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Abstract 
 

The biological realm contains numerous examples of nano-scale molecules that can self-assemble 

into a diverse array of architectures, making them attractive building blocks (or tectons) for 

applications in bionanotechnology. Proteins are one such biological molecule able to assemble into 

various three-dimensional structures. Exploring the mechanism and conditions in which these 

protein structures form is not only useful for the understanding of its biological role, but is also a 

prerequisite for their use in rational materials design.  

 

Human peroxiredoxin 3 (HsPrx3) are ubiquitous antioxidant proteins that can form a plethora of 

protein architectures: from homodimers that reversibly assemble into dodecameric rings (or 

toroids), and rings that can further associate into protein tubes. This thesis examines the high 

molecular weight protein tube structure of HsPrx3 (Chapter 2) and its assembly mechanism 

(Chapter 3). A 2.8 Å crystal structure of HsPrx3 was elucidated for the first time and was displayed 

as a short tube composed of three rings. This structure, together with a cryo-electron microscopy 

reconstruction obtained with collaborators, enabled a novel hypothesis for the biological role of 

these protein tubes as having a self-associating chaperone function. Using native mass 

spectrometry, protein tube formation was demonstrated to be formed via a non-commutative 

mechanism. Protein tube formation was also shown to be reversible, increasing the appeal of 

HsPrx3 proteins as tectons for bionanotechnology. 

 

HsPrx3 proteins react with hydrogen peroxide and upon oxidation, the reduced dodecameric rings 

disassemble into oxidised homodimers. The relationship between this quaternary structural switch 

and peroxidase activity was investigated (Chapter 4). Point mutations at the dimer-dimer interface 

were generated, creating an obligate dimer (S75E HsPrx3) and a stabilised toroid (S78C HsPrx3).  

Intriguingly, the obligate dimer was minimally active, suggesting that the ring structure is 

important, but not vital, for active site positioning. This raises interesting questions as to the 

biological function of this redox-induced structural change. On the other hand, the stabilised toroid 

was crystallised and the 2.4 Å structure provided a detailed understanding of the interactions that 

stabilise the dimer-dimer interface. S78C HsPrx3 will be a useful tecton as componentry for future 

applications. 

 

Having gained a deeper understanding of HsPrx3 self-assembly, functionalisation of the protein 

surface with novel chemistries was explored (Chapter 5). An unnatural amino acid, p-

azidophenylalanine, was chosen for in vivo incorporation into HsPrx3 via an E. coli expression 

system. Although, not entirely successful, this marks a promising initial venture at functionalising 

HsPrx3. 
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Chapter 1: Introduction 
 

1.1 Self-assembly: an intrinsic phenomenon of life 
 

Self-assembly refers to the spontaneous, and usually reversible, organisation of components into 

ordered structures (Lehn, 2007). It is an equilibrium process driven by the minimisation of the free 

energy of the system (Halley and Winkler, 2008). This phenomenon emerges for an array of 

matters, including inorganic materials (Fang et al, 2016), and it is a vital intrinsic feature of 

biomolecules, which enables their self-assembly into the organised structures necessary for life 

(Furst, 2013).  From nano-scale biological components, to the macroscopic cellular organisms, self-

assembly generates order over magnitudes of size and complexity. The hierarchical self-assembling 

organisation enables the precise control of the resulting structures, where small sections of such 

structures can be easily repaired, or unit components modified to embellish the self assembled 

structure with new function, without altering the entire assembly (Furst, 2013). The forces 

responsible for self-assembly vary depending on the particular system and its size (Whitesides and 

Grzybowski, 2002). In particular, molecular self-assembly involves the organisation of biological 

components at the nano-scale and occurs via non-covalent interactions, such as van der Waals 

forces, electrostatics, hydrophobic interactions, hydrogen bonds and coordination bonds (Furst, 

2013; Fang et al, 2016). Such self-assembling biological components can be harnessed for 

applications in the nano-scale realm, and this field of research is called bionanotechnology. 

 

1.2 Biological matters in bionanotechnology 
 

1.2.1 Introduction to bionanotechnology 
 

Biological molecules exist in the nano-scale and have an inherent ability to self-assemble, making 

these molecules appealing tectons (or building blocks) for the creation of sophisticated structures 

for applications in bionanotechnology. Such tectons include the four major classes of biomolecules 

that constitute life (Figure 1.1): nucleic acids (Zhang et al, 2014), amino acids (Gerrard, 2013), lipids 

(Mashaghi et al, 2013), and carbohydrates (Han et al, 2015). Each class of biomolecule features 

different properties related to its natural function, which can favour certain applications beyond 

their original biological roles (Section 1.2.2). Functionalisation of these tectons or the structures 
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they form allows for useful applications to be realised. These applications can range from tissue 

engineering (Tamerler and Sarikaya, 2009; Subramani et al, 2008) and drug delivery (Farokhzad 

and Langer, 2009; Ravichandran, 2009; Rother et al, 2016) to the development of biosensors 

(Gilardi et al, 2002), molecular machines (Konstas et al, 2010) or nano-pore technology 

(Venkatesan and Bashir, 2011; Wendell et al, 2009).  

 
Figure 1.1: Self-assembly of the four major classes of biomolecules 
Basic units of biological molecules can self-assemble into a wide variety of structures. Studying how 
these biomolecules self-assemble can not only reveal insights into their biological function as most 
of these structures have a purpose in cellular life, but also provides clues as to how these materials 
can be harnessed for bionanotechnology. In fact, completely novel nanostructures have been 
engineered based on all of these biomolecules. The basic units of nucleotides and amino acids 
assemble into chains that can fold into 2D or 3D tectons, which are able to further associate to 
form more complex 2D or 3D structures. Lipids are basic units as well as the starting tecton for 
which complex liposome, micelle or bilayer structures can be created. These lipids structures are 
an essential part of compartmentalisation involved in life processes, but have also been used as 
nano-carriers for drug delivery applications. Carbohydrates can form very complex networks of 
polysaccharides which can adopt 3D morphologies; however, the structure prediction for 
carbohydrates is still in its infancy, but promises to expand as a field of research.  
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1.2.2 Bio-inspired building blocks 
 

1.2.2.1 Lipids 

 

The unique properties of lipids, such as amphiphilicity, as well as the diversity in chemistry of head 

and tail groups, makes them appealing for many applications in bionanotechnology (Mashaghi et 

al, 2013). Lipids can self-assemble into a diverse array of structures from bilayers, nano-films, 

micelles and liposomes (Israelachvili, 2011). Some of these lipid structures form crucial barriers for 

compartmentalisation inside cells (Alberts et al, 2002), and have been harnessed for use as nano-

containers and hybrid lipid particles that can hold an array of cargo for purposes in drug delivery 

(Zhou et al, 2010a; Schäfer et al, 2010). Lipid bilayers are also transparent to light (Mashaghi et al, 

2008) and can conduct heat (Mashaghi et al, 2013), features which also make them useful for 

nanotechnology (Backus et al, 2011). Lipids have also been integral components of nano-pores 

(Jonsson et al, 2010; Yusko et al, 2011; Hernandez-Ainsa et al, 2013) and graphene-based 

transistors (Noy et al, 2011). Computational tools have been recently developed to further enhance 

novel lipid architecture designs (Mashaghi et al, 2013).  

 

1.2.2.2 Nucleic acids 

 

Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are bio-polymers responsible for storage 

of cellular information. They are composed of four nucleotide bases that base-pair in a predictable 

manner, allowing computer algorithms to predict sequences that interact to form specific DNA 2D 

or 3D architectures (Seeman, 2005). Nucleic acid structures are often compatible with organic or 

inorganic materials, but run the risk of not being biocompatible with cells and organisms as they 

require high magnesium concentrations to fold, and could be readily degraded by DNases as part 

of cellular antiviral defence (Chen et al, 2015). 

 

Numerous examples of DNA architectures have been developed: from simple 2D tiles (Fu and 

Seeman, 1993; Winfree et al, 1998; Seeman, 2003; Park et al, 2006) to folding up 2D DNA arrays 

to any desired pattern (Rothemund, 2006). More complex structures such as cage polyhedras 

(Zhang and Seeman, 1994; Shih et al, 2004), tubes (Aldaye and Sleiman, 2007; Yin et al, 2008; 

Rothemund et al, 2004) and Borromean rings (Mao et al, 1997) can also be formed from DNA. 

Large numbers of these architectures have been used as a starting pool for more complex 

arrangements, such as DNA machines (Mao et al, 1999; Yurke et al, 2000; Yan et al, 2002; Feng et 

al, 2003; Goodman et al, 2005). The various DNA structures provide a foundation of building 

materials that can be further functionalised for applications. DNA cages have been used for drug 
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delivery (Linko et al, 2015), and DNA templates were used for assembly of silver nanowires (Braun 

et al, 1998). 

 

Although some 2D arrays and cages have been developed, creating nanostructures using RNA is 

less advanced compared with DNA, mostly because of its labile single stranded nature (Chworos et 

al, 2004, Guo, 2010). Despite this, RNA nanoparticles were recently developed as a therapeutic 

technology used for in vivo drug delivery of RNA (Parlea et al, 2016). 

 

1.2.2.3 Carbohydrates 

 

In contrast to nucleic acids, the development of carbohydrates, or saccharides, for use in 

nanotechnology is still in its infancy, but promises to grow (Han et al, 2015). Carbohydrates, such 

as glycocalyx, play important roles in directing many complex biological processes, such as protein 

folding, binding between cells, signal transduction and cell motility (Han et al, 2015). Their 

challenging preparation, and heterogeneous structural diversity due to branching occurring on 

polysaccharide chains (Vilaplana and Gilbert, 2010), and complex binding have made exploring 

these biomolecules for applications in bionanotechnology difficult. Despite this, glycan microarrays 

(Houseman and Mrksich, 2002; Oyelaran and Gildersleeve, 2009), synthetic carbohydrate 

receptors (Ke et al, 2012), and carbohydrate-coated nanoparticles (Gross et al, 2016) are all 

promising advances to generate functional technologies from these biomolecules. The creation of 

3D-self assembled layers of disaccharide neoglycolipids (Fuss et al, 2008) and protein-like 

tetramerising aminocellulose (Nikolajski et al, 2014) are encouraging leaps towards making 

complex carbohydrate directed hierarchical assemblies. 

 

1.2.2.4 Amino acids 

 

Amino acids are the basic units, which are covalently linked together to form peptide chains and 

proteins capable of further self-assembly. Due to their diverse chemistries, ease of synthesis and 

ability to form complex and switchable 2D or 3D architectures, peptides and proteins are promising 

tectons that constitute a flourishing branch of the current bionanotechnology space (Melis Sardan 

et al, 2016; Gerrard, 2013; Banta, 2007). The 20 possible naturally occurring amino acids provide a 

richer pool of starting units compared with nucleic acids, and along with the extensive 

computational tools available, designing and creating novel nanostructures using peptide and 

protein tectons can be achieved (Tsai et al, 2006; Bromley et al, 2008; Section 1.3.1). 

Peptides are short chains of amino acids. Their tolerance for relatively harsh physico-chemical 

conditions makes them suitable for nanotechnology (Ryu and Park, 2010; Melis Sardan et al, 2016).  
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Peptides can form numerous structures such as fibres (Takahashi et al, 2002; Matsumura et al, 

2004), rings (Ghadiri et al, 1993) and tubes (Saviano et al, 1994; Seebach et al, 1997; Clark et al, 

1998; Gao and Matsui, 2005). Peptide tubes or nanowires of < 10 nm cavity diameter are difficult 

to make (Hartgerink et al, 1998; Horne et al, 2003). Different peptide-based 2D shapes can also be 

formed using a modified leucine zipper (Ryadnov and Woolfson, 2003; Ryadnov, 2007). Further 

functionalisation of these peptide architectures can lead to a wide variety of applications, ranging 

from metal biomineralisation on the inner and outer surfaces of tubes (Reches and Gazit, 2006) to 

the generation of peptides as semiconductors (Hauser and Zhang, 2010). Peptide gels can function 

as a biocompatible extracellular matrix for tissue engineering (Aggeli et al, 1997; El-Sherbiny and 

Yacoub, 2013) or as substrates for tissue growth, such as for neurite and synapse formation 

(Holmes et al, 2000). 

 

Proteins are composed of longer amino acid chains, folding to form sophisticated 3D structures. 

These folded 3D structures can usually further associate to form higher order complexes with other 

proteins. Proteins which naturally adopt a huge variety of structures are useful starting 

architectures for bionanotechnology applications. The role of proteins in bionanotechnology will 

be further elaborated on in Section 1.3. 

 

1.2.2.5 A combination of materials  

 

In order to utilise the properties and strengths of all available materials, bionanotechnology 

undoubtedly involves a mixture of components. Not only are these a combination of different 

biomolecules, but also of biological and non-biological components (Nel et al, 2009). Some areas 

of applications for bionanotechnology will lend themselves towards certain materials. In 

electronics, organic semiconductors were assembled using self-assembling peptides (Eakins et al, 

2015), whereas nanotube and nanowire transistor devices can be embedded into lipid bilayers 

along with biological ion channels to be used as biosensors (Noy et al, 2011; Simmel, 2009). For 

drug delivery, synthetic polymers and protein cages have proved to be a fruitful symbiosis (Rother 

et al, 2016), and carbohydrate-based nanoparticles were shown to pass through various biological 

barriers (Peptu 2014 Peptu et al, 2014). Biological components can act at the interface between 

inorganic and biological systems to improve biocompatibility for tissue engineering (Li et al, 2009; 

Li et al, 2010). These are only a few examples of the countless functional applications of 

bionanotechnology to highlight the possibilities of what can be created from biomolecules. 
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1.3 Protein bionanotechnology 
 

1.3.1 Desirable features of protein building blocks/tectons 
 

Proteins are biomolecules responsible for a vast array of functions within living cells (Alberts et al, 

2002). In order to achieve this, proteins adopt a wide variety of structures, which can be classified 

into different orders of organisation: primary, secondary, tertiary, and quaternary structure. The 

amino acid sequence, or primary structure, dictates how a protein tecton folds together and also 

how these tectons further self-assemble into sophisticated 3D structures. This modular assembly 

is one of the main advantages of using proteins in bionanotechnology as it allows for precise design 

and control of the final architecture by introducing changes to the primary sequence from a diverse 

pool of available amino acid chemistries (O'Donoghue et al, 2013; Section 1.3.2.1). 

 

Complex architectures can be assembled from multiple copies of the same (homo-oligomerisation) 

or different tectons (hetero-oligomerisation) (Pieters et al, 2016). Most naturally occurring 

oligomeric proteins are homo-oligomers and the majority of these structures are symmetrical 

(Goodsell and Olson, 2000; Section 1.3.3). Homo-oligomeric proteins have enhanced stability 

(Marsh and Teichmann, 2015) and are also a result of expression from a single gene sequence, 

making it more convenient to engineer these protein tectons (Section 1.3.2).  

 

The inherent compatibility of proteins with many biologically relevant salt concentrations and pHs 

lends protein nanotechnology towards biological applications. Often, protein structures can 

reversibly associate depending on environmental conditions, such as pH, salt concentration, or the 

presence of co-factors or metal ions, as well as protein concentrations (Nooren and Thornton, 

2003). Proteins ideal for bionanotechnology should also be thermally and chemically stable to 

enable a higher tolerance for different chemical environments. Thermostable proteins are often 

found in bionanotechnology applications, such as the extensively characterised SP1 proteins 

(Medalsy et al, 2008) to trp RNA-binding attenuation protein (TRAP; Heddle et al, 2007). Some 

thermostable proteins originate from thermophilic bacteria and such proteins have been 

immobilised and can be used as biosensors (De Stefano et al, 2008; Staiano et al, 2010; Cowan and 

Fernandez-Lafuente, 2011). 

 

Model protein systems should ideally tolerate modifications of surface residues for 

functionalisation (van Vught et al, 2014), such as the attachment of metal ions (Smith, 2015) to the 

protein nanostructure. Different regions of protein building blocks have different capacities for 
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tolerating modifications, depending on their surrounding environments, with flexible regions of 

proteins generally able to tolerate changes to protein sequence (Guo et al, 2004). Additional 

inherent functions of proteins, such as DNA binding (Heddle et al, 2007) or enzymatic activity 

(Phillips et al, 2014), can make these biological materials useful for applications.  

 

1.3.2 Engineering protein tectons 
 

1.3.2.1 Understanding protein synthesis 

 

Proteins are appealing tectons for creating nanostructures due to their inherent ease of synthesis 

using a variety of commercially available expression systems, including but not limited to certain 

strains of Escherichia coli, mammalian cells as well as in vitro protein synthesis (Rosano and 

Ceccarelli, 2014). Within each expression system, the cellular machinery is harnessed to create 

recombinant protein tectons based on synthetic DNA sequences. The bacterium, E. coli, is one of 

the most extensively well-studied prokaryotic organisms used for the industrial production of 

proteins (Baneyx and Mujacic, 2004). With fast growth kinetics (Sezonov et al, 2007), the ability to 

have high cell density cultures (Shiloach and Fass, 2005), and a wide variety of strains developed 

for specific end uses, whether it be for DNA propagation or protein production (Rosano et al, 2014), 

the E. coli expression system is the obvious choice for the creation of protein tectons.  

 

The in vivo production of recombinant proteins involves the biomolecules made from nucleic acids 

(DNA and RNA) as well as proteins. Protein production involves transcription, where DNA is 

transcribed into RNA by RNA polymerases, and translation, where messenger RNA (mRNA) is 

translated into amino acid chains by ribonucleoprotein complexes (Laursen et al, 2005). These 

ribonucleoprotein complexes consist of ribosomes that catalyse the formation of peptide bonds 

between amino acids introduced via charged transfer RNAs (tRNAs), as well as a complex array of 

initiation factor and elongation factor proteins. The mRNA sequence acts to orchestrate the order 

in which cognate charged tRNAs bind within the ribosome, and therefore results in the production 

of encoded amino acid chains (Laursen et al, 2005). Correct translation also hinges on another 

enzyme, called aminoacyl-tRNA synthetase, that catalyses the esterification of specific amino acids 

and corresponding tRNA pairs, resulting in charged aminoacyl-tRNAs (Ibba and Soll, 2000).  

 

The ease of incorporation of synthetic DNA into E. coli (Pope and Kent, 1996), and coaxing the 

cellular machinery to read this synthetic DNA to overproduce recombinant proteins are key 

reasons for the widespread industrial use of this expression system (Rosano et al, 2014).  Various 
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modifications to wild-type E. coli have resulted in multiple strains suited for protein overexpression. 

In particular, BL21 (DE3) strains contain the λDE3 prophage inserted into the bacterial genome, 

which encodes the T7 RNA polymerase gene under the lacUV5 promoter (Daegelen et al, 2009). 

This means the production of proteins can be switched on with the addition of IPTG, an allolactose 

mimic, which depresses and allows the transcription of the highly efficient T7 polymerase to 

transcribe the mRNA of desired recombinant proteins. This system has been modified to 

incorporate unnatural amino acids into recombinant proteins (Chatterjee et al, 2013), and this is 

further elaborated in Chapter 4. 

 

1.3.2.2 Design strategies 

 

There are two major design strategies for creating self-assembling protein architectures using 

protein-protein interfaces: 1) Exploiting naturally occurring protein-protein interactions that occur 

for many self-assembling proteins to create structures that can be embellished with new functions 

(Pieters et al, 2016). Alternatively, protein oligomers can be fused together using linkers to create 

novel 2D patterns (Usui et al, 2009; Sinclair et al, 2011). 2) Completely novel protein architectures 

have been designed in silico where new protein-protein interfaces were designed into inherent 

protein symmetries (King et al, 2012). This was achieved by changing certain residues or by 

remodelling the entire interface (Padilla et al, 2001; Grueninger et al, 2008; Karanicolas et al, 2011). 

Interfaces can be designed based on many weak protein-protein interactions over large surface 

areas (King et al, 2012). Protein-protein interfaces can be further modified to include other factors 

which promote association. Such examples include rhodamine, which is used to promote protein 

layer formation (Brodin et al, 2014), as well as metal ions, which are used to drive associations 

between protein-protein interfaces (Salgado et al, 2010; Huard et al, 2013). 

 

1.3.3 Protein architectures dictate their applications in 

bionanotechnology 
 

1.3.3.1 Planar assemblies 

 

Some naturally occurring proteins inherently form planar 2D assemblies as part of their cellular 

function, such as  S-layer lattices, clathrin, and other proteins that cause membranes to bend 

(Edeling et al, 2006; Zimmerberg and Kozlov, 2006). S-layer proteins form the exoskeleton of 

bacteria and archaea and were found to re-assemble into 2D planar arrays when stripped from the 

cell membrane (Pum et al, 2013). The formation of the S-layer lattices depends on the 

concentrations of protein as well as divalent cations, such as Ca2+ ions, which were found to 
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stabilise the inter- and intra-domain contacts in the protein crystal structure (Baranova et al, 2012; 

Baneyx and Matthaei, 2014). Proteins that do not naturally form planar assemblies can be coaxed 

into the act by fusing them to other proteins – this ‘protein jigsaw’ can generate ordered protein 

arrays (Sinclair et al, 2011; Yeates, 2011). Non-covalent protein-protein interactions have also been 

engineered to create 2D planar assemblies (Gonen et al, 2015). 2D planar arrays enable the high 

density display of proteins which can have applications in cellular binding (Rothbauer et al, 2013), 

diagnostics and as biosensors (Ilk et al, 2011). The periodic arrangements in the nano-scale can 

provide the precise patterning required for plasmonic, optoelectronic, or magnetic applications 

(Baneyx et al, 2014).  

 

1.3.3.2 Cages 

 

Naturally occurring cage proteins are abundant and come in varying sizes. They are often formed 

from monomeric proteins that self-assemble into a final symmetric structure, which can vary in 

shape depending on the monomer (Pieters et al, 2016; Rother et al, 2016). The most prominent 

protein cages used in bionanotechnology, thus far, have been spherical and include iron 

encapsulating protein cages as well as viral capsids.  

 

Classical ferritins and DNA binding proteins (DPS) are related, ubiquitous cage proteins found in all 

forms of life that bind to iron (Figure 1.2 A; Yoshizawa et al, 2007; Harrison and Arosio, 1996; B 

Bozzi et al, 1997). Classical ferritins form larger cages composed of 24 subunits resulting in a ~12 

nm outside diameter (Lawson et al, 1991), whereas DPS cages are formed from 12 subunits with a 

9 nm diameter (Stillman et al, 2005). They are both highly stable proteins that tolerate heating up 

to 80 °C in 6 M guanidine, a denaturant, at neutral pH without disassembly (Zhang and Orner, 

2011), making these cages ideal for bionanotechnological applications. However, the cages 

disassemble at higher or lower pHs, allowing for cargoes to be internally trapped; this has been 

used for loading a variety of drugs (Ji et al, 2012; Domínguez-Vera, 2004). Ferritin and DPS proteins 

are fantastic cage proteins for an array of applications ranging from biomineralisation of metals 

and semiconductors to the generation of nanodevices, contrasting agents for medical imaging, as 

well as for drug delivery and nanoparticle vaccines (reviewed in He and Marles-Wright, 2015). 

 

Another abundant class of protein cages are the viral capsids. Spherical and icosahedral viruses 

range in size from 18 – 500 nm in diameter and have evolved to survive a broad range of chemical 

environs, making them especially appealing for use in bionanotechnological applications (Young et 

al, 2008). Cowpea chlorotic mottle virus (Figure 1.2 B) and cowpea mosaic virus both have N- or C- 

termini on the outer or inner surface of the capsid to enable attachments and modifications 
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(Zlotnick et al, 2015). Redox-active capsid nanoparticles were created via the modification of 

exposed carboxylate groups on the cowpea mosaic virus surface with redox-active moieties 

(Steinmetz et al, 2006). The applications of virus capsids are vast and can range from creating 

nanomaterials, such as encapsulating nanoparticles or forming 2D/3D arrays, to enzyme 

nanoreactors, as well as biomedical applications such as imaging reagents or drug delivery 

platforms (reviewed in Young et al, 2008).  

 

 

Figure 1.2: Naturally occurring and de novo protein cages 
(A) Ferritin (PDB: 1BFR) and DPS (PDB: 1DPS) protein cages with the self-assembling unit highlighted 
(rainbow cartoon). Images adapted from Pieters et al, 2016 with permission (B) The cow chlorotic 
mottle virus capsids are generated from a pentamer of dimers (blue) which further associate with 
other dimers to form a large cage structure. (C) Some examples of de novo cage protein structures 
(left PDB:3VCD; right PDB: 4QCC) with the self-assembling unit highlighted (rainbow cartoon).  
 

Computational design of protein-protein interactions have resulted in a variety of de novo rigid 

cage structures. Early designed protein nanohedra were created using the symmetrical fusion of 

two protein halves (Padilla et al, 2001). However, the computational analysis of protein-protein 

interfaces was able to identify key features of interaction and this was used to synthesise 

completely novel binding surfaces that can generate high-order oligomers, such as trimers or 

tetramers (Grueninger et al, 2008). More complex structures have been generated using data 

based on rigid interfaces, with resulting self-assembling de novo protein architectures such as cages 

(King et al, 2012; Figure 1.2 C on left), or porous cube structures (Lai et al, 2014; Figure 1.2 C on 

right). When formed, these structures are incredibly stable under a variety of conditions and are 

most likely the result of the optimised burial of hydrophobic areas designed into the protein-

protein interaction surface (Huang et al, 2016). The design of de novo switchable structures is more 

challenging as hydrogen bonding patterns and balancing hydrophobic and polar interactions 

between proteins are difficult to model accurately, and so naturally occurring proteins with 

switchable assemblies are hard to mimic, for now. 

In summary, natural or de novo protein cages contain two accessible surfaces: the inside and the 
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outside (Douglas and Young, 2006). These surfaces can be functionalised, providing points for 

nucleation of metals (Yoshimura, 2006) or for attachment of other polymers (Rother et al, 2016). 

Cages can inherently carry cargo inside their inner cavity and if the formation of the cage was 

switchable or porous, it can be used for applications in drug delivery with triggered release of such 

cargo (Ji et al, 2012; Domínguez-Vera, 2004). The inner cavity can also be used to limit the size of 

nanoparticle growth or for biomineralisation (Yoshimura, 2006). Nanoporous protein shells can 

encapsulate certain enzymes, increasing their local concentration, thereby enhancing enzymatic 

activity (Comellas-Aragones et al, 2007; Kuchler et al, 2016). 

 

1.3.3.3 Rings  

 

Rings or toroidal structures, with different subunit compositions and diameters, are ubiquitous 

protein architectures that naturally exist within organisms. With lengths less than their diameter 

and a central hole, rings have four accessible surfaces: the top and bottom of the ring as well as 

the inside and outside of the ring. Many nucleic acid-binding proteins form ring structures, and 

these have been harnessed as potential building blocks for bionanotechnology. Some examples 

include RAD52, Lsm, and TRAP. RAD52 is a DNA binding, ringed protein that promotes single 

stranded DNA annealing during homologous recombination. It is made from seven monomers 

(Stasiak et al, 2000) that form 12 nm rings. An 11-membered ring is formed when only the N-

terminal half of RAD52 is present (Kagawa et al, 2002; Singleton et al, 2002; Figure 1.3 D). In 

contrast, TRAP proteins bind single stranded RNA and form stable 11-mer rings, which persist as 

rings in the gas phase, in the absence of bulk water, using non-denaturing mass spectrometry 

(Ruotolo et al, 2005; Figure 1.3 B). The TRAP protein monomer genes have also been fused in 

tandem to produce 12-mer protein rings (Heddle et al, 2007; Watanabe et al, 2008; Figure 1.3 C). 

Lsm proteins also bind to RNA and form stable heptameric rings (Figure 1.3 A). They have also been 

explored as potential tectons for nanotechnology (Manea, 2015; Wason, 2014;  Malmstrom et al, 

2015). The ability to bind to nucleic acids is a useful feature of nanotechnology as DNA has proven 

itself to be an important nano-scaffold (Section 1.2.2.2) with which these protein tectons can bind.  

 

Not only can the inner holes of rings capture biomaterials like DNA, they are also used to capture 

inorganic molecules using engineered amino acid residues. The HSP60 chaperonin is a barrel-like 

ring protein that captures gold nanodots at the central core (McMillan et al, 2002). Cysteine 

residues were engineered into the central pore of TRAP proteins enabling them to coordinate gold 

nanodots (Heddle et al, 2007). These protein rings were further modified with titanium-binding 

peptides (Sano and Shiba, 2003) that facilitate its attachment onto a titanium or silicon oxide 

surfaces, therefore creating a TRAP-templated prototype of a metal oxide semiconductor capacitor 
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(Heddle, 2008).  

 

 
Figure 1.3: Naturally occurring protein ring tectons 
Crystal structures of the various ring proteins, with sizes relative to the 2 nm scale bar. (A) Lsm is a 
heptameric ring (PDB: 1i81). (B) and (C) are both TRAP protein: the wild-type 11-mer protein (PDB: 
1QAW) and the engineered 12-mer proteins (PDB: 2ZD0), respectively. (D) Engineered RAD51 
protein forming an 11-mer ring (PDB: 1KN0).  
 

Controlling ring internal diameter size is a valuable tool for bionanotechnology. The above 

examples have demonstrated that truncation of protein units (the N-terminal of the RAD52 

protein; Kagawa et al, 2002) as well as addition of linker regions (linked TRAP proteins; Heddle et 

al, 2007) can result in rings with different subunit compositions compared with their respective 

original wild-type proteins. Synthetic enzyme nano-rings with sizes from 8 nm to 30 nm, have been 

engineered by varying linker amino acid length and compositions (Chou et al, 2008). These linkers 

were engineered in between the monomers of homodimeric enzymes, such as dihydrofolate 

reductase and histidine triad nucleotide binding 1, which then self-assemble into rings with varying 

catalytic efficiencies depending on the ring size. This demonstrates that the arrangement of 

supramolecular assemblies may be used to control catalytic parameters (Chou et al, 2008). These 

examples thus far demonstrate that protein rings can be engineered to have altered subunit 

composition: however, ring pore diameter remains fixed after the protein has been synthesised. 

An impressive feat has been the creation of protein nano-rings with controllable pore sizes  (Bai et 

al, 2013). Glutathione S-transferase proteins, which are normally homodimeric, were embellished 

with two non-native histidine resides, which coordinated metal ions to promote self-assembly. 

Buffer ionic strengths were altered to tune the non-covalent interactions between protein subunits 

to produce a range of protein rings sized from 90 nm – 370 nm.   

 

 

 

1.3.3.4 Tubes  
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Tubes have lengths longer than their diameter and, similar to rings, also have four addressable 

surfaces, making them useful building blocks within biology as well as bionanotechnology. 

Examples of such proteins include tubulin and pilin nanotubes (Kumara et al, 2006; Audette et al, 

2004; Malvankar et al, 2011), virus-based nanotubes (Miller et al, 2007; Balci et al, 2006) as well as 

ring-shaped proteins that self-assemble in tubes (Section 1.3.3.5; Ballister et al, 2008; Miranda et 

al, 2009). 

 

Naturally occurring tubes often have limited tolerance towards the modification of amino acids 

(Malcos and Hancock, 2011) and are usually composed from many different subunits that, 

occasionally, result in structural features, which make it difficult to utilise all four surfaces – such 

as small inner cavities (Heddle, 2008). Despite this, the unique inherent properties of naturally 

occurring nanotubes composed from tubulins and pilins still render them worthy tectons for 

certain applications. Microtubules are cytoskeletal filaments composed of tubulins that form 

hollow tubes with diameters of ~ 25 nm. Their inherent ‘dynamic instability’, where alternating 

phases of growth and shrinkage occur at the tube ends (Alberts et al, 2002), has been exploited for 

the creation of nifty nanodevices that involve transport of a variety of cargo, in conjunction with 

partnering motor proteins, kinesins (Malcos et al, 2011). The motor protein-microtubule 

partnership has also created incredible self-organised optical devices (Aoyama et al, 2013). Hybrid 

thermo-responsive gels composed of microtubules and synthetic polymers have also been created 

(Shigehara et al, 2013). Pilin proteins, on the other hand, are prokaryotic appendages used to share 

information between individual cells. Perhaps due to the inherent shape of self-assembling 

nanotubes, a major application envisaged for these is the creation of nanowires, despite materials 

made from amino acids being highly insulating (Hauser et al, 2010; Ashkenasy et al, 2006). 

However, a particular conductive pilin from Geobacter sulferreducens has natural electronic 

conductivities of ~ 5 mS cm-1, comparable to carbon nanotubes and other conductive materials 

(Malvankar et al, 2011; Adhikari et al, 2016). A recent model for G. sulferreducens has proteins self-

assembling without a central hole (Xiao et al, 2016).  

 

Another classic protein tecton is also derived from a virus. The tobacco mosaic virus (TMV) is made 

of tubular ribonucleoproteins that assemble in a helical fashion around a RNA core, resulting in a 

virus of ~ 300 nm in length (Franklin, 1955; Shenton et al, 1999; Figure 1.4 A). Longer tubes of 

variable lengths are obtained when the coat protein is allowed to assemble without RNA. In fact, 

the size of the RNA template precisely governs the TMV tube lengths (Rego et al, 2013).The inner 

cavity of these viruses can be used to biomineralise nickel, cobalt, cobalt-platinum and iron-

platinum nanowires (Knez et al, 2003; Tsukamoto et al, 2007). The external surface is also able to 
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be used as a template for biomineralisation of metals (Dujardin et al, 2003; Górzny et al, 2008). 

Fluorophores attached to surface cysteine residues on TMV coat protein monomers can self-

assemble into a light-harvesting system, collecting light over a wide spectrum with high efficiency 

(Miller et al, 2007). The precisely tuned spatial features on the outer surface of the TMV virus can 

also be used as a template for the generation of nanowires for making lithium ion battery 

electrodes (Nam et al, 2006). 

