards at high PEEP (Figure 5.9, PEEP = 16). The NARX model 

fit equally well to the zero PEEP data as to the high PEEP data.  

In contrast, the tidal pressure defined by the FOM was dependent on tidal volume alone, 

because of the single constant elastance term. Since a full 50% of each dataset was at zero end-

expiratory pressure (ZEEP), the elastance term was identified such that the FOM tidal pressure 

was closer to the data tidal pressure at zero PEEP. This meant that at high PEEP the FOM was 

unable to come close to the tidal pressure in the data. Since the NARX model varies elastance 

with pressure, the tidal pressure at all PEEP levels can be matched. The FOM was not designed 

to capture breaths at different PEEP levels, and is thus more typically evaluated on a breath by 

breath basis. Thus, the comparison is made in an environment for which the FOM was not 

intended.  

The NARX model uses 350 terms to capture the response to flow. When L is large, the bj 

coefficients no longer strictly represent resistance. Instead they are model terms that have a net 

effect similar to resistance. These terms are able to capture the viscoelasticity, or gas 

redistribution phenomenon that happens during the end-inspiratory pause. During an 

inspiratory pause, when flow is stopped but expiration is not allowed to begin, the air will 

redistribute in the lungs over time, leading to an exponentially decreasing pressure. The NARX 

model is able to fit well to this nonlinear part of the breath, fitting both the exponential 

decrease and the oscillations. The NARX b terms also help the model fit during expiration (Figure 

5.9), which is also a relaxation process.  
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L, M, and d were varied to determine values that give a best fit to the data. For different data 

and different ventilation modes, these model parameters may be customised if necessary, or 

potentially evolved for each patient. The large L was primarily useful for capturing end-

inspiratory relaxation. Therefore, if the data had not contained this end-inspiratory pause, a 

large number of b coefficients in the model could potentially have caused the model to suffer 

from non-identifiability, requiring L to be reduced. M = 5 was chosen as the optimal number to 

capture an elastance curve while also avoiding non-identifiability. The data sets used in this 

study contained a pressure range from 0 cmH2O to 50 cmH2O. However, if a larger or smaller 

pressure range existed, M may have to be suitably adjusted.  

The NARX approach did not produce particularly good outcomes for two of the 27 patients. 

When finding optimal model coefficients L, M, d, these two data sets were excluded due to the 

potential for this outlier behaviour to influence optimal model selection. The two patients had a 

high auto-PEEP, most likely caused by COPD. The model had to account for the lack of increase 

in peak pressure during early recruitment by failing to capture the pressure at other times. 

These two patients highlight the need to monitor model fits during clinical practice to ensure 

that changes in patient state are captured. 

In Cohort1, the patients were sedated and given neuromuscular blocking drugs. If patients were 

less heavily sedated, their intermittent breathing efforts would result in anomalies in the 

breathing waveforms, and thus mask the underlying respiratory mechanics. The NARX model 

would be unable to identify useful elastance and resistance parameters under these conditions.  

5.6 Summary 

Basis functions were incorporated into a nonlinear autoregressive model, and the model was 

successful at describing all features of the airway pressure curve, for 25 patient data sets. By 

selecting a suitable number of appropriate basis functions, an elastance vs. pressure curve was 

able to be described for each patient. Coefficients that captured airway resistance effects 

enabled the end-inspiratory and expiratory behaviour to be described with very low residuals 

compared to the FOM.  

While it is expected that a more complex model with more parameters will result in reduced 

residuals, the reduction in residuals compared to the FOM is a worthwhile result as the NARX 

parameters were robust. Figure 5.2 shows that the model is not fitting to noise, and Figure 5.10 

shows that accurate predictions occurred when the model was validated on breaths that were 

not used to identify the model. 
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Chapter 6 Interpolation 

6.1 Introduction 

This section presents an extended validation of the NARX model, where the NARX model is 

identified on the first and last 20% of data, and then interpolated to cover the middle 60%. This 

is valuable because complete data for the full range of PEEP steps may not always be available 

for each patient. Having a method to estimate patient-specific respiratory mechanics when data 

is not available would provide clinicians with a more complete understanding of the individual 

patient’s condition, and could potentially aid the selection of optimal PEEP or other MV settings. 

The 25 patients from Cohort1 were used, and the FOM provided a comparison for the results. 

The content of this chapter was published in Langdon et al. (2015b). 

6.2 Methods 

The FOM and NARX model coefficients were identified using 40% of the available data for each 

patient. This identification data (IDD40) was composed from the concatenation of the first 20% 

and the last 20% of data. The pressures present in the IDD40 covered the full range of 0 – 50 

cmH2O, which provided adequate information for the identification of all five b-spline basis 

function coefficients. The IDD40 consisted of approximately 100 seconds of zero PEEP, and data 

from the highest PEEP levels encountered. The remaining 60% was used as the evaluation data 

(EVD) to assess the interpolation capabilities of the models. The EVD consisted of 3 – 4 minutes 

of zero PEEP data, and approximately six increasing PEEP steps for each patient (Figure 6.1).  

For each data set, the models derived from the IDD data were used with the measured volume 

and flow data from the EVD section to predict EVD pressure. The predicted EVD pressure was 

then compared to the measured EVD pressure, and the RMS residual was calculated. The RMS 

residual for the model fit to the IDD section was also calculated. To provide a comparison, the 

models were also identified on 100% of the data (IDD100). 

The mean RMS residual of all data sets was calculated, along with the 90% confidence interval. 

Overlapping confidence intervals for IDD and EVD sections would imply that there is not a 

substantial difference in the residuals. Signed-rank tests were also performed, to test for 

statistically significant differences in RMS residuals at the 5% level. 
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Figure 6.1. Pressure identification data and evaluation data for one patient. IDD40 was composed from the 

concatenation of IDD401 and IDD402. 

6.3 Results 

Table 6.1 shows the average of the RMS residuals across the 25 patient data sets. This 

information is also shown graphically in Figure 6.2. The error bars overlap in all three cases for 

both models. Table 6.2 shows the p values resulting from paired signed-rank tests. There is a 

significant difference in RMS residuals for most IDD100, IDD40, and EVD combinations at the 5% 

level. 

Table 6.1. Mean RMS residuals and the 90% confidence intervals. 

 RMS Mean ± Standard Error and 90% 
Confidence Interval (CI) (cmH2O) 

NARX IDD100 0.93 ± 0.05  (CI: 0.83 – 1.03) 

NARX IDD40 1.00 ± 0.06  (CI: 0.88 – 1.12) 

NARX EVD 1.08 ± 0.07  (CI: 0.93 – 1.23) 

FOM IDD100 1.72 ± 0.10  (CI: 1.53 – 1.91) 

FOM IDD40 1.89 ± 0.11  (CI: 1.67 – 2.11) 

FOM EVD 1.69 ± 0.10  (CI: 1.49 – 1.89) 

 

Table 6.2. Paired signed-rank test results for RMS comparison, for all patient data sets. 

NARX  FOM  

IDD100, EVD p < 0.05 IDD100, EVD p = 0.2 

IDD100, IDD40 p < 0.05 IDD100, IDD40 p < 0.05 

IDD40, EVD p < 0.05 IDD40, EVD p < 0.05 
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Figure 6.2. Mean RMS residuals and 90% confidence intervals for the NARX model and FOM, calculated from the 

identification data IDD100 and IDD40, and the evaluation data EVD. 

Figure 6.3 to Figure 6.6 present results for two individual patient data sets, A and B. In these 

figures, the average breath in the IDD or EVD section is plotted. The mean residuals are then 

plotted relative to the average breath, at regularly spaced points. The error bars are the 

standard error. The first and second halves of IDD40 are denoted IDD401 and IDD402, 

respectively. Figure 6.7 shows how the elastance for these patients changes over pressure for 

the NARX model with five basis functions, compared to the FOM with a single elastance 

coefficient. 

The tidal pressure (∆P) is defined as the difference between the maximum and minimum 

pressure within a breath. This value is relevant because changes in ∆P are indicative of changes 

in elastance in volume controlled mode. Both patients A and B began with a ∆P of approximately 

22 cmH2O at zero PEEP. For patient A, the ∆P remained constant until PEEP = 16 cmH2O, and 

then slowly increased to a maximum of 26 cmH2O at PEEP = 24 cmH2O. For patient B, the ∆P was 

constant until PEEP = 10 cmH2O, then increased rapidly to a maximum of 30 cmH2O at PEEP = 20 

cmH2O, at the end of the RM. Each of the other 23 patients showed similar behaviour to either 

patient A or B. 
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Figure 6.3. Patient A, NARX model: IDD401 (top left), IDD402 (top right), EVD (bottom left), IDD100 (bottom right). 

 
Figure 6.4. Patient A, FOM: IDD401 (top left), IDD402 (top right), EVD (bottom left), IDD100 (bottom right). 
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Figure 6.5. Patient B, NARX model: IDD401 (top left), IDD402 (top right), EVD (bottom left), IDD100 (bottom right). 

 
Figure 6.6. Patient B, FOM: IDD401 (top left), IDD402 (top right), EVD (bottom left), IDD100 (bottom right). 
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Figure 6.7. Elastance coefficients identified on 40% or 100% of data. Patient A (left), and patient B (right). 

6.4 Discussion 

Figure 6.2 shows the average RMS residuals for the various identification and evaluation sections 

of data. The NARX model residuals were smallest when the model was identified on 100% of the 

data, and largest when interpolated over the evaluation data, as expected. There were 

significant differences in RMS error across the IDD100, IDD40, and EVD for the whole cohort 

(signed-rank p < 0.05). However, the mean values are similar, and the 90% confidence intervals 

overlap for the three sections (Table 6.1). This result indicates that the outcome of interpolating 

the NARX model was not substantially worse than identifying the model on 100% of the data, for 

this group of 25 patients. Hence, the model can be effectively used to interpolate between 

measured, clinically relevant states.  

For the FOM, the largest RMS residuals occurred for IDD40, and the smallest residuals occurred 

for EVD. This was because the ∆P tended to gradually increase over the course of the RM, and 

the FOM was unable to capture both the lower ∆P and higher ∆P that were both present in 

IDD40 with a single elastance. The parameter identification found a trade-off between the two 

states, resulting in high residuals for the whole IDD40 section. Since the ∆P in the EVD was 

generally in between the ∆P at the lowest and highest PEEPs, the trade-off allowed the FOM to 

be a better fit to the EVD section than the IDD40 section overall. The FOM IDD100 RMS residuals 

were slightly better than IDD40 on average because the model was fit to all of the data rather 

than just the extremes. There was a statistically insignificant difference between the FOM RMS 

residuals for IDD100 and EVD for this cohort (Table 6.2). 

Similar to the NARX model result, the magnitude of the differences in RMS residuals for the FOM 

were not large. The 90% confidence intervals of the three cases overlapped, as shown in Table 

6.1 and Figure 6.2. However, there was clear evidence that the NARX model resulted in 

significantly lower residuals than the FOM. Lower residuals were achieved largely because the 
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NARX model was more successful than the FOM at capturing the lung relaxation during 

expiration and the end-inspiratory pause. This result is illustrated in Figure 6.3 to Figure 6.6 and 

was expected because the FOM is too simple to fully capture the complex behaviour described 

by this data that includes viscoelastic effects.  

Figure 6.3 to Figure 6.6 show results for two individual patients, A and B that represent the 

extremities of the range of ARDS patients tested. For patient B, the ∆P began increasing at a 

lower PEEP, and increased at a faster rate compared to patient A. The larger ∆P at the end of the 

RM was most likely caused by over-distension of alveoli in the lungs of patient B. This important 

characteristic implies that patient B may be more at risk of VILI at lower pressures than patient A 

(Dreyfuss and Saumon, 1998). 

For both patients A and B, most of the ∆P increases occurred in the final 20% of the data, so the 

EVD measured pressure waveforms were more similar to those in the IDD401 section. Thus, the 

FOM EVD residuals were similar to the IDD401 residuals.  For patient B, the more extreme ∆P 

increase in IDD402 caused the FOM to considerably overshoot the data in IDD401, capturing 

patient state comparatively poorly. Thus, the FOM EVD residuals for this patient are much larger 

than the IDD100 residuals. This result shows that in addition to failing to capture the end-

inspiratory pause and expiration curve, the FOM is unsuitable for the type of interpolation 

performed here, when the patient exhibits over-distension at high PEEP levels. In contrast, the 

NARX model was capable of more accurate interpolation. There were no major differences 

between the IDD40, EVD, and IDD100 sections for the NARX model, for both patients A and B.  

Figure 6.7 shows the NARX model and FOM elastance for patients A and B. The similarity of the 

NARX IDD40 and IDD100 elastance shapes shows that very similar models were identified for 

both patients using either 40% or 100% of the data. The result is also very similar for the FOM 

for patient A, but not for patient B, due to the over-distension present in the IDD40, as discussed 

above. 

Model interpolation is valuable because data covering the full range of PEEP steps may not be 

available for some respiratory patients in the ICU. In practice, it is unlikely that clinicians would 

jump from zero PEEP to high PEEP without going through some intermediate stages. However, 

these results proved that 60% of the RM data was not necessary to identify an accurate NARX 

model. This result could lead to the implementation of more efficient RMs, wherein PEEP is 

increased as quickly as is safe for the patient.  
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6.5 Summary 

The NARX model and FOM were identified on 40% of the data from 25 patients who underwent 

a RM, and interpolated over the remaining 60% of data. The NARX model was more successful 

than the FOM at fitting to the EVD. The pressure dependent elastance enabled ∆P to be 

captured at different PEEP levels simultaneously, and it was able to better capture the end-

inspiratory pause and expiratory relaxation in each breathing cycle. The NARX model was 

particularly superior in cases where the data suggested over-distension was occurring at high 

PEEP levels. The consistency of the NARX model interpolation for both type A and B patients 

suggests it could be successfully used with a wide range of ARDS patients with different disease 

characteristics.  
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Chapter 7 Inspiratory vs. Expiratory Elastance 

7.1 Introduction 

In general, current pulmonary models are not able to uniquely identify inspiratory elastance Ei, 

and expiratory elastance Ee as independent variables. This is because the flow and volume both 

follow exponential decays during relaxed expiration of the sedated lung. As flow and volume are 

not linearly independent, single elastance and resistance terms are non-identifiable during 

expiration. The NARX model’s use of multiple flow dependent terms means that it is able to 

identify independent inspiratory and expiratory elastances. This chapter demonstrates this 

ability, and shows the relationship between Ei and Ee. This helps to further validate the NARX 

model and its ability to accurately describe patient physiology. The 19 data sets from Cohort2 

were used in this analysis. The content of this chapter was published in Langdon et al. (2016d). 

7.2 Methods 

The NARX model here uses separate sets of basis functions for the inspiratory and expiratory 

parts of the breath. The choice of the number of basis functions depends on the range of 

pressures in the data. Since the Cohort2 RMs start at non-zero PEEP, the range of pressures is 

smaller than that of Cohort1. Therefore, four basis functions were used, rather than five. The 

appropriate choice of L depends on the number of data points per breath (Table 5.1). As the 

Cohort2 sampling rate was lower than Cohort1, and there was no end-inspiratory pause, an L 

value of 170 was used in this analysis.  Thus, the NARX model formulation was: 

 
𝑃(𝑡) =  ∑ 𝑎𝑖𝑘∅𝑘(𝑃𝑖(𝑡))𝑉𝑖(𝑡)

4

𝑘=1
+ ∑ 𝑎𝑒𝑘∅𝑘(𝑃𝑒(𝑡))𝑉𝑒(𝑡)

4

𝑘=1
 

+∑ 𝑏𝑗𝑉̇(𝑡−𝑗)
170

𝑗=1
+ 𝑃0(𝑡)   

 

 

7.1 

 

where  Pi and  Pe are the measured inspiratory and expiratory airway pressures (cmH2O): 

 

𝑃𝑖(𝑡) = {

 
𝑃(𝑡),        𝑉̇ > 0

0,             𝑉̇ < 0
      

𝑃𝑒(𝑡) = {

 
0,             𝑉̇ > 0

𝑃(𝑡),       𝑉̇ < 0
    

7.2 

 

and Vi and Ve are the inspiratory and expiratory volumes (L): 
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𝑉𝑖(𝑡) = {

 
𝑉(𝑡),        𝑉̇ > 0

0,             𝑉̇ < 0
      

𝑉𝑒(𝑡) = {

 
0,             𝑉̇ > 0

𝑉(𝑡),       𝑉̇ < 0
    

7.3 

 

To identify the NARX model coefficients, a linear system of equations was generated and 

inverted to find: 

 
x = [𝑎𝑖1 … 𝑎𝑖4 𝑎𝑒1 … 𝑎𝑒4 𝑏1 ⋯ 𝑏170]

T 

 

 

7.4 
 

where: ai1 – ai4 are the inspiratory elastance coefficients, and ae1 – ae4 are the expiratory 

elastance coefficients. The inspiratory elastance coefficients were identified based on inspiratory 

data only, and the expiratory elastance coefficients were identified on expiratory data only. The 

b coefficients were identified on both inspiratory and expiratory data.  