 

 

Figure 1.4: Protein nanotubes, naturally occurring as well as engineered tubes 
These are examples of various protein nanotube structures in the literature. (A) The TMV capsid 
(PDB: 4UDV) forms nanotubes that are helical in nature. (B) Hcp1 from P. aeruginosa are ring 
proteins that can assemble into protein tubes (PDB: 1Y12). Diagrams (A) and (B) are adapted from 
Pieters et al, 2016. (C) On the left, a schematic showing the polymerisation of SP1 rings induced by 
its binding to gold nanodots, and right is a transmission electron micrograph (TEM) of this 
assembly, where proteins are light grey and nanodots are black dots (Medalsy et al, 2008). (D) A 
single particle reconstruction from the TEM of engineered TRAP proteins that assemble upon 
oxidation of cysteines at the ring-ring interface. This construction is overlaid with the side on view 
of the TRAP protein crystal. (Miranda et al, 2009). All images have been reprinted with permission 
from their respective journals. 
 

1.3.3.5 Construction of tubes from rings  

 

Protein rings that self-assemble into tubes provides modularity and an extra level of control in the 

generation of protein nanotubes. Again, some are naturally occurring, whereas there are many 

examples of modified rings that have been coerced to form tubes. Found in aspen plants, SP1 is a 

nano-ring made of twelve monomer proteins (Wang et al, 2002). The twelve proteins form a 

double-layered 11 nm six-membered ring with a 2.5 nm central hole where the N-terminus of the 

proteins are projected (Dgany et al, 2004). Six histidines were added to the N-terminus of the 

proteins which bound to Ni-NTA modified gold nanodots (Figure 1.4 C). Part of these dots 

protruded from each end of the double ring, providing attachment points for further rings to 

polymerise and to form nanowires (Medalsy et al, 2008). Another protein engineered to form 

nanowires is Hcp1, a homohexameric protein ring found in Pseudomonas aeruginosa. The Hcp1 

protein ring, with an outer diameter of 9 nm and a 4 nm central hole, forms part of the bacteria’s 
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type VI secretion system (Mougous et al, 2006). Hcp1 rings were modified by adding cysteine 

residues to its top and bottom surfaces so that inter-ring disulfide bonds can promote ring self-

assembly into a tube (Ballister et al, 2008; Figure 1.4 B). Tubes can be polymerised up to 100 nm in 

length. Engineered redox sensitivity of these tubes means they can be disassembled when reducing 

agents are added in a time-dependent manner. In contrast to the engineered 11mer TRAP proteins 

for which nanotube formation was observed only after the addition of DTT, tube formation was 

speculated to be a result of a mixture of disulfide bonds and hydrophobic interactions (Miranda et 

al, 2009; Figure 1.4 D). 

 

Having switchable architectures with multiple modes of assembly affords a unique level of control 

inherent to self-assembling protein tectons, such as peroxiredoxins (Prx). These proteins exhibit an 

array of structural diversity (Section 1.4.3) from dimers and rings (Wood et al, 2003b), to rings that 

assemble into tubes (Phillips 2014), as well as protein cages (Meissner et al, 2007) and catenanes 

(Cao et al, 2005). The use of Prx in bionanotechnology has begun (Section 1.4.4), with reported 

binding of Prx to nanoparticles (Ardini et al, 2014), and localisation onto graphene (Ardini et al, 

2016), as well as intracellular peroxidase sensors (Morgan et al, 2016). The precise biological 

functions and the various intriguing structures that make Prxs an ideal tecton will be detailed below 

in Section 1.4. Tailoring protein tectons for applications in bionanotechnology involves investigating 

their structure and tolerance towards functionalisation, and this inextricably contributes towards 

fundamental research to understand its quaternary structure and assembly. 
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1.4 Peroxiredoxins as self-assembling, model tectons  
 

1.4.1 Universal peroxiredoxin motifs and classification 
 

Peroxiredoxins (Prxs) are a superfamily of redox-active enzymes that form a plethora of protein 

architectures: from monomers and dimers to toroids of different subunit composition. Higher 

order structures, such as cages and catenanes, have also been detected in certain classes of Prxs 

using transmission electron microscopy (TEM) and X-ray crystallography respectively (Meissner et 

al, 2007; Cao et al, 2005). The dynamic structural state of these Prxs are influenced by pH, salt 

concentration, phosphorylation and redox state (Wood et al, 2003b; Barranco-Medina et al, 2009), 

making Prxs useful model proteins for environmentally influenced self-assembly for 

bionanotechnology. 

 

 

Figure 1.5: The conserved active site of Prxs in the context of a protein monomer 
The conserved active site of Prxs (left panel) with key residues highlighted. The peroxidatic cysteine 
(CP47 residue in in pink) is housed in a fully folded active site surrounded by conserved proline, 
threonine and arginine residues that are responsible for high reactivity of the catalytic cysteine, CP. 
The details of this will be elaborated in Section 1.4.2.1. This a crystal structure of one bovine Prx3 
monomer with a C168S mutation (PDB: 1ZYE). 
 

Found in all forms of life (Rhee et al, 2001), Prxs are abundant cysteine-based peroxidases that are 

as active towards hydroperoxides as other heme-catalysed or selenium-based peroxidases (Perkins 

et al, 2015; Section 1.4.2.1). The key to their success as peroxidases is a universally conserved active 

site architecture (Figure 1.5). Although the amino acid sequences vary across the Prx superfamily, 

the active site motif, Proxxx(Thr/Ser)xxCys, is absolutely conserved (Rhee, 2016). This confers 

precise 3D arrangements of amino acids in the active site to aid substrate positioning and also 

activate the reactive thiol on the peroxidatic cysteine (CysP). The active sites of Prxs are housed in 

monomers with a conserved thioredoxin-like protein fold (Copley et al, 2004). For the majority of 

Prxs, oxidation occurs in a two-step process, where the activated thiol of the CysP initially reacts 
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with the substrate to form a sulfenic acid, followed by a second reaction with a resolving cysteine 

(CysR) when a disulfide bond is formed between CysP and CysR (elaborated further in Section 

1.4.2.1).  

 

In contrast to CysP, the location of the resolving cysteine (CysR) varies among Prxs, giving rise to 

different subfamilies grouped according to their catalytic resolution mechanisms (Seo et al, 2000; 

Rhee et al, 2005); in typical 2-Cys Prxs, the CysR comes from an obligate dimer; in atypical 2-Cys 

Prxs, the CysR is on the same monomer; whereas 1-Cys Prxs require another protein to provide a 

resolving disulfide bond. Typical 2-Cys Prxs, the largest and most widely distributed subfamily (Hall 

et al, 2009), exhibits changes to its quaternary structure, forming high-order organisations that 

extend beyond dimers. This makes typical 2-Cys Prxs especially appealing for bionanotechnological 

applications. 

 

The mechanistic classification of Prxs provides a straightforward means to understand the different 

modes of catalysis of Prxs (Knoops et al, 2007); however, it fails to highlight many important 

structural distinctions that arise when Prxs are classified according to their phylogenetics and 

structure (Soito et al, 2011; Nelson et al, 2011; Poole and Nelson, 2016). Here the conserved active 

site motif, along with other key structural motifs, derived from 29 distinct Prxs were used to group 

the Prx superfamily into six evolutionary classes: Prx1, Prx6, AhpE, PrxQ, Tpx and Prx5 (Table 1.1 on 

page 19; Soito et al, 2011).  Some intriguing observations have arisen from this classification, 

including how certain classes of Prx are excluded from certain phylogenies, such as the PrxQ class, 

described to be the most ancestral group of Prxs that are no longer observed in metazoans (Perkins 

et al, 2015). The oligomeric state also varies between the six subfamilies: some members of the 

PrxQ family are monomeric, whereas most Prxs tend to form obligate dimers either via their ‘A 

interface’ or ‘B interface’ (Figure 1.6). Typical 2-Cys Prxs, found in both Prx1 and Prx6 classes, form 

obligate homodimers at the B interface. This interface forms an extended β-sheet structure with 

mainly hydrophobic interactions. It buttresses the active site of the Prxs and is considered 

important for its activity (Wood et al, 2003a). For typical 2-Cys Prxs, the CysR is often on a flexible 

C-terminal linker that embraces the other monomer to reach the CysP at the active site. The 

obligate dimers further associate at the A interface to form toroidal structures that can vary in 

subunit composition, and consequently ring diameter. The formation of ringed structures depends 

on the protein’s redox environment, which is consequently determined by the oxidative state of 

CysP (Section 3.1.4). The location of CysR on the protein varies across the Prx superfamily, 

suggesting CysR arose independently several times during Prx evolution (Table 1.1; Perkin 2015). 

The rates of reaction with substrates also varies between each subfamily (Table 1.1). The reasons 
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for these differences between the evolutionary classes is unknown, and along with the in vivo 

relevance for quaternary structure changes in typical 2-Cys Prxs, there is much to discover about 

this fascinating superfamily of proteins (some of this will be discussed in Chapter 4). 

 

 

Figure 1.6: The various quaternary structures of Prxs 
Dimeric (α2) complexes are formed at either the A interface, where monomers interact at helix α3, 
or the B interface, where interactions occur through to extend a β-sheet. Certain typical 2-Cys Prxs 
are able to assembly further into decameric ring structures. A interface structure was Aeropyrum 
pernix PrxQ (Perkins 2012; PDB 4GQF) and the B interface structure and decamer are HsPrx3 (PDB: 
1QMV). This diagram was adapted from Perkins et al, 2015 with permission. 
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1.4.2 Functions inside of a cell 
 

1.4.2.1 The peroxidase 

 

Peroxides, such as H2O2, can arise from the surrounding cellular environment or as a by-product of 

the mitochondrial electron transport chain. H2O2 can have deleterious effects within a cell as it is 

able to react spontaneously with proteins, lipids and nucleic acids (Boveris and Chance, 1973; 

Cadenas et al, 1977; Turrens, 1997). Sufficient H2O2 can induce oxidative stress in cells, which can 

result in apoptosis (Orrenius, 2007). Within eukaryotes and at lower levels, H2O2 has also been 

implicated as a secondary messenger in cellular signalling. Cellular H2O2 concentrations are, 

therefore, tightly controlled by peroxidases, such as catalase, glutathione peroxidase and Prxs 

(Poole, 2015).  

 

The relative abundance of each type of peroxidase protein, as well as catalytic turnover rate, are 

crucial factors that determine the importance of a certain peroxidase in antioxidant defence. These 

factors vary between cell types and different organisms. Generally, microorganisms lack heme-

based and glutathione peroxidases, making Prxs more abundant, crucial antioxidants (Wood et al, 

2003b). Within the mitochondria of HeLa cells, Prxs are at least 30 fold greater in abundance 

compared with glutathione peroxidase I (Chang et al, 2004). Despite Prxs having a slower catalytic 

turnover than GPx1, its greater abundance and broader substrate specificity makes Prxs important 

for front line defence against oxidants (Winterbourn, 2008; Adimora et al, 2010). 

 

Prxs reduce peroxides, such as H2O2, using sulfur catalysis in a selective manner that achieves high 

reactivity compared with free cysteines. Although the pKa of free cysteines is ~ 8.5 (Alberts et al, 

2002), the positively charged microenvironment within the Prx active site lowers the pKa of CysP, 

with reported values that range from 5.1–6.3, by stabilising the negatively charged thiolate (Marino 

and Gladyshev, 2010; Poole, 2015). The lower pKa means the majority of CysP are thiolates at 

neutral pH, however this lower pKa also results in a decrease of thiolate nucleophilicity (Whitesides 

et al, 1977). Small molecule thiolates react with peroxides at only 20 M-1s-1 (Winterbourn and 

Metodiewa, 1999), so the enhanced acidity of the critical cysteines are a prerequisite but not the 

reason for the catalytic efficiencies observed in Prxs. Interactions that stabilise the thiolate within 

the active site also restrain its activity in the absence of substrate (Ferrer-Sueta et al, 2011). The 

comparison of multiple Prx crystal structures containing peroxide as well as peroxide-mimicking 

ligands and water molecules, reveals a track of oxygen-binding sites within the active site, which 

facilitates substrate specificity (Hall et al, 2010; Nakamura et al, 2010). The polar interactions that 

stabilise the thiolate in the resting enzyme switch upon substrate binding to the peroxide oxygens, 
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transiently increasing thiolate nucleophilicity (Ferrer-Sueta et al, 2011; Portillo-Ledesma et al, 

2014). These conserved threonine and arginine residues, along with two back bone amides, form 

hydrogen bonds with the peroxide substrate, supporting the correct H2O2 (or ROOH in Figure 1.7) 

orientation, and polarise it for SN2 nucleophilic displacement (Ferrer-Sueta et al, 2011). These 

interactions are dynamic and are optimised to stabilise the transition state; this is supported by the 

Michealis complex of H2O2-bound Prx from Aeropyrum pernix (Nakamura et al, 2010). Over a range 

of temperatures, a reported large entropic penalty (TΔS), was observed in Mycobacterium 

tuberculosis AhpE catalytic rates, which reflects the ordered transition state. This was offset by a 

large enthalpic change leading to a decrease in free energy of activation (Zeida et al, 2013). Large 

fluorescence changes were observed in Salmonella typhimurium AhpC (StAhpC) after the addition 

of peroxides, which indicate the active site undergoes rearrangements upon substrate binding. This 

also led to an inferred Kd for H2O2 of ~400 nM (Parsonage et al, 2015). 

 

The catalytic cycle of Prxs involves two independent half reactions giving rise to double 

displacement kinetics: the first being the reduction of peroxide by Prx, and the second being the 

recycling of Prx via a reductant. In a reduced Prx with a fully folded (FF, Figure 1.7) active site, an 

SN2 reaction between the thiolate of CysP and H2O2 to form a sulfenic acid derivative, Cys-SPOH. 

This initial oxidation step of CysP with H2O2 occurs rapidly (Step 1, Figure 1.7) and has a second 

order reaction rate in the range of 107-108 M-1s-1 (Perkins et al, 2015). The Prx active site is in 

equilibrium between the fully folded state and locally unfolded state (LU, Figure 1.7), and this is 

especially important for hyperoxidation (elaborated in Section 1.4.2.2). In typical 2-Cys Prxs, when 

the active site adopts a locally unfolded conformation, the Cys-SPOH can then react with CysR, 

generating a disulfide bond (Steps 1 and 2 in Figure 1.7). The resulting disulfide bond can be 

reduced by reducing agents, such as DTT, TCEP or β-mercaptoethanol, or in a physiological context 

specifically by thioredoxin (Trx) to complete the catalytic cycle (Step 3, Wood et al, 2003a). Within 

the cell, the rate of this final recycling step is restricted by the catalytic turnover as well as the low 

cellular abundance of Trx. At around 105 M-1s-1, this rate limiting step is generally observed to be 2 

orders of magnitude lower than Prx reduction of peroxide (Watabe et al, 1997; Hampton and 

O’Connor, 2016; Winterbourn and Hampton, 2015). For this reason, the misassumption arose of 

Prxs being poor peroxidases in comparison to gluthione peroxidases and catalases, as early kinetic 

experiments studied the full catalytic Prx cycle. The high abundance of Prx, and its initial high 

reactivity towards H2O2, still makes it a key peroxidase for the maintenance of the redox landscape, 

and this double displacement kinetics could even be useful for its cellular function (Winterbourn 

et al, 2015). 
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Figure 1.7 The catalytic cycle of Prxs 
The fully folded (FF) active site of Prxs houses an activated, deprotonated peroxidatic cysteine (CP), 
ready for the nucleophilic attack of hydroperoxides (ROOH, which includes H2O2) (Step 1). The 
sufenic acid can go on to further react with another H2O2 to form hyperoxidised proteins (Step 4), 
or local unfolding of the α2 helix occurs to facilitate disulfid bond formation (Step 2). The recycling 
step of CysP (Step 3) is completed upon reacting with enzymes, such as thioredoxin proteins, in 
vivo.  
 

Prxs also have the ability to reduce a wide range of other peroxide derivatives (Wood et al, 2003b, 

Hofmann et al, 2002). In fact, eukaryotic Prxs are able to reduce peroxynitrite, alkylhyperoxidases 

and peroxides (Peskin et al, 2010), with human Prx2 able react with t-butyl and cumene 

hydroperoxides, albeit with less efficiency compared with H2O2 (Peskin et al, 2007). Prxs are the 

only known enzymes to catalyse the reduction of peroxynitrite to nitrite, an important signalling 

molecule (Perkins et al, 2015).  The lower catalytic efficiencies observed for other larger substrates 

has been attributed to the slower rate of binding of this substrate (Parsonage et al, 2005).  

 

1.4.2.2 Hyperoxidation and the floodgate model 

 

Aside from its peroxidase activity, Prxs have been associated with many other physiological roles, 

such as redox sensors, mediators of cellular signalling and circadian rhythms (Section 1.4.2.3) as 

well as molecular chaperones (Section 1.4.2.4). These roles are closely linked to the oxidation state 

of the CysP. Prxs that are more susceptible to hyperoxidation have evolved sequence motifs GGLG 

and YF. The YF motif, which is part of an extra C-terminal region that forms a α7-helix, interacts 
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with the GGLG motif that lies in a loop region neighbouring the CysP, restricting the movements 

within the active site (Wood et al, 2003a). The reduced flexibility of the active site shifts the 

equilibrium of the active site towards a fully folded state, where resolution by CysR (Step 2 in Figure 

2.17) is delayed, creating a ‘kinetic pause’. Interestingly, the rates of disulfide bond formation 

inversely correlates to the Prx sensitivity towards hyperoxidation, where the highly sensitive 

human Prx2, less sensitive Prx3, and robust StAhpC form disulfide bonds at rates of 1.7 s-1, 22 s-1, 

and 75-88 s-1 respectively (Pace et al, 2013; Perkins et al, 2015; Parsonage et al, 2015). This ‘kinetic 

pause’ provides an opportunity for the sulfenic CysP-SOH to react further to form sulfinic acid, CysP-

SO2H and/or sulfonic acid, CysP-SO3H (Wood et al, 2003a). PrxQ protein crystals were soaked with 

H2O2 to obtain 15 high resolution crystal structures, which depicted each stage of hyperoxidation 

from the CysP-SOH form to the CysP-SO2H form (Perkins et al, 2015). The universally conserved 

arginine residue adopts an inverted position to make space in the binding site for the second H2O2. 

Hyperoxidised Prxs are removed from the catalytic cycle as they no longer react with H2O2, allowing 

H2O2 to act as a secondary messenger. This can be a transient feature as, in some cases, 

hyperoxidised Prxs with CysP-SO2H can be reduced by sulfiredoxin (Srx) (Step 4 in Figure 2.17), 

which restores peroxidase activity (Lowther and Haynes, 2011). This is a slow and energy 

consuming process, with the mammalian Srx requiring one ATP and two glutathione or thioredoxin 

molecules to reduce a single hyperoxidised cysteine (Jeong et al, 2006). This heightened sensitivity 

towards hyperoxidation has been proposed as a unique mechanism by which Prxs are redox 

sensors that can transmit signals during a H2O2 flux, acting as a ‘floodgate’ as part of part of H2O2-

mediated signalling (Finkel, 2011). Thus far, Srx genes have only been detected in eukaryotes and 

cyanobacteria (Boileau et al, 2011), so this ‘floodgate’ hypothesis may only apply for certain types 

of Prxs.  

 

1.4.2.3 Diverse roles: cell signalling processes to circadian rhythms 

 

Prxs have diverse roles that can range from protecting telomeric DNA from oxidative damage (Aeby 

et al, 2016), to being crucial biomarkers for apoptosis (Hampton et al, 2016), as well as having 

cytoprotective roles in inflammation (Knoops et al, 2016). However, highlighted will be examples 

of Prxs that mediate the cellular redox landscape in processes that involve H2O2 in a non-stress 

related function.  

 

At low physiological levels, H2O2 acts as a crucial secondary messenger in many signalling processes 

such as growth factor signalling resulting in proliferation, cellular migration, Toll-like receptors and 

autophagy (Gough and Cotter, 2011; Finkel, 2011). H2O2 oxidises thiol residues on cell surface 

receptors, such as the tumour suppressor PTEN (Kwon et al, 2004), the apoptotic kinase ASK1 
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(Nadeau et al, 2007), and the protein tyrosine phosphatases (Lee et al, 1998). The oxidation of 

phosphatases inactivates the protein, but this also is reversible, allowing for restoration of reduced 

thiols that can act to ‘brake’ kinase-mediated phosphorylation cascades (Rhee et al, 2005). This 

reaction between the target thiols and H2O2 is several orders of magnitude slower compared with 

that of CysP towards its substrate (Winterbourn, 2013), suggesting that Prx proteins close by must 

be inactivated to allow for other proteins to react with H2O2 (Woo et al, 2010, Lim et al, 2015). 

Alternatively, redox-regulated proteins are not directly oxidised by H2O2, but rather their oxidation 

is mediated by Prx proteins that act as redox relays (Randall et al, 2013). In the presence of H2O2, 

the CysP reacts to form sulfenic CysP or a disulfide bond with CysR. The oxidised Prx can then be 

reduced by effector proteins that cause a change in effector functions, such as ASK1 (Nadeau et al, 

2007) as well as transcription factors: PAP from yeast as well as mammalian STAT3 (Vivancos et al, 

2005, Sobotta et al, 2015).  

 

Hyperoxidised 2-Cys Prxs were found to be a transcription-independent circadian biomarker across 

a variety of organisms (Edgar et al, 2012; Olmedo et al, 2012; Hoyle and O’Neill, 2015). In fact, 

oscillation in 2-Cys Prx-SO2H abundance is the effect of an underlying rhythm in oxidative 

metabolism (Causton et al, 2015).  Within mouse adrenal gland cortex mitochondria, P450 enzymes 

oxidise cholesterol to corticosterone and H2O2 is generated as a by-product, hyperoxidising and 

inactivating human Prx3 (Kil et al, 2012). The inactivated HsPrx3 results in the accumulation of 

H2O2, which activates p38 kinase and leads to the suppression of steroidogenesis. The levels of 

hyperoxidised HsPrx3 and its recycling enzyme, Srx, show circadian oscillations. This suggests that 

the ‘floodgate’ hypothesis with reversibly hyperoxidised HsPrx3 is intertwined with the circadian 

production of corticosterones and the feedback inhibition of steroidogenesis (Kil et al, 2015). In 

fact, cytosolic Srx is imported into the mitochondria via the formation of a disulfide bond with 

Hsp90 proteins, and this is likely to be promoted by the release of H2O2 from the mitochondria, 

and again, this shows circadian oscillations (Rhee and Kil, 2016).  

 

1.4.2.4 Molecular chaperones under stress conditions 

 

2-Cys Prxs have been shown to behave as molecular chaperones in vitro under stress conditions. 

This was first highlighted in yeast 2-Cys Prxs, which under normal conditions formed decameric 

rings, but when the protein is hyperoxidised or undergoes heat shock, they assemble into protein 

balls with chaperone activity (Jang et al, 2004). This assembly from a low molecular weight (LMW) 

ring form of a 2-Cys Prx into a high molecular weight (HMW) form after exposure to stress 

conditions is associated with loss of peroxidase activity and onset of chaperone activity (An et al, 

2015; Barranco-Medina et al, 2009). This was also observed for hyperoxidised human Prx2, which 
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formed a range of HMW structures (Moon et al, 2005). Hyperoxidation of yeast Prx1 was found to 

be reversible, with Srx dissociating the HMW form and restoring peroxidase activity (Moon et al, 

2013). 

 

However, neither hyperoxidation nor higher order oligomerisation is necessary for chaperone 

function of certain species. At elevated temperatures, reduced decameric rings of Leishmania 

infantum mitochondrial 2-Cys Prx, mTXNPx, undergoes structural rearrangements to expose 

hydrophobic areas at the centre of the ring where substrates can bind (Castro et al, 2011; Teixeira 

et al, 2015). Whereas, hyperoxidised 2-Cys PrxA from Arabidopsis thaliana chloroplasts exhibited 

holdase activity for decameric rings, as opposed to HMW structures (König et al, 2013). Further 

analysis reveals 2-Cys PrxA can form spherical-shaped HMW complexes with high chaperone 

activity compared with its dimeric forms, which had peroxidase activity (Lee et al, 2015) – note that 

having dimeric peroxidases is the opposite of typical 2-Cys Prxs. The S150C mutein of 2-Cys PrxA 

was also demonstrated to increase in both chaperone and peroxidase activity due to the 

stabilisation of the dimer-dimer interface that forms the Prx ring, as S150 occurs at this interface 

(Lee et al, 2015).  

 

Further expanded in Chapter 2, certain Prx rings can also assemble in stacks of rings at lowered pH, 

which was suggested to be another HMW form of Prx molecular chaperones (Saccoccia et al, 2012). 

Prx chaperone activity was shown to be vital for the in vivo protein homeostasis of zinc-deficient 

yeast (MacDiarmid et al, 2013). Whereas, in vivo relevance of chaperone function or HMW 

formation of many Prxs has yet to be established (Toledano and Bo, 2016).  

 

1.4.3 Diversity of peroxiredoxin structures that make them appealing 

tectons 
 

Typical 2-Cys Prxs can form a wide variety of protein structures (Figure 1.8). Many typical 2-Cys Prxs 

oligomerise as toroids, composed of eight to twelve subunits, when CysP is reduced, whereas 

disulfide bond formation shifts the equilibrium towards dimers (Barranco-Medina et al, 2009; 

Section 1.4.2.1; Chapter 3). Protein rings can further self-assemble into HMW forms such as protein 

tubes (Chapter 2) as well as proteinaceous spheres with molecular chaperone function (Jang et al, 

2004; Teixeira et al, 2015; Section 1.4.2.4). Other HMW structures include the formation of cages 

and catenanes observed under the unnatural preparatory conditions used for structural analysis 

(Cao et al, 2005; Meissner et al, 2007). Human Prx2 are usually reduced, decameric ringed proteins. 

However, under certain preparatory conditions (ammonium molybdate at pH 6.5 and 0.2% (w/v) 
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PEG1000) for TEM, this protein can form dodecahedral cages that are most likely artefacts of the 

staining technique used (Meissner et al, 2007; Figure 1.8 D). Catenanes, or interlocked rings, were 

observed in the crystallisation of bovine mitochondrial Prx3 (BtPrx3) (Cao et al, 2005; Figure 1.8 C). 

These catenanes were rotated at 55° with respect each other, with hydrophilic interactions in 12 

areas on the ring surface driving the initial contacts required to generate the catenane. The 

dynamic nature of ring formation was demonstrated when the crystal containing the catenane was 

dissolved and recrystallised to form a non-catenane ring, as well as under the TEM, where a mixed 

population of catenanes and single rings were observed (Cao et al, 2007). Whether these cages 

and catenanes are biologically relevant is still unclear, but these environmentally sensitive, diverse 

architectures make Prxs an attractive model for protein bionanotechnology. 

 

 
Figure 1.8: Various Prx HMW structures 
Prxs are known to form HMW structures that can have chaperone function: (A) Leishmania 
infantum mitochondrial Prx is seem to bind to a substrate at the ring centre (Teixeira et al, 2015), 
whereas (B) are proteinaceous balls observed to formed in yeast (Jang et al, 2004). (C) Crystal 
structure of bovine Prx3 interlocked as catenanes (PDB: 1ZYE, Cao et al, 2007). (D) Single particle 
averaging of TEM images to give a 3D reconstruction for human Prx2 (Meissner et al, 2007). All 
images have been reprinted with permission from their respective journals. 
 

The variety of protein architectures make typical 2-Cys Prxs great candidates for tectons in protein 

nanotechnology (Phillips et al, 2014; Phillips et al, 2014). The inherent ability for typical 2-Cys Prxs 

to switch quaternary structure according to oligomeric state has proved to be a useful feature in 

the design of artificial real-time intracellular H2O2-sensors, where Prxs were fused with redox-

dependent GFP proteins (Morgan et al, 2016). Prx rings can self-assemble into tubes, and similar 

to the SP1 protein example mentioned in Section 1.3.3.5 (Medalsy et al, 2008), this has been used 

to generate prototype ‘nano-peapods’ where histidine tags at the ring centre of Prx1 from 

Schistosoma masoni (SmPrx1) can bind to metal ions as well as nanoparticles (Ardini et al, 2014). 

SmPrx1 patterned graphene-oxide layers were generated to capture nanoparticles (Ardini et al, 

2016). The use of Prxs in nanotechnology has just begun. Many functions of the protein superfamily 

can be exploited for use in bionanotechnology, such as the weak DNA binding properties of human 

Prx1 (Aeby et al, 2016) or the phospholipid-binding Prx6 (Manevich et al, 2007).   
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1.5 Human peroxiredoxin 3: tuning natural function 

towards new functionalisable tectons 

1.5.1 Why human peroxiredoxin 3? 
 

The mitochondrial typical 2-Cys Prx, human peroxiredoxin 3 (HsPrx3), is an ideal tecton for protein 

bionanotechnology because of the various structures it exhibits: dimers, dodecameric rings, as well 

as rings that self-assemble into tubes, and also the closely related bovine Prx3 forms catenanes 

(Chapters 2 and 3). Exploring the self-assembly of HsPrx3 will not only be beneficial for its 

application in bionanotechnology, but also will provide insights into its natural function. Now that 

the context has been set for a plethora of cellular functions of the Prx superfamily, the intracellular 

roles and importance for specifically HsPrx3 will be explored, with links back to its structure as well 

as how this protein can make a promising tecton. 

 

1.5.2 Peroxiredoxin populations within the human cell 
 

Among eukaryotes, different Prx isoforms exist due to gene duplication and cellular 

compartmentalisation (Hofmann et al, 2002; Wood et al, 2003b); these isoforms can have varying 

physiological roles. Mammalian Prxs include six different isoforms (Table 1.2), and are highly 

abundant: comprising 1% of soluble cellular proteins (Chae et al, 1999). The abundance of each 

isoform varies between cell types as well as within the different cellular compartments.  

 

Table 1.2: Comparing and summarizing the different isoforms of Prx present inside mammalians 

Prx isoforms Prx1 Prx2 Prx3 Prx4 Prx5 Prx6 

Mechanistic 
type 

Typical 2-Cys Atypical 2-
Cys 

1-Cys 

Phylogenetic 
subfamily 

Prx1 Prx5 Prx6 

Cellular 
location 

Cytosol, 
nucleus 

Cytosol, 
membrane 

Mitochondria Cytosol, 
golgi, 

secreted, 
membrane 

Cytosol, 
peroxisome, 
mitochondria 

Cytosol 

Oligomeric 
state 

Decamer Decamer Dodecamer Decamer Decamer Monomer 

Structure code 
on PDB? 

4XCS 1QMV Just bovine 
1ZYE 

3TJB 4MMM 5BEM 

 

To provide insights on the structure and function of HsPrx3, previous research on related proteins, 

collectively called peroxiredoxin 3 (Prx3), is discussed. Throughout history, the discovery of Prxs in 
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different organisms and cellular contexts have resulted in various names for the same protein. Prx3 

can be found in mitochondria of various eukaryotic organisms and previous nomenclature used 

include: AOP-1 (this is often also the gene name for Prx3); MER5, the mouse equivalent; and SP-

22, the bovine equivalent of HsPrx3 that is also called BtPrx3. 

 

Functionally characterising HsPrx3 is an ongoing collaboration with Mark Hampton from the Otago 

School of Medicine, who is interested in this important human protein in a physiological context. 

Previous work from within the lab by Amy Phillips and Helen Ashmead paves the way for using 

HsPrx3 as a tecton for applications in bionanotechnology. 

 

1.5.3 Human peroxiredoxin 3: Functions inside of the cell 
 

1.5.3.1 The minder of the mammalian mitochondrial oxidant landscape  

 

The mitochondrion is the major intracellular compartment for oxygen consumption. It also 

contains the electron transport chain which tend to leak electrons, especially from complexes I and 

III (Boveris et al, 1973; Cadenas et al, 1977; Turrens, 1997). These electron escapees can univalently 

reduce oxygen to O2
•-, a reactive oxygen species. Reactive oxygen species can wreak havoc within 

a cell by causing mutations to DNA bases and disrupting the structure and function of proteins and 

lipids (Murphy, 2009). O2
•- does not readily cross membranes as it is charged and remains trapped 

in the mitochondria, disrupting the Fe-S centres in the electron transport chain (Wallace, 1999). 

Mn2+-dependent superoxide dismutase, localised in the mitochondria, acts in the front lines of 

antioxidant defence by converting O2
•- into H2O2 (Chance et al, 1979). Although a less reactive 

oxidant, H2O2 can be readily converted to another reactive oxygen species, such as OH•, with 

deleterious cellular effects, and so its levels must be carefully controlled. H2O2 is also known as the 

‘Jekyll and Hyde’ signalling molecule, because at low physiological levels, it is an important 

secondary messenger for cellular signalling processes (Gough et al, 2011). 

 

H2O2 levels are regulated by a team of peroxidases within the cell; the exact composition of which 

vary between cellular compartments and between cell types. Intracellular H2O2 can be reduced by 

catalases, glutathione peroxidase 1 (GPx1) with glutathione as an electron donor, and Prxs. Despite 

a high reaction rate of 107 M-1s-1 with H2O2, only ~2 µM GPx1 is localised to mitochondria which 

then accounts for ~9% of the H2O2 degrading capacity of the mitochondrial matrix (Cox et al, 2010). 

Glutathione must also be imported because there are no mitochondrial enzymes for its synthesis 

(Esworthy et al, 1997; Panfili et al, 1991; Legault et al, 2000; Ho et al, 1997). Conversely, Prx3 and 
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an atypical 2-Cys peroxiredoxin V (Prx5) both localise to the mitochondria. These Prxs are by far 

the most abundant peroxidases, at ~60 µM and ~20 µM respectively, making them especially 

relevant for maintaining the mitochondrial oxidant landscape (Chang et al, 2004; Cox et al, 2010). 

Prx3 favours H2O2 as a substrate, with reaction rates in the order of 107 M-1s-1 (Cox et al, 2009b). 

Assays have shown that Prx5 favours peroxynitrite as its substrate, reacting with rates 107 M-1s-1 

and with H2O2 at 105 M-1s-1 (Trujillo et al, 2007). Therefore conferring a niche for each Prx, where 

Prx3 acts as the main peroxidase targeting H2O2 within the mammalian mitochondria, accounting 

for ~90% of the potential H2O2 degradation capacity (Cox et al, 2010).  

 

HsPrx3 contains the conserved motifs, YF and GGLG, which confer susceptibility towards 

hyperoxidation (Cox et al, 2009b). However, HsPrx3 is more resistant to hyperoxidation compared 

with the other 2-Cys Prxs, HsPrx2 and HsPrx1, due to the faster formation of disulfide bonds 

between adjacent HsPrx3 monomers (Section 1.4.2.2; Cox et al, 2009b; Pace et al, 2013;  Haynes 

et al, 2013). Oxidised HsPrx3 is recycled by Trx2 (Cunniff et al, 2015), whereas hyperoxidised HsPrx3 

can be recovered by Srx (Noh et al, 2009), and both enzymes, like Prx, are nuclear-encoded and 

are imported from the cytosol. Hyperoxidation of HsPrx3 has been implicated in a negative 

feedback loop of steroidogenesis with protein levels exhibition circadian oscillations (Kil et al, 

2012). 

 

1.5.3.2 Prx3 is not required for short-term organismal survival 

 

In order to probe the physiological significance of Prxs, knock out mice were used to examine the 

phenotypes of null mutants for each of the six isoforms. Despite Prxs being important peroxidases 

for a variety of cellular processes - such as growth, differentiation, apoptosis and even malignant 

transformation – mice deficient in a particular Prx occasionally appear outwardly healthy and are 

fertile (Neumann et al, 2003; Szabó et al, 2009). Despite this, each type of Prx null mice have 

specific pathophysiological phenotypes that demonstrate the unique roles played by each isoform 

of Prx (Table 1.2; Li, 2016). Female mice with knocked out Prx3 have deficient placental defence, 

resulting in an increase in still births (Li et al, 2008). Prx3 null mice also exhibit oxidative stress in 

their adipose cells (Huh et al, 2012) and are more susceptible to lipopolysaccharide-induced 

oxidative stresses (Li et al, 2007). Prx3 deficiency induced accelerated oxidative stress and 

mitochondrial impairment that is important for muscle function within mice – these effects 

becoming more pronounced over time when comparing Prx3 null and normal mice (Zhang et al, 

2016). Although important for long-term normal cellular function, Prx3 is not necessarily required 

for short-term organismal survival, which may prove to be useful as a synergistic target against 

disease. 
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1.5.3.3 Human diseases linked to cellular redox homeostasis: roles of peroxiredoxin 3  

 

Redox homeostasis within cells must be finely tuned in order to prevent abnormal functions that 

cause disease phenotypes. Lowered levels of active Prx3 has been identified as a marker in a variety 

of neurodegenerative diseases, such as Alzheimer’s disease, Down syndrome as well as Parkinson’s 

disease (Kim et al, 2001; Angeles et al, 2011). 30-40% of Parkinson’s disease patients have mutant 

LRRK2 kinases that aberrantly phosphorylate Prx3, diminishing its peroxidase activity, and leads to 

an increase in neuronal cell death (Angeles et al, 2011). Another example where Prx3 levels can aid 

disease prevention is when Prx3 is overexpressed in mice hearts (Matsushima et al, 2006). 

Overexpressed Prx3 attenuates the deleterious effects of oxidative stress that results after 

myocardial infarction, which can then lead to left ventricular remodelling.    

 

In contrast, the overexpression of Prx3 has been found to be a marker for a variety of cancer tissues 

and cell lines (reviewed in Li and Yu, 2015). Prx3s can also function as tumour suppressors and is 

associated with resistance towards chemo- and radiotherapies (Wang et al, 2013; Nonn et al, 

2003). In fact, colon cancer stem cells were found to have higher reactive oxygen species and 

oxygen consumption, so by knocking down levels of Prx3 protein, the viability of these cancer stem 

cells was diminished due to mitochondria dysfunction (Song et al, 2011), whereas normal cells 

remain unaffected. Elevated Prx3 levels established a redox set point for malignant mesothelioma 

cells to thrive at increased levels of reactive oxygen species (Cunniff et al, 2014), and so disabling 

Prx3 was an effective therapeutic against these cancer cells (Cunniff et al, 2015).  
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1.6 Aims and objectives of this thesis 
 

As a typical 2-Cys Prx, HsPrx3 exhibits a wide variety of structures that can range from dimers to 

dodecameric rings as well as stacked rings, and closely related bovine Prx3 can form catenanes 

(Phillips, 2014). Not only does this protein carry many hallmarks of a great tecton, such as protein 

stability and ease of production, this diversity in switchable structures makes HsPrx3 highly 

appealing tectons for the creation of new smart materials and functions in bionanotechnology.  

 

Chapter 2 characterises the first crystal structure of wild-type HsPrx3, revealing an intriguing HMW 

assembly of three stacked rings. This structure not only enables the formulation of a novel 

hypothesis for protein chaperone function, but also provides the blueprint for which further 

modifications can be made to tailor new functions to these protein building blocks. 

 

Chapter 3 investigates the mechanism by which HsPrx3 proteins assemble into HMW protein tubes 

using native mass spectrometry. This sensitive technique enables the detection of populations of 

large protein oligomers in the gas phase, providing conclusive evidence for non-commutative 

HsPrx3 ring stacking behaviour. This precise assessment of HsPrx3 self-assembly provides a 

foundation for the use of these tectons in bionanotechnology. 

 

Chapter 4 involves disentangling the redox switch of HsPrx3 to understand the role of protein 

quaternary structure for its peroxidase activity. Muteins S75E and S78C were designed at the 

dimer-dimer interface, and the resulting quaternary structure changes were characterised using 

biophysical techniques as well as crystallography. S75E forming an obligate dimer and S78C forming 

stabilised toroids. The effect of these quaternary structure changes on peroxidase activity was 

assessed using competitive assays with horse radish peroxidase, as well as catalase. The creation 

of new building blocks, especially the stabilised toroids, provides improved stability of HsPrx3 

tectons which can be useful for future applications. 

 

Chapter 5 explores ways to functionalise HsPrx3 protein tectons with new chemistries via the 

incorporation of unnatural amino acids. Click chemistry, in the form of p-azidphenylalanine, was 

chosen as a versatile means to embellish the HsPrx3 tecton surface. An already developed E. coli 

protein expression system with orthogonal tRNA and aminoacyl-tRNA synthetases was used to 

incorporate p-azidophenylalanine into amber stop codons (Chatterjee et al, 2013). Despite the 

current marginal success with this system, it is a first step towards the generation of 

functionalisable HsPrx3 tectons. 
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Chapter 2: High molecular weight 

assemblies of human peroxiredoxin 3 
 

The work presented in this chapter has been published in the following: 

 

Yewdall NA, Venugopal H, Desfosses A, Abrishami V, Yosaatmadja Y, Hampton MB, Gerrard JA, 

Goldstone DC, Mitra AK, Radjainia M (2016) Structures of Human Peroxiredoxin 3 Suggest Self-

Chaperoning Assembly that Maintains Catalytic State. Structure 24: 1120-9. 

 

2.1 Introduction 
 

2.1.1 HsPrx3: the dodecameric typical 2-Cys Prx as a tecton 
 

Human peroxiredoxin 3 (HsPrx3) are not only crucial peroxidases that exclusively localise to the 

mitochondria, but are also promising tectons for the development of protein-based 

nanotechnologies (Section 1.5). There is a need to have a molecular understanding of how these 

proteins self-assemble, yet, there are currently no high resolution structures of HsPrx3. 

Crystallographic information for all Prx3 proteins has been based on bovine Prx3 (BtPrx3) (Cao et 

al, 2005). BtPrx3 shares 93% sequence homology with HsPrx3, and was initially characterised using 

TEM, with external and internal diameters of 150 and 70 Å respectively (Gourlay et al, 2003). 

Subsequent crystal structures of BtPrx3, containing point mutations, reveal two dodecameric rings 

interlocked as catenanes (Cao et al, 2005, Cao et al, 2015). These BtPrx3 structures informed the 

previous studies of HsPrx3 in our lab (Phillips, 2014; Ashmead, 2016). TEM was used to generate a 

low resolution single particle model of the dodecameric HsPrx3 ring (Phillips et al, 2014) and higher 

resolution structures of the protein were also obtained using cryo-electron microscopy (cryo-EM; 

Radjainia et al, 2015). 

 

2.1.2 Previously observed high molecular weight assemblies of Prx 
 

2-Cys Prx proteins can extend their quaternary structure repertoire by self-associating to form high 

molecular weight (HMW) structures that extend beyond dimers and rings, to include spherical 
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clusters, stacks of rings, cages, and catenanes (Section 1.4.3; Jang et al, 2004; Harris et al, 2001; 

Meissner et al, 2007; Cao et al, 2005).  

 

Prx stacks have been observed for HsPrx2, HsPrx3, and bovine and rat Prx3s using TEM (Kato, 1985; 

Harris et al, 2001; Gourlay et al, 2003).  At the outset of this work, the only crystal structure where 

Prx rings display a stacked configuration was of Prx1 from the parasite, Schistosoma masoni 

(SmPrx1) formed at pH 4.2 (PDB: 3ZVJ, Saccoccia et al, 2012). Lowering solution pH causes HsPrx3 

rings to assemble into long, straight filaments (Phillips et al, 2014), allowing for 7 Å resolution cryo-

EM reconstruction of the HMW form (Radjainia et al, 2015).  

 

2.1.3 Factors influencing Prx tube formation 
 

The formation of HMW Prx tubes can be influenced by a variety of factors, including pH, 

hyperoxidation, salt concentrations, and tags. A molecular understanding of HMW structures, 

especially at the ring interface (R interface), provides invaluable insight to rationalise how these 

factors affect protein association. Based on the small number of detailed HMW structures currently 

available, a locally unfolded active site was a recurring structural change caused by these factors, 

which was hypothesised to contribute towards formation of HMW tubes (Saccoccia et al, 2012, 

Radjainia et al, 2015). Examining the HsPrx3 model system within the context of these factors 

would also be a crucial first step towards creating protein tubes with a controllable length.  

 

2.1.3.1 Lowering solution pH can reproducibly form HMW stacks 

 

Protein oligomerisation that is pH-dependent is not unique to Prxs (Kristensen et al, 1999; Kilic et 

al, 2006; Zhang et al, 2012) and is known to occur for at least two types of Prx: SmPrx1 and HsPrx3 

(Saccoccia et al, 2012, Radjainia et al, 2015). SmPrx1 crystallised under reducing conditions at pH 

4.0 and diffracted to 3 Å to reveal two stacked rings and the atomic clues as to their association 

(PDB: 3SVJ). The R interface formed between SmPrx1 rings is comprised of two interacting regions, 

where one monomer interacts with two apposing monomers from the other ring, resulting in a 

cog-wheel-like R interface (Saccoccia et al, 2012). The first region of interaction occurs at the ends 

of the α2 and α6 helices, whereas the second occurs between β2 strands (Figure 2.1 A).  
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Figure 2.1: SmPrx1 crystal structure showing two stacked rings (PDB: 3ZVJ) 
SmPrx1 protein rings interact with a helical rise of 41.5 Å and an azimuthal rotation of 18 ° between 
respective rings (A). The R interface of SmPrx1 is comprised of two main regions that are associated 
by hydrogen bonds and polar contacts (Saccoccia et al, 2012): the α2 and α6 helix of one ring was 
in contact with the adjacent, equivalent helices of the other ring (important residues highlighted 
as sticks in B); and the β2 strand of one subunit interacts with the equivalent strand in the opposing 
subunit (dashed circle in A). 
 

Comparison of low resolution 7 Å cryo-EM structure of HsPrx3 with SmPrx1 stacks formed at pH 

4.2, revealed important differences (Radjainia et al, 2015). In the cryo-EM map, the HsPrx3 C-

termini were partially folded, suggesting that the stated requirement for an unfolded C-terminus 

to facilitate stacked assemblies (Saccoccia et al, 2012) may only be applicable for SmPrx1 proteins. 

As in the case of SmPrx1 stacks, the active site of the HsPrx3 cryo-EM reconstruction was seen to 

be in a locally unfolded state, a conformational change that has been attributed to a protonated 

CysP at pH 4  (pKa of the CysP ~ 5; Nagy et al, 2011). A locally unfolded active site is thought to be 

a requirement for, and facilitator of, stacking of the Prx rings (Saccoccia et al, 2012). Although the 

SmPrx1 crystal structure and the low resolution cryo-EM map of HsPrx3 both provide a solid basis 

for analysing interactions that occur at the interface between the two rings, the R interface, these 

interactions may be limited to pH-influenced protein oligomerisation. 

 

2.1.3.2 Hyperoxidation causing HMW tube formation and the holdase hypothesis 

 

Prx hyperoxidation (Section 1.4.2.2) has been linked to the formation of HMW structures, such as 

spherical protein clusters, that have a molecular chaperone function defined by their holdase 

activity (Section 1.4.2.4, Jang et al, 2004, Rhee, 2011).  In vivo fluorescent-labelling of Prx2 proteins 

suggest that, during oxidative stress situations, these proteins form filamentous structures. (Phalen 

et al, 2006). Whether these filamentous structures occur through ring stacking or association to 

some other long scaffold protein has yet to be conclusively determined. The CysP of SmPrx1 was 
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mutated to aspartic acid to mimic the negatively charged nature of a sulfenic acid (Table 2.1, 

Angelucci et al, 2013), resulting in the formation of HMW tube structures. The structure of 

hyperoxidised HsPrx3 has yet to be determined. Interestingly, hyperoxidation of HsPrx3 

destabilises its toroid form, resulting in dimer formation; this is in contrast to other Prxs, such as 

Prx2, which forms stabilised rings (Poynton et al, 2016). 

 

Linking hyperoxidation of CysP with resulting structural changes that cause the stacking behaviour 

of Prx proteins remains weakly supported in the current literature. There have been suggestions 

that sulfenic acid disrupts normal hydrogen bonding interactions that occur, with CysP causing the 

active site to unfurl into a locally unfolded conformation, much like in acidic conditions, enabling 

protein rings to stack (Angelucci et al, 2013). However, this has yet to be directly verified – and is 

at odds with crystal structures with hyperoxidised CysP displaying fully folded active sites (Hall et 

al, 2011, Wang et al, 2012).  

 

Table 2.1: Summary of the structural and functional characteristics of SmPrx1 wild-type and 
mutants (Angelucci et al, 2013) n/d - not determined, LMW - low molecular weight (rings and 
dimers), HMW - high molecular weight (protein tubes); TEM - transmission electron microscopy; 
SEC – size exclusion chromatography 

Enzyme 

(SmPrx1) 
Rationale 

Quaternary structure 

assembly by X-ray 

crystallography 

Quaternary assembly by TEM or 

SEC 

Wild-type - 
Single decamer pH 7.4 

Single decamer at pH 7.4 by TEM, 

mostly LMW from SEC 

Double decamer pH 4.2 Mostly HMW by SEC 

C48S 
Mimics protonated 

CysP 

Single decamer (with 

0.2 M SO4
2-) pH 7.4 

Nanotubes at pH 7.4 (without 

SO4
2-) by TEM, HMW by SEC 

C48D 
Mimics 

hyperoxidised CysP 

n/d 
LMW & HMW forms by SEC & 

TEM 

C48P 
Mimics unwinding 

of α2 helix 
Single decamer pH 7.4 

LMW & HMW forms by SEC & 

TEM 

C-terminus 

deletion 

Mimics unfolded 

C-terminus 
n/d 

LMW & HMW forms by SEC & 

TEM 

 

The holdase activity, characterised by the recognition and binding of unfolded substrates, is used 

to confer molecular chaperone functions to a protein (Jang et al, 2004). There has been one 

instance where holdase activity was characterised for HMW protein tubes (Angelucci et al, 2013). 
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Active site mutations of SmPrx1 that mimic different oxidative states of the peroxidatic cysteine 

were used to study the connection between stacked ring lengths and holdase behaviour (Table 2.1; 

Angelucci et al, 2013). The holdase activity was inversely correlated to stack lengths, and this was 

attributed to the decrease in available R interfaces where hydrophobic patches, which were 

proposed to bind other proteins, are located. Holdase activity has yet to be determined for HsPrx3. 

 

2.1.3.3 Salts influencing Prx oligomerisation 

 

Changes in ionic strength of solutions and the presence of particular salts have been reported to 

affect the oligomeric state of Prxs (König et al, 2013; Barranco-Medina et al, 2009), and could be a 

potential means to control protein nanotube lengths. Salts, such as the magnesium cation (Mg2+) 

have been shown to promote formation of rat Prx3 tubes (Kato, 1985) and also HMW oligomers in 

chloroplast 2-Cys Prx (Aran et al, 2011), but the mechanism has yet to be explored. 

 

Another study attributes the non-physiological effect of sulfate ions (SO4
2-) bound in the active site 

to tube dissociation. C48S SmPrx1 proteins often form protein stacks at pH 7.4, but this was not 

observed in its crystal structure or SEC experiments containing sulfate ions in the running buffer 

(Table 2.1, Angelucci et al, 2013). The non-physiological effect of SO4
2- was postulated to introduce 

constraints within the active site, when bound in 9 out of 10 protein crystal monomers. The SO4
2- 

made polar contacts to a close serine residue and an arginine residue within the active site, 

resulting in a fully folded α2 helix that co-exists with an unfolded C-terminus (as seen in the crystal 

structure PDB: 3ZL5). This switch between a stacked ring and a single ring is reversible on the 

addition or removal of SO4
2-. This indicates that C-terminal unfolding, alone, is insufficient for 

SmPrx1 protein stack formation. Both α2 unwinding and C-terminus unfolding is required 

(Saccoccia et al, 2012). A decrease in HMW species on the addition of SO4
2- at pH 4 was also 

observed for wild-type HsPrx3 (Phillips, 2014). Protein tubes were still observed, presumably 

because of the lowered pH (Phillips, 2014).  This suggests that lower pH has an effect on other 

amino acids that facilitate protein tube stacking, other than CysP. Preliminary studies also suggests 

that phosphate ions (PO4
3-) behave similarly to SO4

2- by stabilising the active site in a fully folded 

conformation, encouraging HsPrx3 into a dodecameric state (Littlejohn, 2012; Phillips, 2014). 

Stabilising the active site may prevent the transition of fully folded to locally unfolded, and thus, 

toroid dissociation on oxidation.  

 

The effect of salts in solution may affect the active site of Prxs, but also changes the effective 

protein concentration within a solution. This “crowding out” is a technique often used to purify 
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protein (Burgess, 2009), and increased molecular crowding effects could also drive protein-protein 

associations required for tube formation  

 

2.1.3.4 Histidine purification tags can affect Prx oligomerisation 

 

An important, but often overlooked, feature of recombinant proteins is whether their purification 

tags, such as a six histidine tag (His6-tag), are cleaved off or remain part of the protein (Kimple et 

al, 2001). There are numerous examples of proteins whose function and oligomerisation are 

affected by the presence of their His6-tags (Majorek et al, 2014; Thielges et al, 2011), and this also 

the case for Prxs. His6-tags stabilised the ring form of BtPrx3, lowering its peroxidase activity 

towards hydrogen peroxide (H2O2) (Cao et al, 2007). Similar observations were concluded for 

HsPrx3 (Phillips, 2014). This inspired part of Helen Ashmead’s PhD work studying the effect of His6-

tags on HMW structures of HsPrx3, with different histidine tag lengths as means to control the 

formation of different stacked tubes (Ashmead, 2016). It is important to also note that SmPrx1 

protein also contains a His6-tag (Saccoccia et al, 2012), and this could influence how the proteins 

associate.  

 

2.1.4 Chapter overview 
 

This chapter describes the first crystal structure of wild-type HsPrx3 in a novel HMW assembly with 

a fully folded active site. This not only challenges a previous hypothesis of how Prx proteins 

associate together to form protein tubes, but also provides a needed blueprint with which the 

tecton can be can altered to enable future functionalisation. The crystal structure, at 2.8 Å, also 

enables molecular insights to rationalise how various factors, such as salt, pH or His6-tag, influence 

HMW structure formation. 
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2.2 Wild-type HsPrx3 expression and purification 

Pure wild-type HsPrx3 protein, both His6-tagged and cleaved, were required for crystallography 

(Section 2.3) as well as native mass spectrometry analysis (Chapter 3). Recombinant His6-tagged 

HsPrx3 was successfully expressed and purified (Sections 7.3 and 7.4), with yields of ~100 mg per 

litre of growth media. His6-tagged HsPrx3 proteins were purified using immobilised metal affinity 

chromatography (IMAC) and size exclusion chromatography (SEC) (Figure 2.3 A and B). rTEV 

protease was used to cleave His6-tagged HsPrx3 to generate cleaved HsPrx3 (Section 7.5.3.2). The 

masses of the pure cleaved and His6-tagged wild-type HsPrx3 proteins were verified using liquid 

chromatography coupled mass spectrometry (LC-MS). 

 

Figure 2.3: Purification of wild-type HsPrx3 and cleavage of His6-tag 
Absorbance at 280 nm, indicating presence of protein, was plotted against the elution volume from 
purification steps using IMAC (A) and SEC (B). A SDS-PAGE gel (C) of the protein purification: 1 – 
total protein lysate diluted 1 in 100; 2 to 4 – correspond to IMAC trace; 5 – sample loaded onto 
SEC; 6 – corresponds to pooled main elution peak from the SEC. A SDS-PAGE gel of the TEV cleavage 
His6-tagged HsPrx3 and the subsequent purification of cleaved protein (D), where 7 - His6-tagged 
wild-type HsPrx3; 8 – rTEV protease; 9 – mix of HsPrx3 and rTEV protease; 10 and 11 – flow through 
and wash containing cleaved HsPrx3, 12 and 13 – additional wash steps; 14 – proteins remaining 
attached to cobalt beads (Section 7.5.3.2).  
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2.3 Crystal structure of cleaved wild-type HsPrx3 
 

2.3.1 Crystallisation of wild-type HsPrx3 
 

Crystallisation trials were performed with cleaved HsPrx3 under reducing conditions that favour 

the formation of rings. As described in Section 7.8, protein concentrations of 20, 30, 35 mg/mL 

were used in an array of initial screening conditions. Needle-like protein crystals were observed 

within 3 weeks of initial tray setting for many conditions in the MORPHEUS screen using 35 mg/mL 

of HsPrx3 protein. Condition D12 of the MORPHEUS screen, which is comprised of 12.5% PEG1000, 

12.5% PEG3350, 12.5% MPD, 0.02 M alcohol additives at pH 8.5 (Gorrec, 2009), yielded needles as 

well as rod-shaped crystals. The rod-shaped crystals were harvested directly from the MORPHEUS 

screen and cryo-protected using 20% glycerol, before being flash frozen at 110 K in liquid nitrogen. 

X-ray diffraction data were collected from native crystals at the Australian Synchrotron on beamline 

MX2 at a wavelength of 0.979 Å.   

 

2.3.2 Data processing and refinement of wild-type HsPrx3 crystal 

structure 

 

Crystals diffracted to a maximum resolution of 2.8 Å (full data collection statistics in Table 2.2). The 

structure of HsPrx3 was determined by molecular replacement using Phaser (McCoy et al, 2007) 

with the structure of bovine Prx3 (PDB: 1ZYE; Cao et al, 2005) as a search model. The Matthews 

coefficient of 2.25-3.01 Da/Å3 (cell content analysis) corresponds to between 9-12 molecules in the 

asymmetric unit. Phaser located nine monomers with a final translational function Z score of 14.2. 

The structure was built and refined with iterative cycles of model building in COOT (Emsley and 

Cowtan, 2004) and refinement in Refmac5 (Murshudov et al, 1997).  

 

  



Chapter 2: High molecular weight assemblies of human peroxiredoxin 3      40 
 

Table 2.2: Data collection and refinement statistics wild-type HsPrx3, PDB: 5JCG. 
There are nine monomers within the I222 asymmetric unit. 

 

The crystallographic asymmetric unit is comprised of nine copies of the HsPrx3 monomer, which, 

together with three other symmetry-related copies in the crystal lattice, complete a dodecameric 

ring. Interestingly, when all the symmetry equivalent molecules in the crystal lattice were 

generated, it reveals an organisation comprised of three, stacked dodecameric rings. These short 

stacked rings align in the crystal to form long channels, with limited contacts between each 

segment (Figure 2.4). 

 

Figure 2.4 Crystal packing of wild-type HsPrx3 
Here symmetry equivalent molecules in the crystal lattice were generated to reveal four short 
stacks of HsPrx3 rings packed together. These short stacks are composed of three dodecameric 
rings that align to form channels. 

 

 

  

Data collection  Refinement  

Space group I222 Resolution (Å) 2.80 

Cell dimensions  No. unique reflections 61455 

    a, b, c (Å) 133.2, 168.7, 221.6 Rwork/ Rfree 0.183/0.229 

    α, β, γ()  90.0 , 90.0 , 90.0 No. atoms  

Resolution (Å) 52.3 - 2.8 (2.87 - 2.8)      Protein 13658 

Rpim 0.176 (0.713)     Water 159 

I/σI 6.6 (1.9) B-factors (Å2)  

CC1/2 0.954 (0.414)     Protein 23.2 

Completeness (%) 99.8 (99.7)     Water 15.1 

Redundancy 12.7 (12.3)  R.m.s deviations  

      Bond lengths (Å)  0.009 

      Bond angles (°) 1.378 
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2.3.3 HsPrx3 crystal structure: comparison of the low molecular weight 

forms 
 

The HsPrx3 monomer displays, as for other Prx3s, the conserved thioredoxin-like fold with a central 

7-stranded β-sheet and 7 α-helices (Figure 2.5; Copley et al, 2004).  Comparison of the HsPrx3 

monomer with the BtPrx3 monomer (PDB: 4MH2, Cao et al, 2015) yields an RMSD of 0.365 Å across 

equivalent Cα-atoms. However, unlike in BtPrx3 (Cao et al, 2005; Cao et al, 2015), the C-terminus 

of HsPrx3  comprised of a 14 amino acid residue loop between G165 and I179 followed by the C-

terminal helix α7 is fully ordered (Figure 2.5 B). The active site of HsPrx3 in the crystal, generated 

under reducing conditions, is fully folded with helix α2 starting at residue V46. The active site 

pocket is located in an area of strong positive charge consistent with a binding site for H2O2, while 

the surface surrounding the active site is hydrophobic in nature. The sulfhydryl of the peroxidatic 

cysteine (CysP) within the active site is linked by hydrogen bonds to the side chains of the conserved 

R123 and T44 (Figure 2.5 A). The amino acids that differ between HsPrx3 and BtPrx3 sequences 

populate the solvent exposed surface of the two proteins, with a large proportion of the amino 

acid changes (5 amino acids out of 13 differences) being located on the C-terminal region after 

residue 163, the last resolvable residue in the bovine structure. Comparison with HsPrx2, which 

displays a similarly ordered C-terminal tail, yields a RMSD of 0.593 Å across 179 equivalent Cα 

positions. The structural similarity of the HsPrx3 monomer with those for other Prxs is evident and 

also translates into the higher order associations of this protein, yielding similar interaction at the 

protein-protein interface as previously described for other 2-Cys Prxs (Figure 2.5 C and D; Barranco-

Medina et al, 2009).   
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Figure 2.5: HsPrx3 crystal structure with resolved C-terminus and fully folded active site 
The active site (A) showing the peroxidatic cysteine (CP47 in yellow) in a fully folded conformation 
surrounded by the conserved active site residues (T44, P40, R123 in purple). The folded C-terminus 
also reveals the resolving cysteine (CR168 in green), from the adjacent monomer (grey). The HsPrx3 
monomer (B) indicating the locations of helices α2 and α6 involved in protein stacking, and the α7 
helix, which is part of the C-terminal tail. HsPrx3 homodimers (monomers coloured blue and grey) 
in two orthogonal views (C). Six copies of the HsPrx3 homodimer showed in (C) organise as a 
dodecameric ring (D), under reducing conditions. 
 

2.3.4 Interactions at the R interface of HMW Prx structures 
 

Prx stacks have been observed for HsPrx2, HsPrx3, and bovine and rat Prx3s using TEM (Kato, 1985; 

Harris et al, 2001; Gourlay et al, 2003).  As mentioned in Section 2.1.2, the only crystal structure of 

a Prx in a HMW stack conformation is that of SmPrx1, which forms decameric rings arranged as a 

stack of two rings (Saccoccia et al, 2012; Figure 2.1). This is reminiscent of the arrangement of 

HsPrx3 stacks, but with differences in the interactions that mediate stacking at the R interface. 

Specifically, the SmPrx1 stacks report interactions between the β2 strands of adjacent monomers; 

this interaction is not observed in the HsPrx3 stacks (Figure 2.6 A). This additional region of 

interaction at the SmPrx1 R interface is attributed to its quaternary structure being a decamer. 

Notwithstanding the different decameric and dodecameric organisations, in both cases, salient 

components of the R interface include the complementary fit of helices α2 and α6 contributed by 

the two apposing monomers, as well as additional contacts between the linker region connecting 

β6 and β7 (Figure 2.6 B compared with Figure 2.1 B).  
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In contrast, the R interface interactions of HsPrx3 occur only between the α2 and α6 helix pair of 

two apposing monomers, and is held together by a network of hydrogen bonds (Figure 2.6). The 

α2-α6 helix pair are arranged side-by-side on the face of one monomer and are staggered with an 

overhang of approximately two turns of helix α6. Their respective C-termini, aligned with each 

other, give the impression of one long, continuous helix (Figure 2.6 A). The helices are also slightly 

offset so that the side chain amino group of N65 in helix α2, located between these two helices, 

participates in a hydrogen bond with the backbone carboxylate of E162 from the α6’ helix on the 

apposing monomer (Figure 2.6 B). This caps and presumably neutralises the dipole of helix α6’. 

Also, the same side chain amino group of N56 is held in place by a hydrogen bond with the 

backbone carboxylate of G31 from the same monomer. To avoid steric clashes, the backbone 

carboxylate groups of helices α2 and α6 are splayed out at the ends of the helix. In addition, the 

side chain of Q159 forms a hydrogen bond with the backbone carboxylate of V64 from the same 

monomer.  

 

Figure 2.6: Crystal structure at 2.8 Å of HsPrx3 HMW structures at pH 8.0 (PDB: 5JCG) 
The HsPrx3 crystal structure at pH 8.0 has an azimuthal rotation of 7.3 ° and the vertical separation 
of 42.2 Å between successive rings. Helices α2 and α6 are highlighted as main components of the 
stacking interaction. The R interface in HsPrx3 crystal structure (B) is formed from two adjacent 
monomers (blue and pink) with important residues highlighted (green, yellow and grey). Hydrogen 
bonds (black dotted lines) link residues V64 and Q159 on the same monomer as well as residues 
N65 and E162 on apposing monomers. T163 residues (grey) from apposing monomers are angled 
towards one another creating a hydrophobic pocket that encourages stacking of the rings.  
 

Interestingly, the region between the staggered α2 and α6 helices of two apposing HsPrx3 

monomers also house a hydrophobic pocket that is formed by the T163 residue at the R interface 

(Figure 2.6 B). In three of the monomers, where chains C, F and I in the crystal lattice do not 

participate in the interstack interaction, T163 adopts an alternate rotamer with the side chain 

rotated ~180° so that the hydroxyl group is exposed to the solvent. The T163 residue is not 
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conserved in SmPrx1, however the methyl groups of the K164 and E163 residues are sandwiched 

between the helices to form a similar hydrophobic interaction (Figure 2.1 B). 

 

Comparison of the R interface residues for all of the Prxs that were reported to form HMW stacks, 

reveals H164 as the only conserved residue (Figure 2.7). The R interface for HsPrx2 is composed of 

amino acid residues that are distinct from the R interfaces of SmPrx1 and the Prx3s, indicating 

possibly a different set of interactions in this case of decamer stacks as observed by TEM (Harris et 

al, 2001). 

 

Figure 2.7: Sequence alignment of Prxs that have been observed to stack. 
Amino acid sequence alignments for human Prx2 [P32119] and Prx3 [P30048], Rattus 
norvegicus Prx3 [G3V7I0], and Bos Taurus Prx3 [P35705], and Schistosoma masoni Prx1 
[O97161]. The UniProt accession numbers are indicated in square brackets. The individual 
coloured residues correspond to those shown in Figure 2.5, with peroxidatic cysteine (yellow), 
conserved active site residues (purple), and the resolving cysteine (green). The main A and B 
interface residues are highlighted in purple and red, respectively. Further B interface 
interactions (not shown) can occur if the C-terminal α7 is fully folded, making contacts with the 
apposing monomer. The R interface residues between the α2 and α6 helices are highlighted in 
the blue. CLUSTAL v2.1 was used for this multiple sequence alignment (Larkin et al, 2007).   
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2.3.5 Comparison of HsPrx3 R interface interactions at pH 4.0 and 8.0 
 

As part of our published study, we collaborated with Alok Mitra’s group in order to create a 4.1 Å 

resolution cryo-EM reconstruction of the HsPrx3 filaments at pH 4.0. This structure enables the 

comparison between HsPrx3 and SmPrx1 (Figure 2.8). Whereas the HsPrx3 crystal structure reveals 

R interface interactions that allow stacking at high pH (pH 8.5), the 4.1 Å cryo-EM density map for 

the filaments, reveals details of this interface under acidic conditions (pH 4.0). Examining the cryo-

EM map, it is clear that, even at high threshold (2.45 σ), densities could be populated by many of 

the bulky side chains in the pseudo-atomic model (Figure 2.8 B). At this threshold, clear density, 

which appears to link the α2 helix of one toroidal ring with the α6 helix of the adjacent toroid is 

visible, which is in line with the positioning of N65 seen in the crystal structure. Overall, at the level 

of 4.1 Å resolution of the cryo-EM map, no distinct difference of R interface interactions could be 

discerned when compared to those present in the crystal structure (compare Figure 2.6 and 2.8). 

This suggests that there are no drastic alterations at the R interface and that the stacking 

interactions of HsPrx3 are similar for both pH states.  