The ai, ae, and b coefficients were identified for each data set. The basis functions multiplied by 

the a terms gives a continuous elastance across pressure (Equation 7.5).  

 
𝐸𝑖(𝑃𝑖) = ∑ 𝑎𝑖𝑘∅𝑘(𝑃𝑖)

4

𝑘=1
   

𝐸𝑒(𝑃𝑒) = ∑ 𝑎𝑒𝑘∅𝑘(𝑃𝑒)
4

𝑘=1
    

7.5 

The coefficient of determination (R2) was calculated for the linear relationship between Ee and Ei 

at different pressures. Bland-Altman analysis was performed to determine any bias in the 

difference between Ee and Ei as pressure increased. To further quantify intra-patient versus 

inter-patient variability, the variance of Ei, Ee, and the difference (Ei – Ee) were calculated. 

7.3 Results 

The relationship between Ei and Ee at various pressures is shown in Figure 7.2. The plot at P = 15 

cmH2O contains 18 data points because one data set did not contain pressures as low as 15 

cmH2O. Similarly, two data sets did not contain pressures at 40 cmH2O or greater. The 

agreement between Ei and Ee was generally poor at low pressure, and good at pressures greater 

than the second basis function knot. The behaviour of a typical patient is shown in Figure 7.1.  

The R2 value for the Ei to Ee linear relationship describes how well the Ei value predicts the Ee 

value. Figure 7.2 shows the strength of prediction is weak at P = 15 cmH2O, but strong for P ≥ 25 
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cmH2O, with R2 ≥ 0.78. The 1:1 lines plotted show that there is a tendency for Ei to be greater 

than Ee at low pressures, and for Ee to be slightly higher than Ei at high pressures. 

 
Figure 7.1. Inspiratory and expiratory elastance across pressure for one patient. 
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Figure 7.2. Inspiratory elastance vs. expiratory elastance for P = [15 20 25 30 35 40] cmH2O. R2 values are given for the 

linear relationship between Ei and Ee, plotted in red. A 1:1 line is plotted in black. 

Bland-Altman plots allow any fixed bias between Ei and Ee to be more easily observed. The mean 

and corresponding p value are specified on each plot of Figure 7.3. A p value greater than 0.05 

indicates that the mean difference is not significantly different from zero, based on a one sample 

t-test, thus there is no significant difference between Ei and Ee for this pressure. The analysis 

found that there was a significant difference between Ei and Ee for P = 15 cmH2O and P = 20 

cmH2O only. At these low pressures, Ei tends to be larger than Ee. 

Variances of Ei, Ee, and (Ei – Ee) were calculated to determine intra-patient versus inter-patient 

variability (Table 7.1). For pressures of 20 cmH2O and above, the variance of (Ei – Ee) was smaller 
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than the variance of both Ei and Ee at each measured pressure. Based on the t-test, the variance 

of Ei and Ee were not significantly different. The variance of (Ei – Ee) was significantly smaller than 

the variance of Ei (t-test, p < 0.05) and significantly smaller than the variance of Ee (t-test, p < 

0.05). 

Table 7.1. Mean variances of Ei, Ee, and the difference (Ei – Ee) across pressure for all data sets. 

P (cmH2O) Variance of Ei Variance of Ee Variance of (Ei – Ee) 

15 0.103 0.058 0.083 

20 0.072 0.056 0.029 

25 0.070 0.067 0.008 

30 0.066 0.075 0.006 

35 0.066 0.083 0.014 

40 0.081 0.096 0.019 
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Figure 7.3. Bland-Altman plots for P = [15 20 25 30 35 40] cmH2O. Dotted lines show the 25th, 50th, and 75th percentiles 

of the difference. 

7.4 Discussion 

This analysis shows that the NARX model is capable of identifying unique inspiratory and 

expiratory elastance profiles. Ei was a well-matched predictor of Ee for P = 25 to P = 40 cmH2O 

(Figure 7.2). There was no significant bias in the difference between Ei and Ee for P = 25 to P = 40 

cmH2O (Figure 7.3). The intra-patient variability was significantly lower than the inter-patient 

variability for P = 20 to P = 40 cmH2O (Table 7.1). Overall, this indicates that for this cohort, Ei 

and Ee were comparable for 25 ≤ P ≤ 40 cmH2O, and thus may be equally valuable as an indicator 

of patient condition.  
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Generally, there was low agreement between Ei and Ee at low pressures. There was a significant 

positive bias in (Ei – Ee) at P = 15 cmH2O and P = 20 cmH2O. In addition, the variance of (Ei – Ee) 

was larger than the variance of Ee at P = 15 cmH2O. The cause of this behaviour relates to the use 

of distinct local basis functions used to define elastance. With M = 4, the first basis function (∅1) 

is non-zero for only the lowest third of the pressures present in the data set.  Therefore ∅1 is 

identified using only the volume data that exists when these low pressures are present in 

inspiration.  

At the beginning of inspiration, the pressure rises very rapidly. There are relatively few data 

points here, as the gradient of the pressure increase is so steep. Thus there are relatively few 

data points used to identify ∅1, compared to ∅2, ∅3, and ∅4. There is not enough useful 

information for determining the elastance in this small portion of inspiratory data. Since the 

gradient of the pressure drop during expiration is shallower at lower pressures, there is more 

data available to identify expiratory elastance, and the issue is mitigated. Therefore Ee is likely to 

be more reliable than Ei at low pressure using the method presented in this chapter.  

A similar problem with inspiratory elastance would be likely to occur if the NARX model was 

identified using this method on any single PEEP level, where a RM was not carried out. In this 

scenario, either the Ei and Ee should not be identified separately, or the Ei should not be relied 

on for diagnostic use. 

This outcome shows that important information for defining elastance does exist in the 

expiratory segment of the breath. Many models ignore expiration (Szlavecz et al., 2014, Chiew et 

al., 2011). However, in this scenario, inspiratory data was not sufficient for defining elastance at 

low pressure but expiratory data was sufficient. 

Separate inspiratory and expiratory elastances are not currently used as a diagnostic aid by 

clinicians. However, this analysis has shown that unique Ei and Ee values can be obtained using 

the NARX model, and that expiratory data contains useful information for defining elastance. 

The outcomes of this type of analysis may provide further insight into sedated ARDS patient 

conditions that other models cannot accomplish.  

7.5 Summary 

The NARX model was used to identify inspiratory and expiratory pressure dependent elastance 

as independent variables. At pressures P = 15 and 20 cmH2O the agreement between Ei and Ee 

was low. However, Ei was a well-matched predictor of Ee for P = 25 to 40 cmH2O, with R2 ≥ 0.78, 

and there was no significant bias in the difference between Ei and Ee. Since many other models 
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cannot uniquely identify consistent Ei and Ee values, the outcome may provide further insight 

into the characteristics of ARDS lungs in sedated patients. 
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Chapter 8 Resistance vs. Pressure 

8.1 Introduction 

In this section, the changes in resistance captured by the NARX model in response to PEEP 

changes is evaluated. When PEEP is increased, resistance is expected to decrease as the higher 

pressure causes recruitment of alveoli, and a widening of the bronchial path vessels (Damanhuri 

et al., 2014). The ability of the NARX model to capture this reduction in resistance at higher PEEP 

levels helps to further validate the physiological relevance of the model.  

The NARX model b1 coefficient corresponds most closely to the resistance term R in the FOM. 

Therefore the behaviour of the b1 term was compared with the resistance term of the FOM, R. 

The 25 patient data sets of Cohort1 were used in this analysis. The content of this chapter was 

published in Langdon et al. (2016c). 

8.2 Methods 

The NARX model (5.1) was identified on a moving window of 20 breaths that shifted across the 

RM of each data set (Figure 8.1). Unique ai and bj coefficients were identified independently for 

each of these windows, allowing the trend of the resistance term b1 to be observed over time as 

PEEP increased. The NARX model was identified on breaths at one to three adjacent PEEP levels, 

thus the pressure range was limited. Therefore, an M value of three was deemed appropriate to 

provide a robust result. 

 
Figure 8.1. Three pressure windows of length 20 breaths. 
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The NARX model used in this analysis has 353 parameters (L = 350, M = 3). The number of data 

points per breath is in the range 190 – 380 for different patients, due to varied breathing rates of 

patients, and a constant sampling frequency of 62.5Hz. A window length of 20 breaths was 

chosen as it enabled practically identifiable b1 values that exhibited the underlying behaviour of 

the patients. 

To observe how b1 varied with PEEP, boxplots for the 25 data sets were created. The average 

PEEP for each window was calculated, and the boxplots were plotted using data from windows 

where the average PEEP was 0.1 – 5, 5.1 – 10, 10.1 – 15, and 15.1 – 20 cmH2O.  

8.3 Results 

Figure 8.2 shows how the NARX b1 term and the FOM R term changed over time, for three data 

sets. Separate linear trend lines have been plotted over the ZEEP portion and over the RM 

portion. These three cases show the range of behaviours observed in this cohort. In the RM, the 

NARX b1 tended to decrease. In contrast, the FOM resistance exhibited three different types of 

behaviour. The FOM resistance increased, decreased, or had a quadratic shape as PEEP 

increased. 
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Figure 8.2. The NARX model b1 (left) and the FOM R (right) for three patients. T = time at the start of the window. 

Table 8.1 shows the mean gradient of the linear trend line applied to the ZEEP and RM portions 

for b1 and R. Within the 90% confidence interval, the RM gradient of b1 was negative, as b1 

consistently decreased with PEEP. In fact, there was only one patient for which the RM b1 

gradient was positive. In contrast, the varied behaviour of R as PEEP increased meant that the 

90% confidence interval for the R gradient in the RM ranged across zero. The t-test revealed a 

significant difference between the mean gradient of b1 and R during the RMs. There was no 

significant difference in the behaviour of R and b1 at ZEEP. 
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Table 8.1. The mean gradient of the NARX b1 and FOM R terms for the ZEEP and RM portions. 

 Mean ZEEP Gradient 
and 90% CI 

Mean RM Gradient and 
90% CI 

NARX b1 -0.011 [-0.021, -0.0012] -0.031 [-0.041, -0.021] 

FOM R -0.0012 [-0.0027, 0.0003] -0.0035 [-0.011, 0.0036] 

t-test p = 0.11 p = 0.0006 

The boxplots for the b1 and R terms (Figure 8.3) show that the median of b1 decreased as PEEP 

increased. The median of R also decreased with PEEP, but with a much shallower slope. The 

boxplot at PEEP = 10.1 – 15 cmH2O contains 23 data sets out of the total of 25, because the 

highest PEEP for two patients was less than 10 cmH2O. Similarly, the boxplot at PEEP = 15.1 – 

20.1 cmH2O contains data from 17 patients only, as eight  data sets contained no breaths within 

this PEEP range. 

 

Figure 8.3. Boxplot for the NARX model b1 (left) and the FOM R parameters (right), normalised to the average value at 
ZEEP. The box limits are the 25th and 75th percentiles, and whiskers show the range limited to data points that are 

within 1.5 IQR. 

8.4 Discussion 

The resistance to flow is primarily described by the NARX model via variance in the b1 

parameter. Figure 8.2 and Figure 8.3 show that the resistance captured by the NARX b1 term 

consistently reduced as PEEP increased, over 25 RMs. This behaviour conforms to expected 

behaviour, as high pressures cause widening of airway passages, thus reducing resistance.  

In contrast, the behaviour of the FOM R term was inconsistent. In response to the RM, the R 

term either decreased, increased, or had a quadratic shape (Figure 8.2). While Figure 8.3 shows 

that the general trend of R as a function of PEEP was downwards, the variation in the FOM R 

behaviour meant that the strength of the downwards trend was much weaker than that of the 

NARX b1 value.  
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The average trend in both b1 and R during ZEEP was a very shallow negative slope. However, the 

90% confidence interval indicated no consistent trend in R at ZEEP, and the t-test showed no 

significant difference in the gradient of R and b1 at ZEEP (Table 8.1). This behaviour was 

expected, as patient’s resistance at ZEEP would be likely to be roughly constant, unless patient 

condition changes.  

The R term of the FOM had inconsistent behaviour across patients. Many patients experienced 

an increase in this modelled resistance as PEEP increased, from either the beginning of the RM 

or from midway through the RM. It is suspected that those patients that had an apparent 

increase in modelled resistance at higher pressures were actually exhibiting non-linear elastance 

behaviour that was being compensated for by increased resistance values. In contrast, the non-

linear elastance behaviour was captured by the more complex NARX model, due to the multiple 

elastance parameters and the other flow-dependent terms. Thus, the b1 term was robust to this 

non-linearity.  

8.5 Summary 

The NARX model b1 term consistently decreased as PEEP increased, while the FOM resistance 

behaviour varied. Overall the NARX model behaviour is more in-line with expected trends in 

airway resistance over a RM. This work has further validated the descriptive capability of the 

NARX model for capturing changes in airway resistance over PEEP steps. This aspect of the NARX 

model may be particularly useful for observing changes in ARDS patients suffering from COPD, 

who often have notably higher resistance and greater potential for resistance changes during a 

RM as airway blockages shift.  
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Part 3: NARX Model Applications 
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Chapter 9 Capture of M-waves 

9.1 Introduction 

In MV, partially sedated spontaneously breathing (SB) patients apply their own inspiratory 

efforts on top of a ventilator supported breathing cycle. These SB efforts can sometimes result in 

abnormal airway pressure curves, or ‘M’ shaped pressure curves (M-waves) (Akoumianaki et al., 

2013), as shown in Figure 4.3. The M-wave pressure curve masks the underlying respiratory 

mechanics from identification since the exact SB effort is unknown and effectively random. 

Therefore, a method is required to overcome the impact of the M-waves to provide a consistent 

model-based estimation of respiratory mechanics for clinical use. Here, the NARX model is 

applied to M-wave data in conjunction with a modified version of the Gauss-Newton parameter 

ID algorithm (Gray et al., 2016). The modified GN method has previously been used to ignore 

contributions from outlying data by finding the parameter set that fits the majority of the data 

points, rather than the least squares optima for all patients (Docherty et al., 2014). The aim was 

to use these two approaches to model respiratory mechanics while effectively ignoring M-waves 

in the pressure signal of the M-wave patient of Cohort2. The content of this chapter was 

published in Langdon et al. (2015a). 

9.2 Methods 

The section of data used in this work had a constant PEEP of 17 cmH2O. As PEEP was constant, 

the pressure range was small, at around 16 cmH2O. Similarly to Chapter 8, an M value of three 

was used to provide a robust result. Since the data contained no RM and no end-expiratory 

pause, the NARX model was able to be further simplified with L = 1. 

To identify the model, the original GN method was implemented (Equation 3.6), as well as a 

modified GN algorithm (Equation 9.1). The original GN method leads to a least squares 

optimisation. The adapted method replaces 𝛙 with 𝛙̂. 