 

 
Figure 2.8: Cryo-EM model at 4.0 Å of HsPrx3 HMW structures at pH 4.0 (EMD: 3414)  
The HsPrx3 cryo-EM model at pH 4.0 showing stacked ring filaments with the azimuthal rotation of 
8.7 ° and the vertical separation of 42.7 Å between successive rings (A). Helices α2 and α6 are 
highlighted as main components of the stacking interaction. A PHENIX-refined (Afonine et al, 2012)  
pseudo-atomic model, shown as sticks, was made by David Goldstone and fitted to the cryo-EM 
map (2.0 σ) of HsPrx3 helical filaments at pH 4.0 (B). This suggests a similar hydrogen bonding 
pattern between the HsPrx3 cryo-EM model and crystal structure. Images were adapted from 
those supplied by Hari Venugopal. 
 

It is important to note that at pH 8.0, cleaved wild-type HsPrx3 proteins predominantly form 

dodecameric rings; however, lowering of solution pH to 4.0 causes HsPrx3 proteins to assemble 

into long helical stacks (Phillips et al, 2014; Radjainia et al, 2015). The reason for this dramatic 
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change in assembly has been proposed to occur due to altered charged states of the amino acid 

residues at the R interface, in particular the conserved H164 residue has been hypothesised to play 

an important role in facilitating stacking at lower pH (Radjainia et al, 2015; Saccoccia et al, 2012). 

 

2.3.6 Accessible conformations of the active site for HMW assembly 
 

The Prx active site undergoes concerted conformational transitions during its catalytic cycle. This 

shift from a fully folded (FF, Figure 2.9) to a locally unfolded (LU, Figure 2.9) active site enables 

disulfide bond formation between CysP and CysR. Previous studies have drawn correlations 

between the redox state of the active site and the conformation of the C-terminal region, and their 

impact on the ability of Prxs to form HMW structures or stacks (Radjainia et al, 2015; Saccoccia et 

al, 2012).  

 

 

Figure 2.9: Close up details of the cysteines, CP and CR, and the C-terminus  
The active site (A) of the HsPrx3 crystal structure (blue) is seen in the fully folded (FF) conformation 
whereas the same region with the fitted pseudo-atomic model of cryo-EM structure (brown) shows 
it to be locally unfolded (LU). The density map was rendered at 2.45 σ. The C-terminus of a 
monomer in the unsharpened cryo-EM density (B) is seen as partially disordered. The folded C-
terminus seen in the HsPrx3 crystal structure (blue) does not fit into this density map, rendered at 
1.8 σ. However, the fit of F190L BtPrx3 (PDB: 4MH3; green, C) dimer suggests the possibility of a 
disulfide bond between the C-terminal resolving cysteine (CR) and the peroxidatic cysteine (CP), in 
the cryo-EM density for the filament, rendered at 1.8 σ. Images were adapted from those supplied 
by Hari Venugopal. 
 
To critically assess the conformation of active site between the HsPrx3 crystal structure and the 

cryo-EM reconstruction at lower pH, the model of the dimer from the X-ray structure was morphed 

into the cryo-EM map by rebuilding the residues surrounding the active site using real-space 

refinement in PHENIX (done by David Goldstone; Afonine et al, 2012). Inspection of the active site 

in the current 4.1 Å model derived from the cryo-EM map of the HsPrx3 HMW form, confirms 

earlier results that this region is locally unfolded (Figure 2.9 A), as also observed in the double stack 
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present in the SmPrx1 crystal structure (Radjainia et al, 2015; Saccoccia et al, 2012). The active site 

in the HMW form in the HsPrx3 crystal structure, produced at pH 8.5, clearly shows a fully folded 

conformation for this region (Figure 2.9 A). Comparison of the fully folded and locally unfolded 

active sites show a 7.2 Å shift in the Cα position of the CysP accompanied by the unwinding of the 

final turn of helix α2. This observation is at odds with the generally held notion that local unfolding 

of the active site accompanies HMW formation (Saccoccia et al, 2012). 

 

The active site conformation has ramifications for the arrangement of the C-terminal region. In 

other Prx structures, a locally unfolded active site is always accompanied by an unfolding of the C-

terminus, whereas C-terminal unfolding only acts to destabilise the fully folded state of an active 

site (Perkins et al, 2013). The HsPrx3 crystal structure clearly has a fully folded active site and a 

structured C-terminus. In the cryo-EM structure, the density at the C-terminus can only be partially 

attributed to the folded state. Thus, most of the density corresponding to the loop (residues G165 

to I179) seen in the pH 8.5 crystal structure is not visible (Figure 2.9 B). Density is observed 

corresponding to the loop extending from the end of helix α6 towards CysP, placing CysR in a 

position to form a disulfide bond analogous to that seen in the structure of F190L BtPrx3 in the 

oxidised state (PDB: 4MH3) (Figure 2.9 C). Beyond this volume of density, which is not as 

pronounced as those for the surrounding structural elements, there is additional weak density 

towards the C-terminal end, as also observed in a recent 4.4 Å cryo-EM structure of HsPrx3 

obtained by phase-plate imaging (Khoshouei et al, 2016). This density volume possibly indicates 

averaging of several alternative conformations. The cryo-EM samples were prepared at pH 4.0, 

without the addition of reducing agent, which could result in the active site being primarily locally 

unfolded. It is therefore likely that the C-terminal region in the cryo-EM density map elaborates an 

averaged picture of multiple conformational states including the disulfide bonded state.  

 

2.4 Discussion 
 

2.4.1 A locally unfolded active site is not a requirement for Prx stacking 
 

The 2.8 Å crystal structure of reduced HsPrx3 are arranged in a novel stack of three dodecameric 

rings, with fully folded active sites. This structure challenges the pre-existing hypothesis that a 

loosely unfolded active site is a necessary structural change for the association of Prx rings into 

HMW tubes. In fact, in the case of HsPrx3, very little structural changes occur to facilitate stacking 

of the rings, with associations in the form of hydrogen bonds between the α2 and α6 helices of 
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apposing monomers in the R interface. The geometry of HsPrx3 being dodecameric rings lends 

itself towards this kind of association. However, it the case of the decameric SmPrx1, additional 

structural changes may have to occur to encourage protein ring association at both the α2-α6 

region as well as between the β2 strands. The unfolding of active site and C-termini were 

hypothesised to expose hydrophobic patches at the R interface that enables SmPrx1 to associate 

together with holdase activity (Angelucci et al, 2013). 

 

The following attempts to analyse the pre-existing hypothesis and explore how the active site state 

of Prxs can influence their stacking into tubes. In particular, the two distinct, but related factors 

that influence the active site conformation will be highlighted: the pH of the surrounding solution 

and the oxidation state of CysP. 

 

Previous reports of protonated states of CysP in crystallography and EM (Radjainia et al, 2015; 

Saccoccia et al, 2012), have established a strong correlation between protonated CysP thiols and a 

locally unfolded active site. When the solution pH is below the pKa of CysP (pH < pKa ~ 5), CysP is 

protonated and the hydrogen bonding network within the active site is disrupted, facilitating a 

locally unfolded active site (Hall et al, 2011; Saccoccia et al, 2012). At pH 8.5, the majority of CysP 

residues are deprotonated, allowing the reactive cysteine to be held in place by surrounding active 

site residues (R123 and T44) and the active site is fully folded. 

 

To highlight the complex interplay between pH and redox state of CysP, 12 available crystal 

structures of 2-Cys Prxs, with folded C-termini and fully folded active sites, were examined (Table 

2.3). The pH at which these structures were studied range from 7.5 – 8.5, with the exception of 

two structures featuring CysP to serine (CPS) mutations where the protein was crystallised at pH 5 

and pH 4.2 (Matsumura et al, 2008; Tairum Jr et al, 2012). Traditionally, the CPS mutations were 

chosen as a mimic for protonated CysP (Angelucci et al, 2013, König et al, 2013). However, it has 

been observed that CPS mutations stabilise the active site in a fully folded state, even more than 

reduced thiols do (Perkins et al, 2013), making CPS a bad mimic of low pH situations. This 

stabilisation could encourage the formation of fully folded active sites even at low pH, as seen in 

the crystal structures (Table 2.3), allowing the C-terminus to also fold. Instead, CPS mutations 

stabilising a folded active site resembles the situation of CysP becoming increasingly oxidised (Wang 

et al, 2012). An alternative hypothesis suggests that mutation of CysP to amino acid residues, such 

as aspartate, serve to mimic the charged hyperoxidised state of CysP known to be associated with 

the HMW form (König et al, 2013).  
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Table 2.3: Prx structures with fully folded active sites and folded C-termini deposited on the PDB 

PDBid Organism Prx Name Mutation pH References 

1qmv Homo sapiens HsPrx2  7.5 Schroder et al, 2000 

2i81 Plasmodium vivax 2-Cys Prx  8.4 Artz (unpublished) 

2pn8 Homo sapiens HsPrx4  7.5 Pilka (unpublished) 

2z9s Rattus norvegicus Prx1 C52S 5 Matsumura et al, 2008 

3qpm Pseudosciaena crocea 2-Cys Prx  8 Mu et al, 2013 

3sbc Saccharomyces cerevisiae Tsa1 C47S 4.2 Tairum Jr et al, 2012 

3tjf Homo sapiens HsPrx4 C51A 8.5 Cao et al, 2011 

3tkp Homo sapiens HsPrx4  8.2 Wang et al, 2012 

3tkq Homo sapiens HsPrx4  8.2 Wang et al, 2012 

3tkr Homo sapiens HsPrx4 T118E 8.2 Wang et al, 2012 

3tks Homo sapiens HsPrx4  8.2 Wang et al, 2012 

4llr Trypanosoma cruzi TXPNx  7.5 Piñeyro et al, 2005 

3zl5 Schistosoma masoni SmPrx1 C48S 7.0 Angelucci et al, 2013 

 

Crystallised Prxs with hyperoxidised CysP almost always harbour a fully folded active site (Hall et al, 

2011), with the exception being crystals of Prxs bound to sulfiredoxin, the recycling enzyme 

(Jonsson et al, 2009). Wang et al, 2012 observed that hyperoxidised CysP stabilises the fully folded 

active site, more so when compared to other oxidation states of CysP. For instance, as reflected by 

the  crystallographic B-factors, the increased oxidation of the CysP in the HsPrx4 structure translates 

to increased conformational rigidity of both the α2 and the C-terminal YF helix (α7) as well as to 

increased rigidity for the C-terminal end of α6. Hyperoxidised CysP stabilises the fully folded active 

site reducing the flexibility of both α2 and α6 helices; this would increase the chances of favourable 

hydrogen bonds at the R interface that promote stacking for hyperoxidised Prx proteins. Hence, 

CPS mutants in Prxs, that mimic hyperoxidised Prxs, tend to also form stacked rings at physiological 

pH or be stabilised by them, whereas reduced HsPrx3 proteins remain as single toroidal rings in 

solution (Gourlay et al, 2003; Angelucci et al, 2013).  

 

2.4.2 How protein environment can affect interactions at the R interface 
 

The mechanism of Prx stacked ring formation under acidic conditions and oxidative conditions are 

distinct but related. Stacking of HsPrx3 rings require the formation of favourable hydrogen bonds 

between the α2 and α6 helices, but factors which encourage such interactions vary. At 

physiological pH, hyperoxidised CysP or the CPS mutation is required for stabilisation of a fully folded 
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active site that enables Prxs to stack in solution.  Whereas, appropriate hydrogen bonding may also 

be fostered at pH 8.5 under reducing conditions by increasing the local concentration of protein, 

such as that during crystal formation, resulting in the structure of the stacked HsPrx3 rings (PDB 

5JCG). HsPrx3 toroids organised as long stacked filaments of rings at pH 4.0, become disassociated 

when pH was raised to 8 (Section 2.4.5). In addition to other stabilising interactions that are largely 

unaltered at the R interface for both high and low pH, low pH leads to favour electrostatic 

interactions that further stabilise the stack, and could explain the increased propensity of HsPrx3 

toroids to form long ordered filaments at pH 4.0 rather than at pH 8.5. In this context, conserved 

H164 at the R interface is of particular interest since, due to its pKa being 6, it will be neutral at pH 

8.5 but protonated and positively charge at pH 4.0, making it an important player in the 

aforementioned switch in the nature of the R interface surface-charge. 

 

2.4.3 HMW form as a self-chaperoning assembly of HsPrx3 in a 

catalytically active conformation 
 

These HMW Prx stacks can form under a variety of conditions and are distinct from those observed 

in Jang et al, 2004 and Moon et al, 2005, which appear to form spherical aggregates. Despite some 

differences in structure that may be attributed to both the redox state and pH, in terms of the 

spontaneous assembly into HMW forms, the close structural similarity of the HsPrx3 crystal and 

cryo-EM structures suggests that the observed crystal packing may faithfully represent a putative 

chaperone. The pH of the mitochondrial matrix is alkaline due to proton transport into the 

intermembrane space during respiration (Santo-Domingo and Demaurex, 2012). Furthermore, a 

high proton motive force promotes superoxide generation by respiratory complexes (Murphy, 

2009). Therefore, the stacking of Prx rings observed at pH 8.5 could be of physiological significance.  

The fully folded active site means this protein would retain its peroxidase activity, even after 

assembly to HMW forms. In fact, this observation of HsPrx3 with elements of fully folded and 

loosely unfolded active sites, supports that the full reaction cycle is accessible to the HMW species. 

 

Functional implications of these observations are intriguing and the question arises as to why such 

a dramatic structural response occurs for these proteins under acidic conditions or oxidative stress. 

Prx proteins are highly abundant within cells and HsPrx3 is estimated to be present at a 

concentration of >100 µM within the human mitochondria (Cox et al, 2009a). All of the 

environmental and chemical conditions that favour Prx3 proteins stacks (Figure 2.10) have 

unfavourable influences on protein stability: acidic conditions in protein environments often cause 

proteins to aggregate (Mazzini et al, 2007; Fink et al, 1994); crystallisation conditions forces 
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proteins to precipitate out of solution to form crystals; and the CPS mutations for Prx3 have been 

observed to be very unstable (Phillips, 2014; Gourlay et al, 2003) and hyperoxidised HsPrx3 

proteins also tend to be insoluble (Poynton et al, 2016).  

 

 

Figure 2.10: A postulated model depicting that cellular stress induces Prxs to function as self-
assembling chaperones 
Stacking interactions of Prx proteins can be facilitated by molecular crowding, chemical 
modifications of the active site (such as CPS mutations or hyperoxidation), or by acidification. Prx 
rings can associate together to form HMW stacks as a means to prevent universal aggregation of 
protein under these unfavourable conditions.  
 
 
This controlled clustering of HsPrx3 is hypothesised to be favoured in the crowded environment 

inside the mitochondria as a protective mechanism against catastrophic aggregation in which 

HsPrx3 is a self-associating chaperone. Prevention of aggregation while maintaining proper 

function of an essential protein may be critical to cell survival. This is an alternate hypothesis to the 

previous suggestion that stacked Prxs act as chaperones to aid in folding of other proteins. This 

hypothesis is consistent with recent observations in yeast cells where proteins tend to be reversibly 

sequestered during times of cellular stress in order to prevent aberrant aggregation (Wallace et al, 

2015) as well as for storage (Petrovska et al, 2014). Intriguingly, in the case of Petrovska et al, 2014, 

the metabolic enzyme glutamine synthetase (Gln1), which forms a decameric ring, was observed 

to assemble into filaments in vivo at low pH triggered by cellular starvation, leading to enzymatic 

inactivation. This inactive enzyme becomes active again after disassembly. Latest advances in cryo-

tomography, which allows for detailed structure determination in situ, such as for the crystalline 
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structures of aldehyde dehydrogenase Ald4p in yeast mitochondrial matrix (Fukuda et al, 2015, 

Misonou et al, 2014), may address the important issue of whether Prx3 is a constituent of similar 

arrays in mitochondria and the in vivo role of HMW Prxs. 

 
 

2.5 Summary 
 

The 2.8 Å crystal structure of HsPrx3 is the first crystal structure of a reduced peroxiredoxin (Prx) 

known to form HMW stacks at pH 8.5. Although the HsPrx3 monomer and ring assembly are similar 

to other typical 2-Cys Prxs, it is how these proteins further associate into stacks of three rings that 

makes this crystal structure especially interesting for understanding the molecular interactions 

involved in the formation of Prx HMW assemblies. In particular, the interactions at the ring 

interface (R interface) predominantly occur via hydrogen bonding, as well as a hydrophobic patch 

formed by T163 residues. Comparing both the cryo-EM structure at pH 4.0 and the crystal structure 

at pH 8.5 of HsPrx3 proteins reveals very similar R interface interactions, with no large 

conformational changes occurring to facilitate protein association. Notably, the H164 residue is 

conserved between Prxs that are known to form HMW stacks and this residue could influence the 

electrostatic interactions between protein rings at different pHs. However, the specific amino acid 

interactions at the R interface may not be universally conserved between different Prxs as seen in 

the sequence alignment, but provide an ideal standing point from which HsPrx3 protein 

associations can be critically assessed as a tecton.  

 

The fully folded active site of HsPrx3 in the crystal structure demonstrates that this conformation 

is accessible to the HMW structures, and is at odds with the previously hypothesised requirement 

for the active site to be unfolded to enable ring stacking (Section 2.6.1). This active site 

conformation, along with other parallel observations of HsPrx3 tube formation under conditions 

of stress, instigated a new hypothesis that ring stacking was the result of a self-chaperoning 

biological function for these protein tubes.   
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Chapter 3: Self-assembly mechanism of 

human peroxiredoxin 3 protein tubes 
 

3.1 Introduction 
 

3.1.1 Proposed mechanisms for Prx tube formation 
 

Although protein structures derived from EM and crystallography are valuable for exploring the 

crucial interactions required for HMW structure formation, they are simply static snap-shots 

whereby the mechanisms by which Prx tubes form are hinted at, but not directly observed. 

Assembly of protein architectures can occur via two different mechanisms (Figure 3.1): 

commutative (such as how actin filaments and microtubules assemble; Yamada et al, 2005) or non-

commutative (such as how Sp1 proteins assemble where rings associate with one another) (Lehn, 

2002).  

 

Figure 3.1: Commutative versus non-commutative assembly 
Commutative assembly (A) occurs when steps can be interchanged along an overall pathway that 
leads to a final “open” structure. Microtubules are a good example of this, where tubulin dimers 
can self-assemble directly or via the formation of a protofilament into a final super structure 
(Alberts et al, 2002). Non-commutative assembly (B) involves the progressive formation of a final 
structure through building up from a defined set of intermediates. Protein rings, such as Hcp1 
(Ballister et al, 2008) or TRAP (Miranda et al, 2009), form rings prior to assembly into protein tubes 
(as elaborated in Section 1.3.3.5).  
 
HsPrx3 proteins have two basic tecton units that can assemble into the HMW tubes: homodimers 

consistent with a commutative mechanism, or dodecameric rings consistent with a non-
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commutative mechanism. Protein self-assembly for Prxs has been postulated occur via a non-

commutative mechanism (Angelucci et al, 2015), but not yet directly shown. The time scale at 

which these tubes form is also unknown. 

 

3.1.2 Chapter overview 
 

The mechanism of high-order oligomerisation was also probed using native mass spectrometry 

(nMS) in collaboration with the lab of Carol Robinson. nMS is a powerful technique that has been 

used extensively to observe protein oligomers in the gas phase, and enables the direct detection 

of species involved in protein assembly (Sakata et al, 2011; Pukala et al, 2009; Zhou and Robinson, 

2010b).  The nMS results reveal non-commutative assembly of HsPrx3 rings occurring at a sub-60 

second time scale. Comparison between tagged and cleaved HsPrx3 also reveals a difference in 

assembly of HMW tubes, and gives insights into how HsPrx3 tube lengths could be controlled. 

 

3.2 Mechanism of HsPrx3 assembly into HMW tubes 
 

3.2.1 Probing the stacking mechanism using native mass spectrometry 
 

The previously described HsPrx3 HMW structures provide insights into the molecular details that 

frames the rationale behind protein self-assembly. However, these static interpretations of HMW 

structure do not reveal the mechanisms by which HsPrx3 HMW structures form. As discussed in 

Section 3.1.4, HsPrx3 can assemble in a commutative manner, where dimers can associate 

interchangeably to form the final HMW tube structure, or in a non-commutative manner, where 

dimers must sequentially assemble into rings, followed by rings stacking to form HMW tubes. nMS 

is a highly sensitive tool that can be used to probe protein oligomeric states and can even be used 

to monitor their self-assembly in real-time (Sharon and Robinson, 2007; Painter et al, 2008; 

Bernstein et al, 2009; Benesch et al, 2010). This is the technique that will be used to explore the 

self-assembly mechanism of both cleaved HsPrx3 and His6-tagged proteins. Prepared as described 

in Section 2.2, frozen stock aliquots of purified cleaved HsPrx3 and His6-tagged HsPrx3 proteins 

were used for all of the experiments in this chapter. 
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3.2.2 Stability of HsPrx3 protein in ammonium acetate 
 

The easiest and most reproducible means to promote stacking of HsPrx3 proteins in solution is to 

lower the solution pH from 8.0 to 4.0 (Phillips et al, 2014, Radjainia et al, 2015). nMS was used to 

probe the stacking mechanism of HsPrx3 for both cleaved and His6-tagged forms, separately. 

However, this technique requires the use of volatile buffers, such as ammonium acetate, that will 

desolvate readily during the electrospray ionisation process. 100 mM ammonium acetate was an 

optimal concentration where HsPrx3, both cleaved and tagged, remained stable (Figure 3.2 A) and 

the native mass spectra gave the narrowest peaks due to optimal desolvation. HsPrx3 proteins also 

retain their ability to form dodecameric rings in 100 mM ammonium acetate, pH 8.0 (Figure 3.2 B) 

as observed by analytical ultracentrifugation (AUC) (Section 7.7.4). 

 

Figure 3.2: HsPrx3 protein stability in ammonium acetate.  
A SDS-PAGE gel (A) of soluble cleaved HsPrx3 protein over time (taken at 0, 5, and 25 hours) in pH 
8.0 ammonium acetate solution (200 mM, 100 mM 50 mM, 10 mM). The control condition was 
HsPrx3 kept in 20 mM HEPES pH 8.0, 150 mM NaCl. A decreased protein band intensity (red arrow) 
was observed for 200 mM ammonium acetate after 25 h, indicating that HsPrx3 formed 
precipitates in this buffer (Section 7.5.3 for this method). The AUC experiments were (B) conducted, 
as per Section 7.7.4, using purified cleaved HsPrx3 (20 µM) in either ammonium acetate (black 
trace) or 20 mM HEPES, 150 mM NaCl, pH 8.0 (blue trace); HsPrx3 retains its dodecameric 
oligomeric state with sedimentation coefficients of 8.8 S and 8.7 S, respectively. The frictional ratio 
(f/f0) was 1.63 for HsPrx3 in both buffer conditions. The same results were obtained for His6-tagged 
HsPrx3 (data not shown). 
 

  



Chapter 3: Self-assembly mechanism of human peroxiredoxin 3 protein tubes      56 
 

3.2.3 HsPrx3, both cleaved and His6-tagged, are dodecamers at pH 8.0 in 

the gas phase  
 

In order to probe HsPrx3 oligomeric state by nMS, both cleaved and His6-tagged proteins were 

separately buffer exchanged into fresh 100 mM ammonium acetate, pH 8.0, solution and analysed 

on a Synapt nESI-MS instrument (according to Section 7.9.3). The experimental molecular weights 

(MWs) for cleaved and His6-tagged HsPrx3 were at 266560 ± 68 Da and 305045 ± 89 Da 

respectively, consistent with the predicted MWs of 266042 Da and 303872 Da (Figure 3.3; Marty 

et al, 2015). Notably, in both cases, the protein is homogenous in that the only observed species is 

the dodecamer, and no other stoichiometry was observed. The insufficient removal of adducts, 

such as salt, can cause the experimental MW to appear greater than the theoretical MW (Benesch, 

2009). The dodecameric HsPrx3, both cleaved and tagged, can be stably sprayed for up to an hour 

without any noticeable changes to the spectra or to the corresponding MW.  

 

Figure 3.3: HsPrx3 remains a dodecameric ring in ammonium acetate and in the gas phase 
These mass spectra were analysed with UniDec software (Marty et al, 2015). 20 µM of cleaved 
HsPrx3 (A) and 20 µM His6-tagged HsPrx3 (B) in 100 mM ammonium acetate, pH 8.0, were ionised 
in positive ion mode (Section 7.9.3), and peaks were assigned charged states that range from +43 
to +46. In both cases, the spectra corresponds to the proteins being in a dodecameric oligomeric 
state. The trap collision energy used for both spectra was 20 V. 
 

These results were consistent with previous reports of the dodecameric structure of HsPrx3 in pH 

8.0 solutions, and the existence of ring-like quaternary structure (Phillips, 2014). SEC coupled with 

static light scattering (SEC-SLS) was used to corroborate the MS data and confirm that the results 

are representative of the aqueous state, where both cleaved and His6-tagged HsPrx3 remain as 

intact dodecameric rings, with comparable experimental MWs of 266 kDa and 300 kDa respectively 

(Figure 3.4).  
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Figure 3.4: SEC-SLS solution MWs of HsPrx3 proteins in 100 mM ammonium acetate, pH 8.0 
SEC-SLS of 20 µM cleaved HsPrx3 (A) and 20 µM His6-tagged HsPrx3 (B), both in 100 mM 
ammonium acetate, pH 8.0. The refractive index (black line) and right-angle light scattering were 
used to calculate MWs (plot and right axis in red) of particles in solution. The main protein peak is 
a dodecamer (~266 kDa for cleaved HsPrx3 and ~300 kDa for tagged HsPrx3), which these agree 
with the theoretical MW for each species dotted blue line). 
 

Collision induced dissociation inside the mass spectrometer disrupts the dodecameric protein 

structure via symmetric dissociation. Tandem mass spectrometry (MS/MS) was performed where 

the species at m/z 6080 was quadrupole isolated. For cleaved HsPrx3 MS/MS analysis, the collision 

energy was increased to 90 V and the resulting MW for the monomers and dimers were 22219 ± 

11 Da and 44344 ± 32 Da respectively (Figure 3.5 A). The single peak at m/z 6770 was isolated for 

His6-tagged HsPrx3 MS/MS analysis and the resulting MW for the monomers and dimers were 

25391 ± 10 Da and 50731 ± 10 Da respectively (Figure 3.5 B). Thus, the nMS spectra observed are 

of oligomers composed of monomer and dimers which correspond well to theoretical MWs.  

 

Figure 3.5: Collision induced dissociation of HsPrx3 m/z peaks show constituent protein oligomers 
MSMS spectra of 6080 m/z peak of cleaved HsPrx3 (A). The collision energy was 90 V. The spectrum 
observed consists of monomers (purple) and dimers (red) with the UniDec peak assignments 
coloured. His6-tagged HsPrx3 (B) MSMS spectra of 6770 m/z peak. The collision energy was 90 V. 
The spectrum observed consists of monomers (purple) and dimers (red) with the UniDec peak 
assignments coloured.  
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3.2.4 HsPrx3 assembles as discrete stacks of rings at pH 4.0  
 

To monitor the pH-controlled oligomerisation, HsPrx3 proteins were buffer exchanged from 100 

mM ammonium acetate at pH 8.0, into 100 mM ammonium acetate at pH 4.0. The time from 

initiation of exchange to recording the mass spectra was approximately 60 s. In both cases for 

cleaved and His6-tagged HsPrx3, HMW species were immediately observed upon spraying with a 

distinct charge state series for each species (Figure 3.6 and 3.7). The HMW species for cleaved 

HsPrx3 corresponds to between one and six rings. From previous studies of HsPrx3 using TEM and 

cryo-EM (Phillips et al, 2014; Radjainia et al, 2015), these species are likely to correspond to stacked 

protein rings. As the formation of the HMW stacks is rapid, kinetic parameters were challenging to 

determine. During certain experiments, the population of rings change over time as the mass 

spectra were being recorded (Appendix A). Intermediate species composed of partial HsPrx3 rings 

were not detected as the stacked ring stoichiometry evolves, indicating that the mechanism of 

HsPrx3 HMW protein tube formation occurs non-commutatively, and exclusively through the 

association of rings. 

 

Due to the large nature of these HMW HsPrx3 structures, AUC was used to corroborate the stacking 

behaviour in solution with those observed using nMS. The stacking behaviour of cleaved HsPrx3 

observed by AUC was different from that recorded by nMS. Changing the pH of the ammonium 

acetate solution from 8.0 to 4.0 resulted in the formation of larger structures with c(s) values of 

over 100 S, with no smaller stacked ring species observed using the AUC (Figure 3.6 C). A main peak 

at c(s) of 120 S was observed, corresponding to a species with a mass of approximately 9 MDa, 

equating to a stacked species comprised of at least 34 rings. This discrepancy between the two 

techniques could arise due to very large stacks, if ionised at all, would unlikely transmit through 

the mass spectrometer. These large stacks could also be falling apart during electrospray 

ionisation, and before the final ionisation of the molecules. Each AUC experiment typically takes a 

few hours to complete a run, and over the course of the experiment, local concentrations of 

proteins increase – these variables of time and protein concentration could also account for the 

observed difference between nMS and AUC. 
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Figure 3.6: Cleaved HsPrx3 associates into large HMW stacks at pH 4.0 
The mass spectrum (A) showing distinct charge state series for each discrete HMW HsPrx3 stacked 
species, with the MWs (B) corresponding to stacks of one to six rings in solution at pH 4.0. There 
were no observable peaks in the spectrum for monomers or dimers. The AUC experiment (C) shows 
a population of large species, with a predominant population at 120 S which corresponds to 34 
stacked rings of 9 MDa. The frictional ratio (f/f0) is 1.3. 
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In contrast, decreasing solution pH from 8.0 to 4.0 of 100 mM ammonium acetate causes His6-

tagged HsPrx3 to form short tubes composed of 2-3 rings. This ring stacking phenomenon seems 

to occur slowly, with AUC experiments taking a few hours to collect data supporting the nMS 

spectra collected 3 h after buffer exchange into the pH 4.0 solution (Figure 3.7). 

 

 

 

Figure 3.7: His6-tagged HsPrx3 forms short stacks of rings at pH 4.0 
Mass spectra (A) comparing the assembly of HsPrx3 rings between initial injection (0 h after the 
time of buffer exchange) to the same sample after 3 h at pH 4.0. The population of stacked rings 
shifts to that of higher MW. Charged states are that for the most intense peak for each spectra 
series. A table (B) comparing the theoretical MW with experimental MW derived from the mass 
spectra in A. Asterisks indicates experimental MW for species being lower than expected. The AUC 
analysis showed similar stacking behaviour for His6- tagged HsPrx3, with sedimentation coefficients 
for the three highest peaks are 17 S, 23 S, 29 S. These correspond to the formation of HMW species 
composed of two to four rings. The frictional ratio (f/f0) is 1.11.  
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3.2.5 Reversibility of stacking 
 

Increasing the solution pH of ammonium acetate from 4.0 to 8.0 reverts the stacked population of 

rings back into single rings, with no chemical changes to the protein sequence. This phenomena 

occurs for both cleaved HsPrx3 (Figure 3.8) and His6-tagged HsPrx3. Although previously assumed 

(Phillips, 2014), this is the first time this switch has been directly observed. This process, much like 

low pH induced stacking, occurs in under 60 s. Detecting this disassembly of stacks using the AUC 

was not possible, as during the course of the experiment, proteins are spun to the bottom of the 

cells thereby increasing local concentrations and, in this case, HsPrx3 in 100 mM ammonium 

acetate, pH 4.0, formed visible protein precipitates.  

 

 

 

Figure 3.8: pH switch of cleaved HsPrx3 from pH 4.0 stacks back to pH 8.0 
HsPrx3 protein was buffer exchanged from 100 mM ammonium acetate, pH 4.0, back into 100 mM 
ammonium acetate, pH 8.0, and sprayed into the native mass spectrometer to give spectra (A). 
The majority of the species returned to single rings (red triangle), with a small detectable 
population of two stacked rings (the small peaks around 9000 m/z). There is another charged series 
attributed to a dissociated ring (purple circle) with molecular weights (MWs) corresponding to four 
dimers. The collision induced dissociation of an isolated peak at 6365 m/z at 60 V gives the spectra 
(B) that also shows the UniDec deconvolutions of component spectra that could compose the 
experimental spectra. Dissociated species range from monomers to tetramers. The resulting 
monomer masses are the same as before lowering the pH (Figure 3.5 A), with no changes to the 
sequence or chemical modifications of the protein after stacking occurs. 
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3.3 Mixing tagged and cleaved tectons to modulate 

HMW tube formation 
 

3.3.1 Cleaved and tagged HsPrx3 rings do not interchange dimer 

subunits at pH 8.0 
 

Proteins that self-associate to form HMW oligomers often interchange subunits with one another 

in a state of equilibrium (Sobott et al, 2002), and this could be a useful feature for a protein tecton. 

This subunit switching behaviour was probed for the HsPrx3 model tectons using His6-tagged 

HsPrx3 and cleaved HsPrx3, because both proteins have the same A interface where dimers 

interact to form rings. However, the equimolar mix of cleaved and His6-tagged HsPrx3 resulted in 

two distinct spectra, indicating that it is unlikely that subunit exchange is occurring in solution 

(Figure 3.9). The UniDec deconvolution software assigns MWs to the spectra that suggests subunit 

exchange between the rings can occur; however, this assignment could also be a result of having 

broad mass-to-charge (m/z) peaks. Similar spectra, composed of two distinct charge state series 

for cleaved and tagged HsPrx3, can be generated again even after 24 h of mixing, and also when 

different ratios of cleaved and His6-tagged are mixed together. This suggests that dimer subunit 

swapping does not occur between the HsPrx3 protein rings. 

 

Figure 3.9: An equimolar mix of cleaved and His6-tagged HsPrx3 at pH 8.0 
Mass spectrum of a 1:1 mix of cleaved and His6-tag HsPrx3 at a total protein concentration of 20 
µM in 100 mM ammonium acetate, pH 8.0. Unidec peak assignment shows that this spectrum is 
composed of two distinct species of HsPrx3, but the peaks were too low in resolution to distinguish 
between possible single subunit exchanges. 
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The above spectra is that of an equimolar mix of proteins. The resulting mismatch in peak 

intensities, where cleaved HsPrx3 appeared to be more abundant, was an intriguing result. To rule 

out disproportionate protein aggregation of His6-tagged HsPrx3, the sprayed samples were run on 

an SDS-PAGE gel to reveal protein bands of similar intensities (Figure 3.10). Where the loss of 

protein occurred, the degree to which it did was not influenced by the presence of the His6-tag. 

Variations in intensity observed on the nMS can occur through differences in ionisation, due to the 

proteins themselves, or needle-to-needle variation. 

 

 

Figure 3.10: HsPrx3 proteins after buffer exchange into ammonium acetate 
SDS-PAGE gel shows 1:1 protein bands for His6-tagged (tag) and cleaved (clv) wild-type HsPrx3 
throughout the buffer exchange process (Section 6.9.3) from 100 mM ammonium acetate at pH 
8.0 (pH8 AA) to pH 4.0 (pH4 AA). There is notable protein loss at the last step (red arrow), after 
buffer exchanging into pH 4.0 ammonium acetate and then centrifugation of the sample. BE – 
buffer exchange (sample recovery after running sample through Bio-Spin6 columns, Section 7.5.2). 
HS – sample after centrifugation at 20000 xg, 10 min to remove precipitated proteins. Samples 
after centrifugations (or after 0.22 µm filtration) were analysed by the nMS. 
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3.3.2 Modulation of stack lengths: cleaved and His6-tagged HsPrx3 

combine when stacking at pH 4.0 
 

Lowering the pH to 4.0 of an equimolar solution containing cleaved and His6-tagged HsPrx3 causes 

these proteins to assemble together as rings. Intriguingly, the nMS spectrum now shows a higher 

relative abundance of His6-tagged HsPrx3 species detected compared to cleaved HsPrx3, despite 

being present in equimolar concentration. Unidec deconvolutes the somewhat complex spectra, 

assigning peaks for stacks of up to three rings (Figure 3.12). Curiously, pH 4.0 solutions favour the 

ionisation of His6-tagged HsPrx3 species, as the single ring spectra appears at a higher intensity for 

His6-tagged HsPrx3 compared to cleaved HsPrx3. In the centre of this this spectrum, masses can be 

assigned to three different populations of two stacked rings composed of two cleaved proteins 

associating (  on Figure 3.12), or two His6-tagged proteins assembling (  on Figure 3.12), or one 

cleaved and one His6-tagged HsPrx3 associating together (  on Figure 3.12). This experiment was 

also performed using the AUC (Figure 3.11), which supported these results, in that the species 

detected were sized between the observed stacked ring populations for the cleaved and tagged 

species on their own (Compare to Figures 3.6 C and 3.7 C). In fact, the His6-tagged species 

dampened the formation of large cleaved HsPrx3 stacks of >34 rings, consistent with this species 

only forming up to three stacked rings. This demonstrates that His6-tagged HsPrx3 protein can 

modulate the formation of HMW stacked species. Again, the AUC indicated that larger stacked 

species were observed in solution, than those observed by nMS. 

 

 

Figure 3.11: AUC of 1:1 mix of cleaved and His6-tagged HsPrx3 at pH 4.0 
This trace shows HMW species with S values that range between that of cleaved HsPrx3 at pH 4.0 
(Figure 3.6) and tagged HsPrx3 at pH 4.0 (Figure 3.7) separately. The frictional ratio (f/f0) is 1.02 
and P at 0.66. This result indicates that His6-tag HsPrx3 can influence cleaved HsPrx3 protein 
stacking, limiting protein tube size. 
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3.4 Discussion 
 

3.4.1 Mechanism of formation of HMW Prx stacked species 
 

The self-assembly of protein tectons can generate diverse quaternary structures with different 

functions (Section 1.3). nMS is a powerful tool to probe protein self-assembly into different 

oligomeric states. This is the first time a 2-Cys Prx oligomer has been observed in the gas phase, 

shedding light on the mechanism by which HsPrx3 proteins form HMW assemblies: with whole 

rings associating to form discrete stacked ring intermediates. HsPrx3 formation of HMW protein 

tubes occur via a non-commutative mechanism (see Figure 3.1). Having the non-commutative 

associations of rings, as opposed to the commutative associations of individual dimers, would also 

increase the protein-protein interaction surface area at the R interface, where favourable 

electrostatic and hydrogen bonds can occur, to promote protein tube formation. 

  

Previous observations of HsPrx3 HMW structures have described this phenomenon occurring on 

the hour time scale (Phillips et al, 2014, Radjainia et al, 2015). However, this study shows ring 

stacking occurring rapidly in less than 60 s, thus allowing HMW stack formation as a self-preserving 

response to stress conditions, such as acidification. This is also the first time it has been directly 

shown that HsPrx3 stack formation is a reversible process that also occurs quickly (< 60 s) when 

solution pH is increased from 4.0 to 8.0. This drastic change in quaternary structure, which occurs 

rapidly, has yet to be observed in vivo, but this has not prevented other researchers from 

postulating its relevance in cell signalling during transient stress conditions (Saccoccia et al, 2012, 

Angelucci et al, 2013). Nonetheless, it is this switching behaviour of HsPrx3 that makes it an ideal 

tecton for applications in the realms of nanotechnology. 

 

3.4.2 Towards controlling HMW tube formation and lengths  
 

The HsPrx3 quaternary structure has proven to be highly sensitive to fluctuations to its solution 

environment. In this study, various conditions have been explored – including the effect of different 

salts and the presence of His6-tag - with the aim of uncovering the features responsible for HsPrx3 

HMW tube formation.  

 

An important caveat to this work includes the lack of control for metal binding to the His6-tag. 

Measures to chelate any residual metal ions that could have been introduced during the 

purification of HsPrx3, such as by using EDTA, were not performed (as this was not the focus of 
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these experiments at the time), so stacking behaviour that could have been encouraged by this 

(Ardini et al, 2014) was not accounted for. His6-tagged Prx3 rings were shown to be stabilised in 

comparison their cleaved counterparts, with lowered activity towards H2O2 (Cao et al, 2007; 

Ashmead, 2016). This ring structure stabilisation has also been observed for HsPrx3 (Ashmead, 

2016) and is perhaps the reason why dimer subunits do not readily interchange between cleaved 

and His6-tagged HsPrx3, as observed in the nMS spectra. The histidine tag also shifts the 

equilibrium of His6-tagged HsPrx3 towards smaller stacked species in 100 mM ammonium acetate, 

pH 4.0, compared with cleaved HsPrx3 proteins. His6-tagged HsPrx3, when mixed with cleaved 

HsPrx3, can be used to modulate the overall size range of the species observed using the AUC. His6-

tagged HsPrx3 rings are composed of 12 monomers that have an extra 27 amino acid peptide chain 

protruding from the N-terminus of the protein. These flexible peptide chains are situated at the 

centre of the ring, and could conceivably cause sufficient steric hindrance towards the formation 

of favourable hydrogen bonds at the R interface. This, in turn, could slightly shift the equilibrium 

of ring associations towards that of single rings. An interesting observation is that SmPrx1, the only 

other crystal structure of stacked Prx, retains its histidine tag and this is probably why the protein 

purifies a discrete species of two stacked rings at pH 4.2 (Saccoccia et al, 2012).  It would interesting 

to see how this protein behaves without a tag. The ability of HsPrx3 to form stacks of >2 rings, even 

with the histidine tag still attached, is a testament to the versatile R interface and the facilitating 

ring symmetry of this dodecameric tecton.  

 

The nMS experiments were performed in ammonium acetate, and this does not represent the 

crowded environs within a mitochondria. In fact, repeating these experiments with SEC buffer (20 

mM HEPES, 150 mM NaCl) with rapid buffer exchange from pH 8.0 to 4.0 resulted in precipitated 

proteins. However, with slow decrease in pH via overnight dialysis, HsPrx3 can stack to form long 

tubes (Phillips et al, 2014, Radjainia et al, 2015), such as those observed in the AUC experiments. 

These interesting inconsistencies could be due to a combination of factors including influences of 

different salts on protein assembly, as well as effects of the bulk environment versus the 

microenvironment on assembly. These salt-dependent, time-sensitive associations of HsPrx3 is a 

complex process with biological relevance yet to be verified. Nevertheless, the R interface of 

HsPrx3 is a versatile surface for protein-protein association, which can be tuned towards different 

stacking behaviours via the use of different solution components whether it be salts, crowding 

agents or pH. 
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3.5 Summary 
 

In this chapter, native mass spectrometry was used to investigate the differing stacking 

mechanisms of cleaved HsPrx3 proteins as well as His6-tagged HsPrx3 proteins. Both proteins are 

shown to assemble into HMW tube structures via a non-commutative mechanism, with dimers 

associating first to form rings, and then these ring coming together to form stacks of proteins. AUC 

analysis of HsPrx3 in pH 4.0 was used to compare the behaviour of proteins in solution with that 

using nMS. AUC and nMS results for the His6-tagged HsPrx3 agree well, showing the formation of 

shorter stacks of HsPrx3 rings. Whereas, the nMS of the cleaved HsPrx3 showed a mixed population 

of HMW stacks composed of one to six rings. The AUC data, on the other hand, did not reflect this 

result, with large HMW species that would correspond to >34 rings observed. The reversibility of 

ring stacking was also demonstrated using nMS, showing the versatility of HsPrx3 as a tecton with 

reversible self-assembly as a key feature.  

 

On mixing equimolar concentrations of the cleaved HsPrx3 and His6-tagged HsPrx3, it was observed 

using nMS that the dimer subunits do not readily interchange between two populations of 

dodecameric rings. This surprising result could be attributed to the His6-tag causing ring 

stabilisation. In addition, when the solution pH was lowered from 8.0 to 4.0, the rings associated 

together at the R interface, resulting in a population of mixed stacks of rings. The use of His6-tagged 

HsPrx3 skewed the equilibrium of tube formation, as observed using the AUC, so that the whole 

population of protein tubes did not extend beyond 120 S, which is equivalent to ~34 rings. Using a 

mixed population of cleaved HsPrx3 and His6-tagged HsPrx3 could be a means with which to control 

HsPrx3 protein tube lengths. 
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Chapter 4: Removing the redox switch in 

peroxiredoxin quaternary structure 
 

4.1 Introduction 
 

4.1.1 Is Prx quaternary structure linked to its activity and how can this be 

used in nanotechnology 
 

Protein oligomerisation confers evolutionary advantages to cells, where greater functionality can 

result from a smaller DNA blueprint (Marsh et al, 2015; Ahnert et al, 2015; Levy et al, 2008). The 

oligomeric state of proteins is often linked to its catalytic activity: parts of active sites can form at 

the interface between two proteins, or allosteric interactions between proteins can govern its 

activity (Griffin and Gerrard, 2012). The quaternary structures of proteins can sometimes confer a 

function (such as scaffold proteins), and often form precise architectures to house catalytic 

reactions that hinge on the precise spatial arrangement of reactive amino acids (Grishin and 

Phillips, 1994; Griffin et al, 2012). Hence, disruption of protein oligomeric state often adversely 

affects protein activity, and this has been used as a strategy to target proteins associated with 

pathologies and remove their activity all together (Fischer et al, 2015). 

 

Redox systems, with their biological electron transfer capabilities, have been used for 

bionanotechnology, such as for biosensor applications (Gilardi et al, 2002). Redox sensitivity is 

usually engineered into recombinant proteins by inserting cysteine residues to create protein 

surfaces linked by disulfide bonds (Ballister et al, 2008). Peroxiredoxins (Prxs) are naturally 

occurring redox-sensitive proteins that are able to alter their quaternary structure based on the 

redox status of their catalytic cysteine. The intricacies of this redox switch, and the subsequent 

quaternary structural changes, need to be unravelled to facilitate the full utilisation of this tecton. 

 

4.1.2 Redox-dependent mechanism of 2-Cys Prx oligomerisation 
 

Prx proteins are considered guardians of the redox landscape within cells (Perkins et al, 2015). As 

detailed in Sections 1.4.1 and 1.4.2.1, the solvent exposed active sites of Prxs are highly conserved 

across all domains of life (Rhee et al, 2005). The conserved spatial positions of residues act to lower 
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the pKa of the peroxidatic cysteine (CysP) and also activate the sulfur atom for nucleophilic attack 

of H2O2. In contrast, the location of the resolving cysteine (CysR) varies between different types of 

Prx; for typical 2-Cys, like HsPrx3, the CysR comes from an obligate homodimer. This initial oxidation 

step of deprotonated CysP with H2O2 occurs rapidly to form Cys-SPOH (Step1 in Figure 4.1) and has 

a second order reaction rate of ~107 M-1s-1 that is on par with other peroxidases (Perkins et al, 

2015).  In typical 2-Cys Prxs, the Cys-SPOH on one monomer reacts with the CysR on a pairing 

monomer to generate a disulfide bond between the two monomers (Step 2). Therefore one or two 

disulfide bonds can be held per Prx dimer. The disulfide bonds are reduced to complete the 

catalytic cycle either by chemical agents, such as DTT, TCEP or β-mercaptoethanol, or in a 

physiological context, by antioxidant proteins such as thioredoxins (Wood et al, 2003a, Rhee et al, 

2005; Karplus, 2015). Within the cell, the rate of this final recycling step (Step 3) is restricted by the 

slow catalytic turnover, with a rate of ~105 M-1s-1, as well as the low cellular abundance of 

thioredoxin (Winterbourn and Peskin, 2016). This rate limiting step is 2 orders of magnitude lower 

than other cycling rates of other peroxidases (Watabe et al, 1997), which confers unusual 

properties to Prxs that allow them to perform diverse functions within a cell (highlighted in Section 

1.4.2).  

 

 

Figure 4.1: Catalytic cycle of 2-Cys Prxs, such as human Prx3 (HsPrx3) 
The catalytic cycle of Prxs can be segmented into three main steps 1) peroxidation, 2) resolution, 
and 3) recycling. Reduced Prxs have unhindered catalytic cysteines that enable protein assembly 
into rings. The thiol of CysP, in a fully folded active site (FF), is deprotonated and primed for SN2 
nucleophilic attack of H2O2 (Step 1). When the active site unfurls into a locally unfolded (LU) state, 
the sulfenic form of CysP forms a disulfide bond with the resolving cysteine, CysR, resulting in the 
formation of oxidised dimers. This disulfide bond can then be reduced either by the thioredoxin 
enzyme in vivo, or reducing agents (such as TCEP or DTT) in vitro.  
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The redox state of CysP, dictates changes to the quaternary structure in certain Prxs, where reduced 

Prxs form rings, and oxidised Prxs form dimers (Barranco-Medina et al, 2009). In a reduced state, 

the deprotonated CysP is poised for reaction in a fully folded active site which encompasses the α2 

helix end. Oxidation of CysP causes the α2 helix to enter a locally unfolded conformation, which 

enables a disulfide bond to form between CysP and CysR from the adjacent monomer. This partial 

uncoiling during disulfide bond formation destabilises the dimer-dimer interface (or A interface) 

disrupting the toroidal structure to generate obligate dimers (Wood et al, 2003a). It is this sensitive 

control of the quaternary structure for certain Prxs, such as that of human Prx3 (HsPrx3), which 

makes these proteins such appealing tectons for creating switchable protein architectures. 

 

4.1.3 Other Prx muteins provide insight to the relationship between 

oligomerisation and activity 
 

The redox mechanism for certain Prxs, such as HsPrx3, connects the active site state with 

conformational changes that can alter the overall quaternary structure. To investigate this close 

relationship between the quaternary structure of Prxs and their activity, a handful of mutagenesis 

studies have been performed on the toroid-building ‘A interface’ as well as within the active site of 

2-Cys Prxs. The effects of these mutations on the redox switch, that is, the peroxidase activity of 

Prxs, were monitored thus far for the eukaryotic Prxs: StAhpC, Schistosome masoni Prx1 (SmPrx1) 

and HsPrx3 (Parsonage et al, 2005; Angelucci et al, 2013; Phillips, 2014). These studies reveal that 

oligomerisation confers greater peroxidase activity to particular 2-Cys Prxs, enabling more efficient 

H2O2 scavenging. Active site mutations that abolish peroxidase activity often yielded ringed Prxs, 

suggesting that disulfide bond formation is key for destabilising the A interface. 

 

Table 4.1: Activity of various muteins and wild-type of StAhpC (Parsonage et al, 2005) 

Enzyme 
(StAhpc) 

Effect of mutation kcat (s-1) 
KM (H2O2) 
(µM) 

kcat/KM (H2O2) 
(M-1s-1) 

Rates compared 
with wild-type 

Wild-type -  55.1 ± 0.8 1.4 ± 0.2 (3.9 ± 0.5) x 107 - 

T77V 
Stabilised 
decamer 

75.8 ± 1.6 1.6 ± 0.2 (4.7 ± 0.4) x 107 Slightly faster 

T77I Dimer 25.0 ± 1.0 93.4 ± 8.8 (2.7 ± 0.2) x 105 100-fold slower 

T77D Dimer 31.5 ± 1.9 62.0 ± 9.5 (5.1 ± 0.6) x 105 100-fold slower 

 

Mutagenesis of StAhpC, was performed at the A interface, to generate dimeric muteins as well as 

stabilised decameric muteins (Parsonage et al, 2005). The activity of each mutein to reduce H2O2 

was assessed using an intrinsic fluorescence-based assay (Table 4.1). Mutation of residues at the 

decamer building interface, T77I and T77D, disrupted the toroid formation and lowered the StAhpC 
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mutein activity by 100 fold; whereas the toroid stabilisation mutation, T77V, showed a slight 

increase in activity when compared to the wild-type protein. This work demonstrates that the 

toroid ring is not necessarily required for activity, as the dimeric mutant was still active, but is 

required for optimal activity. 

 
Mutations of HsPrx3 at both the A interface and active site were created by Amy Phillips (Phillips, 

2014) and the activity of these proteins (Table 4.2) was tested using the optimised competitive 

assay with horse radish peroxidase (Section 7.10.1). Errors were not reported for these results. 

Nonetheless, the A interface T104W mutein, with destabilised dodecameric ring formation under 

reducing conditions, demonstrated slightly lowered activity towards H2O2 compared to wild-type 

HsPrx3. These results suggest, like in the case of StAhpC, that ringed quaternary structures of 

HsPrx3 are required for optimal activity. Mutations to residues within the active site that disrupted 

the peroxidase function of CysP not only stabilised ring formation, but also encouraged the 

formation of HMW structures. These active site mutein results have also been demonstrated in 

SmPrx1 proteins, where the increased formation of HMW stacked rings were observed (Angelucci 

et al, 2013). This suggests that peroxidase activity, or specifically disulfide bond formation, is 

important for the redox switch from rings to dimers. 

 

Peptide tags containing six histidines (His6-tag) are routinely used in recombinant protein 

purification, were found to stabilise the ring structure of Prxs, and this has been studied with 

respect to their peroxidase activity. In BtPrx3, these stabilised His6-tagged toroids exhibited 

decreased activity compared with untagged BtPrx3 (Cao et al, 2007). Similar results were shown 

for the HsPrx3 system (Ashmead, 2016), where activity for His6-tagged wild-type HsPrx3 was 

reported to be (3.4 ± 0.2) x 107 M-1s-1. Note that this is the opposite of what is observed for the 

stabilised decamer StAhpC mutein (Parsonage et al, 2005), suggesting that the ring stabilisation 

caused by the His6-tag occurs via a different mechanism than that of A interface residue mutations. 

 

It is important to note that these observations are specific to certain Prxs. For instance, 

oligomerisation into rings is not necessary for optimal activity in 2-Cys Prxs from Arabadopsis 

thaliana (At-CysPrx) (König et al, 2013). The His6-tagged variant and the dimeric mutein both have 

higher activity than the wild-type protein. This is the opposite of what is observed in StAhpC, HsPrx3 

and SmPrx1. Also, the formation of disulfide bonds do not necessarily cause ring destabilisation in 

all 2-Cys Prxs. The human Prx4 (HsPrx4) is a permanent decameric ring with an activity of 2 x 107 

M-1s-1 towards H2O2 and on disulfide bond formation, it remains as a ring (Wang et al, 2012). The 

ring stability has been attributed to an A interface held together by hydrophobic and van der Waals 

interactions. 
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Table 4.2:  Summary of the rationale behind mutational design of HsPrx3 muteins (Phillips, 2014). 
SEC-SLS non-running buffer was 20 mM HEPES, 150 mM NaCl, pH 8.0; reducing buffer was the 
same as non-reducing buffer but contained 2 mM TCEP. n/d = not determined. HMW = high 
molecular weight; ** no errors were reported. 

 

  

Enzyme 
(HsPrx3) 

Rationale 

Quaternary assembly 
by SEC coupled with static 
light scattering (SEC-SLS) 

Electron 
microscopy 
(reducing) 

Relative 
activity 
H2O2  
(M-1s-1) 
** 

Non-reducing Reducing 

Wild-
type 

 Dimer 
Dodecamer, 
dimer 

Dodecamer 1.1 x 107 

Interface A mutations    

S78A 

Stabilise A interface. 
Altered packing could 
lead to increased 
stability as seen in 
Parsonage et al. 2005 

HMW, 
dodecamer, 
dimer 

Dodecamer 

Potential 
cages (like 
Meissner et 
al. 2005) 

2.7 x 107 

T104W 

Stabilise A interface. 
Introduced the potential 
for a novel H-bond, 
mimicking the A 
interface of 
Mycobacterium 
tuberculosis AhpE 

Tetramer,  
dimer 

Dodecamer, 
tetramer 

Potentially 
smaller 
diameter 
rings 

4.5 x 106 

Active site mutations    

C47S 

Prevents disulfide bond 
formation and A 
interface destabilisation 
by mimicking the 
protonated CysP 

HMW, 
dodecamer 

Dodecamer n/d Inactive 

P48A 
Decreasing the 
propensity of CysP loop 
to unfold 

Dodecamer Dodecamer n/d 0.4 x 107 

R123G 

Removing the CysP 
thiolate-R123 ionic 
bond, encouraging loop 
unfolding 

HMW, 
dodecamer 

Dodecamer 
No ring or 
HMW 
structures 

Inactive 

C47S 
S78A 

Combining both toroid 
stabilising mutations 

HMW, 
dodecamer 

Dodecamer 
Catenanes 
are more 
frequent 

n/d 
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4.1.4 Chapter overview 
 

The redox switch of certain typical 2-Cys Prxs, like HsPrx3, are intertwined with its oligomeric state. 

The active site influences tertiary structural movements that can disrupt interactions at the A 

interface, resulting in destabilised ringed assemblies. By engineering in or disrupting associative 

bonds, via amino acid mutations, at the A interface, the importance of the redox-induced 

oligomeric switch to peroxidase activity for HsPrx3 can be studied and can shed light on the 

connection between oligomerisation and peroxidase activity across this particular group of Prxs. 

StAhpC and AtPrx1 proteins share low sequence similarity with HsPrx3: 37% and 55% respectively. 

The characterisation of oligomeric state and peroxidase activity has not yet been examined for any 

mammalian Prxs. This study presents the first active human 2-Cys dimer and stabilised toroid that 

has been biophysically characterised in association with activity. 

 

A interface muteins, S75E HsPrx3 and S78C HsPrx3, were generated that favour the dimer or ring 

quaternary structures, respectively. X-ray crystallography alongside other biophysical techniques, 

including analytical ultracentrifugation (AUC), small angle X-ray scattering (SAXS), and size 

exclusion chromatography coupled with multi-angle light scattering (SEC-SLS), were performed to 

ascertain the structure of these muteins under various redox conditions. Activity assays of these 

muteins reveals the link between structure and peroxidase function. 

 

Disentangling the oligomeric state of HsPrx3 from the redox state of CysP would not only give 

insights into the catalytic mechanism of this crucial enzyme, but will also generate a complete set 

of protein building blocks as tectons for nanotechnological applications.  

 

4.2 Design rationale for A interface mutants 
 

In order to study the relationship between the quaternary structure switch of HsPrx3 and its redox 

activity, dimer and ring tectons were separately generated by designing disruptive or stabilising 

mutations at the A interface. The A interface of the wild-type HsPrx3 crystal structure (PDB: 5JCG, 

Yewdall 2016; Chapter 2) was analysed using PDBePISA which identifies important residues that 

interact to form a macromolecular interface (Krissinel and Henrick, 2007). With a buried surface 

area of 655 Å2, the A interface involves an extensive network of hydrogen bonds that occur along 

the α3 helix as well as between a couple of loop regions composed of residues L103-K105 and 

E116-L120.  
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Figure 4.2: A interface amino acid mutations 
Within the A interface, the mentioned residues are: D74 (orange), S75 (green) and S78 (red). 
Hydrogen bonds are indicated with dotted lines. (PDB: 5JCG) 
 

A particular region of interest was from residues serine 75 (S75) and serine 78 (S78). The residues 

interact with the equivalent residue on the adjacent monomer (Figure 4.2). In particular, the S78 

residue hydrogen bonds with the equivalent residue on the apposing dimer, and this has been 

demonstrated to be a key interaction to form this interface (Phillips, 2014). The S75 residue forms 

a hydrogen bond with D74 on the adjacent molecule.  

 

A single point mutation to amino acid residues were proposed at the S78 and S75 sites. Replacing 

S75 with a negatively charged glutamic acid (S75E mutein) was predicted to disrupt its interaction 

with D74, due to charge-charge repulsions of two negatively charged amino acids in close 

proximity, resulting in the formation of only dimers. Whereas, S78 interacts directly with the 

adjacent homodimer S78. Mutating S78 to a cysteine residue (S78C mutein) was chosen as a 

strategy to generate stabilised toroids. Cysteine residues, in close proximity and under oxidising 

conditions, can form disulfide bonds, however, the A interface is closely packed and not solvent 

exposed, so it is unlikely disulfide bonds will form between S78C dimers under oxidising conditions. 

Alternatively, cysteine residues have been shown to behave similarly to non-bulky hydrophobic 

amino acids when localised at interfaces (Poole, 2015). This cysteine-induced ring stabilisation is 

perhaps a similar phenomenon to what is observed for HsPrx1, which possesses a naturally contain 

cysteine (C83) at a homologous position to S78 in HsPrx3 (Lee et al, 2007). 

 

Molecular biology and site directed mutagenesis was performed on the N-terminal His6-tagged 

wild-type HsPrx3 gene, to create both the S75E HsPrx3 mutein and S78C HsPrx3 mutein (Epoch 

Lifesciences). The resulting expected masses and pIs for tagged and cleaved proteins are detailed 

in the table below. 
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Table 4.3: Theoretical molecular weights and pI of A interface muteins. 

HsPrx3 MW (Da) pI 

S75E   
        His6-tagged 25364.81 5.86 
        Cleaved 22212.26 5.43 

S78C   
        His6-tagged 25338.83 5.97 
        Cleaved 22186.29 5.59 

 

4.3 The obligate dimer: S75E HsPrx3 
 

4.3.1 Expression, purification and identification 
 

Recombinant N-terminal His6-tagged S75E HsPrx3 was expressed and purified (Section 7.4 and 7.5). 

Briefly, His6-tagged S75E HsPrx3 proteins were purified using IMAC, the elution peak from which 

was pooled and run through the SEC column for further purification (Figure 4.3). S75E muteins 

were overexpressed with purified yields of ~70 mg/L of growth media used.  

 

 
Figure 4.3: S75E HsPrx3 purification using size exclusion chromatography 
The SEC trace (A) showing proteins eluted into 20 mM HEPES pH 8.0, 150 mM NaCl, 2 mM TCEP. 
The major protein peak elutes in the size range expected for dimeric proteins. The reducing SDS-
PAGE gel (B) confirms successful overexpression of S75E HsPrx3. There is a notable higher band co-
eluting at ~50 kDa which corresponds to oxidised dimeric protein, discussed in Section 4.6.2. The 
gel numberings are as follows: 1 – total proteins in lysate; 2 – total soluble proteins; 3 – pooled 
IMAC elution; 4 to 14 – fractions eluted off the SEC column. 
 

The SEC chromatograms from these initial purifications, shows the major protein peak eluting at 

volumes that correspond to dimeric proteins. The reducing SDS-PAGE gel reveals two protein bands 

corresponding to reduced S75E HsPrx3 and oxidised S75E HsPrx3. In fact, S75E HsPrx3 were later 

shown to be notoriously difficult to completely oxidise (Section 4.5.2 and discussed in Section 
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4.6.2). The His6-tag was cleaved using rTEV protease (Figure 4.4, Section 7.5.3). The mass of the 

pure protein, both tagged and cleaved, was assessed using LC-MS to verify it was the correct mass 

for S75E HsPrx3.  

 

Figure 4.4: His6-tag cleavage of S75E HsPrx3 proteins using rTEV 
protease 
His6-tagged rTEV protease (~28 kDa band) and His6-tagged S75E 
muteins were pre-mixed and incubated to allow to cleavage to 
occur. The mix after 24 h (mix) was loaded onto Co2+-beads. 
Cleaved S75E HsPrx3 eluted off the beads in the flow through (FT) 
and also after washing with SEC buffer (W1). The beads (beads) 
were also run on a gel to check for cleavage efficiency of the rTEV 
protease (good efficiency is when there are no more ‘tag’ bands 
visible) as well as to check which proteins remained attached to 
the beads. 
 

 

4.3.2 Crystallisation trials 
 

Multiple crystallisation screens and fine screens were used in an attempt to grow S75E HsPrx3 

crystals, but to no avail (Section 7.8). However, after 12 months, small cubic crystals were observed 

in the RS3 screen, condition F9 (0.75 M tri-sodium citrate, 10 mM sodium borate, pH 8.5; Stura et 

al, 1992) for 20 mg/ml His6-tagged S75E HsPrx3 (Figure 4.5). 

   

Figure 4.5: His6-tagged S75E HsPrx3 protein crystals  
A droplet from the crystal screens made in-house shows cubic 
crystals of S75E HsPrx3 formed after 12 months. 20 mg/mL protein 
and mother liquor were mixed at a 1:1 ratio (Section 7.8.1). The 
screen condition contains 0.75 M tri-sodium citrate, 10 mM sodium 
borate, pH 8.5 (Stura et al, 1992). 
 

 

Izit Crystal Dye (Hampton Research; Section 7.8.1.3), a blue molecular dye that binds to solvent 

channels in macromolecular crystals, was used to check whether these crystals were 

proteinaceous. After 20 minutes, a single crystal incubated in Izit was coloured blue, indicating that 

it was protein. However, these crystals did not diffract and attempts to replicate crystal growth in 

these conditions were not fruitful in the short-term time scale during the last 6 months of this 

thesis. Suggestions for future work to explore these and other conditions to resolve the structure 

are detailed in Section 4.6.2. 
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4.3.3 Quaternary structure characterisation  
 

Previous work on wild-type HsPrx3 has shown that His6-tags stabilised the ring quaternary structure 

of these proteins (Ashmead, 2016), so both His6-tagged and cleaved S75E HsPrx3 were studied in 

the following experiments with the hypothesis that the His6-tag may encourage toroid formation 

despite the point mutation.  

 

4.3.3.1 Circular dichroism of S75E HsPrx3 to check for secondary structure 

 

To ensure that S75E HsPrx3 protein is fully folded, its secondary structure was examined using 

circular dichroism spectroscopy. The spectrum recorded showed that the cleaved S75E HsPrx3 

protein is folded (Figure 4.6). A minimum is recorded at 208 nm and 222 nm, which is characteristic 

of folded globular proteins (Greenfield, 2007).  

 

 
Figure 4.6: Circular dichroism spectra of cleaved S75E HsPrx3 
Circular dichroism spectroscopy was conducted with 0.1 mg/mL protein diluted in MilliQ. The mean 
residue ellipticity, [θ], is plotted as a function of the wavelength (data represented as ◦).  
 

4.3.3.2 S75E muteins do not form a ring in solution  

 

Biophysical analyses of S75E HsPrx3 was performed, using SEC-SLS and AUC, to investigate the 

protein quaternary structure. As determined by SEC-SLS, the experimental molecular weight (MW) 

of cleaved S75E HsPrx3 proteins is 44 kDa in non-reducing buffer conditions (20 mM HEPES pH 8.0, 

150 mM NaCl) (Figure 4.7 A). This is consistent with S75E HsPrx3 being a dimeric species in solution. 

In fact, S75E muteins, both cleaved and His6-tagged, were dimeric under both reducing and non-

reducing conditions, as seen on the AUC (Figure 4.7 B). In this AUC experiment, a variety of protein 

concentrations for His6-tagged S75E HsPrx3 were sampled simultaneously in reducing buffer 

conditions (20 mM HEPES pH 8.0, 150 mM NaCl, 2 mM TCEP). There is a notable appearance of 

some tetrameric species at higher concentrations of 45 µM, which is consistent with what is 
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observed in the SEC-SLS. This is intriguing as assembly via the A interface is unlikely due to the 

introduced charge-charge repulsions; however, the interface that forms catenanes, such as that 

seen in BtPrx3 (Cao 2005), remains unperturbed and could facilitate further dimer-dimer 

associations. Nonetheless, an obligate dimeric HsPrx3, with or without a His6-tag, has been 

successful created that cannot form rings under reducing conditions.  

  

 
Figure 4.7: Biophysical characterisation of S75E HsPrx3 shows it forms mostly a dimeric species 
(A) SEC-SLS of 45 µM cleaved S75E HsPrx3 run at 0.4 ml/min in non-reducing buffer (20 mM HEPES, 
pH 8.0, 150 mM NaCl). The refractive index (black line) and right-angle light scattering were used 
to calculate experimental MWs (right axis in blue) of particles in solution. The main protein peak is 
a dimer (~44 kDa, green) and also some tetramers (~88 kDa, blue) were also detected. The dotted 
lines indicate the theoretical MWs. (B) Sedimentation velocity experiments of His6-tagged S75E 
HsPrx3 in reducing buffer (20 mM HEPES, pH 8.0, 150 mM NaCl, 2mM TCEP). The protein was run 
at a range of concentrations: 45 µM (black), 9 µM (red); 4.5 µM (blue). The sedimentation 
coefficients for the major peaks are between 4.2-3.4 S, which correspond to that expected for 
dimeric HsPrx3. The smaller peak in the 45 µM sample is that of the tetramer protein at 5 S. The 
frictional ratio for all samples was 1.3. For more experimental details, see Section 7.7.4. 
 