 
𝐱𝑖+1 = 𝐱𝑖 − (𝐉T𝐉)

−1
𝐉T𝛙̂ 

 

9.1 

 

𝛙̂ = [𝜓̂𝑗] = [𝜓𝑗𝑒

−|𝜓𝑗|

𝛽|𝜓|̃ ] 

 

9.2 

The median of the absolute values of the residuals is denoted by |𝜓|̃, and 𝛽 is a scaling factor. 

𝛙̂ changes how each residual error value contributes to the magnitude of the step to adjust x, 

compared to the original GN method. In the original GN, the contribution to the change in x at 
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each iteration increases with the square of the error. Therefore, if undesired outliers exist in the 

data, they have a large effect on the direction of convergence, and the resulting model may not 

represent the majority of the data points.  

When 𝛙̂ is used, the contribution of residuals greater than a certain value decreases 

exponentially. Therefore, large outliers will not greatly affect the result. The value of 𝛽 

determines where the exponential decrease becomes influential, with respect to model 

residuals at the ith iteration. A 𝛽 value of infinity means that the original GN method is applied 

as 𝜓𝑗  is multiplied by one. However, if 𝛽 is too small, the approach will ignore important 

characteristics that define the system (Docherty et al., 2014, Gray et al., 2016). Figure 9.1 depicts 

how the contribution of residuals changes as residuals increase.  

 

Figure 9.1. Relative contribution of residuals to the parameter step for the original and modified GN methods. 

The FOM and the NARX model were identified using the entire ~80 minutes of ventilation data. 

The 𝛽 parameter was varied to determine an optimal number for ignoring M-waves, and results 

were compared to the original GN method (𝛽 = Inf) for both the FOM and NARX model. The GN 

initial values were chosen by evaluating the FOM and the NARX model via direct inversion. 

RMS residuals were calculated for each model fit. However, the aim was not to choose the 

model with the lowest residuals. The aim was to find the value of 𝛽 for which the model outputs 

a breath that is close to the shape of normal breaths where M-waves exist in the measured 

pressure. Therefore the best model will have large residuals where M-waves exist in the data, 

and small residuals for normal breaths. 

9.3 Results 

Figure 9.2 shows a section of the data containing both M-wave breaths and normal breaths. The 

FOM produced similar results with the original GN method and modified GN with 𝛽 = 4. In 
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comparison with the FOM, the NARX model was able to better match the peak pressure in 

normal breaths and better fit the expiration curve in all breaths. The NARX model with 𝛽 = 4 is 

also able to successfully ignore M-waves. When 𝛽 = Inf, the NARX model provided a better fit to 

the data than the FOM, as expected, because the NARX model is more complex as it contains a 

larger number of identified parameters. However, in this special case, this improvement is 

undesirable as the aim was to ignore M-waves rather than capture them. 

 

Figure 9.2. M-wave pressure data and the NARX model (left) and FOM (right) identified with the original GN method, 
and modified GN (𝛽 = 4). 

Figure 9.3 shows the effect of varying 𝛽 on the NARX model output pressure. A 𝛽 value that is 

too low means that the model is unable to capture the shape of the inspiratory curve, and 

unable to reach the peak pressure in the breath. If 𝛽 is too high, the model tends to start 

following the M-wave curve rather than ignoring it, and also tends to slightly undershoot the 

inspiratory curve. In this analysis, 𝛽 = 4 was the optimal number that allowed the model to 

capture the shape of normal breaths as well as ignore M-waves. 
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Figure 9.3. Airway pressure data and the NARX model identified with GN for 𝛽 = 2, 4, 6, 8, and Inf. 

Notably, for the NARX model, 2000 GN iterations were required for coefficient convergence for 

𝛽 = 2, whereas 150 iterations were sufficient for 𝛽 = 4, 6, and 8. For the original GN method, 

only one iteration was required. For 𝛽 = 1, the coefficients did not converge when tested up to 

3000 iterations. Figure 9.4 verifies that the NARX model coefficients have converged after 150 

iterations of the modified GN algorithm. 150 iterations took approximately 12.5 seconds to 

complete. 

 

Figure 9.4. Convergence of the NARX model coefficients with 𝛽 = 4. 

Table 9.1 presents the root mean square (RMS) residuals for both the NARX model and FOM for 

the original and modified GN methods. Table 9.2 shows the identified coefficient values. Both 

methods applied to the FOM resulted in similar coefficients and residuals, giving rise to the 

similar plots in Figure 9.2. The FOM resistance coefficients are 25% or more higher than the 
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corresponding NARX model resistance coefficients. Figure 9.5 shows how the elastance 

coefficients in the NARX models change through pressure. In contrast, one elastance parameter 

exists for all pressure in the FOM. 

Table 9.1. FOM and NARX model RMS residuals for the original and modified GN method. 

 RMS residual (cmH2O) 

NARX 𝛽 = Inf 0.853 

NARX 𝛽 = 4 1.123 

FOM 𝛽 = Inf 1.128 

FOM 𝛽 = 4 1.182 

 

Table 9.2. FOM and NARX model coefficients for the original and modified GN method. 

 Elastance 
(cmH2O/L) 

Resistance 
(cmH2Os/L) 

NARX 𝛽 = Inf 0.254 0.428 0.733 7.286 

NARX 𝛽 = 4 0.055 0.644 0.606 8.521 

FOM 𝛽 = Inf 0.521 9.547 

FOM 𝛽 = 4 0.525 10.765 

 

 

Figure 9.5. Elastance through pressure for the NARX model and FOM when identified with the original and modified 
GN methods. 

Figure 9.6 shows undesirable behaviour in expiration that the models sometimes exhibit. The 

behaviour corresponds with oscillation in the flow measurements that are caused by the 

patient’s SB efforts when the ventilator is in expiration mode. The upwards blips in the airway 

pressure during expiration exists in both the FOM and NARX models, and with both the original 

and modified GN methods.  
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Figure 9.6. Airway pressure with undesired model behaviour in expiration for the NARX model (top left) and FOM (top 

right), and the corresponding flow measurement data (bottom). 

9.4 Discussion 

Figure 9.3 indicates that 𝛽 = 4 was optimal in this analysis for effectively ignoring M-waves. 

Assuming the residual error is normally distributed, the value of 𝛽 equals the number of 

standard deviations (SD) of the error distribution that is between the peaks of the objective 

contribution shape (Docherty et al., 2014). For example, when 𝛽 = 2, the largest contribution to 

the step in x happens for residuals that are two SDs from the mean. For residuals smaller than 

two SD, the contribution increases with the square of the residual, and for errors larger than two 

SD, the contributions decrease exponentially. Thus, when 𝛽 was small, the contribution of much 

of the valuable information was small and the model was not able to capture the shape of the 

breaths. However, when 𝛽 is large, the contributions from only very large residuals are 

preferentially reduced by GN. When 𝛽 is large, the method approaches the original GN method, 

and the model becomes a better fit to the measured data so M-waves begin to be followed 

rather than ignored.  

Table 9.1 indicates that the NARX model with the original GN method was better than the FOM 

at providing a best fit to the data, according to least squares criterion. This result is consistent 

with the findings of Chapter 5. This outcome is primarily facilitated by the use of three elastance 
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coefficients that depend on pressure, compared to the single elastance FOM coefficient (Table 

9.2, Figure 9.5). The difference in resistance coefficients of over 25% between the FOM and 

NARX model would have also played a role. These factors allowed the NARX model to partially 

capture M-waves, which the simpler FOM was unable to do (Figure 9.2). 

The NARX model with the modified GN method resulted in a larger RMS residual value 

compared to the original GN method (Table 9.1). This outcome was an expected and desired 

result because the modified GN method allowed the M-waves in the data to be ignored. The 

model followed the shape of normal inspiration in breaths where M-waves were present. Thus, 

the model residuals were large in these regions. Since most breaths contain some degree of M-

wave, the NARX RMS residual for the modified GN method was significantly larger than for the 

NARX identified with the original GN.  

The NARX model with 𝛽 = 4 resulted in an RMS residual that was similar to those of the FOM 

models. This result occurred because the FOM similarly did not fit the M-waves, as the model is 

too simple to capture this type of behaviour. However the FOM was not able to reach the peak 

inspiratory pressure in normal breaths, and also tended to provide a worse fit to the data during 

expiration, compared to the NARX model. Thus, the NARX model with 𝛽 = 4 had a slightly lower 

RMS residual than both FOM methods.  

Assuming the residuals are normally distributed, use of the modified GN method should have no 

negative effects when outlier behaviour does not exist in the data, and the result in this case 

should closely match the outcome of the original GN method (Docherty et al., 2014). Thus, the 

method could safely be used to provide clinicians with patient-specific information in situations 

where the patient is not spontaneously breathing, as well as when SB is present. The parameter 

identification method for modified GN had a higher computational burden than the typical linear 

least squares approach for the NARX model. However, this added burden would be negligible in 

a clinical setting. 

Figure 9.6 showed that oscillations in the flow measurements cause the models to fail to capture 

the appropriate expiratory curve. This flow characteristic is caused by the patient’s spontaneous 

breathing efforts while the ventilator is in the expiration part of the breathing cycle. As the 

inspiratory pressure curve is the important part of the breath used by clinicians to determine 

ventilator settings, this effect is not a significant problem. A method to smooth out the flow 

oscillation before identifying the model could be employed in future work, e.g. by using the 

expiratory time constant calculated from other breaths (van Drunen et al., 2013). 
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The patient had many instances of SB during the ventilation period, as over 65% of breaths 

contained an M-wave. The success of the method under these conditions suggests it could be 

useful in monitoring many SB patients, though it is not clear whether the approach would still be 

useful in situations where an even larger percentage of breaths contain M-waves. The 𝛽 value or 

NARX model parameters could potentially be adjusted to allow the model to successfully fit 

other situations such as this. Comparing the output pressure with the original M-wave pressure 

curves could also give clinicians an indication of the breathing effort of the patient, which can be 

useful in determining when to extubate the patient (Boles et al., 2007). 

The modified GN method cannot be used to identify the model across data where the patient 

state changes, e.g. due to lung recruitment or over-distension caused by a PEEP increase. The 

reason for this limitation is because breaths that have different characteristics to the majority of 

data will be treated as outliers and will not be tracked by the model. This issue could be reduced 

by accounting for known PEEP changes in the model and identification. 

9.5 Summary 

The NARX model was successfully fit to M-wave patient data using the modified GN method with 

𝛽 = 4. The modified GN method exponentially reduces the contribution of large residuals on the 

step in the coefficients at each GN iteration. This approach allowed the model to effectively 

ignore the anomaly in the pressure waveform due to SB efforts, while successfully describing the 

shape of normal breathing cycles. In comparison to the FOM, the NARX model was able to better 

capture the expiratory curve, and fit to the peak pressure of each normal breath. The successful 

elimination of M-waves allowed respiratory mechanics to be more accurately estimated. 
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Chapter 10 Extrapolation 

10.1   Introduction 

In this section the ability of the NARX model to extrapolate and predict the effects of changes in 

PEEP is determined. This type of analysis would allow clinicians to determine whether or not to 

alter, and in particular raise, the PEEP setting for a particular patient without the need for 

actually trialling these alternative settings. Thus, the risk of testing higher PEEP that could result 

in over-distension would be reduced. The analysis used the 19 data sets in Cohort2, and a 

comparison with the FOM was undertaken. The content of this chapter was published in 

Langdon et al. (2016a). 

10.2   Methods 

The original NARX model used first order b-spline basis functions to capture the elastance 

pressure shape. However, such functions are not suitable for extrapolation beyond the range of 

data used to train the model. To extrapolate the NARX model, elastance basis functions must 

extend to cover pressures not present in the training data.  

When the pressure dependent elastance profiles were identified for the entire RM, several 

different types of pressure vs. elastance shapes were observed (Figure 10.1). The range of 

profiles observed could be constructed with linear combinations of constant, linear, exponential, 

and sigmoidal functions (Figure 10.2): 
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Figure 10.1. Elastance identified with five first order b-spline basis functions, for three indicative patient responses over 
100% of available data. 

 

Figure 10.2. Constant, linear, exponential, and sigmoidal basis functions.  

To assess the accuracy of extrapolation, the NARX model was trained on specific PEEP levels, and 

was then extrapolated to predict the pressure response across different PEEP levels. The 
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identification data (IDD) was used to train the model, and the evaluation data (EVD) was used to 

test the prediction accuracy. Each data set contained at least four PEEP increases. Therefore only 

the first five PEEP levels of each data set were used in the analysis, so that the amount of data at 

each EVD level was consistent. Several scenarios were tested:  

1. The model was trained on one PEEP level in the dataset ([IDD1, IDD2, … IDD5]). The 

accuracy of extrapolation was tested over each of the remaining four PEEP levels ([EVD1, 

EVD2, … EVD5]), both higher and/or lower levels. 

2. The model was trained on two adjacent PEEP levels ([IDD1-2, IDD2-3, IDD3-4, IDD4-5]). 

Extrapolation was tested over the remaining three PEEP levels ([EVD1, EVD2, … EVD5]). 

3. The model was trained on three adjacent PEEP levels ([IDD1-3, IDD2-4, IDD3-5]). 

Extrapolation was tested over the remaining two PEEP levels ([EVD1, EVD2, EVD4, 

EVD5]). 

4. The model was trained on four adjacent PEEP levels ([IDD1-4, IDD2-5]). Extrapolation 

was tested over the remaining one PEEP level ([EVD1, EVD5]). 

RMS residuals between the modelled pressure and the measured pressure were calculated to 

quantify the accuracy of the extrapolation. To provide a comparison, the RMS residuals for the 

IDD sections were also calculated. The paired signed-rank test was used to test for significant 

differences between the mean RMS residuals for the different EVD proportions.  

10.3   Results 

Figure 10.3 shows the increase in residuals as the EVD moves further from the training PEEP 

levels. Note that the residual gradients decrease as the IDD range increases. This result implies 

that the larger identification window with a greater number of PEEP levels allowed a more 

accurate model of patient behaviour to be captured. This improved prediction accuracy, 

particularly to PEEP levels several steps beyond the IDD. For example, the mean RMS residual for 

EVD5 was 1.25 (90% CI: 0.95 – 1.55) cmH2O when the NARX model was trained on IDD1, but 

reduced to 0.71 (90% CI: 0.61 – 0.81) cmH2O when the model was trained on IDD1-2. 
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Figure 10.3. Mean pressure RMS residuals and 90% confidence intervals for the IDD and EVD regions. The NARX model 
was identified on one PEEP (top left), two PEEP levels (top right), three PEEP levels (bottom left), and four PEEP levels 

(bottom right). Extrapolation was implemented for PEEP above and below the IDD region, where available. 

Table 10.1 shows the RMS residuals when the model extrapolation is assessed at the PEEP step 

immediately greater than the identification region. This case is the most clinically important case 

as it is very uncommon to increase PEEP in an ARDS patient by more than 5 cmH2O in any single 

instance. In addition, once a PEEP level is predicted to be safe, and then tested, it could be used 

to aid further training and extrapolation.  

Table 10.2 shows the changes in RMS residuals when the training data set is enlarged. Generally, 

Table 10.1 and Table 10.2 show that increasing the IDD range did not always reduce the RMS 

residuals for the PEEP step one level up from the training data. For IDD2-3 vs. IDD1-3, and IDD2-

4 vs. IDD1-4, the EVD RMS residuals increased for the larger training data set. Importantly, in all 

scenarios, the NARX RMS residuals were significantly lower than the FOM residuals (paired 

signed-rank test, p < 0.05).  
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Table 10.1. IDD and EVD RMS residuals for extrapolation to one PEEP step up (2 cmH2O) from the highest PEEP in the 
IDD. 