4.3.3.3 Small angle X-ray scattering analysis of the solution structure 

 

SAXS of S75E mutein verifies the results determined by AUC and SEC-SLS, and gives insights on the 

shape of this protein in solution. Sample and data quality were assessed using Guinier analysis of 

the SAXS scattering curve at low angles. The linearity of the plot (Figure 4.8 A) shows that the 

scattering of the S75E HsPrx3 is reliable and no sample aggregation and/or interparticle 

interference is present (Putnam et al, 2007). Scattering data intensity were plotted along with the 

real-space pair-wise distance distribution function P(r) (Figure 4.8 B). The maximum dimension of 

the scattering particle (Dmax) was 74 Å as calculated by AUTOPOROD (Petoukhov et al, 2012). The 

radius of gyration (Rg) was calculated to be 26 Å, which is in agreement with the Guinier determined 

Rg at 25 Å. The experimental Porod volume was determined to be 77753.9 nm3, and the molecular 

weight extracted from this was 48.6 kDa (Svergun et al, 1995), which is slightly higher than the 

theoretical MW at 44.4 kDa, but within the ~20 % accuracy from using volume to determine mass 
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as hydration sphere of proteins vary with shapes, such as elongated proteins due to greater surface 

area to volume ratio. The P(r) plot shows a single peak with an asymmetrical shape, with a positively 

skewed tail at the long distances, indicating that S75E HsPrx3 is a prolate ellipsoid in solution. This 

is consistent with S75E HsPrx3 being dimeric in both reduced and non-reducing conditions. 

 

 
Figure 4.8: S75E HsPrx3 is be dimeric as seen by SAXS  
(A) The linear Guinier plot as determined using PRIMUS QT. (B) P(r) plot determined using PRIMUS 
QT. (C) The experimental scattering profile of S75E HsPrx3 (presented as open circles, o) overlaid 
with theoretical scattering profiles of the wild-type HsPrx3 dimer structures (PDB: 5JCG) generated 
with a B interface (blue) or an A interface (orange). 
 

This experimental scatter was compared, using CRYSOL, with theoretical scattering from atomic 

coordinates generated from the wild-type HsPrx3 crystal structure (PDB: 5JCG, Svergun et al, 1995; 

Figure 4.8 C). The overall shape information from the SAXS model matches better with the crystal 

coordinates for the B interface dimer (chi = 1.9) rather than the A interface dimer (chi = 2.5). 

Despite almost sharing the same sequence identity (99.5 %); however, the fits between the 

experimental and both theoretical scattering are relatively poor. This is indicative of a difference 

between the shape of S75E HsPx3 in solution and the crystallised state of the wild-type in which 

the dimers are part of stacked rings (Putnam et al, 2007). The difference in theoretical and 

experimental shapes can be observed on comparison of the calculated Porod volume of the A 

interface dimers (64800 nm3) and B interface dimers (59310 nm3), with the larger experimental 

Porod volume of S75E HsPrx3 at 77753.9 nm3. These suggests that S75E HsPrx3 may be adopting 

a more elongated conformation. 
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4.4 The stabilised toroid: S78C HsPrx3 
 

4.4.1 Expression, purification and identification 
 

In a similar manner to the above S75E mutein, recombinant N-terminal His6-tagged S78C HsPrx3 

was expressed and purified using a combination of IMAC and SEC (Section 7.4 and 7.5; Figure 4.9). 

S78C muteins overexpressed and purified with yields of ~100 mg per litre of growth media used, 

similar to wild-type proteins.  

 

 
Figure 4.9: S78C HsPrx3 purification showing the SEC trace with accompanying SDS-PAGE gel 
The SEC trace (A) shows a protein peak eluting into 20 mM HEPES pH 8.0, 150 mM NaCl, 2 mM 
TCEP. The major protein peak elutes in the size range expected for dodecameric proteins, with the 
small peak between 5 and 6 suggesting potential ring stacking. The SDS-PAGE gel (B) shows the 
successful overexpression of S75E HsPrx3. The gel numberings are as follows: 1 – total proteins in 
lysate; 2 – total soluble proteins; 3 – pooled IMAC elution; 4 to 12 – fractions eluted off the SEC 
column. 
 

The SEC chromatograms from these initial purifications, shows the major protein peak eluting at 

volumes that correspond to dodecameric proteins. The His6-tag was cleaved using rTEV protease 

(Figure 4.10, Section 7.5.3). The mass of the pure protein, both tagged and cleaved, was assessed 

using LC-MS to verify it was the correct mass for S78C HsPrx3.   
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Figure 4.10: His6-tag cleavage of S78C HsPrx3 proteins using rTEV 
protease 
His6-tagged rTEV protease (~28 kDa band) and His6-tagged S78C 
muteins were pre-mixed and incubated to allow to cleavage to 
occur. The mix after 24 h (mix) was loaded onto Co2+-beads. 
Cleaved S78C HsPrx3 elutes off the beads in the flow through (FT) 
and also after washing with SEC buffer (W1). The beads (beads) 
were also run on a gel to check for cleavage efficiency of the rTEV 
protease (good efficiency is when there are no more ‘tag’ bands 
visible) as well as to check which proteins remained attached to 
the beads. 
 

  

4.4.2 X-ray crystallographic structure of stabilised ring at 2.4 Å  
 

4.4.2.1 Crystallisation of S78C HsPrx3 

 

To probe the molecular alterations of the S78C mutation on protein structure, a crystal structure 

was solved. Crystallisation of S78C HsPrx3 was successful using a fine screen developed around 

condition D12 from the MORPHEUS screen (Gorrec, 2009). A rod-shaped crystal (Figure 4.11) grew 

in 3 weeks after initial tray setting of 33 mg/mL cleaved S78C HsPrx3 protein in the B12 condition 

(0.1 M Tris-bicine, pH 8.9, 15% MPD, 10% PEG1000, 12.5% PEG3350, 0.02 M alcohol additives). An 

X-ray diffraction data set to a resolution of 2.4 Å was collected for that single crystal.  

 

Figure 4.11: The rod-shaped crystal of S78C HsPrx3 
Most crystals that grew were needle-like. However, the rod (in pink at 
top right corner) diffracted and the resulting structure solved at 2.4 Å. 
These crystals, viewed using a polariser, are normally colourless. 

 

4.4.2.2 Data processing and structure refinement 

 

The X-ray diffraction data were processed and solved as described in Section 7.8. The data were 

processed in the space group I222 and solved by molecular replacement using the monomer from 

the wild-type HsPrx3 crystal structure as a search model (PDB: 5JCG). Consistent with the wild-type 

structure, the asymmetric unit contains nine monomers and when all the symmetry equivalent 

molecules are generated, it reveals an organisation of three, stacked dodecameric rings. This model 

includes all residues, except for the first four residues belonging to the cleaved tag. 
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Table 4.4: Data collection and refinement statistics for S78C HsPrx3, PDB: 5UCX 

 S78C HsPrx3, PDB: 5UCX 

Data collection  
Space group I222 
Cell dimensions  
    a, b, c (Å) 133.4, 167.6, 221.5 

    α, β, γ()  90.0 , 90.0 , 90.0 

Resolution (Å) 48.9 - 2.40 (2.46 - 2.40)  
Rpim 0.117 (0.679) 
I/σI 
CC1/2 

6.4 (1.5) 
0.980 (0.379) 

Completeness (%) 99.9 (99.2) 
Redundancy 6.1 (5.6)  
  
Refinement  
Resolution (Å) 2.40 
No. unique reflections 91953 

Rwork/ Rfree 0.194/0.228 
No. atoms  
    Protein 13640 
    Water 58 

 
B-factors (Å2)  
    Protein 24 
R.m.s deviations  
    Bond lengths (Å)  0.01 
    Bond angles (º) 1.357 
  

There are nine monomers within this crystal lattice. 
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4.4.2.3 Crystal structure of S78C HsPrx3 at 2.4 Å 

 

The S78C HsPrx3 structure is consistent with that of the wild-type HsPrx3 crystal structure 

(described in Section 2.3). Each monomer possesses a fully folded C-terminus and a reduced CysP 

contained within a fully folded active site. The monomers are arranged as dodecameric rings that 

are stacked to form short protein tube composed of three rings (Figure 4.12). In fact, wild-type 

HsPrx3 and S78C HsPrx3 are virtually identical proteins on comparison of the monomers, yielding 

a root mean square deviation of 0.216 Å across 195 equivalent Cα positions. The structural 

similarities between the wild-type and the S78C mutein are evident when comparing average 

interface areas: for the A interface 651 Å2
 and 654 Å2, and the B interface 1978 Å2 and 1952 Å2, 

respectively (using PDBePISA; Krissinel et al, 2007). 

 

Figure 4.12: S78C HsPrx3 crystal structure 
(A) The active site is highlighted, with peroxidatic cysteine (CP47, yellow) and resolving cysteine 
(CR168; green) highlighted in the context of other conserved active site residues (teal). The 
residues, F43 and C78, mentioned at the A interface (pink sticks) are shown to give context to 
their location with respect to the active site. (B) The S78C HsPrx3 monomer with a fully resolved 
C-terminal tail and important α helices highlighted. The residues in (A) are shown in the context 
of the entire monomer. (C) The monomer further assembles into dimers, which then form 
dodecameric rings (D). 
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However, there is greater density observed at the position of the mutated cysteine (C78) that 

clearly accounts for a sulfur atom not present in serine residues (Figure 4.13). The C78 residue 

hydrogen bonds with an equivalent C78 residue on the adjacent monomer across from the dimer-

dimer interface, or A interface. As the protein crystals used to generate this structure grew in 

reducing conditions, it is expected that no disulfide bonds were formed between the C78 residues. 

The positioning of the apposing C78 residues, with thiols splayed away from each other, also does 

not appear to support disulfide bond formation. Curiously, the C78 residue stabilises a nearby 

phenylalanine residue, F43, on the same monomer.  Superimposing nine wild-type monomers 

reveals that F43 can adopt an array of movements at the A interface (Figure 4.13), however, in all 

nine S78C monomers overlaid, the F43 remains resolutely in the same position, where it is able to 

increase its Pi-Pi interaction with a tryptophan residue, W82, also on the same monomer. 

Otherwise, the side chains and interactions within the A interface remain the consistent between 

the wild-type and the S78C mutein.  

 

 
Figure 4.13: C78 residue and A interface interactions 
(A) A difference density map (2fo-fc) at 1.2 σ (mesh) with crystal structure model (white) overlaid 
at residue C78. The thiol fits well within the density, demonstrating a fully reduced C78 residue at 
the A interface of S78C HsPrx3 protein. (B) The A interface of wild-type HsPrx3 (cartoon in blue) 
superimposed on the A interface of S78C HsPrx3 (cartoon in pink), with key residues highlighted 
(sticks). Note the differing positioning of the thiol group of the cysteine (in yellow) and that of the 
hydroxyl group on the serine. (C) The superimposed A interface of a monomer of wildtype (blue) 
and S78C (pink) HsPrx3. The position of the C78 thiol shifts the F43 residue by 1.1 Å closer to W82. 
The F43 residue in wild-type protein can be seen to adopt a range of positions, however, the S78C 
mutein has F43 held in a fixed position (pink) forming a compact hydrophobic pocket. The 
peroxidatic cysteines of wild-type and S78C HsPrx3 (CP47 residue in yellow) are also overlaid to give 
a reference for the location of the active site with respect to the A interface.  
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4.4.3 Quaternary structure characterisation 
 

4.4.3.1 Behaviour of S78C HsPrx3 proteins in solution using SEC-SLS 

 

Although in the crystal structure, S78C HsPrx3 dodecameric rings appear to stack into three rings, 

in solution at pH 8.0, the majority of S78C muteins are single toroids, similar to their wild-type 

counterparts (Figure 4.14). Interestingly, a small initial peak is observed in the SEC-SLS analysis that 

corresponds to HMW species of two dodecameric rings. This has been observed for both cleaved 

and His6-tagged S78C muteins in solution under both non-reducing and reducing conditions.  

 

 
Figure 4.14: S78C HsPrx3 SEC-SLS shows toroids and some stacked toroids 
45 µM cleaved S78C HsPrx3 proteins run at 0.4 ml/min in non-reducing conditions. The refractive 
index (black line) and right-angle light scattering were used to calculate MWs (right axis in blue) of 
particles in solution. The main protein peak is a dodecameric toroid (~266 kDa) and also a slight 
peak is noticeable for two stacked rings (~88 kDa). Dotted lines represent theoretical MW for each 
species. 
 

4.4.3.2 Small angle X-ray scattering analysis of S78C HsPrx3 

 

SAXS analysis of cleaved S78C HsPrx3 proteins verifies the results determined by crystallography as 

well as the SEC-SLS. Sample and data quality were assessed using Guinier analysis of the SAXS 

scattering curve at low angles. The linearity of the plot (Figure 4.15 A) shows that the scattering of 

the S78C HsPrx3 is reliable and no sample aggregation or interparticle interference is present 

(Putnam 2007). Scattering data intensity is plotted along with the real-space pair-wise distance 

distribution function P(r) (Figure 4.15 B). The maximum dimension of the scattering particle (Dmax) 

was 152 Å as calculated by AUTOPOROD (Petoukhov et al, 2012). The radius of gyration (Rg) was 

calculated to be 57 Å, which is in agreement with the Guinier determined Rg at 58 Å. The 

experimental Porod volume of 418141 nm3 was used to approximate the MW to be 261 kDa 
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(Svergun et al, 1995), which is slightly smaller than the theoretical MW at 266 kDa. The P(r) plot 

shows two peaks, which indicates that S78C HsPrx3 has a ring shape in solution. In order to 

compare the solution structure generated from the SAXS data with the crystallographic structure 

of S78C HsPrx3, CRYSOL was used to generate a theoretical scattering plot from the atomic 

coordinates for a single ring generated from the S78C HsPrx3 crystal structure (PDB: 5UXS). This 

theoretical scattering fits relatively well with the experimental scattering (chi = 2.77), indicating the 

ring structure is representative of S78C HsPrx3 proteins in solution. Interestingly, the theoretical 

Porod volume of 505500 nm3 is greater than the experimental Porod volume, indicating the 

solution structure of HsPrx3 may be more compact than in the crystal structure. 

 

 
Figure 4.15: S78C HsPrx3 is be dodecameric ring as seen by SAXS  
(A) The linear Guinier plot as determined using PRIMUS QT. (B) P(r) plot determined using PRIMUS 
QT. (C) The experimental scattering profile of S78C HsPrx3 (presented as open circles, o) overlaid 
with theoretical scattering profiles of the S78C HsPrx3 dodecameric ring (PDB: 5UCX) using CRYSOL. 
 

4.4.3.3 Rings are stable under non-reducing conditions as seen via AUC analysis 

 

Oxidants spontaneously dissolve into buffers, and without reducing agents present, a non-reducing 

buffer will become mildly oxidising (Winterbourn et al, 2015). In fact, it can be difficult to keep Prx 

proteins from oxidising in non-reducing conditions, and this effect is more pronounced in low 

concentrations of Prxs as a higher percentage of the protein population will become oxidised. In 

the case of 2-Cys Prxs, such as HsPrx3, oxidation of the protein will cause a change in quaternary 

structure from a reduced ring into an oxidsed dimer (as outlines in Section 4.1.2). The effect of Prx 

oxidation in non-reducing conditions can be monitored using the AUC, and this experiment was 

performed for both 2.3 µM wild-type HsPrx3 and 2.3 µM S78C HsPrx3. The reduced wild-type 
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HsPrx3 rings, with a peak at 9.8 S, spontaneously oxidise and fall apart into dimers, with a peak at 

4.3 S (Figure 4.16). Repeating this experiment with the same conditions using the S78C muteins 

demonstrated the stability of these toroids, with just a single peak at 9.2 S, which does not 

dissociate to dimers (Figure 4.16).  

 
Figure 4.16: AUC showing stabilised S78C HsPrx3 toroids in mildly oxidising non-reducing buffer 
The experiment was conducted with 2.3 µM of purified proteins in 20 mM HEPES, 150 mM NaCl 
without any reducing agents. Data were fitted to a continuous c(s) distribution model at a 
resolution of 300 and a confidence level of 0.95 using SEDFIT (Schuck 2000). Data were fitted with 
an s value ranging between 1 S and 12 S. The fit resulted in a frictional ratio (f/f0) of 1.17 for wild-
type HsPrx3 and 1.36 for S78C HsPrx3. 
 

The difference in sedimentation coefficients between the two different proteins suggests the S78C 

muetins are smaller than wild-type HsPrx3 proteins. This is consistent with the discrepancies 

between the Porod volumes from the SAXS data collected. Perhaps stabilised dimer-dimer 

interface results in a more compact ring structure, as was hypothesised in Wood 2002.  

 

This additional cysteine at the A interface stabilises the toroid form of S78C HsPrx3, resulting in the 

creation of improved second-generation tectons from a wild-type blueprint. 

 

4.5 Peroxidase activity and quaternary structure 
 

The solution structures of both S75E HsPrx3 and S78C HsPrx3 were established as obligate dimers 

and stabilised rings, respectively. Competitive assays with horse radish peroxidase (HRP) and 

catalase were used to probe the effect of these mutations on the peroxidase activity of each 

mutein. These assays are only accurate for Prxs with reactions rates for H2O2 in the same order of 

magnitude ~ 107 M-1s-1 as the competing enzymes: HRP and catalase. For slower Prxs, a time course 
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on an SDS-PAGE gel may be sufficient (Nagy et al, 2011). The HRP competitive assay monitors only 

Step 1 in Figure 4.1, whereas the catalase assay and the SDS-PAGE assay both monitor Steps 1 to 2.  

The sensitive nature of its peroxidase activity, makes it difficult to monitor Prx activity as 

precautions must be made to ensure proteins are fully reduced and are not oxidised by other 

factors outside their intended substrate (Winterbourn et al, 2016).  

 

4.5.1 The S75E dimer can still react with H2O2 
 

An optimised HRP competition assay (Section 7.10) enabled the generation of more data points 

with smaller errors for the determination of activity of Prx proteins, with every attempt made to 

optimise human error. The assay is finical, making it imperative to have wild-type HsPrx3 as a 

control protein in every experiment. The second order rate of reaction of wild-type HsPrx3 towards 

H2O2, under the optimised conditions of this assay, was (4.7 ± 0.2) x 107 M-1s-1 (Figure 4.17). This 

rate of reaction is similar to those reported in the literature for HsPrx3 at 2 x 107 M-1s-1 (Cox et al, 

2009b, Nagy et al, 2011).  

 

A comparison of the rate of reactions between wild-type protein and the muteins, S75E HsPrx3 

and S78C HsPrx3 (Figure 4.17), reveals interesting results. Stabilised ring, S78C HsPrx3, shows 

comparable activity to wild-type protein, with a rate of (4.0 ± 0.5) x 107 M-1s-1. The error is the 

standard deviation for triplicates for each data point. The resulting activity assay data points plot 

as a slight curve, rather than a straight line, making it difficult to fit a linear line for the reaction 

rate. This curve in data points is indicative of slight background oxidation of S78C HsPrx3. 

Nonetheless, the reaction rates of S78C HsPrx3 and wild-type HsPrx3 are not unambiguously 

different. 

 

Despite its lack of ability to form rings, the S75E dimer retains its ability to react with H2O2, but at 

a relatively slower rate of 1.1 ± 0.1 x 107 M-1s-1. Although this rate is four times slower than the 

wild-type reactivity, the rate of S75E HsPrx3 is still two orders of magnitude higher than the AhpC 

dimer mutant (Parsonage et al, 2005).  The HRP competitive assay can overestimate reaction rates 

for peroxidases whose activity is <106 M-1s-1, making it too slow to reliably compete with HRP 

(Winterbourn et al, 2016). Therefore, an SDS-PAGE reaction was carried out (Section 7.10.2) for a 

more accurate assessment of the lower reactivity of S75E dimer mutein towards H2O2. 
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Figure 4.17: HRP competitive assay for HsPrx3 muteins  
As described in Section 7.10.1, each experiment was performed as triplicates and the errors on the 
pseudo-second order rates, kPrx, are standard deviations from within this triplicate. Plot shows 
HsPrx3 concentrations against the approximated “first order” relative rate of HRP disappearance 
at 403 nm. The kPrx is calculated from the gradient of a linear line of best fit to the data points.  
Lines of best fit do not fit the data points of S78C HsPrx3 proteins, which seem to curve. 
 

4.5.2 Catalase competitive assays to assess Prx reactivity towards H2O2 
 

The catalase competitive assay was used to probe the order of magnitude of reactivity of HsPrx3 

proteins towards H2O2 (Cox et al, 2009b; Nagy et al, 2011; Section 7.10.2). The catalase competitive 

assay, although not as quantitative as the HRP competitive assays, gives an easy visual confirmation 

of the relative actives of HsPrx3 proteins to catalase enzymes. These experiments were performed 

in collaboration with Alexander Peskin (School of Medicine, University of Otago, Christchurch). 

Protein samples were reduced with 500 mM DTT for 30 minutes, and these samples were run on 

the LC-MS to ascertain populations of reduced and oxidised proteins for comparison to the SDS-

PAGE gels. 

 

Human catalase reacts with H2O2 at a rate constant of 3 x 107 M-1s-1 (Dunford, 1999). Catalase is 

introduced at increasing concentrations to a constant mix of 10 µM H2O2 and 10 µM HsPrx3 

protein. The resulting formation of disulfide bond upon HsPrx3 oxidation was monitored using a 

non-reducing SDS-PAGE gel. In fact, these SDS-PAGE gels are able to resolve populations of not 

only reduced HsPrx3 monomers and oxidised dimers, but also between different types of oxidised 

dimer: where either one or two disulfide bonds are formed (as observed in S78C hsPrx3 gel as a 

band doublet; Figure 4.18). These results corroborate the HRP activity assay in that the S78C HsPrx3 

proteins remains similarly active to the wild-type HsPrx3, at a rate range both in 107 M-1s-1.   
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The results for S75E HsPrx3 suggests that that rate of reaction is in fact much lower than was 

indicated by the HRP assay. So an SDS-PAGE based assay was used on S75E HsPrx3 to determine 

its activity towards H2O2 (Nagy et al, 2011).  

 

 
Figure 4.18: Catalase competition assay on non-reducing SDS-PAGE gel 
SDS-PAGE gel shows distinct populations for reduced monomers, oxidised dimer (sometimes a 
doublet) as well as the increasing concentrations of catalase. Proteins were reduced using 500 mM 
DTT for 30 minutes (lane A in all gels), yet oxidised dimer bands can be seen in all gels. See Section 
7.10.2 for more details on experimental set up. Briefly, 5 µM H2O2 and 5 µM HsPrx3 were used for 
the catalase reactions. Assay buffer composed of 20 mM HEPES (pH 8.0), 150 mM NaCl was freshly 
made and purged with argon or nitrogen gas before each experiment. The concentration of 
catalase is varied from 0, 0.2, 0.4, 0.8, 1 and 2 µM. Both wild-type HsPrx3 and S78C HsPrx3 react in 
the range of 107 M-1s-1 as interpreted visually by the intensity of bands on the gel (that is at 2 µM, 
human catalase can out compete both proteins to about 50% of wild-type protein or S78C mutein). 
S75E mutein, on the other hand is completely out-competed by human catalase, indicating the 
slower rate of reaction for this dimer mutant. 
 

4.5.3 The SDS-PAGE assay for slow peroxidases, such as S75E HsPrx3 
 

In contrast to the rates derived from the HRP competitive assay, the rate of reaction of the S75E 

mutein with H2O2, at ~104 M-1s-1, is three orders of magnitude slower than that of wild-type HsPrx3. 

In order to get a better estimate of the second order rate of reaction of S75E, time course 

experiments were performed while monitoring the decrease in reduced protein populations, which 

is indicated by the formation of a dimer protein band on a non-reducing SDS-PAGE gel (Nagy et al, 

2011; Section 7.10.3). These results indicate S75E HsPrx3 has a rate of reaction of ~3.35 x 104 M-1s-

1 (Figure 4.19), which is one order of magnitude slower than the reported rates for the dimer AhpC 

proteins (Parsonage et al, 2005).  

 

Despite incubation of S75E HsPrx3 with DTT for 30 min, it can be seen on the SDS-PAGE gels that 

S75E muteins do not become fully reduced, with a population of ~10% oxidised dimers at 44 kDa. 

This strange, but reproducible, observation could account for the lack of crystallisation of this 

protein, as this dimer is a mixed population of oxidised and reduced protein. The SDS-PAGE assay 

takes into account this subpopulation of already oxidised dimers.  
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Figure 4.19: Rate of reaction of S75E HsPrx3 
Rate of reaction of S75E mutein is slow enough that it can be monitored on the SDS-PAGE gel. To 
diminish the presence of stubborn oxidised dimers, S75E HsPrx3 was incubated with 10 mM DTT 
for 2 h, yet the oxidised dimers remain! Catalase was used in this experiment as a means to quench 
the reaction between S75E mutein and H2O2. Relative intensities of protein bands on SDS-PAGE gel 
(above) were calculated and percentage of reduced protein was plotted against time. Data points 
were fitted to an exponential equation and the pseudo-first order rate of reduction was corrected 
for by [H2O2] to give a rate of 4.35 x 104 M-1s-1. Ideally the exponential fit for this graph could do 
with more data points that covered the range of the curve.  
 

4.5.4 Summarizing the variety of assays used and their results 
 

These activity assay results for the various HsPrx3 muteins (summarized in Table 4.5) gives a good 

indication of their peroxidase activity towards H2O2 within the context of the wider Prx literature. 

It is important to note that the HRP competitive assay monitors the disappearance of H2O2 (Step 1 

of the catalytic cycle, Figure 4.1), whereas the catalase and SDS-PAGE assays monitors the 

formation of the disulfide bond (Step 2 of the catalytic cycle).  Other more comprehensive, newly 

developed assays can provide a more detailed overview of individual rates of reaction for each step 

along the entire catalytic cycle, such as the stopped flow fluorescence technique (Parsonage et al, 

2015).  

Table 4.5: Summary of reaction rates for HsPrx3 towards H2O2. 

HsPrx3 Rate of reactivity (M-1s-1) 

Wild-type (4.7 ± 0.2) x 107  a 
S78C – stabilised ring (4.0 ± 0.5) x 107  a 
S75E – dimer 3.35 x 104  b 
a results from the HRP competitive assay 
b results derived from the SDS-PAGE assay with H2O2
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4.6 Discussion 
 

4.6.1 Evolutionary advantages of oligomerisation: why would you put a 

ring on it? 
 

The formation of a dodecameric ring is key for maximal peroxidase activity of HsPrx3 towards H2O2. 

The dimer-dimer interactions that form the ring, serve to stabilise a loop that connects to the active 

site, similar to what was shown with StAhpC (Parsonage et al, 2005). In the case of HsPrx3, there is 

no significant increase in peroxidase activity observed for the stabilised ring mutein, S78C, 

compared with the wild-type HsPrx3 (Table 4.5), as detected by both the HRP competitive assay 

and the catalase assay. In contrast, the dimeric S75E mutein is three orders of magnitude less active 

towards H2O2, compared with the wild-type HsPrx3. This demonstrates the importance of protein 

oligomerisation in conferring HsPrx3 with greater sensitivity for the reduction of its substrate, H2O2, 

enabling it to perform its diverse cellular functions as the minder of the mitochondrial redox 

landscape. 

 

Interestingly, the dimeric PrxQ from Xylella fastidiosa, can also react with H2O2 at a similar rate of 

107 M-1s-1, indicating that ringed structures are not necessary in order for the high reaction rates 

with H2O2, but rather a fully folded active site. Nor does switching from ring formations to dimeric 

species required for optimal activity, as observed in the 2-Cys Prx, human Prx4 (HsPrx4), where the 

stabilised ring remains as rings even after reacting with H2O2 at 2 x 107 M-1s-1 (Wang et al, 2012). 

Therefore it is unknown how quaternary structure switching from reduced ring to oxidised dimers 

is physiologically relevant, but it is tempting to hypothesise that this switching behaviour could be 

crucial for the other currently unknown functions of these 2-Cys Prxs in a wider cellular context, 

beyond their peroxidase function. This is especially relevant in eukaryotes where Prxs control levels 

of H2O2, which is not just a detrimental oxidant, but also an important signalling molecule for 

cellular processes (see Section 1.4.2).  

 

Quaternary structural changes could also transiently reveal binding sites for other proteins. As 

oxidised dimers, it was reasoned that Prx active sites are more accessible for recycling enzymes, 

such as thioredoxin (Wood et al, 2003a). It is curious that the rate of reaction of S75E muteins with 

H2O2 occurs at ~104 M-1s-1, making this peroxidase slower than the predicted recycling rates of 

thioredoxin, at 106 M-1s-1 (Cox et al, 2010). The partial uncoiling of the α2 helix, observed in 

response to other chemical stressors, has also revealed binding sites for other proteins. For 

instance, the crystal structure of HsPrx1 bound to sulfiredoxin showed local unwinding of the α2 
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helix exposing the CysP to the sulfiredoxin active site (Jonsson et al, 2009). Currently, there have 

been very few studies for binding partners of Prxs, in general, and especially in the context of 

quaternary structural switching. The dimeric S75E HsPrx3 and stabilised S78C HsPrx3 rings could 

be suitable protein candidates used to probe protein associations of HsPrx3, especially in vivo. 

 

In certain Prxs, protein concentration plays a critical role in protein oligomerisation, such as for the 

formation of the decameric rings of AhpC. Reduced enzyme was decameric, whereas disulfide 

bonded dimers were dimers at low concentration but decamers at high concentration (Wood et al, 

2002). The HsPrx3 concentrations used within the HRP competitive assay range from being 12-100 

fold less than the expected cellular concentrations (125 µM HsPrx3 in the mitochondria – Cox et 

al, 2009a). However, the AUC results sit within this lower protein concentration range, thus giving 

an insight into the oligomeric states of each protein. Concentration-dependent oligomerisation has 

not been investigated in-depth, and can be further explored for influencing ring formation. 

Especially for S75E, there seems to occasionally be a tetrameric species at higher concentrations 

>45 µM, whereas cleaved S78C also seems to spontaneously stack into double rings on the SEC-

SLS. 

 

4.6.2 Mixed population of hard-to-reduce dimer: ideas for diffractive 

crystals 
 

The S75E HsPrx3 mutein is folded and has a solution quaternary structure analogous to that of a 

dimeric wild-type HsPrx3 (Section 4.3). With the understanding that the dimer-dimer interface has 

been disrupted, it is possible to imagine the active site becoming destabilised or more flexible, 

preventing fast substrate binding, However, a high resolution structure of S75E HsPrx3 is required 

to analyse any changes to the precise molecular interactions that result from the mutation, which 

could be responsible for its lowered, but still moderate, activity towards H2O2. 

 

In all S75E HsPrx3 protein preparations, there is a small subpopulation of non-reducible dimers 

often observed as a 50 kDa protein band on a reducing SDS-PAGE gel (such as in Figure 4.3). This 

heterogeneous mix of oxidised and reduced protein could be the underlying cause for the 

complications in growing protein crystals. Other Prxs have also been reported to be difficult to 

reduce, and cannot be reduced by the reductants, such as DTT or TCEP, but only by using 

thioredoxin (Horta et al, 2010; Winterbourn et al, 2016). Using thioredoxin could also be a means 

to successfully reduce S75E HsPrx3 for future experiments, such as X-ray crystallography. Without 

a higher resolution structure of this protein, it is difficult to rule out whether the S75E mutation 
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has destabilised the overall protein structure in some way to cause it not to reduce. Conversely, in 

order to create a homogenous population of protein, S75E HsPrx3 could also be systematically 

oxidised prior to crystallisation. It is tempting to speculate that the S75E mutein crystals, which 

took 12 months to appear, were perhaps only able to grow due to the slow oxidation of the protein 

population over time. 

 

At protein concentrations higher than 45 µM, a small population of S75E mutein dimers further 

associate as observed in both AUC and SEC-SLS. Although, yet to be definitively examined, it is 

unlikely further dimer-dimer associations occur via the A interface due to the charge-charge 

repulsion introduced by the glutamic acid. Instead, it is exciting to speculate that the dimer-dimer 

associations may be occurring via a different interface, such as the one which initiates catenane 

formation as those observed in BtPrx3 protein (Cao et al, 2005). Mutations of key residues at this 

putative interface would be required to fully investigate this idea. 

 

Curiously, the lower reactivity of S75E HsPrx3 towards H2O2 occurs within the same range as several 

other dimeric Prxs, which is a testament to the well conserved peroxidatic active site within the Prx 

superfamily. As covered in Section 1.4.1, ancestral Prx subfamilies contain proteins that dimerise 

through the A interface, and most exhibit lowered rates of reaction towards H2O2 that range from 

104-105 M-1s-1 (Perkins et al, 2015). While most of these Prxs are confined to bacterial and archaeal 

hosts, the Prx5 subfamily can also be found in mammalian systems – an example of which is human 

Prx5 (HsPrx5), which is also localised to the mitochondria. HsPrx5 has been found to preferentially 

decompose peroxynitrite at 106-107 M-1s-1, and also reacts with H2O2
 at 105 M-1s-1 (Knoops et al, 

2007). HsPrx3 is also known to react with other hydroperoxides, but at a much lower rate (Peskin 

et al, 2010), perhaps, now that the conformational changes of the S75E mutein is no longer 

constricted by adjacent dimers, it would be interesting to test its ability to react with other organic 

hydroperoxides.  
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4.6.3 Cysteine-stabilised phenylalanine gate is key for maintenance of 

the ring form in certain Prxs 
 

The AUC experiments demonstrate that S78C HsPrx3 is a stabilised ring in non-reducing conditions, 

when wild-type HsPrx3 rings dissociate. It is striking how a single point mutation to introduce the 

cysteine residue can have such a profound effect on the quaternary structure of HsPrx3. Although 

it is one of the least abundant, cysteines are also one of the most highly conserved residues within 

functional sites of proteins (Marino et al, 2010). There is a strong selective pressure to keep 

cysteines buried as they not well tolerated on solvent exposed surfaces, and due to this, many 

buried cysteines are classified as hydrophobic (Poole, 2015). Cysteine residues have a large van der 

Waals radius and are more hydrophobic than serine residues, which could lead to tighter 

associations at the A interface (Lee et al, 2007). Therefore, the properties of cysteine residues lends 

themselves towards stabilising protein-protein interactions. 