 Mean RMS residual across all data sets (N = 19) and 
90% confidence interval (cmH2O) 

Identification Data -> 
Evaluation Data 

NARX IDD NARX EVD FOM IDD FOM EVD 

IDD1  ->  EVD2 0.33 ± 0.07 0.53 ± 0.12 1.30 ± 0.25 1.39 ± 0.25 

IDD2  ->  EVD3 0.33 ± 0.05 0.48 ± 0.07 1.34 ± 0.25 1.49 ± 0.24 

IDD3  ->  EVD4 0.36 ± 0.06 0.51 ± 0.08 1.40 ± 0.25 1.53 ± 0.25 

IDD4  ->  EVD5 0.37 ± 0.06 0.54 ± 0.10 1.45 ± 0.25 1.61 ± 0.24 

Mean IDDi -> EVDi+1 0.35 ± 0.03 0.52 ± 0.05 1.37 ± 0.12 1.50 ± 0.12 

IDD1-2  ->  EVD3 0.35 ± 0.06 0.47 ± 0.08 1.32 ± 0.25 1.56 ± 0.24 

IDD2-3  ->  EVD4 0.34 ± 0.06 0.45 ± 0.07 1.40 ± 0.25 1.60 ± 0.24 

IDD3-4  ->  EVD5 0.37 ± 0.06 0.47 ± 0.08 1.45 ± 0.25 1.68 ± 0.24 

Mean IDDi-i+1 -> EVDi+2 0.35 ± 0.03 0.46 ± 0.04 1.39 ± 0.14 1.61 ± 0.14 

IDD1-3 -> EVD4 0.37 ± 0.06 0.49 ± 0.07 1.38 ± 0.24 1.73 ± 0.24 

IDD2-4 -> EVD5 0.36 ± 0.06 0.46 ± 0.08 1.46 ± 0.24 1.77 ± 0.23 

Mean IDDi-i+2 -> EVDi+3 0.37 ± 0.04 0.48 ± 0.05 1.42 ± 0.17 1.75 ± 0.17 

IDD1-4 -> EVD5 0.39 ± 0.06 0.50 ± 0.08 1.44 ± 0.24 1.95 ± 0.24 

 

Table 10.2. NARX model paired signed-rank test results for the EVD for increasing IDD. 

Training PEEP 
range  

Evaluation 
PEEP range 

Mean EVD RMS residual and 90% 
confidence interval (cmH2O) 

 

Signed-
rank test 

IDD2 
IDD1-2 

EVD3 
0.48 ± 0.07 
 0.47 ± 0.08 

p = 0.63 

IDD3 
IDD2-3 

EVD4 
0.51 ± 0.08 
0.45 ± 0.07 

p = 0.003 

IDD2-3 
IDD1-3 

EVD4 
0.45 ± 0.07 
0.49 ± 0.07 

p = 0.002 

IDD4 
IDD3-4 

EVD5 
0.54 ± 0.10 
0.47 ± 0.08 

p = 0.024 

IDD3-4 
IDD2-4 

EVD5 
0.47 ± 0.08 
0.46 ± 0.08 

p = 0.28 

IDD2-4 
IDD1-4 

EVD5 
0.46 ± 0.08 
0.50 ± 0.08 

p = 0.02 

 

Figure 10.4 shows the mean NARX pressure prediction at EVD levels that are immediately above 

the IDD PEEP levels for one patient. For EVD3, EVD4, and EVD5, the mean absolute residual 
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between the predicted pressure and the measured pressure was less than 0.5cmH2O at all points 

in the breath. Figure 10.5 shows elastance curves identified across differing PEEP levels and their 

extrapolations compared to the elastance curve identified over all PEEP levels (IDD1-5). Figure 

10.6 and Figure 10.7 show a case wherein the extrapolation yielded poor residuals. For this 

particular pressure controlled ventilation patient, anomalies in the flow profile caused by the 

patient’s breathing efforts yield insight to the variations shown. 
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Figure 10.4. One patient’s mean NARX model plotted relative to the average breath for IDD1 -> EVD2, IDD2 -> EVD3,      

IDD3 -> EVD4, and IDD4 -> EVD5. Error bars are the standard error (SE) = σ /√𝐵𝑁, where σ = standard deviation, and 

BN = number of breaths in the PEEP level. 
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Figure 10.5. Elastance through pressure for one patient. Solid lines show the identified elastance and dashed lines 
show the extrapolation of the elastance shape. Left = NARX model identified on a single PEEP. Right = NARX model 

identified on two PEEP steps. 

 
Figure 10.6. Flow signal for one patient at PEEP level 3 (left) and PEEP level 4 (right). Arrows show the location of the 

intermittent oscillations at the higher PEEP. 

 
Figure 10.7. One patient’s measured pressure and NARX extrapolation from IDD3 for a single breath during EVD4 (left), 

and the corresponding measured flow signal for this breath (right). 
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10.4   Discussion 

The NARX extrapolation was more successful than the FOM in all scenarios that were tested. The 

mean RMS residual for prediction at the PEEP level following a single training level was 0.52 

(90% CI: 0.47 – 0.57) cmH2O for the NARX model and 1.50 (90% CI: 1.38 – 1.62) cmH2O for the 

FOM (Table 10.1). The NARX model was similarly superior to the FOM when two, three, or four 

PEEP levels were used for training, and tested on the next PEEP step. Table 10.1 also shows that 

the NARX EVD RMS residuals were close to the IDD residuals, indicating that the NARX model 

predictions were not substantially worse than the model fit to the training data.  

Figure 10.3 shows that prediction accuracy decreased as the EVD moved further away from the 

IDD, as expected. The RMS residuals of predictions up to four PEEP steps higher than the training 

set are shown. This result should not be interpreted as the RMS residual that may be expected if 

a single PEEP step of 8cm H2O were undertaken. If a large PEEP jump was implemented, slow 

acting viscoelastic effects are unlikely to occur in the same manner as they do when smaller 

increments of pressure steps are undertaken. Furthermore, changes of such magnitude are likely 

to induce stress on pulmonary tissue and are unlikely to be clinically beneficial in any 

circumstance.  

Figure 10.5 shows the elastance curves for one patient, and how they were extrapolated beyond 

the identification range, as IDD was increased from one to two PEEP steps. This figure shows 

that the NARX model elastance identified using only a single PEEP step does not closely match 

the elastance found when the model is identified on 100% of the data, as might be expected. In 

general, the elastance shapes identified in the middle range (IDD2, IDD3 and IDD4) were more 

accurate than the elastance shapes defined by the extreme PEEP levels (IDD1 and IDD5). When 

the training set included more than one PEEP level, the elastance shape was much closer to the 

shape identified on the whole dataset. This outcome ultimately means that the model was 

capable of improved prediction over all EVD PEEP levels when the training set was enlarged, as 

also shown in Figure 10.3.  

Table 10.1 and Table 10.2 show the most clinically relevant results, which are the RMS residuals 

for the EVD one PEEP step higher than the IDD range. In two out of six cases, significantly smaller 

residuals were obtained in the EVD PEEP when the IDD contained more data (p < 0.05). In the 

other four cases, there was no significant difference, or the RMS residuals were worse on 

average for the larger IDD range. While this result was unexpected, it represents a potential 

benefit clinically. In particular, this outcome implies that less data would be required for a good 

prediction, and thus less time is needed for a useful prediction to be made. Overall, increasing 
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the amount of training data did not result in any clear trend in prediction accuracy when the EVD 

was only one step up from the IDD. 

Figure 10.4 shows a plot of the average breath in several IDD and EVD sections overlaid with the 

mean NARX model reconstruction, for one data set. While the error in EVD2 from IDD1 was 

substantial for this data set, there was a high accuracy in the prediction one PEEP level up from 

IDD2, IDD3, and IDD4. The error in the mean predicted pressure shown on the plot was less than 

0.5 cmH2O at each point of the breath, in these three cases. The overestimation of pressure for 

EVD2 indicates that the extrapolated elastance was too high. This result represents a potential 

for pulmonary over-distension to be predicted at lower than reasonable pressures. The poor 

elastance prediction from IDD1 is in concordance with Figure 10.5, which shows the higher 

accuracy of elastance shapes identified in the middle range (IDD2, IDD3, IDD4) compared to the 

elastance shapes defined by IDD1. 

PEEP is an important model input that allows consistent model fits to the pressure troughs in 

each breath. The elastance metrics capture the tidal pressure (ΔP), and thus captures the peak 

inspiratory pressure. Capturing PIP is valuable as high PIP is a risk factor for VILI (Brower et al., 

2004). At pressure where the predicted elastance was higher than the elastance identified over 

the whole data set, the model tended to predict larger ΔP values, and thus predicted higher 

peak pressure in a breath. Similarly, when the predicted elastance was lower than the elastance 

for IDD1-5, the predicted peak pressure in a breath would be lower than the measured data. A 

predicted pressure that was much lower than what occurs in practice could lead to an 

unnecessarily high PEEP applied to a patient, which may lead to the onset of VILI. Hence, this 

model and methodology is recommended for predicting pressure responses due to PEEP 

increases of 2 cmH2O or less, based on the data and results here. For this PEEP step magnitude, 

the methodology was observed to accurately predict peak pressure. Finally, as noted previously, 

once a further PEEP is tested it can be used in this method for further predictions before 

implementing subsequent PEEP levels. 

Figure 10.6 and Figure 10.7 represent a scenario that was reasonably common at higher PEEPs 

for patients on the pressure-controlled ventilation mode. In pressure-controlled mode, the 

ventilator is directly controlling the pressure, whereas in volume-controlled mode the ventilator 

is directly controlling volume and flow. Therefore the flow signal in pressure-controlled mode 

tends to be much more variable in shape compared to volume-controlled mode. One factor that 

can cause discrepancy between the flow and pressure waveforms is SB efforts. These oscillations 

were observed in many patients, and were often much more frequent and had a much larger 
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magnitude in the higher PEEP levels compared to lower PEEP (Figure 10.6). This behaviour 

occurs because high pressure can trigger SB efforts at certain levels of sedation (Major et al., 

2015). The incidence of SB is lower at lower ventilator induced pressure.  

When the SB efforts in EVD flow data were not present in the IDD, the model was not trained to 

output normal pressure waveforms in the presence of these oscillations in the flow input. The 

result was oscillations in the predicted pressure waveforms that corresponded to the times that 

oscillations occurred in the flow. As a consequence, the correct inspiratory shape was not well 

captured (Figure 10.7). This issue resulted in much larger residuals for the EVD than would have 

been seen if this unmodelled effect was not present. This problem did not occur for the patients 

in volume controlled mode (e.g. Figure 10.4), because the flow is actively controlled by the 

ventilator. Thus, inspiratory SB efforts do not affect the flow waveform in volume controlled 

mode, and the pressure predictions are overall much more consistent.  

The results of this analysis suggest that for this cohort of sedated ARDS patients, the full RM was 

not required to obtain an accurate estimate of lung mechanics across PEEP levels. However, 

there may be other clinical reasons for going through with the entire RM. For example, a RM 

may be beneficial to recruit alveoli. In contrast, an extrapolation from a smaller number of PEEP 

steps could be beneficial for patients who are identified as particularly susceptible to VILI at 

higher PEEP levels.  

10.5   Summary 

The NARX model predictions were more successful than the FOM. In particular, accurate 

predictions were made for PEEP steps of 2 cmH2O higher than the PEEP in the identification 

data. While the model did not perform well when predicting over larger PEEP changes, such 

changes in PEEP are not recommended in a clinical setting due to the stress they put on 

pulmonary tissue. Furthermore, prediction of one PEEP step forward is all that is clinically 

necessary, as once the higher PEEP is applied, this data can be used in subsequent predictions of 

higher PEEPs.   

The outcome is very important for the potential clinical use of the model. The primary benefit of 

the methodology would be the accurate prediction of over-distension prior to using a PEEP that 

causes this effect. The NARX model prediction provides important insight into the expected PIP 

that may be experienced by the patient if PEEP is increased. Since PIP is an important risk factor 

for VILI, the methodology could enable pulmonary treatment support algorithms to avoid 

harmful over-distension.  
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Chapter 11 Over-Distension Prediction 

11.1   Introduction 

In this section, the ability of the NARX model to predict high pressure is assessed via a statistical 

classification analysis. The pressures considered were the peak inspiratory airway pressure (PIP), 

and plateau pressure (PP). PP is a reflection of alveolar pressure, so high PP is an indicator of 

alveolar over-distension and likelihood of VILI (Morgan et al., 2006). However, if an end-

inspiratory pause is not performed, then PP is not directly measured. In this situation PIP can be 

considered. The PIP measured at the airway is generally higher than pressure experienced at the 

alveoli. However, since airway resistance reduces at high pressure, higher than expected PIP is 

likely to be due to increases in elastance. Thus, high PIP is indicative of alveolar over-distension, 

and can be used as a proxy metric for high alveolar pressure.  

The detection of over-distension is of primary interest to clinicians, as the avoidance of over-

distension will reduce incidence of VILI, and thus reduce mortality of ARDS patients. Just as 

optimal PEEP levels vary between patients, the pressures that cause VILI will also vary. However, 

PP < 30 cmH2O is generally considered safe (Amato et al., 2015, Jardin and Vieillard-Baron, 

2007), as is PIP < 40 cmH2O  (Schranz et al., 2012b).  

Cohort1 was used to predict PP, and Cohort2 was used to predict PIP, as the Cohort2 protocol 

did not include an end-inspiratory pause. Prediction was performed over PEEP step increases of 

2, 4, and 6 cmH2O. The analyses considered whether Cohort1 PP exceeded 30 cmH2O, and 

whether Cohort2 PIP exceeded 40 cmH2O. Both analyses were compared with the FOM. The 

Cohort1 analysis is presented in Langdon et al. (2017c), and the Cohort2 analysis is in Langdon et 

al. (2017d). 

11.2   Methods 

For each RM, the NARX model was first trained on the baseline PEEP level, and was used to 

predict the PP or PIP at the following three PEEP steps, that were 2, 4, and 6 cmH2O higher than 

the training PEEP. The predicted PP or PIP was compared with the measured value at the higher 

PEEP levels. Then the baseline and second PEEP level were used as the training set, and 

prediction was performed at the third, fourth, and fifth PEEP levels. The training set was 

increased until there was only a single PEEP step left for prediction. NARX model prediction was 

achieved by extrapolation of the basis functions to higher pressures. In contrast, the FOM used 

the constant identified elastance value from the training data to predict pressure.  
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A second method was used for the FOM evaluation. The FOM is generally considered to be most 

accurate over small pressure ranges. While the first FOM method, FOM(I), uses the same 

training set as the NARX model, FOM(II) uses the elastance determined from a single PEEP level 

to predict PIP or PP at one to three PEEP steps above that level. FOM(I) allows a direct 

comparison with the NARX model method, and FOM(II) allows the FOM to operate in a scenario 

that better represents the clinical use of the FOM.  

For both cohort analyses, the true positive, true negative, false positive, and false negative 

incidences were recorded. Sensitivity and specificity were then calculated. ROC curves were 

generated by varying the discrimination threshold. 

11.2.1   Cohort1 PP Analysis 

Two different options for the basis functions were investigated for the application of the NARX 

model on Cohort1. NARX(I) uses the four basis functions described by Equations 10.1 to 10.4 and 

Figure 10.2. NARX(II) uses only two basis functions, the linear and the exponential functions, 

Equations 10.2 and 10.3. In the course of the analysis, it was determined that the NARX model L 

should be set to 1. This limited the model’s ability to capture viscoelasticity. However, it allowed 

more successful PP predictions on Cohort1. Figure 11.1 shows one patient’s identified and 

extrapolated elastance for the Cohort1 NARX and FOM methods.   

 
Figure 11.1. Identified and predicted elastance for a particular patient of Cohort1. 
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11.2.2   Cohort2 PIP Analysis 

From Cohort2, one of the ten patients was excluded as they were not ventilated up to a PIP of 

40 cmH2O. In total, there were 16 data sets available for this analysis. The four basis functions 

described by Equation 10.1 to 10.4 were used, with L = 170. Figure 11.2 shows one patient’s 

identified and extrapolated elastance for the NARX and FOM methods.   

 
Figure 11.2. Identified and predicted elastance for a particular patient of Cohort2. 

11.3   Results 

11.3.1   Cohort1 PP Results 

Table 11.1 lists the PP prediction results for each model. Compared with FOM(I), the FOM(II) 

specificity was consistently greater, averaging 6.3 percentage points higher. The NARX(I) and 

NARX(II) had very similar specificity in all cases. Overall, the specificity was fairly good for all 

models (> 0.90). Thus, the models can be more easily distinguished by looking at the sensitivity.  

FOM(I) sensitivity was generally lower than the other models at ~0.85 at all prediction horizons. 

FOM(II) improved this measure for the prediction horizon of one PEEP step only. NARX(I) 

performed similarly to FOM(II), however the NARX(II) sensitivity was substantially higher, 

especially for prediction horizons of 4 and 6 cmH2O. While NARX(I) sensitivity decreased with 

greater prediction horizons, the NARX(II) sensitivity remained >0.95. 
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Table 11.1. Cohort1 PP prediction results. Brackets denote the classifications for the 2, 4, and 6 cmH2O prediction 
horizons. 

  Predicted  
PP > 30 cmH2O 

Predicted  
PP < 30 cmH2O 

 

NARX(I) 

Measured 
PP > 30 cmH2O 

TP 
[86, 83, 76] 

FN 
[9, 11, 15] 

Sensitivity 
[0.91, 0.88, 0.84] 

 
 Measured 

PP < 30 cmH2O 

FP 
[2, 4, 4] 

TN 
[113, 89, 69] 

Specificity 
[0.98, 0.96, 0.95] 

 

NARX(II) 

Measured 
PP > 30 cmH2O 

TP 
[90, 93, 88] 

FN 
[5, 1, 3] 

Sensitivity 
[0.95, 0.99, 0.97] 

 
 Measured 

PP < 30 cmH2O 

FP 
[6, 4, 4] 

TN 
[107, 89, 69] 

Specificity 
[0.95, 0.96, 0.95] 

 

FOM (I) 

Measured 
PP > 30 cmH2O 

TP 
[81, 80, 78] 

FN 
[14, 14, 13] 

Sensitivity 
[0.85, 0.85, 0.86] 

Measured 
PP < 30 cmH2O 

FP 
[8, 7, 7] 

TN 
[107, 86, 66] 

Specificity 
[0.93, 0.92, 0.90] 

FOM (II) 

Measured 
PP > 30 cmH2O 

TP 
[86, 79, 76] 

FN 
[9, 15, 15] 

Sensitivity 
[0.91, 0.84, 0.84] 

Measured 
PP < 30 cmH2O 

FP 
[2, 1, 2] 

TN 
[113, 92, 71] 

Specificity 
[0.98, 0.99, 0.97] 

 

Figure 11.3 and Figure 11.4 show the correlation between the measured and predicted plateau 

pressures for each model where prediction was a single PEEP step up from the training data, as 

well as the Bland-Altman analysis. ΔPP denotes the difference between measured and predicted 

PP. NARX(I) and NARX(II) had a smaller spread of ΔPP compared to the FOM, particularly when 

compared with FOM(I), indicating smaller errors in prediction overall. The predicted PPs that 

resulted in false negatives in both NARX models were very close to the 30 cmH2O threshold. In 

contrast, the false negative results in the FOM often resulted from predictions that were much 

lower than 30 cmH2O. 

Dotted lines in the Bland-Altman plots give the 25th, 50th, and 75th percentiles of the difference in 

measured and predicted PP. The median bias in all cases was relatively small. NARX(II) had a 

negative median bias of -0.2 cmH2O, while NARX(I) had a slightly larger negative bias at -0.8 

cmH2O. FOM(II) was similar with a median bias of -0.7 cmH2O. FOM(I) had the largest prediction 

errors overall, but the bias was the smallest at 0.1 cmH2O. 
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Figure 11.3. Measured and predicted PP relationship for NARX(I) (left) and NARX(II) (right). Prediction horizon = 2 

cmH2O. 
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Figure 11.4. Measured and predicted PP relationship for FOM(I) (left) and FOM(II) (right). Prediction horizon = 2 

cmH2O. 

The ROC curves in Figure 11.5 plot the TP rate for a single PEEP step prediction against the FP 

rate as the discrimination threshold was varied. This figure again shows that NARX(I), NARX(II), 

and FOM(II) were very similar predictors over a small prediction horizon. All models performed 

significantly better than a random classifier. The optimal threshold was 32.0 for NARX(I), 33.5 for 

NARX(II), 32.4 for FOM(I), and 31.5 for FOM(II). 
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Figure 11.5. ROC curves for PP prediction. 

11.3.2   Cohort2 PIP Results 

Table 11.2 lists the PIP prediction results for each model. The NARX model sensitivity was 

substantially better than the FOM(I) or FOM(II) in all cases. As expected, FOM(II) was more 

sensitive than FOM(I). The specificity of the NARX model was lower than FOM(I) and FOM(II). 

There is a general, but imperfect, trend for the prediction metric scores of each model to be 

poorer as the prediction PEEP moves further from the training PEEP. 
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Table 11.2. Cohort2 PIP prediction results. Brackets denote the classifications for the 2, 4, and 6 cmH2O prediction 
horizons. 

  Predicted  
PIP > 40 cmH2O 

Predicted  
PIP < 40 cmH2O 

 

NARX 

Measured 
PIP > 40 cmH2O 

TP 
[45, 43, 42] 

FN 
[0, 2, 1] 

Sensitivity 
[1.00, 0.96, 0.98] 

 
 Measured 

PIP < 40 cmH2O 

FP 
[3, 5, 3] 

TN 
[54, 36, 24] 

Specificity 
[0.95, 0.88, 0.89] 

 

FOM(I) 

Measured 
PIP > 40 cmH2O 

TP 
[31, 30, 29] 

FN 
[14, 15, 14] 

Sensitivity 
[0.69, 0.67, 0.67] 

 
 Measured 

PIP < 40 cmH2O 

FP 
[0, 0, 1] 

TN 
[57, 41, 26] 

Specificity 
[1.00, 1.00, 0.96] 

 

FOM (II) 

Measured 
PIP > 40 cmH2O 

TP 
[39, 38, 32] 

FN 
[6, 7, 11] 

Sensitivity 
[0.87, 0.84, 0.74] 

Measured 
PIP < 40 cmH2O 

FP 
[0, 0, 1] 

TN 
[57, 41, 26] 

Specificity 
[1.00, 1.00, 0.96] 

 

The relationship between measured PIP and predicted PIP across Cohort2 is given in Figure 11.6 

and Figure 11.7, for the prediction at a 2 cmH2O PEEP step. The three cases of false positive 

detection by the NARX model occurred when the measured PIP was very close to 40 cmH2O. In 

all three of these cases, measured PIP was ≥ 38.6 cmH2O, indicating the NARX model prediction 

was very close to the clinical outcome.  

Bland-Altman plots show a bias in the NARX model that caused predictions to be higher than 

measured pressure (median bias = 0.8 cmH2O). In contrast, FOM(I) had a bias towards low 

predictions (median bias = -1.2cmH2O) , and FOM(II) was also slightly biased low at -0.07 cmH2O.  
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Figure 11.6. Measured and predicted PIP relationship for the NARX model. Prediction horizon = 2 cmH2O. 

 
Figure 11.7. Measured and predicted PIP relationship for FOM(I) (left) and FOM(II) (right). Prediction horizon = 2 

cmH2O. 
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The ROC curves in Figure 11.8, plot the TP rate of prediction over a single PEEP step against the 

FP rate as the discrimination threshold was varied. While all models performed significantly 

better than a random classifier, the area under the curve was clearly greatest for the NARX 

model, indicating the best overall performance. The optimal threshold was 40.3 cmH2O for the 

NARX model, 37.8 cmH2O for FOM(I), and 39.3 cmH2O for FOM(II).  

 
Figure 11.8. ROC curves for PIP prediction. 

Figure 11.9 shows results that were typical for this cohort. In this particular instance, the FOM 

and NARX models were identified on six PEEP steps and extrapolated to the seventh PEEP step. 

The NARX model provided an accurate prediction of the pressure waveform and correctly 

determined that PIP at the seventh PEEP step would be greater than 40 cmH2O. The FOM(I) 

prediction was substantially lower than the true PIP at the seventh PEEP step and gave a false 

negative result. FOM(II) was able to correctly predict that PIP would exceed 40 cmH2O at the 

seventh PEEP step. However, the predicted waveform still undershot the PIP, and was clearly a 

worse fit than the NARX model. 
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Figure 11.9. Training data and PIP prediction for the NARX model (top), FOM(I) (middle), and FOM(II) (bottom). Plots 

on the right are zoomed in to the box shown in the corresponding left figure. 

11.4   Discussion 

Clinically, false negatives are much more harmful to patients than false positives. In the context 

of pulmonary over-distension, a false negative may result in the application of high ventilation 

pressures that lead to over-distension and VILI. In contrast, a false positive result may mean 

clinicians do not increase PEEP, and miss out on the potential for improved recruitment at the 

higher PEEP level. Hence, the comparative impact of a false negative is stronger than the impact 

of a false positive, and thus, a high sensitivity should be favoured when predicting the outcomes 

of potential treatment methods.  
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The pressure dependent basis functions of the NARX model enable it to predict the respiratory 

mechanics of patients when they are ventilated at higher pressure levels than experienced in the 

training data. The Cohort2 PIP prediction analysis showed that the NARX model exhibited very 

high sensitivity in all cases (> 0.96), and a high specificity (> 0.88). The FOM had high specificity, 

but the sensitivity was much lower, especially for FOM(I) (Table 11.2). In Cohort1, the four basis 

function NARX model did not perform substantially better than FOM(I) or FOM(II) (Table 11.1). 

However, with reduced parameterisation, NARX(II) sensitivity remained high at prediction PEEP 

increases of up to 6 cmH2O.  

The high false negative rate in both PP and PIP prediction by the FOM was due to the constant 

elastance term. In reality, elastance changes according to recruitment and distension effects. At 

pressure levels near the 30 cmH2O or 40 cmH2O threshold, most recruitment will have already 

occurred. Thus, elastance is likely to be increasing with pressure, and the single elastance term 

identified in the FOM will lead to underestimated elastance and thus underestimated PIP or PP. 

This led to the high rate of false negatives given by FOM(I) and FOM(II).  

FOM(II) yielded better results than FOM(I) even though it is trained on a reduced data set. This 

result occurred because it was trained in a region that is on average closer to the regions of 

prediction, and the single elastance of FOM(II) did not need to partially represent the lower 

elastance of the lower pressure ranges. However, the predicted pressures of FOM(II) still tended 

to be lower than the NARX predictions and had higher residuals than the NARX model (Figure 

11.9). 

The FOM(I) and FOM(II) specificities were often higher than the NARX model specificities for 

each prediction horizon. This was an expected result, as a FOM false positive would only occur if 

elastance was decreasing when PIP was near 40 cmH2O. When PIP is close to 40 cmH2O, 

elastance is very unlikely to decrease as all recruitable lung regions are likely to have already 

been recruited at lower pressures. FOM false positives would be more likely to occur in a 

decreasing PEEP scenario. Though there was no data available to confirm this, a single elastance 

identified from high pressure data is likely to be too high for an accurate prediction when PEEP is 

decreased. In this scenario, the NARX model would be expected to perform better than the 

FOM, due to the ability to easily extrapolate a continuous elastance to lower pressures.  

In the Cohort2 PIP analysis, there were no false negative and only three false positive predictions 

from the NARX model over a prediction horizon of one PEEP step. In the three false positive 

cases, the mean difference between measured and predicted PIP was only 1.5 cmH2O. For the 

NARX false positives that occurred at prediction horizons of two and three PEEP steps, the mean 
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difference between measured and predicted PIP was 2.4 cmH2O in both cases. Thus, the false 

positives did not actually represent poor prediction.  

In Cohort2, there were seven patients on pressure controlled ventilation and three patients on 

volume controlled ventilation. In pressure controlled data, the PIP is a setting defined by the 

clinician, and thus it may seem strange to analyse the ability of the model to predict PIP in 

pressure controlled mode. However, none of the modelling approaches used in the analyses 

incorporated a-priori information on the applied ventilator settings. In contrast, the modelling 

approaches simply provide a transfer function between pressure and flow. Thus the ability to 

predict pressure from flow data remains scientifically valid, even in pressure controlled mode, 

when the model does not use the ventilator settings as an input. 

In Cohort1, the NARX(I) and NARX(II) both predicted precise PP and thus the sensitivity and 

specificity at a single PEEP-step prediction threshold were ≥ 0.91. However, NARX(I) had reduced 

prediction precision over greater prediction horizons (Table 11.1). In contrast, the NARX(II) 

consistently maintained a high sensitivity (≥ 0.95) and specificity (≥ 0.95) up to a prediction 

horizon of 6 cmH2O. The improved prediction performance of the NARX(II) is due to the reduced 

parameterisation of the model. NARX(I) utilises four basis-functions to capture the patient-

specific pressure/elastance relationships whereas NARX(II) uses only two. Hence, while NARX(I) 

has more ability to fit accurately to the clinical data, small levels of parameter trade-off may 

propagate to  generate lower prediction precision in the extrapolated elastance profile. NARX(II) 

only uses two basis functions and thus, the level of parameter trade-off is lowered.  

The improved precision of NARX(II) over NARX(I) can be observed in the Bland-Altman plots in 

Figure 11.3. The NARX(I) model shows a general trend to under-predict PP, with a median bias of 

-0.8 cmH2O. This led to the lower sensitivity observed in Table 11.1. The NARX(II) model resulted 

in a bias of much smaller magnitude (-0.2 cmH2O) and thus retained the high sensitivity at high 

PEEP levels.  

This work highlights the need for further investigation into the optimal level of parameterisation 

of the NARX model when it is used for prediction of pulmonary mechanics, in particular for 

patients with more complex breath waveforms such as those of Cohort1. While NARX(I) has 

more basis functions to fit the data, and thus can provide better model fits, its predictive ability 

on Cohort1 was lower than NARX(II) which utilises only two basis functions. Hence, the increased 

robustness of the NARX(II) model enables more accurate prediction when used on the complex 

end-inspiratory pause data. 
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Clinically, once a dangerous PIP or PP has be recorded, PEEP would not be increased further as 

the risk of over-distension and VILI would be high. Thus, outside of an initial RM, PEEP might not 

be increased to allow PIP or PP beyond the clinician’s chosen threshold. In both the Cohort1 and 

Cohort2 analyses, we included all available data from the RMs and thus contradicted the clinical 

process. However, it was scientifically necessary to establish that the models did not erroneously 

predict low pressure at high PEEP. Furthermore, ceasing the evaluation at the first instance of 

PIP > 40 cmH2O or PP > 30 cmH2O would generate a low true positive rate, and thus the 

sensitivity calculation would be unrepresentative of the true abilities of the model.  

11.5   Summary 

In the PIP Cohort2 analysis, The NARX model predicted high peak pressures more accurately 

than the FOM, and importantly, had very low instances of false negatives. Zero false negatives 

occurred at the prediction horizon of one PEEP step. While FOM(II) improved the FOM sensitivity 

over FOM(I), it was still less successful than the NARX model. The error in the NARX false positive 

predictions was small, and the consequences of false positives are far less severe than the 

potential VILI that may result from false negative predictions. 

In the PP Cohort1 analysis, all four models yielded high specificity in all scenarios (≥ 0.90). The 

FOM(I), FOM(II) and NARX(I) sensitivity were similar across all prediction horizons, and generally 

decreased as the prediction PEEP increased. However the reduced parameterization of NARX(II) 

compared with NARX(I) allowed the sensitivity to remain high at ≥ 0.95 at all prediction horizons. 