 

Alternatively, the stabilisation of flexible loop regions at the dimer-dimer interface can also act to 

promote ring formation (Morais et al, 2015). Upon examining the crystal structure of S78C HsPrx3, 

there is a notable shift in the surrounding residues of the A interface, which may contribute to the 

resulting stabilisation of HsPrx3 ring structure. It is revealed that the C78 residue stabilises the 

movements of the F43 sidechain, which is part of loop that connects to the active site (Figure 4.12 

A and 4.13 C). C78 holds the aryl ring of F43 over the indolic ring of W82 at a distance of 4.49 Å, 

enabling potential π- π interactions to occur. The stabilisation of this loop region connected to the 

active site prevents large conformational changes that cause the dodecameric ring to dissociate.  

 

These large conformational changes are observed in a similar scenario, where a cysteine residue 

stabilises the A interface for another typical 2-Cys Prx, human Prx1 (HsPrx1). HsPrx1 has a 

conserved cysteine residue (C83) at a homologous position to the S78 residue in HsPrx3, which 

confers ring stabilisation in non-reducing buffers (Figure 5 in Lee et al, 2007). Much like in the case 

of S78C HsPrx3, the C83 residues do not form a disulfide bond between the equivalent C83 on the 

adjacent dimer (Matsumura et al, 2008), instead the interface is stabilised by hydrophobic and van 

der Waals forces. The stabilisation of the equivalent phenylalanine, F48, is observed, along with a 

fully folded active site, in all ten monomers of the crystal structure of Rattus norvegicus Prx1 

(RtPrx1) (also known as heme-binding protein 23 (HBP23); PDB 2z9s; Matsumura et al, 2008). The 

mutation of C83 into a serine (C83S Prx1) disrupts the decameric ring stability, and the region 

containing F48 shows large conformational changes; this is observed in both dimeric crystal 

structures available of RtPrx1 (PDB: 1QQ2; Hirotsu et al, 1999) and HsPrx1 (PDB: 4XCS; Cho et al, 
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2015). These conformational changes are striking, with the tryptophan W87 (equivalent to W82 in 

HsPrx3) completely displacing the F48 residue as the active site is unfurled (Figure 4.20). This 

altered arrangement, along with similar observations in the HsPrx3 crystal structures, supports a 

new hypothesis that ring destabilisation begins with a locally unfolded active site whereby a 

disulfide bond can form, but it is the further unwinding of the α2 helix as well as the loop 

connecting with α2 that actually pries the dimers apart. 

 

 
Figure 4.20: A interface of HsPrx1 proteins. 
(A) C52S RtPrx1 forms a decameric ring (Matsumura et al, 2008) and the residues within the A 
interface are highlighted: the mutated serine (yellow) and key residues (pink). The cysteine residue 
acts to stabilise F48 and W87. This is monomer A, but is representative of all chains in the 
dodecameric ring (PDB: 2Z9S). (B) The equivalent view on the dimeric C83S RtPrx1 (Hirotsu et al, 
1999). The residues F48 and W87 are both flipped out allowing for an extension of the active site 
loop (C), which would hinder decameric ring formation.  
 

The idea that ring destabilisation can occur in two steps, is supported by several crystal structures 

of 2-Cys Prxs adopting decameric or dodecameric ring forms, despite having locally unfolded active 

sites with a disulfide bond between the CysP and CysR
 (Figure 4.21; Kitano et al, 2005; Parsonage et 

al, 2005; Cao et al, 2015). The crowded environs of crystallisation would influence the equilibrium 

between ring and dimeric quaternary structures to favour ring formation, even if they do not 

appear to do so in solution. An example of this is the BtPrx3 crystal structure where certain oxidised 

dimers, that normally would dissociate in solution, are assembled as dodecameric rings (PDB: 

3MH4; Cao et al, 2015). The introduction of the cysteine in the S78C HsPrx3 mutein stabilises this 

region without the requirement for molecular crowding in crystal conditions. Therefore S78C 

HsPrx3 may remain as stabilised rings in solution even after disulfide bonds are introduced; this is 

supported by the catalase assay results (Figure 4.18) as well as the AUC analysis (Figure 4.16).  
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Figure 4.21: The possible mechanism by which ring stabilisation and destabilisation occurs 
The peroxidatic cysteine (CP, a yellow stick) is a reference to highlight the active site local unfolding 
(B), and further unfolding (C) that is associated with complete ring dissociation. The A interface of 
S78C HsPrx3 (A) with C78 holding F43 in place over the W82 residue (PDB: 5UXC). A similar 
interaction is observed at the A interface of F190L BtPrx3 (B; PDB: 4MH3; Parsonage et al, 2015) 
where the active site is also locally unfolded with CP47 disulfide bonded with CysR (not shown). The 
A interface of the C83S HsPrx1 (C; PDB: 1QQ2; Hirotsu et al, 1999) show the flipped side chains of 
W87 and F48 as well as the complete unwinding of active site loops, where CP52 is disulfide bonded 
with CysR  (not shown). 
 

Of course, to test the importance of both phenylalanine and tryptophan residues for loop region 

stabilisation, point mutations where the aromatic side chains are removed, such as replacing these 

residues systematically with alanine, must be performed on the S78C HsPrx3. On the other hand, 

if the cysteines residues act to simply form hydrophobic interactions that force the A interface 

together, it would be interesting to mutate S78 to hydrophobic residue, such as threonine, to test 

this idea. A rationale for this could be that in HsPrx4, the naturally stable decameric 2-Cys Prx, there 

are threonine residues (T155) in this position that interact together to form hydrophobic pocket 

(Cao et al, 2011).   

 

4.7 Summary 
 

With just one point mutation, the switches in quaternary structure, between dimer and rings, can 

be removed, demonstrating the ease at which HsPrx3 protein tectons can be manipulated to create 

or limit assemblies. The quaternary structures of two muteins were examined using solution 

characterisation techniques such as SAXS, SEC-SLS and AUC, to reveal the creation of an obligate 

dimer (S75E HsPrx3) and a stabilised ring (S78C HsPrx3). Activity assays were used to probe the 

reactivity of these proteins towards H2O2.  
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The circular dichroism spectrum of S75E HsPrx3 protein correlated with that of a folded protein, 

and the SAXS scattering plot was representative of a dimeric HsPrx3 species. Surprisingly, this 

obligate dimer was shown to be minimally active towards H2O2, implying that the formation of the 

A interface is not critical, but acts to stabilises the active site to allow for the fast reaction of CysP 

with H2O2. The fact that peroxidase activity is a feature of both dimeric and ring structures suggests 

that oligomerisation could also have other yet unknown biological function, such as the 

accessibility of different protein binding partners to HsPrx3 during these different oligomeric 

states. 

 

The crystal structure of S78C HsPrx3 revealed a non-covalently linked toroid structure with an 

intriguing phenylalanine-tryptophan gate which stabilises the A interface. The activity of this 

protein is comparable to wild-type HsPrx3, which is in contrast to the ring stabilisation of His6-

tagged HsPrx3, suggesting that there are two mechanisms for ring stabilisation at play. The creation 

of S78C HsPrx3 has resulted in more stable, non-covalently linked tectons with which future 

functional devices can be formed from. 
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Chapter 5: Towards functionalisable 

peroxiredoxin tectons 
 

5.1 Introduction 
 

5.1.1 Functionalised protein nanotubes in nanotechnology 
 

The inherent biocompatibility and ease of creating proteins that self-assemble into nanotubes 

makes them promising components of future nanodevices (Section 1.3.3.4). The creation of large 

structures enables a greater surface area for functionalisation. The functionalisation of these 

various types of nanotubes exploit both internal and external surfaces and often fall into two 

categories: either with the biomineralisation of metal ions to create nanowires (Yemini et al, 2004), 

or by attaching functional moieties onto the nanotube scaffold (Miller et al, 2007; Nam et al, 2006). 

Being able to control tube lengths enables the generation of templates of certain lengths and this 

can be engineered into protein sequences with the addition of cysteine residues (Miranda et al, 

2009; Ballister et al, 2008). Future applications of these nanodevices are far reaching and range 

from microelectronics (Nam et al, 2006) to sensors (Kong et al, 2000).  

 

Peroxiredoxins (Prxs) have both redox-sensitive control of toroid self-assembly, as well as pH-

sensitive control of toroid stacking, making these proteins uniquely versatile scaffolds on which 

new functionalities can be engineered (Phillips, 2014; Phillips et al, 2014). The creation of Prx-based 

smart materials harnesses the desirable properties of these protein nanotubes for novel 

applications in nanotechnology. 

 

5.1.2 Various reactions of functionalised protein tectons 
 

Some reliable methods for immobilisation of biomolecules onto solid surfaces include: adsorption, 

direct covalent attachment, or non-covalent interaction between a cargo and an appropriately 

derivatised surface (Putzbach and Ronkainen, 2013). These techniques can be limited by the lack 

of control of molecular orientation between two reactants, with deleterious results arising if 

reactions occur near or at protein active sites, or reaction conditions causing denaturation of 

proteins (Moses and Moorhouse, 2007). Nonetheless, the reactive chemistries of amino acid 
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sidechains that cover the surface of self-assembling protein structures provide a versatile 

foundation for functionalising these architectures for nanotechnological applications. Widely used 

methods to functionalise protein surfaces include engineering amino acid tags onto the ends of 

the protein sequences (Section 5.1.2.1), or exploiting naturally available reactive amino acids, such 

as lysine and cysteine residues, and engineering these strategically onto the protein surface 

(Section 5.1.2.2). Alternatively, synthetic amino acids with novel chemistries can be incorporated 

into the protein sequence (Section 5.1.2.3).  

 

5.1.2.1 N- and C-terminal attachments 

 

N- and C-terminal attachments are usually engineered peptide tags that are able to bind to metal 

ions, such as poly-histidine tags (Ardini et al, 2014), or those that are recognised by specific 

enzymes, such as sortase (Witte et al, 2013).  Occasionally these peptide additions can affect 

protein expression by inadvertently disrupting protein folding (Rumlová et al, 2001; Fonda et al, 

2002), as well as the quaternary structure self-assembly of the modified protein, such as described 

in Section 2.1.3.4. Poly-histidine tags (His6-tags) coordinate metal ions and this non-covalent 

attachment has been routinely exploited for recombinant protein purification (Nilsson et al, 1997). 

The metal coordination ability of His6-tags enables them to bind to nanoparticle cargoes, e.g. His6-

tagged SmPrx1 proteins were able to coordinate gold nanoparticles to form ‘nano-peapods’ as a 

first step towards creating protein-blueprinted nanowires (Ardini et al, 2014). In the case of HsPrx3, 

the N- and C-termini protrude in useful locations away from the main protein folds that dictate its 

quaternary structure, with the N-termini located inside the ring and the C-termini projects 

outwards away from the ring. This increases the probability that Prx scaffolds are amenable to 

derivatisation. 

 

5.1.2.2 Bioconjugation through surface lysine, cysteine, and tyrosine residues 

 

Similar to the addition of tags, exploiting pre-existing amino acid chemistries, such as those of 

lysine, cysteine or tyrosine residues, is an easy and reliable means to functionalise a protein 

nanostructure (Figure 5.1; Thordarson et al, 2006). In particular, the reactive primary amine 

sidechain of lysine residues can react selectively with a variety of moieties. Protein nanowires, 

made from human serum albumin, were functionalised using lysine residues that react with an 

NHS-biotin (Omichi et al, 2014). These attached biotins were then bound to avidin proteins 

allowing for control of nanowire size, and also enabled the assembly of an array of proteins onto 

the surface of the protein nanowires. The positions of the lysine residues were not specific, 

resulting in a coating of this nanowire with other proteins as a proof of concept to show these 
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nanowires are versatile platforms for surface functionalisation. Both, the wide range of reactions 

available and their infrequent appearance on protein surfaces, make cysteine residues appealing 

canonical amino acids for bioconjugation reactions that can be synthesised onto proteins (Poole, 

2015). Utilising cysteine chemistry is a less viable option for functionalising HsPrx3 proteins, 

however, due to the crucial active site cysteine residues that control HsPrx3 quaternary structure. 

 

 
Figure 5.1: Bioconjugation reactions of lysine, tyrosine and cysteine surface residues  
Various bioconjugation reactions can target a variety of moieties (grey balls) onto certain amino 
acid residues, such as lysine, tyrosine and cysteine residues, present on protein surfaces (left). 
Attachable moieties can vary in their properties, enabling the attachment of new function onto 
protein surfaces. 
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5.1.2.3 Click chemistry: introduction of azide groups onto protein surfaces 

 

Another means of attaching functionalities to protein structures is through introducing covalent 

interactions created by click chemistry (Dieterich and Link, 2009). This is where highly energetic 

small unit reactants are able to generate products in a reliable and selective process and can be 

used to achieve chemo-selective ligations between a reactive unit on a cargo and its reaction 

partner, whether it be a modified or synthetic amino acid, located on a protein surface. In theory, 

these orientation-specific reactions enable precise spatial control of each cargo attached onto the 

protein surface (Best, 2009).  

 

Canonical amino acids, such as lysine residues, on protein surfaces have been modified to enable 

click chemistry reactions (Wang et al, 2003). The surface lysine residues of cowpea mosaic virus 

particles were modified into reactive alkynes that were able to perform click chemistry reactions 

with azide-coupled folic acid-PEG conjugates, thereby permitting these modified nano-cages to be 

directed towards tumour cells (Destito et al, 2007). Again, this process of modifying canonical 

amino acids depends on their location within a protein sequence, with lysine residues being 

abundant surface residues (Baud and Karlin, 1999). The specific location of reactive surface 

residues, therefore, must be engineered into the protein sequence without causing disruption of 

folding or quaternary structure assembly.  

 

The use of synthetic amino acids, or unnatural amino acids (UAAs), provide a specific means to 

directly functionalise a protein surface. The techniques of incorporating UAAs have been 

developed for protein-protein interactions and can be performed in a variety of protein expression 

systems to be explored in Section 5.1.3. UAAs have been used to bio-orthogonally label proteins to 

probe subtle protein-protein interactions that occur within a cell (Dieterich et al, 2006). It has also 

been used as an in vivo tool for adding small fluorescent tags onto proteins of interest or cells 

themselves to monitor their migration within a system (Yoon et al, 2016). Bio-orthogonal labelling 

has vastly expanded in the last decade with new synthetic amino acids as well as improved methods 

for incorporating them into the protein.  

 

There are multiple methods to bio-orthogonally label proteins and each varies in its range of 

reaction rates and catalytic requirements. There have been many reviews on this topic (Lang and 

Chin, 2014, Neumann, 2012) revealing that the most common reactive species that can undergo 

multiple bio-orthogonal reactions is the azide group (Figure 5.2). In fact, the paradigm of all click 

reactions is the Cu(I)-catalysed cycloaddition between azides and terminal alkyne (called CuAAC). 

An alternative is to use strain-promoted cyclooctyne derivatives that react with azides (called 
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SPAAC). Azides are also able to undergo Staudinger ligations with phosphines, which is an 

oxidation-sensitive reaction. The most reactive reactions for azides start with CuAAC at ~102 M-1s-

1, then SPAAC at ~10-1 M-1s-1, followed by the Staudinger ligation at ~10-1 M-1s-1.  

 

 
Figure 5.2: Click reactions with azides 
Azide groups are able to react with a variety of molecules, some of which are shown here. They fall 
into three classes of reactions: Staudinger ligations, Copper-catalysed azide-alkyne cycloaddition 
(CuAAC) and strain-promoted azide-alkyne cycloaddition (SPAAC). Attachable moieties are 
represented as grey balls. Diagram is adapted from van Berkel et al, 2011. 
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Another property of azide groups is their photoreactivity, where UV light can activate the azide 

group onto a highly reactive nitrene that is able to react with a variety of compounds from water 

to the amide backbone of proteins (Scheme 11.29 in Gritsan and Platz, 2010). This has been used 

as a means to probe intra-protein interactions in vivo (Wang et al, 2014; Shao et al, 2015; 

Reddington et al, 2015).  

 

In this thesis, azides were chosen as the click reactive unit of interest, not only for their capacity to 

react with numerous click partners, but also for their biocompatibility with biological samples. 

Incorporating azide groups onto HsPrx3 protein surfaces will expand the functionalisable potential 

of this tecton.  

 

5.1.3 Creating azide-functionalised protein tectons 
 

Biomolecules - such as proteins, nucleic acids, lipids and glycans - can be modified with small 

clickable units (Sletten and Bertozzi, 2009) which can covalently ligate with various complementary 

molecules tagged with functional units such as fluorophores, ligands, or affinity tags (Moses et al, 

2007). In this case, proteins are the target biomolecule and ways to attach clickable units onto 

proteins to generate functionalisable tectons include: 

1) Modifying existing canonical amino acids to act as clickable units (Section 5.1.2.2 – where the 

moiety in Figure 5.1 would be an azide group). However, this technique relies on amino acids 

already present in the protein sequence to react with clickable molecules (Thordarson et al, 

2006).  

2) Clickable units can be incorporated using enzymes, such as sortase, to modify engineered 

peptide tags (Witte et al, 2013). This technique is more specific but is restricted to 

modifications at the C- or N-terminal ends of proteins. 

3) Incorporating UAAs that contain a clickable moiety into protein sequences. The variety of 

methods to do this often involve fooling the cellular protein expression machinery to make 

the modified protein, including: in vitro protein expression (Smolskaya et al, 2013), and in vivo 

protein expression in mammalian cells, yeast, insect cells, and E. coli (Berg et al, 2014; Lancia 

et al, 2014). Specific UAA incorporation into protein sequences offers the greatest flexibility 

for engineered functionalisation of protein tectons; however, not all methods of incorporation 

were created equal. The following explores why this might be the case. 
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5.1.4 Fooling E. coli protein expression machinery to create modified 

protein tectons 
 

As covered in Section 1.3.2.1, E. coli protein translation is orchestrated by a variety of protein 

complexes that ensure amino acids are assembled in the correct order, according to a DNA 

blueprint, to create a peptide chain that will eventually fold into functional structures. This complex 

system, having evolved over millions of years, has been rewired in order to incorporate UAAs into 

proteins (Alberts et al, 2002). 

 

5.1.4.1 Auxotrophic bacterial strains: Substituting pre-existing amino acids with UAA 

 

Auxotrophic bacteria for certain amino acids have been used for decades to incorporation of UAAs, 

such as selenomethionine, for introducing heavy atoms into protein crystals (Budisa et al, 1995). 

This technique replaces the original amino acid with a similar UAA to globally modify the proteins 

produced by E. coli. As a result, yields are small and the UAAs that can be utilised are limited to 

those that are very similar to the original amino acid (Budisa, 2004). One of the major advantages 

of the global replacement of an amino acid is the ease of incorporating multiple UAAs into the 

same protein (Merkel et al, 2010). Methionine analogues, L-azidohomoalanin (AHA) and L-

homopropargylglycine (HPG), have been incorporated successfully into protein N-termini using 

auxotrophic E. coli deficient in methionine, M15MA (Wang et al, 2008).  

 

5.1.4.2 Expanding the genetic code: orthogonal tRNA synthetases and tRNA 

 

The most robust and well-studied technique of incorporating UAAs is through the addition of 

orthogonal translational machinery that recognises the UAA and incorporates this into a 

degenerate stop codon in an E. coli expression system. These orthogonal methods have also been 

developed beyond their E. coli origins, to other in vivo expression systems such as mammalian cells 

(Schmied et al, 2014), yeast (Shao et al, 2015) and C. elegans (Parrish et al, 2012).  

 

The E. coli UAA incorporation methods will be the focus of this chapter, and the requirements are:  

 Aminoacyl-tRNA synthetases that only aminoacylate desired tRNAs with the correct UAA; 

 Unique tRNA-codon pairs that recognise an E. coli stop codon, usually the amber codon 

(UAG on an mRNA) as it rarely terminates an essential gene and is the least used stop 

codon in E. coli (~7 %) (Nakamura et al, 2010; Xie and Schultz, 2005);  

 An UAA that is not a substrate for endogenous synthetases. 
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For UAA incorporation within E. coli, the most popular orthogonal tRNA/synthetase pairs originate 

from an archaea, Methanococcus jannaschii. In particular, the tyrosine residues of M. jannaschii 

are introduced at the UAG codon (Wang et al, 2001), and this has been exploited for the 

introduction of tyrosine-like UAAs into the amber codons of E. coli (Young et al, 2011). Directed 

evolution of these orthogonal tRNA/synthetase pairs within E. coli have increased the yields of 

recombinant proteins (Amiram et al, 2015; Ryu and Schultz, 2006; Chatterjee et al, 2013). These 

directed evolution experiments involve introducing random mutations to the orthogonal protein 

translation machinery. Inserting a stop codon in the middle of an essential gene (such as antibiotic 

resistance) ensures that gene expression must occur in order for full length protein production, 

which enables cells to survive a round of selection containing the antibiotic (Chin et al, 2002; 

Santoro et al, 2002).  

 

There are many types of UAAs that can take part in click chemistry reactions, but a combination of 

commercially available products (p-azidophenylalanine) and well established methods guides this 

choice to use E. coli expression systems with orthogonal aminoacyl-tRNA synthetases (MjaaRS) and 

tRNA from M. jannaischii (Chatterjee et al, 2013). A promising method, chosen for its ease of 

integration into the current protein expression system, involves the use of a pUltra plasmid that 

encodes for orthogonal transitional machinery, as well as a pET protein expression vector both 

transformed inside BL21 (DE3) E. coli cells (Figure 5.3).  

 

 
Figure 5.3: Using pUltra and pET plasmids to generate UAA incorporated proteins 
A cartoon representation of the p-azidophenylalanine being incorporated into protein sequences 
using the E. coli expression system described in Chatterjee et al, 2013. 
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5.1.5 Chapter overview 
 

HsPrx3 proteins can be manipulated to form several switchable nano-architectures. By 

incorporating UAAs into specific locations on HsPrx3 protein surfaces, hotspots for 

functionalisation via covalent attachments can be engineered to make these modified tectons even 

more appealing for nanotechnological applications.  

 

The UAA, p-azidophenylalanine (pAzF), was chosen for its commercial availability and wealth of 

literature on methods for its incorporation into recombinant proteins expressed in E. coli. pUltra 

was designed from the available literature to include sequences that encode orthogonal tRNA 

synthetases and tRNA from M. jannaschii (Chatterjee et al, 2013, Guo et al, 2009, Chin et al, 2002). 

The MjaaRS/tRNA pair recognise pAzF and incorporates this UAA into a strategically placed amber 

stop codon with the protein sequence. Various UAA mutein constructs based on HsPrx3 with either 

C-terminal (pET11a) or N-terminal (pET28a) histidine tags were designed and explored as part of 

research towards creating functionalisable HsPrx3 tectons.  
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5.2 Making the pUltra plasmid 
 

5.2.1 Plasmid re-design 
 

At the time of this research, the pUltra plasmid was not commercially available so the plasmid 

design was based on literature from the Schultz group (Chatterjee et al, 2013, Guo et al, 2009, Chin 

et al, 2002). Epoch Lifesciences were employed to synthesise the pUltra plasmid described in 

Chatterjee et al, 2013; however, the resulting plasmid is not exactly the same as in this paper. 

These differences are explained below.  

 

The pUltra plasmid (Figure 5.4) is based on a commercially available plasmid, pCDF-1b, which is 

compatible with E. coli BL21 (DE3) protein expression systems. pCDF-1b has an origin of expression, 

CloDF13, that causes the BL21 (DE3) host to produce this plasmid in high copy numbers (Stuitje et 

al, 1981; Camps, 2010). The high copy number plasmids, rather than low copy number plasmids, 

should in theory also result in more plasmid products synthesised (explained in Section 5.1.4). The 

expression of these plasmids are not intended to overwhelm the BL21 (DE3) cells, because it will 

disrupt normal cellular amber codon function (Chatterjee et al, 2013). 

 

The pUltra plasmid encodes genes for orthogonal translation machinery derived from M. 

jannaschii. These include the genes of the MjaaRS (optimised for E. coli protein expression) and the 

corresponding tRNA pair, which were evolved for recognition of pAzF and its incorporation into the 

amber stop codon (Guo et al, 2009, Chin et al, 2002). The tacI promoter sequence and rrnB 

terminator sequence (t1) were incorporated either side of the MjaaRS gene (de Boer et al, 1983, 

Orosz et al, 1991). The E. coli proK promoter and terminator as well as the Fis binding site were 

incorporated either side of the tRNApAzF
CUA. (Neidhardt, 1996).  

 

The evolved MjaaRS protein sequence with evolved residues highlighted (Chin et al, 2002): 

MDEFEMIKRNTSEIISEEELREVLKKDEKSATIGFEPSGKIHLGHYLQIK 

KMIDLQNAGFDIIILLADLHAYLNQKGELDEIRKIGDYNKKVFEAMGLKA 

KYVYGSNFQLDKDYTLNVYRLALKTTLKRARRSMELIAREDENPKVAEVI 

YPIMQVNPLHYQGVDVAVGGMEQRKIHMLARELLPKKVVCIHNPVLTGLD 

GEGKMSSSKGNFIAVDDSPEEIRAKIKKAYCPAGVVEGNPIMEIAKYFLE 

YPLTIKRPEKFGGDLTVNSYEELESLFKNKELHPMRLKNAVAEELIKILE 

PIRKRL 
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The DNA sequence for orthogonal tRNA chosen for the most efficient pAzF incorporation into 

amber stop codons (Guo et al, 2009):   

CCCGCCTTAGTTCAG-AGGGCAGAACGGCGGACTCTAAATCCGCATGGCA 

CGGGTTCAAATCCCGTAGGCGGGACCA 

 

Both of these sequences, corresponding promotors and terminators, as well as part of the lacI 

repressor gene were synthesised as one synthetic construct (Epoch Lifesciences). This construct 

was then inserted into the MluI and AvrII restriction sites within pCDF-1b. The resulting pUltra 

plasmid, at 4590 base pairs (Figure 5.4), is 387 base pairs smaller than the one described in 

Chatterjee et al, 2013. 

  

 
Figure 5.4: pUltra plasmid based on pCDF-1b  
Open reading frames encoding the tRNA (green) and tRNA synthesase (orange) are on a plasmid 
with a spectinomycin resistance gene. Descriptions of various components of this plasmid can be 
found in the text. The plasmid design is based on Chatterjee et al, 2013. 
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5.2.2 Plasmid verification 
 

The production of MjaaRS and corresponding tRNA were difficult to verify because expression of 

both gene products were not expected to be extraordinarily high. The presence of the tRNA was 

never directly verified. Control trial expressions using BugBuster were performed for MjaaRS (as 

per Section 7.3.1), and the resulting soluble and insoluble protein fractions were run on an SDS-

PAGE gel (Figure 5.5). The appearance of bands ~30-35 kDa (indicated by arrows; Figure 5.5) could 

be indicative of MjaaRS expression. Direct verification of MjaaRS was not possible as antibodies for 

this particular protein were not available for Western blot analysis. 

 

 
Figure 5.5: SDS-PAGE for trial expressions of pUltra plasmid versus BL21 (DE3) 
A comparison of the total protein samples from BL21 (DE3) cells with and without the 
transformation of pUltra plasmid. Both insoluble (I) and soluble (S) fractions were run side-by-side 
from samples taken before and after protein expression induction (indicated as -IPTG and +IPTG, 
respectively). The appearance of different bands (indicated by triangles) at ~30-35 kDa could 
indicate the presences of MjaaRS protein, which has an expected MW of 34.8 kDa.  
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5.3 Unnatural amino acid muteins: design and strategy 
 

5.3.1 Designing the functionalisable tecton: positions of UAA 

incorporation on protein surface 
 

The amber stop codon (tag) was engineered to specific locations within the HsPrx3 gene sequence 

to target the orthogonal protein translation machinery for UAA incorporation at those sites. Aryl 

amino acids that resemble p-AzF, such as tyrosine and phenylalanine residues, on the HsPrx3 

protein surface were chosen in order minimise any disturbances to the protein structure. The 

amino acid locations of these aryl amino acids can be visualised using the crystal structure (Figure 

5.6). The resulting mutant protein constructs were called: Y10tag, Y160tag and F190tag HsPrx3. 

  

 

Figure 5.6: Inserting p-azidophenylalanine (pAzF) into HsPrx3 
(A) A comparison of the structures of aryl amino acid residues: p-azidophenylalanine (pAzF), 
tyrosine (Y) and phenylalanine (F). (B) The locations of the aryl residues Y10, Y160 and F190 on the 
HsPrx3 monomer (PDB: 5JCG). The peptide backbone of the HsPrx3 monomer is represented as a 
cartoon with the N-terminus (blue) and C-terminus (green) highlighted on a colour gradient. (C) 
The locations of residues Y10, Y160 and F190 in relation to the HsPrx3 protein ring, with the same 
residue colouring as in (B).   
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5.3.2 Dissolving p-azidophenylalanine into growth media  
 

Three methods for dissolving commercially available pAzF, a white powder, into a solution were 

tested and the resulting pH change of unbuffered growth media, LB, upon addition of dissolved 

pAzF was monitored (Table 5.1). 1 M NaOH was chosen as the preferred method of dissolving pAzF 

as the powder dissolved quickly (Lancia 2014, Berg 2014). The resulting minimal change to the pH 

of the growth media would mean E. coli cells would also not be stressed due to acidification when 

growing in LB (Sezonov et al, 2007). Growth of bacterial cultures to high density, such as those 

found in protein expression, acidifies surrounding media and can cause a switch in cellular protein 

expression of the bacteria to adapt to the acidic environment (Castanie-Cornet et al, 1999). Hence, 

buffered growth media, such as terrific broth or Magnificent Broth™, were used to avoid these 

issues and to achieve higher cell densities. In order to avoid photo-activating the azide group 

(Gritsan et al, 2010), all tubes containing pAzF were wrapped in aluminium foil and large flasks of 

media were kept away from windows. 

 

Table 5.1: Solvents and dissolving methods of pAzF.  

Dissolving method Solubility of 1M pAzF pH of LB (normally pH 7.0) 

1 M NaOHa  7.5 

80% acetic acidb  5.5 

Sonication into LB  7.0 
a Berg 2014 
b  http://www.scbt.com/datasheet-289923.html 
a,b first dissolved pAzF in solvent, then added to LB 
 - incompletely dissolved, can still see some precipitates 
 - completely dissolved 

 

5.4 Rationale and design of UAA HsPrx3 C-terminal His6-

tagged proteins 
 

5.4.1 Wild-type HsPrx3 C-terminal His6-tag protein expression and 

purification 
 

Expressing C-terminal His6-tag proteins, with a strategically placed amber stop codon at the desired 

location for UAA incorporation, allowed for the easy selection of full length proteins with 

incorporated UAAs, as these would be the only amino acid sequences ending in a His6-tag. 

However, the previously described wild-type HsPrx3 construct (Section 2.2) was N-terminally His6-

http://www.scbt.com/datasheet-289923.html
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tagged (WT-Nter), so the expression for wild-type C-terminal His6-tagged HsPrx3 (WT-Cter) protein 

also needed to be verified. 

 

The WT-Cter protein gene was inserted into a pET-11a plasmid (Epoch Lifesciences). The expected 

MW for a full length His6-tagged, monomeric protein is 23503.6 Da. The amino acid sequence, 

where the wild-type HsPrx3 protein (pink) with the residues of interest highlighted in yellow, rTEV 

protease cleavage site (green), and the His6-tag (blue), are detailed as follows: 

APAVTQHAPYFKGTAVVNGEFKDLSLDDFKGKYLVLFFYPLDFTFVCPTE 

IVAFSDKANEFHDVNCEVVAVSVDSHFSHLAWINTPRKNGGLGHMNIALL 

SDLTKQISRDYGVLLEGSGLALRGLFIIDPNGVIKHLSVNDLPVGRSVEE 

TLRLVKAFQYVETHGEVCPANWTPDSPTIKPSPAASKEYFQKVNQMENLY 

FQGGTHHHHHH 

 

5.4.1.1 The initial purification 

  

The expression and purification of WT-Cter was performed almost exactly as was done for WT-Nter 

(Sections 7.3 and 7.4). The major difference was the use of lower imidazole concentrations in the 

wash buffer: at 10 mM as opposed to 25 mM. The lower imidazole concentration was to account 

for any altered affinity towards Ni2+ caused by the change in histidine tag location. 

 

The resulting purity of WT-Cter proteins, after the usual purification protocol (Section 7.4), was 

poor, as assessed using SDS-PAGE gels. This can be accounted for by the lack of overexpressed WT-

Cter protein (despite a large protein band at ~23 kDa in fraction 1; Figure 5.7), and non-specific 

binding of E. coli lysate onto the HisTrap FF column. There was a large band at ~23 kDa in fraction 

11, which suggests that WT-Cter may be expressed, but optimisation was required to improve the 

purification of this protein. Disturbingly, fraction 11 corresponded to the elution volume for 

dimeric HsPrx3 protein, hinting that the C-terminal His6-tag was preventing dimer-dimer 

associations, as there have been reports of His6-tags affecting protein oligomerisation (Amor-

Mahjoub et al, 2006; Majorek et al, 2014; Fonda et al, 2002). There was also a ~23 kDa band in 

fraction 7. However, the band only occasionally appeared in the purification of this protein 

(compare with fraction 7 in Figure 5.9). 