The results highlight the importance of finding a balance between model fitting and predictive 

ability when considering optimal model parameterization. 
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Chapter 12 Auto-PEEP Patients 

12.1   Introduction 

Some MV patients suffer from auto-PEEP, otherwise known as intrinsic PEEP. Auto-PEEP involves 

the accumulation of air in the lungs, caused by incomplete expiration, and results in increased 

alveolar pressure. Auto-PEEP is common in patients with COPD, as the narrow or blocked 

airways associated with COPD can cause expiratory flow restriction (Reddy, 2005). In partially 

sedated patients, this phenomenon increases WOB as auto-PEEP must be overcome by the 

patient to trigger a breath (Rossi et al., 1990, Singer and Corbridge, 2009a). PEEP is especially 

important in these patients as increased PEEP levels can open blocked airways and reduce WOB. 

In this section, the NARX model is modified to identify clinically significant differences between 

patients with high and low auto-PEEP. In particular, the flow dependent terms were replaced 

with basis functions to capture linear resistance changes with pressure. Cohort3 data was used 

in this analysis, as four out of the ten patients in this cohort had high measured auto-PEEP (≥ 5 

cmH2O). The contents of this chapter is presented in Langdon et al. (2017a). 

12.2   Methods 

The adapted NARX model is given by: 

 

𝑃(𝑡) =  ∑𝑎𝑖∅𝑖,𝑑(𝑃(𝑡))𝑉(𝑡)

3

𝑖=1

+ ∑𝑏𝑗𝜑𝑗(𝑃(𝑡))𝑉̇(t)

2

𝑗=0

+ 𝑃0(𝑡) 12.1 

 where ∅𝑖  are the elastance basis functions, and 𝜑𝑖  are the resistance basis functions. The basis 

functions are defined: 

 
∅1 = 

𝑃(𝑡)

45
;   ∅2 = 𝑒−0.04𝑃(𝑡);   ∅3 =  1 12.2 

  
𝜑1 =  𝑃(𝑡);   𝜑2 = −𝑃(𝑡) + 45 12.3 

 A linear combination of the elastance basis functions allows a convex pressure dependent 

elastance shape to be captured, and a linear combination of the resistance basis functions allows 

a linear pressure dependent resistance to be captured (Figure 12.1). 
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Figure 12.1. Elastance basis functions (left), and resistance basis functions (right). 

The model was fit to the ten patient data sets of Cohort3. RMS residuals between measured and 

modelled pressure were calculated, and the elastance and resistance across pressure were 

plotted for each patient. The main aim was to compare the parameters identified for high and 

low auto-PEEP patients. The t-test was used to measure differences in elastance and resistance 

at high and low pressure, for each group.   

12.3   Results 

Figure 12.2 shows the typical result of fitting the basis function model to patients with low auto-

PEEP and patients with high auto-PEEP. For patients with low auto-PEEP, the residuals were low 

and unbiased across the entire RM. For patients with high auto-PEEP, the model tended to 

undershoot measured pressure at the beginning of the RM, and overshoot measured pressure in 

the middle of the RM, while giving a good fit to the higher pressure breaths.  
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Figure 12.2. Model fit to measured pressure for two low auto-PEEP patients (top) and two high auto-PEEP patients 

(bottom). 

The mean RMS residuals were 0.93 (range 0.73 – 1.18) cmH2O in the low auto-PEEP group and 

2.1 (range 1.42 – 2.91) cmH2O in the high auto-PEEP group. The RMS residuals for the patients 

with low auto-PEEP were significantly lower than for the patients with high auto-PEEP (t-test, p < 

0.01). The correlation between auto-PEEP and RMS error was R = 0.86, giving R2 = 0.74 (Figure 

12.3). 

 
Figure 12.3. Relationship between auto-PEEP and RMS residuals for the NARX model. 

Resistance decreased with pressure for nine out of 10 patients (Figure 12.4). Patients with high 

auto-PEEP had significantly higher modelled resistance at low pressure than patients with low 
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auto-PEEP (t-test, p < 0.01). Additionally, the resistance gradients were significantly steeper in 

the patients with high auto-PEEP (t-test, p < 0.01), leading to similar resistance values at high 

pressure across both groups (p = 0.5). 

 
Figure 12.4. Modelled resistance of patients with low auto-PEEP (left) and high auto-PEEP (right). 

In Figure 12.5, the elastance of patients with high and low auto-PEEP is plotted. While the 

difference was not significant, the high auto-PEEP group tended to have higher elastance at low 

pressure compared to the low auto-PEEP group. The low auto-PEEP group also tended to have 

the minimum elastance occur at lower pressures. 

 
Figure 12.5. Modelled elastance of patients with low auto-PEEP (left) and high auto-PEEP (right). 

12.4   Discussion 

The model contains two basis functions that allow it to capture a linear resistance across 

pressure (Figure 12.4). Resistance is expected to decrease with pressure. In particular, higher 

pressure causes widening of bronchial passages, and the larger diameter lowers resistance 

according to the Poiseuille law (Sutera and Skalak, 1993). This behaviour was observed in nine 

out of the ten patients. However, one patient exhibited a mild positive resistance gradient. This 
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unexpected result may be due to patient state changing within the RM, such as new 

obstructions to airflow arising, or potentially due to parameter trade-off, or other factors.  

Patients with high auto-PEEP had significantly higher modelled resistance at low pressure, and 

significantly steeper resistance gradients overall (Figure 12.4). COPD is associated with higher 

than normal resistance at ZEEP due to blockages and narrowing of the bronchi and bronchioles. 

An increasing PEEP has the potential to lower resistance more dramatically in COPD lungs 

compared to healthier lungs, through opening these blockages. The RM was able to bring 

resistance down to a similar level as the patients with low auto-PEEP, in three out of the four 

cases. Overall, the resistance outcomes observed in this study were physiologically sensible. 

Modelled elastance was not significantly distinct across patients with high auto-PEEP and 

patients with low auto-PEEP. However, there was an observed trend for patients with high auto-

PEEP to have flatter elastance curves with higher elastance at low pressure (Figure 12.5). This 

implies that the patients with high auto-PEEP had lower rates of distension than those with low 

auto-PEEP, but that they also may have had a greater proportion of un-recruited alveoli at low 

pressure. This outcome concurs with the known physiology of COPD lungs. Firstly, airway 

blockages in COPD can cause a greater number of un-recruited lung units to exist at ZEEP. 

Secondly, in non-COPD lungs, maximum recruitment would be achievable at lower PEEP, and 

thus over-distension is more likely to occur at lower pressures compared to COPD lungs. 

Model residuals were low and unbiased across the entire RM for patients with low auto-PEEP. 

However, the model fit was comparatively poor in the high auto-PEEP patient data sets (Figure 

12.2). The model was biased towards lower than measured pressure at ZEEP, and higher than 

measured pressure in the middle of the RM. This result was the consequence of high peak 

pressure at ZEEP that did not increase with externally applied PEEP until PEEP exceeded the 

auto-PEEP. The unusually high peak pressure indicates that the true elastance at ZEEP is much 

higher than the model could account for. Therefore, modelled elastance at ZEEP was too low, 

and modelled pressure at ZEEP was substantially lower than measured pressure. This meant that 

the least squares approach required the model to overshoot measured pressure at higher PEEP 

to provide an overall best fit to the data.  

Future work could involve a modification to the model to improve the fit for patients with high 

auto-PEEP. The modification may include a discontinuous term to fit low PEEP data that 

terminates once PEEP exceeds auto-PEEP. This may improve the accuracy of the identified 

resistance and elastance parameters. Regardless, the model in its current state was still able to 

identify clinically relevant differences in patients with high and low auto-PEEP.   
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12.5   Summary 

The NARX model was adapted to capture changes in resistance and elastance noted to occur in 

COPD patients when pressure is increased. Model residuals were low and unbiased across the 

entire RM for patients with low auto-PEEP. While the high auto-PEEP model fit had higher 

residuals, the identified parameters captured the dysfunction expected in COPD and its effect on 

RMs. A statistically significant reduction in resistance at high pressure was found in high auto-

PEEP patients compared to patients with different pulmonary dysfunctions. The elastance curve 

of COPD patients indicated a greater proportion of un-recruited pulmonary tissue at low 

pressure than the non-COPD group. The COPD group elastance also suggested a lower incidence 

of pulmonary over-distension than the non-COPD group. All of these outcomes imply COPD 

patients benefit from higher positive pressures than non-COPD patients. Ultimately, the basis 

function model was able to demonstrate clinically important differences between patients with 

high and low auto-PEEP. 
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Part 4: Glucose Modelling and SI 
Prediction 
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Chapter 13 Glucose Modelling with Basis Functions 

13.1   Introduction 

Hypoglycaemia, hyperglycaemia and glycaemic variability in critical care are each individually 

associated with increased mortality and morbidity (Christiansen et al., 2004, Capes et al., 2000, 

Kerby et al., 2012, Bosarge et al., 2015, Egi et al., 2006, Krinsley, 2008). Many critically ill patients 

are admitted to the ICU with hyperglycaemia, very high insulin resistance, and very high 

glycaemic metabolic variance, which can be exacerbated by sepsis (Mizock, 2001, McCowen et 

al., 2001, Marik and Raghavan, 2004). This combination of dysfunctions requires blood glucose 

to be intensively monitored and controlled. Glycaemic control (GC) algorithms have been proven 

to reduce blood glucose levels, variability, and the risk and incidence of hypoglycaemia (Evans et 

al., 2011, Chase et al., 2008, Morris et al., 2008, Blaha et al., 2005, Van den Berghe et al., 2006, 

Lonergan et al., 2006b, Wong et al., 2006). Model based GC approaches can reduce the rate and 

severity of organ failure, and also reduce mortality. (Chase et al., 2010, Stewart et al., 2016, Van 

den Berghe et al., 2006, Krinsley, 2004, Chase et al., 2008). 

In this section, the basis function concept is applied to a model of glucose and insulin kinetics. B-

spline basis functions are used to identify SI over time. The way in which the number and order 

of basis functions affect SI variability and model fit is investigated. The majority of Chapter 13 

and all of Chapter 14 is presented in Langdon et al. (2017b).  

13.2   Methods 

13.2.1   Data 

This study uses 30 data sets covering 6785 hours of GC from patients treated using the 

Specialised Relative Insulin Nutrition Table (SPRINT) protocol for GC in critically ill patients 

(Chase et al., 2008). Data was collected between August 2005 and May 2007. Measurements 

were usually hourly (2420 samples) or two hourly (1365 samples). There were occasional gaps of 

three hours (222 samples) or more (202 samples) between measurements. The patient age 

range was 37 – 86 years, with a mean of 65. Diagnoses included sepsis, respiratory failure and 

pneumonia. Baseline blood glucose varied between 3.3 and 19.7 mmol.L-1, with a mean of 8.3 

mmol.L-1. Each patient’s data spanned multiple days, and had a differing number of data points 

(N). Further details on SPRINT and its development can be found in (Lonergan et al., 2006a, 

Lonergan et al., 2006b, Chase et al., 2008, Chase et al., 2007). Ethics approval to collect, audit, 
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and present these data was obtained from the South Island Regional Ethics Committee, New 

Zealand. 

13.2.2   The Glucose Model 

Linear differential equations were used to model insulin and glucose kinetics. The insulin model 

was a two compartment approach with clearance from both plasma and interstitial 

compartments (Equations 13.1 and 13.2) (Polonsky et al., 1986). The glucose model (Equation 

13.3) was a linear adaptation of a clinically validated single compartment approach (Lotz et al., 

2010). The linear adaptation allowed analytical forward simulations, and thus enabled quicker 

computational simulation. 

 
𝐼̇(𝑡) = −𝑘1𝐼(𝑡) +  𝑘2𝑄(𝑡) +  

𝑈

𝑉𝑝
 13.1 

 
𝑄̇(𝑡) =  𝑘3𝐼(𝑡) − 𝑘4𝑄(𝑡) 13.2 

 
𝐺̇(𝑡) =  𝑝𝐺(𝐺𝑏 − 𝐺(𝑡)) +

𝑃𝑥(𝑡)+𝐸𝐺𝑃

𝑉𝐺
−  𝑆𝐼(𝑡)𝐺(𝑡)𝑄(𝑡)   13.3 

G(t) is the total plasma glucose (mmol.L-1), I(t) is the plasma insulin (mU.L-1), Q(t) is the 

interstitial insulin (mU.L-1), Px(t) is exogenous glucose (mmol.min-1), U is the insulin input to 

plasma (mU.min-1), and SI(t) is the identified insulin sensitivity profile (L.mU-1.min-1). The model 

constants are given in Table 13.1. 

Table 13.1. Constant glucose model parameters 

Variable Description Value 

pG Non-insulin mediated glucose uptake 0.004 min-1 

VG Glucose distribution volume 9 L 

VP Plasma insulin distribution volume 4 L 

EGP Endogenous glucose production 1.5 mU.min-1 

Gb Basal glucose 5 mmol.L-1 

k1 Linear clearance of plasma insulin 0.05 min-1 

k2 Transfer rate of insulin from interstitium to plasma 0.025 min-1 

k3 Transfer rate of insulin from plasma to interstitium 0.025 min-1 

k4 Clearance rate of insulin from interstitium 0.033 min-1 

 

Insulin sensitivity was modelled with a series of b-spline basis functions: 
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𝑆𝐼(𝑡) = ∑ 𝑆𝐼𝑖

𝑀

𝑖=1

∅𝑖,𝑑(𝑡) 13.4 

 where ∅i,d are basis functions of degree d though time, and SIi are the identified basis function 

coefficients. M is the number of basis functions, and determines the level of parameterisation of 

the model. A larger number of basis functions allows insulin sensitivity to vary more quickly and 

thus improves the fit of the model.  

Basis functions of zeroth (d = 0), first (d = 1), and second (d = 2) order were used in this analysis. 

While the parameterisation is the same for a given M regardless of d, the added complexity of 

higher order basis functions allows SI(t) to vary more smoothly.  

Since blood glucose sampling rates were not always consistent, the basis function knots were 

evenly distributed across the sample times. For example, when M = N, each basis function knot 

corresponds exactly to the time of each glucose measurement. When M = 0.5N the basis 

function knots corresponded with every second data point. This protocol removes the possibility 

of one or more basis functions existing in a large gap between samples and thus inducing non-

identifiability in the coefficients of those basis functions. Figure 13.1 shows zeroth, first, and 

second order basis functions with a dataset containing a higher frequency of measurements in 

the later stages of the measurement window.  
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Figure 13.1. Basis function distribution for a particular patient episode with lower frequency sampling between t = 0 
and 3000 minutes, and high frequency sampling between t = 3000 and 4500 minutes. M = 0.3N. 

13.2.3   Mapping SI Variability 

This analysis is based on the Stochastic Targeted (STAR) GC approach (Evans et al., 2011, Evans 

et al., 2012). SI(t) profiles were analysed for all data sets and used to build a stochastic map to 

describe the variation in SI for the cohort. Using the SI value at some time ts, the stochastic map 

defines the distribution of SI at a particular time (SI(ts + Δt)).  

Stochastic maps for models with different combination of d = [0, 1, 2] and M = [0.3N, 0.65N, 

0.85N, N], and Δt, were completed by identifying the full SI(t) profile for each of the 30 data sets. 

The Gauss-Newton parameter identification method was used with initial SI values of                                    

10-5 L.mU-1.min-1, and a perturbation of 10-10 L.mU-1.min-1. Convergence of all parameters was 

reached within 50 iterations. The stochastic map was then built by plotting a one minute 

resolution SI(ts) vs. SI(ts + Δt) scatter plot, created using all SI(t) profiles from the 30 data sets.  

13.2.4   Analysis 

For each combination of d and M:N, the glucose model was fit to each of the 30 data sets, and 

RMS residuals were calculated. The t-test was used to test for differences in RMS residuals as the 
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basis function order was increased, and as the parameterisation was increased. The identified SI 

from each model was used to build maps of SI variability.  The aim was to analyse the effect of d 

and M:N on the model fit and on the corresponding SI maps. 

13.3   Results 

Figure 13.2 shows the comparative model fits for a section of one patient’s data for each of the 

basis function options. Table 13.2 gives the mean RMS residual values for each of the M:N and d 

combinations. As M increased, the model fit improved. For a given d, the t-test found significant 

differences in RMS values for M:N = 0.3 compared with M:N = 0.65 (p < 0.05), and M:N = 0.65 

compared with M:N = 1 (p < 0.05). When M = N, there is one basis function for every data point, 

so the model fit should be perfect. The non – zero residuals for M:N = 1 in Table 13.2 were the 

result of cases where the basis function knots did not precisely line up with the time of 

measurements, due to rounding errors. For a given level of parameterisation, the basis function 

order had less of an effect on the model fit. However, for M:N = 0.3, and M:N = 0.65, there were 

significantly higher residuals for d = 0 compared with d = 1 and d = 2 (t-test, p < 0.05). 

Table 13.2. Mean RMS residual (cmH2O) across the 30 data sets for each combination of d and M:N. 

 d = 0 d = 1 

 

d = 2 

M:N = 0.3 0.73 0.64 0.64 

M:N = 0.65 0.38 0.33 0.33 

M:N = 1 0.022 0.00035 0.018 
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Figure 13.2. Glucose model fit for d = [0, 1, 2] and M = [0.3N, 0.6N, N]. 

Figure 13.3 to Figure 13.5 show the scatter plots for the combinations of d = [0, 1, 2], and M = 

[0.3N, 0.65N, N], when Δt was 0.5 hours, 1 hour, or 2 hours. Note the changes in the axis limits in 

the M = N plots, due to the much greater range of SI. As the number of basis functions increased, 

the scatter plots became wider. For a given M:N ratio, the scatter plots also widened as Δt 

increased. In terms of basis function order, there were noticeable decreases in scatter plot width 

between d = 0 and d = 1, and no substantial difference between d = 1 and d = 2. 
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Figure 13.3. SI scatter plots for Δt = 0.5 hours. 
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Figure 13.4. SI scatter plots for Δt = 1 hour. 
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Figure 13.5. SI scatter plots for Δt = 2 hours. 

13.4   Discussion 

The consequence of changing the M:N ratio, in terms of model fit, is shown in Figure 13.2 and 

Table 13.2. When the M:N ratio is low, there are fewer parameters, and the glucose model – 

data residuals are comparatively high. When the M:N ratio is high, more parameters allow the 

dynamics in the measured glucose data to be captured more completely, and residuals are 

lower. The low residuals are not necessarily a positive outcome in this case, as it could mean the 

model is fitting to measurement noise, rather than patient dynamics. When M:N = 1, each data 

point is fit almost perfectly, because there is one basis function assigned to each data point. 

Since measurement noise always exists, the model is certainly fitting to noise in this scenario.  
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The scatter plots in Figure 13.3 to Figure 13.5 also show the consequence of increasing the M:N 

ratio, in terms of the variability in the identified SI. For a given time step, more parameters lead 

to a wider scatter plot, as a result of greater differences between SI(t) and SI(t + Δt).  This 

occurred because gradients in the SI(t) profile tended to be steeper at any given point, as SI(t) 

varied more sharply to enable the model to be a closer fit to measured glucose.  

As Δt increased from 0.5 to 2 hours, the scatter plots tended to widen for a given d and M:N 

ratio. This occurred because patient conditions are likely to be more different as the time 

between readings is increased. Significant changes in SI two hours in the future are much more 

likely to have occurred compared to half an hour in the future, as the patient is more likely to 

have eaten or undergone interventions.  

The order of the basis functions did not have as great an effect on model fit as the number of 

basis functions. For a given M:N ratio, there were no major differences in the model fit between 

the d = 1 and d = 2 options, however the d = 0 residuals were significantly higher in the M:N = 

0.3 and M:N = 0.65 cases (Table 13.2). Additionally, the SI variation was very similar for d = 1 and 

d = 2, but noticeably greater for d = 0 at every M:N level (Figure 13.3 to Figure 13.5). This is due 

to the step function nature of the zeroth order basis functions. The sharp jumps in SI when d = 0 

meant that variability from one time point to the next was often greater, as compared to the 

smoother variation afforded by the d = 1, and especially the continuous d = 2 functions. 

This analysis used data from critically ill patients from the Christchurch hospital, varying in age 

and diagnosis. Glycaemic regulation was generally achieved via enteral feed and bolus insulin 

injections in response to hourly blood glucose measurements. Hence, while this current analysis 

used data from a cohort that were representative of patients in most ICU settings, the 

administration method for insulin was distinct from some practices used in other ICU settings. 

However, the model based nature of this analysis does not rely on a specific insulin 

administration protocol. Thus, the findings of this analysis are likely to be applicable in glycaemic 

monitoring or control algorithms that utilise infusion or subcutaneous insulin administration.  

As opposed to in silico simulated patients, the data used in this analysis came from real patients. 

The variability in these patients is representative of the type of critically ill patients who benefit 

from glucose control. Using real data meant that the time between measurements was not 

consistent. However the basis function implementation allowed the parameters to be evenly 

distributed across sample times.  
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While the model is complex, the computational burden is low, and a model fit is achievable in 

several seconds. This model could therefore be applicable in real time critical care environments. 

It thus has the potential to be integrated into a closed loop system for patient therapy 

optimisation. In such a system, blood glucose measurements would be taken and control 

decisions could be made based on current SI determined by the model and previously saved SI 

variability measurements. 

All of the M:N ratios and basis function orders offered a reasonable model fit. Thus, the basis 

functions offer some malleability in the modelling approach. An analysis of SI prediction may 

provide an indication of the specific model formulation that could best suit clinical practice. In 

the following chapter, the SI variability maps are used to predict SI for different basis function 

M:N ratios. 

13.5   Summary 

A model of glucose and insulin kinetics used basis functions to identify insulin sensitivity through 

time. The analysis considered the outcomes of increasing basis function order and the resolution 

of basis functions. The results confirmed the expected outcome that increasing the 

parameterisation of the model resulted in lower model – data residuals, more variable SI 

profiles, and wider SI stochastic maps. 
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Chapter 14 Insulin Sensitivity Prediction 

14.1   Introduction 

Clinical data and models can be used retrospectively to determine the variability of SI in cohorts 

of critically ill patients (Lin et al., 2008, Ferenci et al., 2013, Dickson et al., 2013, Thomas et al., 

2014). Such analyses can lead to stochastic models that can predict the patient SI or glucose 

likelihood distributions. It is critical that the prediction distribution is accurate. If the predicted 

likelihood distribution is too tight, the GC may be overly aggressive and risk unexpected 

hypoglycaemia. If the distribution is too wide, the GC may be too conservative. While this may 

be safe in terms of avoiding acute hypoglycaemia, patient outcomes may be worse than in a 

more tightly controlled system.  

In this section, the appropriate level of basis function parameterisation of the glucose model 

(Equation 13.3) is determined. The SI variability for different levels of parameterisation 

determined in Chapter 13 is used to predict future SI distributions. The level of parameterisation 

is determined that allows the SI predictions to closely conform to the ‘true’ SI identified at future 

glucose measurements. The prediction analysis is compared with an AIC analysis, which 

estimates the level of parameterisation that provided the best trade-off between goodness-of-fit 

and model complexity. 

14.2   Methods 

For the AIC analysis, M was varied on the range [0.1N, 0.9N], in steps of 1. The AICc correction 

was used (Equation 3.14), as M was relatively close to N. The expected measurement noise for 

the data is zero mean with a standard deviation of 0.35 mmol.L-1 (Arkray). For each data set, 

AICc was plotted against M:N ratio. The AIC theory implies that the model with the minimum 

AICc value should be the model with the best trade-off between fit and complexity, based on the 

estimated measurement noise. 

For the prediction analysis, the accuracy and precision of the SI(ts + Δt) predictions was tested 

for each combination of d = [0, 1, 2] and M = [0.3Ns, 0.65Ns, 0.85Ns, Ns] on each of the 30 data 

sets. Ns is the number of samples in a particular subset of data. The method used the following 

steps: 

1. A new SI(t) profile was identified for a subset of the glucose data, containing Ns = 0.5N 

data points (G(t0→s), t0→s = t0, t1, … t0.5N). The SI corresponding to the final point in the 

subset, SI(ts), was defined fully by a single basis function with no cross-over.  
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2. The appropriate value of Δt was determined. The value of Δt depends on how far into 

the future the prediction is made, so it depends on the time between ts and the 

following measurement. The majority of data points were spaced by one hour. Thus, 

most predictions were made with Δt = 1 hour. 

3. The relevant SI variability scatter plot for the particular Δt (created using the method in 

Chapter 13) was loaded. This scatter plot contains information from all 30 data sets. 

4. A density surface of SI(ts) versus SI(ts + Δt) was created from the scatter plot using kernel 

density estimation. Gaussian kernels were defined over a 32 x 32 grid on the range of 

identified SI. Any slice of this density surface at a given SI(ts) provides a cumulative 

density function for SI(ts + Δt).  

5. The modelled SI(ts) value at the final data point in the subset was used to retrieve the 

predicted CDF for SI(ts + Δt) from the density surface.  

6. The true SI(ts + Δt) was identified using the G(t0→s) data and G(ts + Δt) data point. The 

SI(t) profile between ts and ts + Δt used two basis functions with knots at ts and ts + Δt. To 

ensure that both G(ts) and G(ts + Δt) data points were fully represented by their 

respective SI(t) values, these final basis functions both had a value of one at the knots.  

7. The percentile on which the true SI(ts + Δt) fell on the prediction CDF was recorded.  

8. Steps 1 – 7 were repeated as many times as possible for each data set, by shifting the 

subset in step 1 by one data point each time (G(t0+j→s+j), j = [1, 2, … 0.5N-1]. 

9. A CDF of all the percentiles from step 5 was plotted. This plot shows prediction incidence 

vs. actual incidence of SI. 

Figure 14.1 shows an example of the CDFs resulting from the amalgamated SI(t) profiles of the 

30 data sets, and a particular CDF for SI(ts + 1) at SI = 10-4 L.mU-1.min-1. 

 

Figure 14.1. All prediction CDFs for d = 2, M = N, Δt = 1 hour (left), and the resulting prediction CDF of SI(ts + 1) when 
SI(ts) = 10-4 L.mU-1.min-1 (right). 

 
 



121 
 

Figure 14.2 shows the range of possible outcomes of step 9. If the prediction is unbiased and 

appropriately precise, the true value of SI(ts + Δt) will be higher than the median of the SI 

prediction distributions exactly 50% of the time. Equally, the true value of SI(ts + Δt) will be 

below the ith percentile of the prediction distributions exactly i% of the time. Ideal precision and 

zero bias will correspond to the 1:1 line on Figure 14.2. 

Prediction distributions that are consistently too wide will result in prediction incidence vs. 

actual incidence existing in the green region in Figure 14.2. Overly tight prediction CDFs will 

result in the prediction incidence vs. actual incidence existing in the red region. Predictions 

biased high will result in a line completely below the 1:1 line, and predictions biased low will 

result in a line completely above the 1:1 line. 

The ideal case is a line on the 1:1 line. However, clinically, the green area where prediction 

distributions are too wide is preferred. A clinical application favours the safety of a conservative 

prediction range and control, rather than the risk of a too tight prediction range.  

 

Figure 14.2. Regions of the prediction vs. outcome incidences showing the implications of prediction distributions that 
are consistently too wide, too tight, or biased. 

14.3   Results 

Figure 14.3 shows CDFs for the prediction distribution vs. the outcome distribution, created by 

plotting the percentile locations on the prediction CDFs at which the real SI(ts + Δt)’s existed. 

Table 14.1 provides qualitative measures of the prediction outcomes. The absolute areas 

between the 1:1 line and the Figure 14.3 lines gives a measure of the closeness to the 1:1 line, 
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and thus the relative accuracy of prediction distributions overall for different M:N ratios. The 

bias was calculated as the sum of the difference between the x and y axis, normalised to the 

number of data points. A positive value indicates that overall the predictions were biased high, 

while a negative value indicates a bias low. The maximum possible absolute area is 0.5, and the 

maximum bias is ± 0.5.  

 

Figure 14.3. Prediction distribution vs. outcome distribution for d = 0 (top left), d = 1 (top right), and d = 2 (bottom). 

Table 14.1. Precision and bias in the prediction distributions. T and W denote that the prediction distribution was too 
tight, and too wide, respectively. 

 d = 0 d = 1 d = 2 

 Absolute 
Area 

Bias Absolute 
Area 

Bias 
 

Absolute 
Area 

Bias 
 

M = 0.3N 0.076 (T) 0.001 0.107 (T) -0.011 0.108 (T) -0.003 

M = 0.65N 0.021 (T) 0.004 0.054 (T) -0.022 0.045 (T) -0.003 

M = 0.85N 0.026 (W) 0.006 0.034 (W) -0.023 0.027 (T) -0.010 

M = N 0.088 (W) 0.001 0.042 (W) -0.016 0.023 (W) -0.007 
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Figure 14.4 and Figure 14.5 show the results of the AIC analysis. AICc was normalised to the 

value at M = 0.1N. The median M:N ratio at which AICc was a minimum was [0.44, 0.43, 0.45] for 

d = [0, 1, 2].  

 

 
Figure 14.4. The change in AICc as the M:N ratio increased for the full data set of each patient episode, d = 0 (top left), 

d = 1 (top right), d = 2 (bottom). 

 

 



124 
 

 

Figure 14.5. Boxplot of the minimum M:N ratio for all 30 data sets. The box limits are the 25th and 75th percentiles, and 
the whiskers show the range limited to data points that are within 1.5 IQR. 

14.4   Discussion 

Figure 14.3 shows that the parameterisation (M:N ratio) of the model had a much larger effect 

on prediction accuracy than the order of the basis functions. While AIC analysis found an 

average optimal M:N ratio of approximately of 0.45, the prediction analysis found that 

increasing the order of basis functions increased the optimal parameterisation. The ratios that 

yielded the smallest differences from perfect prediction distributions were M:N = [0.65, 0.85, 1] 

for d = [0, 1, 2], respectively. However, since predictions that are too tight are clinically more 

dangerous, the best ratios tested were M:N = [0.85, 0.85, 1] for d = [0, 1, 2].  

Figure 14.3 indicates the accuracy and precision of the prediction CDFs compared to the 

distribution of the real SI(ts + Δt). If the prediction CDF is too tight, then the true SI(ts + Δt) value 

is likely to be distributed over a wider span of SI values outside the predicted distribution. The 

result of this narrow prediction profile is shown in Figure 14.3 for M = 0.3N, d = [0, 1, 2]. In 

contrast, if the prediction distribution is too wide, the true SI(ts + Δt) will usually lie near the 

middle. Such a result is most clearly shown in Figure 14.3 for M = N, d = 0. 

While Table 14.1 shows that M:N = [0.85, 1] for d = [1, 2] resulted in the smallest difference from 

the 1:1 line, in these cases the predicted distributions were slightly wider than the true 

distributions of SI(ts + Δt). This result suggests that the model was fitting to measurement noise, 

rather than the true underlying patient glycaemic metabolic changes. Reducing the 

parameterisation of the model reduces the ability of the SI profile to adhere to measurement 
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noise, and thus it may be hypothesized that a ratio between 0.85 and 1 might be optimal for d = 

2, in terms of yielding a smaller absolute area in Table 14.1. Similarly, a ratio between 0.65 and 

0.85 might be better for d = 1. Additionally, the best M:N ratio for d = 0 gave distributions that 

were slightly too tight, indicating that this model was not fully capturing glucose dynamics, and a 

ratio between 0.65 and 0.85 may be better for d = 0. Overall, the analysis has shown the 

expected trend towards wider prediction distributions as parameterisation increases. 

Additionally, the results showed that using higher order basis functions allowed a higher level of 

parameterisation before predictions became too wide.  

Clinically, it is preferable for predictions to be too wide rather than too tight. Wide predictions 

will lead to more conservative and careful titration of treatment around the border of healthy 

glycaemia. This will ultimately lead to a greater proportion of time in the healthy range. In 

contrast, prediction that is too tight would lead to less conservative treatment when the patient 

glycaemia is close to dangerous levels, and thus, glycaemic excursions to unsafe regions are 

more likely. In the d = 0 case, the absolute areas for M:N = 0.85 and M:N = 0.65 were almost 

identical. However, the predictions for M:N = 0.85 were overall slightly too wide (in the green 

region), whereas the predictions for M:N = 0.65 were too tight (in the red region). Thus, while 

the M:N = 0.65 line was very slightly closer overall to 1:1, an M:N ratio of 0.85 could be 

preferable for d = 0 in clinical practice.  

Table 14.1 indicates that first order basis functions resulted in comparatively high negative 

biases in the prediction distributions. The d = 0 predictions were biased high, and the d = 2 

predictions were biased low, but the magnitude of these biases were relatively small. Thus, first 

order basis functions may be a worse option than zero or second order functions in obtaining 

accurate and precise predictions. 

The AIC analysis showed that all datasets reached an AICc minimum between M = 0.1N and M = 

0.9N. Figure 14.4 and Figure 14.5 showed that a number of model parameters corresponding to 

approximately 45% of the number of measurements gave the optimum trade-off between 

model complexity and model fit in all cases. However, the results of the SI prediction analysis 

clearly contradict the AICc results. For d = [0, 1, 2], an M:N ratio of 0.45 would result in 

prediction distributions that are too tight, meaning SI(ts + Δt) is more variable than predicted.  

The reliability of the AICc criterion depends on the accuracy of the expected measurement 

noise, which cannot be exactly known in a clinical setting (Chase et al., 2006). Additionally, the 

AIC analysis assumes independent and identically distributed (IID) random variables. While it is 

often assumed, it is not exactly the case for glucose data. Glucose data is not necessarily 
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independent from point to point clinically, nor is it identically distributed, as error varies with 

blood glucose level (Chase et al., 2006). However, the AIC has often been used in biomedical 

applications (Mueller et al., 2011, Li et al., Wilinska et al., 2005) despite the difficulty in meeting 

the IID condition perfectly. Hence, the AIC analysis results should be considered to lead to an 

approximate optimal case rather than definitive optimal case. The numerical prediction analysis 

has a stronger basis for determining the definitive optimal case as it directly measured the ability 

of the models to forward predict measured data. 

The analysis considered the prediction horizon of SI rather than glucose level, which is the key 

consideration of glycaemic control. However, the SI analysis was proximal to an analysis in 

glucose. The model strategy uses an identified SI(t) profile to define glucose kinetics. No other 

parameters are identified. Hence, any shift in glucose must also be matched by a commensurate 

shift in SI. These changes are not necessarily equivalent in magnitude. However, equivalence of 

the changes in glucose and SI is not important since this analysis considered prediction 

percentiles alone. Importantly, using SI rather than glucose as the metric of interest allows a 

simpler computation of the protocol in section 14.2. In data not shown, generating Figure 14.3 

using G(ts + Δt) yielded the same outcomes.  

In glycaemic control, acute hypoglycaemia is generally considered more harmful than acute 

hyperglycaemia. Hence, most glycaemic regulation protocols attempt to maintain near normal 

glycaemic levels while strictly avoiding hypoglycaemia. In glycaemic control algorithms the 

accuracy and precision of the prediction distributions is critical. If the prediction distribution is 

too tight, the clinician may be too aggressive in treatment and maintain the patient at a low 

glycaemic level. Thus, they will be at risk of acute hypoglycaemia. In contrast, if the prediction 

distribution is too wide, the clinician is likely to be too conservative and maintain the patient 

glycaemia too high with the undue fear of inducing hypoglycaemia. By ensuring that the 

prediction is accurate and appropriately precise, the clinician can set the preferred glycaemic 

level with confidence that the incidence of hypoglycaemia will match their expectations. This 

analysis presented a new strategy for determining the precision and accuracy of these SI 

predictions. The strategy is robust to changes in the times between glucose samples, and could 

lead to alterations in the modelling of glycaemia in critical illness that improves predictive 

capability.  
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14.5   Summary 

SI variability across 30 data sets was used to enable prediction distributions of SI over particular 

time steps. Increasing the parameterisation of the model resulted in wider prediction 

distributions, and increasing the basis function order resulted in tighter prediction distributions, 

such that accurate predictions were made with a higher M:N ratio. The ratios that gave the most 

accurate predictions were M:N = 0.65 when d = 0, M:N = 0.85 when d = 1, and M:N = 1 when d = 

2. In contrast, the AIC analysis found that an M:N ratio of approximately 0.45 was optimal in all 

cases, though some assumptions required for a trustworthy AIC analysis result were breached.  

The prediction analysis gives insight into the level of parameterisation needed for accurate 

future predictions of SI variability. Importantly, it was found that a maximum parameterisation 

of M:N = 1 caused the predictions to be wider than the true distribution of SI(ts + Δt).  Accurate 

predictions would ultimately allow model-based GC algorithms to be implemented more 

effectively, increasing clinician confidence in treatment outcomes and improving safety for 

patients. 
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Part 5: Conclusions and Future Work 
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Chapter 15 Conclusions 
This thesis primarily describes a novel pulmonary model that has potential to aid clinicians in 

mechanical ventilation of ARDS patients. Since patient physiology, ARDS dysfunctions, and ICU 

ventilation protocols are diverse, the NARX model was developed to be useful in a wide range of 

MV situations. Clinically relevant parameters describing patient-specific conditions were 

determined, and prediction of the patients’ respiratory responses was implemented 

successfully, providing a method for potential avoidance of harmful over-distension. Basis 

functions are a key aspect of the NARX model, and have numerous possible applications in data 

fitting. In Part III of the thesis, basis functions were used to determine a suitable level of 

parameterisation of a blood glucose model, avoid over fitting, and determine accurate 

predictions of insulin sensitivity variance.  

Chapters 5 to 12 concern novel pulmonary modelling using the NARX model. The main 

innovation of the NARX model was the pressure based basis functions used to describe 

elastance. Three cohorts of data were used to test the NARX model, each with a range of patient 

diagnoses, and representing different ventilation and recruitment manoeuvre protocols.  

Chapter 5 describes the initial development of the NARX model and justifies the terms using an 

analysis of residuals. This work used complex patient data sets that have confounded previous 

modelling efforts. In particular, the cohort contained end-inspiratory pauses, and the RMs 

contained a large number of PEEP step increases, allowing opportunity for over-distension 

effects to be observed in some cases. The use of this complex data allowed a descriptive model 

to be developed, that could fit all features of the breath waveform across RMs. Despite a large 

number of model parameters, the measurement noise was significantly lower than the model – 

data residuals, implying that the NARX model was not over-parameterised.  

Chapters 6 to 8 further validate the descriptive capabilities of the NARX model. The interpolation 

result in Chapter 6 demonstrates the NARX model ability to consistently capture recruitment and 

distension when supplied with less than a full RM of data, and its superiority to the FOM in this 

circumstance. Chapter 7 showed that the NARX model could identify independent inspiratory 

and expiratory elastances for a wide pressure range. This result is significant because expiratory 

elastance is non-identifiable for most models when expiration is a passive process, and flow and 

volume are not linearly independent. This limitation is overcome by the NARX model because it 

includes the flow dependent terms that incorporate information from the previous breath. 

Chapter 8 showed that the first flow dependent term in the NARX model captured the expected 
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decrease in resistance across an RM. The FOM resistance term was unable to do the same, 

because the identified FOM resistance could be confounded by increases in elastance.  

In Chapter 9, the NARX model was applied to a patient whose spontaneous breathing efforts 

caused M-waves in the pressure signal. A modified Gauss-Newton parameter ID method was 

used to effectively ignore the M-waves, so that the model exhibited the shape of a normal 

breath even when an SB effort occurred. The modified GN method achieved this by reducing the 

contribution of large residuals on the step in parameters at each GN iteration. Ignoring the 

random unknowable effect of SB on the pressure signal meant that respiratory mechanics for 

this patient could then be estimated under steady state ventilation.  

Chapters 10 and 11 describe the most clinically significant result of the pulmonary modelling 

section of the thesis, the NARX model extrapolation and pressure prediction. In Chapter 10, a 

suitable extrapolation method for the NARX model was determined. This involved replacing the 

b-spline basis functions with four functions that are continuous across the entire pressure range 

considered, and can linearly combine to produce any of the common elastance shapes observed 

by the b-spline basis functions. Extrapolation to higher and lower PEEP from different amounts 

of data was significantly more successful than the FOM in all scenarios. The most relevant results 

were those that considered prediction one PEEP step up from the training data. The NARX model 

error in these predictions was small in a clinical sense.   

Chapter 11 uses the same extrapolation method for step increases in PEEP to perform a 

statistical classification analysis and test the NARX model’s ability to predict over-distension. 

High PP and PIP thresholds were used as measures of the occurrence of over-distension, 

depending on the availability of these measurements in Cohort1 and Cohort2. On the simpler 

Cohort2 data sets, the NARX model was significantly more successful than the FOM at predicting 

the high PIP, even under conditions designed to produce the best outcome from the FOM. Of 

particular significance was the extremely high sensitivity of the NARX model, meaning that 

instances of high PIP were almost never missed. On the more complex Cohort1 data, the NARX 

model parameterisation had to be reduced, by reducing the number of basis functions and flow 

dependent terms, to yield prediction outcomes that surpassed the performance of the FOM.  

In the early stages of NARX model development, it was found that the model fit the RMs of high 

auto-PEEP patients poorly. In Chapter 12, a cohort of both high and low auto-PEEP patients was 

used, with a simplified version of the NARX model to examine whether the model could be 

useful for these patients. While the fit was still poor for high auto-PEEP patients, clinically 

significant differences between the parameters for the two groups were found. Specifically, the 
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COPD patients had a much higher identified resistance, and their elastance curves showed that 

higher pressures were required for recruitment. These outcomes made sense in terms of the 

known physiology of COPD patients.  

Chapters 13 and 14 use basis functions for a different biomedical application. By using basis 

functions to identify insulin sensitivity, an investigation was undertaken into the appropriate 

level of parameterisation of a model of glucose and insulin kinetics. SI was predicted as a 

distribution, based on expected SI variability, and compared to the true SI outcomes. The ratio of 

basis functions to measured data points affected the width of the prediction distributions, and 

thus the accuracy of predictions. When determining an optimal level of parameterisation, 

consideration of the impact of prediction errors was crucial. Since acute hypoglycaemia is more 

harmful than acute hyperglycaemia, the importance of minimising prediction errors that would 

potentially lead a control system to induce hypoglycaemia in patients was noted.  

Chapters 13 and 14 show the flexibility of the basis function concept, however the pulmonary 

NARX model is the main accomplishment of this thesis. The NARX model overcomes many of the 

disadvantages of previous models. It does not have the single constant resistance or elastance of 

the simpler models. Instead it has a time varying resistance and a pressure dependent elastance. 

It is able to fit to both inspiratory and expiratory data simultaneously, and it is quickly and easily 

identifiable using simple linear least squares parameter ID. It does not require patient 

intervention or measurements beyond those that are normally taken during mechanical 

ventilation. It has been able to fit to data containing both recruitment and distension across 

increasing PEEP steps. It has successfully predicted patient response to PEEP changes within a 

RM. It thus has high potential to be integrated into a PEEP optimisation system to avoid over-

distension and improve patient outcomes. 
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Chapter 16 Future Work 
The pulmonary NARX model has been successful in fitting and predicting behaviour in the 

cohorts tested. However, further testing to assess the clinical value of the model parameters, as 

well as its prediction capabilities, would be worthwhile in verifying the model’s ability to 

improve patient outcomes. Similarly, the primary avenue for future work using the glucose 

model would be testing in a clinical setting. Further NARX model work may also include 

customisation for different types of patients, such as those with different disease states, or for 

spontaneous breathing, and further analysing the benefit of the flow dependent parameters. 

16.1   Clinical Value of the NARX Model 

Diagnosis and disease progression tracking are the basis of most model – based optimised 

control algorithms. The NARX model may be able to be used to discriminate between patients 

with specific disease characteristics. A possible method could involve using the identified 

elastance shape to indicate recruitability. For example, COPD patients were observed to have 

shallower elastance curves compared to non-COPD patients. Other features of elastance or flow 

terms may correlate with different patient attributes and diagnoses. The model parameters 

could also be used to monitor disease progression over time.  

A randomised controlled trial could evaluate the NARX model’s prediction capabilities. This 

would involve one patient cohort undergoing the standard PEEP selection process. In a second 

cohort, PEEP may be increased or decreased based on the model’s prediction from recent 

pressure – flow data. Measurable outcomes such as mortality, oxygen saturation, and length of 

MV would be used to assess performance.  

16.2   NARX Model Flow Dependent Parameters 

The original NARX model contained 350 flow dependent parameters, or b coefficients. The b 

coefficients collectively capture information about the behaviour of the airways in response to 

air flow, including resistance, and the gas redistribution that happens during the end-inspiratory 

pause. Though we do not fully understand how these processes influence the NARX model 

outcomes, the grey box NARX modelling approach was able to successfully fit to data without 

needing to know what each parameter corresponds to physiologically.  

There is value in the b coefficients because they enable the model to fit the data well, without 

overfitting, based on the estimation of measurement noise. However, the full clinical value they 
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provide is currently unclear. Gaining a better understanding of what aspects these parameters 

are capturing would be useful in gaining clinician confidence in the model.  

One possible method of extracting value from the b coefficients could be to look at the 

cardiogenic oscillations in the pressure during an end-inspiratory pause. The amplitude of these 

oscillations may indicate the amount of pulmonary blood flow (Tusman et al., 2009). Using the 

model fit to obtain the amplitude may provide a useful measure to clinicians. Also, the 

oscillations may reflect something about respiratory system elastance, especially during 

spontaneous breathing (Schumann et al., 2011). 

16.3   Adaptation for High Auto-PEEP Patients 

The two patients in Cohort1 and the four patients in Cohort3 who had unusually high auto-PEEP 

were fit poorly by both the original NARX model, and the simplified version discussed in Chapter 

12. While the simplified NARX model resulted in useful parameter outputs for the high auto-

PEEP patients, a better model fit could give a more accurate identification of patient-specific 

parameters.  

A model adaptation could be implemented to enable it to better fit high auto-PEEP patients. The 

adaptation could use a discontinuous term that fits low PEEP data separately to high PEEP data. 

The discontinuity would occur at the point where PEEP exceeds auto-PEEP. The poor model fit 

occurred because modelled pressure was lower than measured pressure when PEEP < auto-

PEEP. This implies the modelled elastance was too low, therefore the adaptation could aim to 

raise elastance for this period. 

16.4   Treatment of Spontaneous Breathing Signals 

For patients that are ventilated in partial rather than full sedation, SB efforts are common, and 

M-waves or similar anomalies frequently show up in the pressure and flow signals. These 

irregularities will reduce the usefulness of patient-specific values gained from parameter 

identification. 

The modified GN method to ignore M-waves only works during steady state ventilation. It 

cannot deal with PEEP steps, or any other state change. A more robust method that allows the 

NARX model to handle SB during a recruitment manoeuvre would therefore be beneficial.  

The treatment of the effects of SB on the pressure and flow signals could also lead to work in 

assessing the strength of patient SB efforts, as the strength of the effort effects the magnitude of 
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the waveform anomaly. If embedded in ventilator software, this could help clinicians determine 

when to extubate patients, or provide a patient effort driven warning to adjust anaesthesia.  

16.5   Trialling the Glucose Model 

The glucose model work showed the effect of different levels of parameterisation on the 

accuracy of a predicted distribution of insulin sensitivity. However, only a few parameterisation 

options were tested. Further work may first aim to reach a conclusion as to the optimal model 

that is reasonably accurate and precise, and minimises the impact of prediction failures. 

Specifically, the model should place more emphasis on avoiding hypoglycaemia than 

hyperglycaemia. Future work may then integrate the model into existing glucose control 

algorithms, with the ultimate aim of testing in a randomised control trial.  
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