 

In order to check for the expression of the C-terminal His6-tag, a Western blot was performed using 

anti-His6-tag antibodies, to detect the presence of the protein purification tag (Figure 5.7 D). The 

positive control was of the N-terminally His6-tagged HsPrx3 which has an expected MW 2 kDa 

higher than C-terminal His6-tagged HsPrx3.  
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Figure 5.7: The initial purification of WT-Cter protein 
(A) Chromatogram showing the IMAC purification with the fraction numbers corresponding to the 
SDS-PAGE gel in C. The elution buffer was flowed through the column at ~52 mL, eluting proteins 
off the nickel column. (B) Chromatogram showing the SEC purification with fraction numbers 
corresponding to the gel in C. The SEC column was a HiLoad 13300. (C) SDS-PAGE gel showing 
proteins present in each of the purification steps. The Novex MW ladder was used as a standard in 
the first lane. Gel numberings are as follows: 1 – total proteins in E.coli lysate; 2 – soluble protein 
in lysate; 3 – proteins that did not bind to IMAC column; 4 – proteins eluted after 10 mM imidazole 
wash; 5 – Pooled IMAC elution; fractions 6 to 14 correspond to proteins that elute off the SEC 
column. (D) Western blot of fraction 11 and the corresponding SDS-PAGE gel. A light band at ~23 
kDa shows in Western blot, indicating that anti-His6-tag is bound to the proteins in both fraction 
11 for WT-Cter and for WT-Nter. Ideally, fraction 7 should have also been tested for His6-tag 
presence. The Western blot also detected a trace dimer band for WT-Nter (~50 kDa).  

 

5.4.1.2 Optimisation of wild-type HsPrx3 purification conditions 

 

In order to increase the cell density of bacteria to increase yields of WT-Cter protein, the growth 

media was changed from LB to buffered terrific broth (TB; Table 7.1 in Section 7.2.1). The bacterial 

cells were grown in 500 mL TB to an OD600 ~ 1.7 before induction of protein expression. Otherwise, 
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expression conditions were kept the same as previously (Section 7.3.2). Some adjustments were 

made to the compositions of the purification buffers for WT-Cter proteins (compare Table 5.2 with 

Table 7.8). Adjusting solution pH from 8.0 to 7.0 was reported to stabilise the formation of Prx rings 

(Morais et al, 2015), so all of the purification buffers were made to 7.0 to encourage the protein 

ring formation. The use of phosphine reducing agent, TCEP, was avoided as it reacts with azide 

groups.  

 

Table 5.2: Purification buffers for UAA protein purifications  

Buffer  Composition 

IMAC buffer A 20 mM HEPES, pH 7.0; 150 mM NaCl; 10 mM imidazole 
IMAC buffer B 20 mM HEPES, pH 7.0; 150 mM NaCl; 500 mM imidazole 
SEC buffer C 20 mM HEPES, pH 7.0; 150 mM NaCl 

 

In order to improve the purity of the resulting protein band, a concentration gradient of imidazole 

in the IMAC wash as well as in the elution buffer as used to wash off non-specifically bound 

proteins. The gradient elution resulted in two peaks being purified (Figure 5.8). The resulting ~23 

kDa band in pool B (Fractions 13 and 14 in Figure 5.8) appears more pure compared with elution 

fractions from previous purifications (Fraction 5 in Figure 5.7), suggesting that wash and elution 

imidazole gradients were effective in removing non-specifically bound proteins. 

 
Figure 5.8: Chromatogram of IMAC purification of WT-Cter and corresponding SDS-PAGE gel 
(A) The IMAC chromatogram shows the percentage of elution buffer (buffer B) being flowed 
through the IMAC column. A small gradient wash  of ~10% elution buffer eluted off many non-
specifically bound proteins. The gradient elution of proteins from the IMAC column resulted in two 
peaks, both of which were pooled and run separately on a SEC. (B) The corresponding SDS-PAGE 
gel of each of IMAC fractions. The Novex MW ladder was used as a standard. Gel numberings are 
as follows: 1 – total proteins in E. coli lysate; 2 – soluble protein in lysate; 3 to 14 are the fractions 
that correspond to the IMAC chromatogram. 
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The pooled elution peaks, A and B, were separately passed through a SEC column as an additional 

purification step. The SEC chromatgram and corresponding SDS-PAGE gel for pool A and B are very 

similar, so only pool B data are shown (Figure 5.9). Despite the lowered pH of purification buffers, 

at pH 7.0, ringed species were not detected, instead the major peak eluted off the SEC column 

corresponded to that of dimeric proteins. At this point, it could not be ruled out that WT-Cter were 

oxidised dimers as there were no reducing agents in the buffers, or that the C-terminal His6-tag 

effected the protein quaternary structure (as was observed in the WT-Nter constructs). 

 

Concentrating SEC fractions 9 to 12, although not completely pure, gave a protein expression yield 

of 5 mg per L of culture, which is 20 fold lower than WT-Nter protein expression. Fraction 11 from 

the SEC purification step was diluted into 100% acetonitrile and run on an LC-MS with the resulting 

mass of 23523 ± 20 Da, with the expected mass (23503.6 Da) being within this error. 

 

 
Figure 5.9: SEC and corresponding SDS-PAGE gel of IMAC elution pool B of WT-Cter 
SEC chromatogram (A) and corresponding SDS-PAGE gel (B), with numbers corresponding to the 
fractions on the SEC. Gel lane numberings are as follows: 1 – total proteins in E. coli lysate; 2 to 14 
correspond to the SEC chromatogram. 
 

A Western blot was performed for the main peaks of the SEC for both pool A and B (Figure 5.10). A 

C-terminal His6-tag specific antibody was used to identify the presence of C-terminal specific 

histidine tags. The protein bands from pool B emit a chemiluminescent signal, indicating that these 

samples contain C-terminal His6-tags. The chemiluminescence detection is an indirect detection 

method that involves signal amplification via secondary antibodies; meaning quantification of 

proteins from this signal is difficult and often unreliable (Bell, 2016). 
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Figure 5.10: Western blot of WT-Cter SEC purification fractions using C-terminal His6-tag antibody 
An SDS-PAGE gel and corresponding Western plot of SEC fractions over the largest peak from the 
A pool and B pool of the WT-Cter purifications. For the Western blot, an antibody against C-
terminal His6-tag was used, with N-terminally His6-tagged protein (Nter His6) as well as cleaved 
HsPrx3 protein (clv) as negative controls. Only B pool fractions 9-11 (numbers corresponding to 
Figure 5.9) had chemiluminescent bands, with only faint bands detected for the A pool fractions. 
 

Despite improvements in purity of the resulting protein, it was concerning that the yield for the C-

terminal His6-tagged wild-type HsPrx3 was 20 fold lower than the N-terminally His6-tagged, as UAA 

incorporation is also expected to result in lower full length protein yields. Nonetheless, having the 

ability to quickly select for incorporation of UAAs made using C-terminally His6-tagged constructs 

worth pursuing as a viable method to make full length UAA incorporated proteins. So, forging 

onwards, mutants were designed. 

 

5.4.2 Test expressing unnatural amino acid muteins 
 

The wild-type HsPrx3 C-terminal His6-tagged pET11a construct was mutated by inserting amber 

stop codons, nucleic acids ‘tag’, onto relevant positions within the HsPrx3 gene that encode for 

residues: Y10, Y160, F190 (Section 5.3.1). The resulting muteins are called Y10tag, Y160tag and 

F190tag and their expected truncated and full length MWs are as follows: 

 

Table 5.3: Molecular weight of C-terminal His6-tagged constructs 

HsPrx3 C-terminal His6-tag 
Theoretical molecular weights (Da) 

Truncated Full length (with pAzF incorporation*) 

Wild-type (WT-Cter) n/a 23503.6 
Y10tag-Cter 891.0 23528.6 * 

Y160tag-Cter 17537.1 23528.6 * 
F190tag-Cter 20794.7 23544.6 * 
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Chemically competent pUltra BL21 (DE3) cells were transformed with each of the pET11a plasmids 

(Section 7.2.6) and test expressions for these proteins were performed. Standard test expression 

conditions (Section 7.3.1) were insufficient for the observation of protein bands on the SDS-PAGE. 

Cobalt beads were used to isolate full length proteins from the lysate; however, this also did not 

yield any noticeable protein bands when the elution fractions were run on a gel (data not shown).   

Therefore, 250 mL TB bacterial cultures was used for trial expressions using BugBuster for cell lysis. 

The TB growth medium was necessary to increase the cell density in order for any overexpression 

bands to be observable (Figure 5.11). Intriguingly, overexpression of truncated Y160tag-Cter and 

F190tag-Cter was observed to be produced in abundance as indicated by large protein bands 

(circled in red, Figure 5.11; compared MWs on Table 5.3). The overexpression of truncated 

Y160tag-Cter resulted in large bands in the insoluble fraction, perhaps due to the misfolding of 

partially expressed protein. On the other hand, overexpressed protein bands were observed in the 

soluble fraction for the F190tag-Cter construct; this is consistent with other C-terminally truncated 

Prxs (Cha et al, 2000, Koo et al, 2002; Cao et al, 2011; König et al, 2013). In all of the test expression 

gels, there were no notable full length protein bands expressed. 

 

 

Figure 5.11: SDS-PAGE gels of the expression trials for UAA muteins expressed in 250 mL TB 
The absence of full length protein overexpression was indicated by the lack of an obvious protein 
band at ~ 23 kDa, which is the expected monomeric MW for each of these constructs. However, 
there are notable overexpression bands for truncated constructs, Y160tag-Cter and F190tag-Cter 
(red circles). The gel labels for all gels are as follows. The Novex molecular weight protein ladder 
was run in the first lane. Insoluble fractions (I) and soluble fractions (S) were run side-by-side as a 
comparison for any soluble overexpressed bands. All gels show samples without induction of 
protein expression (-IPTG) and with induction of protein expression (+IPTG) in the absence (-pAzF) 
or presence (+pAzF) of p-azidophenylalanine.  
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In order to detect the presence of full length protein, bacterial growth culture volumes were 

increased again to 500 mL buffered TB to achieve even higher cell density and favour the likelihood 

of full length protein production. Since over expression for full length proteins is unlikely, IMAC 

purifications for proteins with His6-tags were done to isolate UAA incorporated protein away from 

other E. coli proteins within the lysate.  

 

Similar to what was observed in the above test expression, the attempted large-scale expression 

of Y160tag-Cter and F190tag-Cter constructs resulted in the abundant expression of truncated 

species. These truncated proteins eluted off the IMAC, but were unable to be easily separated from 

any potential full length protein, so focus was shifted to optimising and purifying Y10tag-Cter 

proteins. 

 

5.4.3 Optimising Y10tag-Cter protein expression and purification 
 

In order to generate sufficient full length proteins for detection on a SDS-PAGE gel, larger 

expression cultures were used. Y10tag-Cter pET11a pUltra BL21 (DE3) cells were grown in 500 mL 

TB at 37 °C, 180 rpm until the cell density reached OD600 = 1.7-2.2. A final concentration of 1 mM 

pAzF was then added to the culture 10 min prior to induction of protein expression via the addition 

of 1 mM IPTG (final concentration) to cooled bacterial cultures. The culture was then incubated at 

18 °C, 180 rpm for 20 h. 

 

The purification conditions of Y10tag-Cter protein was the same as that of WT-Cter protein (Section 

5.4.1), resulting in similar purification chromatograms and gels (compare Y10tag-Cter Figure 5.13 

with WT-Cter Figure 5.9). The LC-MS results also confirmed the mass of Y10tag-Cter being at 23500 

± 20 kDa, indicating expression of full length protein. 

 

The Western blott results, however, revealed something troubling about the Y10-Cter protein 

purification. Firstly, although a C-terminal His6-tag specific antibody was used, the positive control 

band of WT-Cter only chemiluminesced faintly. This was perhaps due to the degradation of the 

denatured WT-Cter protein sample stored in SDS-PAGE loading dye at 4 °C for a couple of months. 

Secondly, two protein bands were detected across the main SEC protein peak in fractions 6 – 9 

(Figure 5.12). The lower MW chemiluminescent protein band at ~20 kDa does not match the 

truncated MW of Y10tag-Cter, which is not expected to appear on SDS-PAGE gels (Table 5.3). Again, 

this SEC peak occurred in the dimer elution region, despite the pH of purification buffers were kept 

at 7.0. Hence, the removal of the C-terminal His6-tag (Section 7.5.3.2) was predicted to restore the 
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protein ring oligomerisation ability of HsPrx3. Cleavage of the C-terminal His6-tag for both Y10tag-

Cter and WT-Cter were unsuccessful, although, it cannot be ruled out that the C-terminal His6-tag 

could be binding to the protein surface and occluding the rTEV protease. A negative control grown 

in 500 mL TB, without the addition pAzF, also yielded a 23 kDa protein band when eluted after the 

IMAC run, and this prompted deeper investigation into whether the correct full length protein was 

being produced at all. 

 

 

Figure 5.12: Purification of Y10tag-Cter with SEC chromatogram and correlating protein bands on 
the SDS-PAGE as well as Western blot. 
(A) Chromatogram of SEC purification step with numbers corresponding to the fractions run on the 
following SDS-PAGE gel and Western blot. (B) SDS-PAGE gel with cleaved wild-type HsPrx3 (clv) as 
a negative control and WT-Cter fraction 11 (Cter His6) as a positive control for the Western blot 
below. The Novex MW ladder with some relevant protein bands labelled with corresponding MW 
in kDa. Gel fractions are as follows: 1 – total loaded protein onto SEC; 2 to 12 – fractions that 
correspond to the SEC chromatogram above. (C) Western blot using antibodies that detect and 
bind to C-terminal His6-tags. Interestingly, there are two bands that chemiluminescence at ~25 kDa 
and a lower band at ~20 kDa. These bands are located in the highest SEC peak. Disturbingly, the 
positive control for WT-Cter only chemiluminesced faintly. 
 

5.4.4 Top-down MS/MS reveals purification of incorrect protein 
 

The numerous inconsistencies with these C-terminally His6-tagged UAA protein purifications 

warranted scepticism over the true identity of this low-yield full length protein that eluted off the 

SEC column as a dimer without a cleavable His6-tag. Top-down MS/MS was used to investigate this 

supposed WT-Cter protein (performed by Martin Middleditch and Leo Payne of the Mass 

Spectrometry Centre, Auckland Science Analytical Services, University of Auckland, New Zealand). 

 

Purified WT-Cter protein solution, similar to that of fraction 11 in Figure 5.9, was analysed by LC-

MS to reveal a population of three proteins with MW of 25308.48 Da, 23550 Da and 23639.91 Da. 

Top-down MS/MS was then employed to sequence the first few amino acids at the C-terminal 

region of this protein, enabling the identification of this protein as an E coli cyclic AMP-activated 
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global transcriptional regulator (CRP) at 23509.23 Da (Figure 5.13). This provided an unambiguous, 

if disappointing, resolution to the observed discrepancies in protein purification. 

 

 
Figure 5.13: Top-down MS/MS spectra of protein C-terminus reveals it is not HsPrx3 protein 
The C-terminal peptide Y ion series reveals an amino acid sequence of SAHGKTIVVYGTR. This 
sequence corresponds to a protein called cyclic AMP-activated global transcriptional regulator 
(CRP), which was presumably purified from the E. coli lysate. Graph was adapted from one supplied 
from Martin Middleditch.  
 

CRP protein had been shown to readily attach itself onto IMAC columns without a histidine tag 

(Wickstrum and Egan, 2002). It contains six histidine residues in its sequence, some of which are 

partly solvent exposed on the CRP crystal structure. The authors also speculate that three of these 

histidine residues (at positions 17, 19 and 21) were located in a ‘stripe’ along the surface of CRP 

approximately opposite to DNA binding site. Perhaps, this ‘stripe’ of histidine residues could have 

given a false-positive hit in promiscuous antibody binding from C-terminal histidine tag antibody. 
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5.5 HsPrx3 N-terminal His6-tagged protein expression 
 

Although less elegant, N-terminal His6-tagged wild-type HsPrx3 (WT-Nter) protein expression gives 

consistently high protein yields (as described in Section 2.2). The resulting decrease in yield 

expected for UAA incorporated proteins should still result in sufficient viable full length proteins 

for downstream applications. The N-terminal His6-tag purifies both truncated proteins and full 

length UAA incorporated proteins, necessitating the careful separation of these species. 

 

5.5.1 Expression trials of the HsPrx3 constructs: Y10tag-Nter, Y160tag-

Nter, F190tag-Nter 
 

With the same rationale as in Section 5.3.1, an amber stop codon (nucleic acid sequence ‘tag’) was 

designed into the Y10, Y160, F190 amino acid sequence positions of wild-type HsPrx3 proteins 

(Table 5.4). This generated three separate new constructs where the HsPrx3 gene was in a pET-28a 

vector with kanamycin resistance (Epoch Lifesciences).  Note that this is a different vector from the 

previously mentioned N-terminal His6-tagged constructs, chosen for their difference in antibiotic 

selection (kanamycin as opposed to ampicillin), to avoid ampicillin degradation throughout the 

experiment (Hou and Poole, 1969; Robinson-Fuentes et al, 1997). This plasmid was transformed 

into chemically competent pUltra BL21 (DE3) cells (Section 7.2.6) and protein expression trials were 

carried out (Section 7.3.1). 

 

Table 5.4: Molecular weights of N-terminal His6-tagged HsPrx3 constructs 

HsPrx3 N-terminal His6-tag 
Theoretical molecular weights (Da) 

Truncated Full length (with pAzF incorporation*) 

Wild-type (WT-Nter) n/a 25322.7 
Y10tag-Nter 4811.4 25347.7 * 

Y160tag-Nter 21457.5 25347.7 * 
F190tag-Nter 24577.92 25363.7 * 

 

A SDS-PAGE gel was used to ascertain the insoluble and soluble proteins for the test expression of 

each construct (Figure 5.14). Yet again, the abundant expression of truncated protein species for 

both the Y160tag-Nter and F190-Nter constructs were observed (compare Nter constructs Figure 

5.14 with the Cter constructs Figure 5.11). However, full length protein bands at ~25 kDa were not 

observed for either the Y10tag-Nter construct or the Y160tag-Nter construct. In the case of 

F190tag-Nter, it is especially difficult to discern truncated from full length proteins using an SDS-

PAGE gel. Small-scale test expressions involving cobalt beads for purification were also 

investigated, but yielded similar inconclusive results as full length protein bands were faint. 
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Figure 5.14: SDS-PAGE gels showing test expression of N-terminally His6-tagged UAA muteins  
The absence of full length protein overexpression was indicated by the lack of an obvious protein 
band at ~ 25 kDa for the Y10tag-Nter and Y160tag-Nter constructs. However, there are notable 
overexpression bands for truncated constructs, Y160tag-Cter and F190tag-Cter, in the insoluble 
fraction (red circles). Curiously, a ~25 kDa band in the soluble fraction of the F190-tag test 
expression was observed, in both the presence and absence of p-AzF, which indicated that full 
length and truncated proteins were indistinguishable on the gel. The labels for all gels are as 
follows: the Novex molecular weight protein ladder was run in the first lane. Insoluble fractions (I) 
and soluble fractions (S) were run side-by-side for comparison of any soluble overexpressed bands. 
All gels show samples without induction of protein expression (-IPTG) and with induction of protein 
expression (+IPTG) in the absence (-pAzF) or presence (+pAzF) of p-azidophenylalanine.  
 

The Y10tag-Nter construct was chosen as the best option for optimising UAA incorporation into 

HsPrx3 proteins as the expression of Y10-Nter full length proteins would be distinct from its 

truncated species, which are too small to appear on an SDS-PAGE gel. In order to establish whether 

or not full length proteins are expressed, even at low levels, medium-scale test preparations of 

Y10tag-Nter were performed. 

 

5.5.2 Full length protein bands and expression optimisation of Y10tag-

Nter constructs 
 

A variety of bacterial growth conditions were explored in parallel to improve the expression of full 

length Y10tag-Nter proteins. The standard preparation for all growth conditions were as follows 

(based on Section 7.3.1): 250 mL of TB growth media was used to grow the bacterial cultures of 

Y10tag-Nter pUltra BL21 (DE3) until an optical density of OD600 = 2.0 was reached. At this point, 1 

mM pAzF (final concentration) was added to cooled cultures 10 min prior to protein expression 
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induction via the addition of 1 mM IPTG (final concentration). Proteins were expressed for a default 

temperature and time of 18 °C and 20 h, after which the cells were spun down and lysed using a 

sonicator (Section 7.3.3.1). In contrast to previous protein purifications, the IMAC was performed 

using 1 mL HisTrap FF columns to decrease the overt non-specific binding of E. coli lysate proteins 

onto the nickel beads. The IMAC purification buffers, bar the addition of TCEP, and protein 

purification protocol were kept the same as for WT-Nter protein (Table 7.8; Section 7.4). The 

protein peaks eluted from the IMAC column were pooled and loaded onto a SEC column. Fractions 

from the SEC were run on a gel, and it is only then that possible full length HsPrx3 bands of ~25 

kDa may appear in the elution volume of ringed proteins. This is a simple way to effectively deduce 

whether the HsPrx3 protein is folded correctly and are still able to oligomerise into rings. 

 

5.5.2.1 Magnificent Broth™ produces more full length protein than terrific broth 

 

Both terrific broth (TB) and Magnificent Broth™ (MB) are rich growth media that are buffered to 

sustain higher densities of E. coli cells (OD600 1.7-2.0 as opposed to OD600 0.5-0.7 for LB) without 

detrimental acidification of the bacterial culture. Prior to this experiment, purifications with either 

TB or MB were performed on four separate occasions, with similar results to those detailed below.  

 

Successful expression was indicated by the presence of faint ~25 kDa bands detected using the 

SDS-PAGE gel. These so called ‘promising bands’ occurred at the elution volumes expected for 

HsPrx3 rings (circled in red Figure 5.15). Bacterial cultures in TB seem to produce some full length 

protein bands, but this was a reduced amount compared with cells grown in MB. Without the 

addition of pAzF, the negative control cultures for both TB and MB consistently had no visible bands 

in this region (Figure 5.15 C). Note that the SEC chromatographs all have similar profiles, despite 

differences in bacterial cultures. Across all different conditions, the relative size of the peak that 

contained fractions 6-9, which correspond to the elution volumes HsPrx3 rings, does not correlate 

to how much full length protein is expressed, as these fractions also contain another protein at ~ 

70 kDa (red arrow heads in Figure 5.15).  
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Figure 5.15: Magnificent Broth™ expresses the ‘promising band’ indicating potential full length 
protein expression 
SEC chromatograms and the corresponding SDS-PAGE gels for cultures grown in TB with added 
pAzF (A), cultures grown in MB with added pAzF (B), and cultures grown in MB without pAzF (C). 
In all of the sets of SBS-PAGE gels, the numbering of the fractions are the same. Each gel contains 
a Novex MW protein ladder as a standard followed by these fractions: 1 – total protein lysate; 2 – 
soluble proteins; 3 – proteins that did not attach to IMAC column; 4 – proteins that were washed 
off IMAC column at 25mM imidazole; 5 – the total protein loaded onto the SEC column; 6 to 13 
or 14 correspond to the fractions from the SEC. The location of the ~25 kDa promising band (red 
circle) and contaminating ~70 kDa E. coli protein (red arrow head) are highlighted. 
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5.5.2.2 Other approaches to improve expression 

 

Since expression using MB was successful, this was the growth media used for the following 

optimisation of Y10tag-Nter full length protein production. Three angles of attack for improving 

full length protein expression included: 

 The removal of antibiotics from large expression cultures. Kanamycin resistance can occur 

in buffered cell cultures containing phosphate (such as TB and MB), which could cause a 

loss of the pET28a plasmid (Sinha, 1984; Studier, 2005). An alternative and parallel theory 

was that antibiotics used, spectinomycin and kanamycin, both disrupt the ribosome of cells 

(Wilson, 2014). Therefore, decreasing the protein production load on cells by removing 

antibiotics in the large bacterial cultures, may encourage the bacterial cells to be less 

stressed and to produce more full length proteins. 

 Changing the protein expression conditions from 18 °C, 20 h to 37 °C, 5h. The shorter 

protein expression time window leads to lowered cell density, which resulted in no 

detectable expression of the full length band at 37 °C. 

 The final pAzF concentrations added to the growth media was increased from 1 mM to 5 

mM, in order to encourage greater incorporation into the protein sequence and the 

subsequent production of full length proteins. There was no notable increase in production 

of the promising protein band. 

 

5.5.3 Large-scale expressions of Y10tag-Nter: promising initial results for 

UAA incorporation 
 

The expression of Y10tag-Nter protein was achieved using 1 L of MB with the cell culture density 

reaching OD600 ~2.2 before the addition 1 mM pAzF to flasks about 10 minutes before the induction 

of protein expression using 1 mM IPTG. These flasks were grown at 18 °C for 36 h. Two 1 mL HisTrap 

FF columns were used for IMAC purification as per Section 5.5. The elution peak from the IMAC 

column was pooled and concentrated to 500 µL for injection into SEC column. Samples from the 

SEC purification step were run on a reducing SDS-PAGE gel, and a promising band was observed in 

fractions 9-11 (Figure 5.16) with a MW of ~25 kDa that corresponds to full length Y10tag-Nter 

protein. From this purification, ~ 100 µg of pure protein was obtained per L of culture. 

 

LC-MS of fraction 9 showed that the MW of multiple species that range from 50537-50668 Da, 

indicating not only do these MWs match closely with the theoretical MW of full length proteins, 

but also these proteins ionised as dimer on the LC-MS. Since these SEC fractions do not contain 
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reducing agents, the presence of oxidised full length proteins, such that monomers are covalently 

linked by disulfide bonds, is possible. As a quick indicator of the expression of full length Y10-Nter 

protein, a Western blot was performed to detect the presence of histidine tags using anti-His6-tag 

antibody. Although these results were treated with scepticism, chemiluminescence was detected 

in only the protein bands present in the SEC elution fractions that were predicted to contain rings 

(Fractions 9-11 in Figure 5.16 D). 

 

 

Figure 5.16: Expression and purification of Y10tag-Nter HsPrx3 
(A) Chromatogram showing the IMAC purification with the fraction numbers corresponding to the 
SDS-PAGE gel in C. The elution buffer was flowed through the column at ~4 mL, eluting proteins off 
the Ni-column. (B) Chromatogram showing the SEC purification with fraction numbers 
corresponding to the gel in C. The SEC column was a HiLoad 13300. (C) SDS-PAGE gel showing: 1 – 
cleaved wild-type (WT) HsPrx3 protein; 2 – ‘WT-Cter’ protein, actually CRP; 3 – WT-Nter protein as 
a positive control for His6-tags; MW ladder in kDa; 4 to 7 – fractions corresponding to IMAC 
chromatogram; 8 – pooled proteins loaded onto SEC; 9 to 14 -  protein fractions eluted from the 
SEC purification step. The promising band (red circle) is highlighted. (D) Western blot of the above 
SDS-PAGE gel showing chemiluminescent signal for both positive controls and the ~25 kDa bands 
in the IMAC fractions as well as for the SEC fractions, which correspond to ring elution volumes. 
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The results from the LC-MS and Western blots suggested the presence of His6-tagged full length 

proteins that can oligomerise to form dimers and rings. Although this is reminiscent of HsPrx3 

proteins, these techniques to not directly confirm the protein identity or the successful 

incorporation of pAzF into the protein structure. For this, peptide MS was employed to probe the 

incorporation of pAzF into position Y10 of HsPrx3 protein (in collaboration with Martin Middleditch 

and Leo Payne from the Mass Spectrometry Facility, University of Auckland).  

 

The gel bands from fraction 10 and 11 were cut out, destained and then digested with the 

proteases: gluC and trypsin. These enzymes cleave the protein into peptides of known length, and 

this sample was sprayed onto the QTOF instrument. The resulting peptide population included 

peptides with position Y10 completely skipped as well as heavily modified peptides (Table 5.5). 

With the expected mass difference between F and pAzF being +41 Da, the additional mass detected 

suggests the possibility of pAzF incorporation followed by its reaction with some other small 

molecule. Further discussion for this puzzling result is presented in Section 5.6.4. The same analysis 

was performed on WT-Nter protein, and there was only a single population of peptide with a 

tyrosine residue incorporated in position 10, as would be expected for wild-type protein. 

 
Table 5.5: Peptide MS results for Y10tag-Nter promising protein gel band  

Peptide sequence  Ratio as detected 

NLYFQGIDPFTAPAVTQHAP-K  1 

NLYFQGIDPFTAPAVTQHAPF(+148.058 Da)K  2 

NLYFQGIDPFTAPAVTQHAPF(+114.070 Da)K  0.28 

 
This is a promising result of possible pAzF incorporation into HsPrx3 proteins. However, due to time 

restraints, this project was continued by another PhD student in the lab.   
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5.6 Discussion 
 

5.6.1 Overview 
 

The generation of UAA incorporated full length proteins involves a complex orchestration of a 

variety of protein making machinery. The various factors which influenced the success of UAA 

incorporation will be discussed in the following sections. These previous attempts at producing 

UAA incorporated proteins has revealed important details about the system that must be further 

explored in order to improve yields. Firstly, it is important to base UAA incorporation on a protein 

that can be easily expressed in large quantities. This was not the case for WT-Cter constructs 

(Section 5.6.2), but could have been achievable for WT-Nter (Section 5.6.4). Despite these setbacks, 

this process stream-lined a production flow chart (Figure 5.17 in Section 5.6.3) which could be used 

to guide future purifications of UAA incorporated proteins. Secondly, fundamental validation of 

protein expression from pUltra and assessment of UAA incorporation efficiency of protein 

machinery were not carried out (Section 5.6.5). Nor were the pAzF residues checked for their 

viability for incorporation (Section 5.6.6). Other factors that influenced the success of pUltra 

incorporation will also be discussed for future consideration (Section 5.6.7). Lastly suggestions for 

future work (Section 5.6.8) places onus on exploring other systems for functionalisation of HsPrx3 

protein tectons. 

 

5.6.2 Why was wild-type HsPrx3 C-terminal His6-tagged not expressed? 
 

The failed purification of C-terminal His6-tag wild-type (WT-Cter) HsPrx3 was in stark contrast to 

the success of expression and purification of WT-Nter proteins, and could have been attributed to 

two main factors. Firstly, the expression vector was changed from pET151-D-TOPO (for WT-Nter) 

to pET11a, and perhaps this was a contributing factor for the ‘low yields’ of full length protein 

detected by sensitive/promiscuous Western blots. The lack of overexpression of WT-Cter was at 

odds with the observation that truncated Y160tag-Cter and F190tag-Cter expressed so abundantly 

(Figure 5.11 in Section 5.4.2). These overexpressed bands were observed in the insoluble fraction, 

possibly due to incomplete protein folding because of their truncated amino acid sequences. 

Truncated F190tag-Cter, however, was also overexpressed in the soluble fraction, which suggests 

that expressing WT-Cter HsPrx3 proteins should be possible. Perhaps the lowering of the pH of 

purification buffers in order to shift the oligomeric state of HsPrx3 proteins from dimers to rings 

(Morais et al, 2015) was the critical flaw. This lowered pH may have exacerbated the false-positive 

result of the appearance CRP protein, by stabilising this protein in solution as its pI is 8.38. Whereas, 
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at this lowered pH of 7.0, the full length WT-Cter construct, with a pI of 7.09, could have been 

destabilised. This could have also been the cause of the disappearing ‘promising band’ at ~23 kDa 

when comparing fraction 7 in Figure 5.7 (pH 8.0) and Figure 5.9 (pH 7.0). 

  

5.6.3 Improving the systematic detection of full length HsPrx3 proteins 
 

The current system for detection of full length HsPrx3 proteins involves the following steps (Figure 

5.17). Using indirect techniques, such as TEV cleavage or Western blots, to verify the presence of 

HsPrx3 may be useful as an initial indication of possible success, but peptide MS must be done for 

direct confirmation of protein sequences. 

 
Figure 5.17: Flow chart of UAA incorporation process showing key steps and checks 
It is important to have sufficient cell density in order to detect full length protein bands, hence 250 
mL MB should be used for all test purifications. The purification steps should follow that of WT-
Nter constructs (Section 7.4) as this process will select for full length and fully folded proteins that 
are able to still form ringed quaternary structures. Despite all promising indications on gels, peptide 
MS must be performed to unequivocally identify the presence of pAzF in HsPrx3 protein. 
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This method for selecting optimal expression conditions for UAA incorporated proteins is 

somewhat laborious as it involves working with large culture volumes and long purification steps. 

Although the use of peptide MS is essential for verification of the correct product, it is expensive, 

therefore possible improvements can be made (Table 5.6). 

 

Table 5.6: Suggestions for improved detection of UAA incorporation 

Method Comments 

Testing for peroxidase 

activity 

Testing whole cell lysate for peroxidase activity will not be accurate 

due to other peroxidases present, so purification of protein is 

required. This method, although faster than peptide MS/MS, is 

indirect. 

 

rTEV protease for 

cleavage of His6-tags 

Although an indirect method, this could be a fast and inexpensive way 

to quickly check for full length HsPrx3 protein production. The 

addition of reducing agents in order to do this will also reduce the 

azide group, rendering it unable to perform further click reactions. 

This technique would not be useful for N-terminal His6-tagged 

constructs with larger truncated proteins compared to Y10tag-Nter. 

 

rTEV protease to cleave 

off a fluorescent tag 

Same as above, but even faster detection results as no purification 

would be required. 

 

Purification of pAzF-

incorporated proteins 

using alkene resin 

UAA incorporation can be directly assessed, however, these reactions 

are not easily reversible so this method could only be used for the 

initial screen.  

 

5.6.4 Possible reasons for the puzzling results from the large-scale 

Y10tag-Nter expressions 
 

The full length Y10tag-Nter constructs produced had unexpected incorporations or skipping of 

residues that occurred at the Y10 amino acid position (Section 5.5.3). This mixed population of full 

length HsPrx3 protein with the skipped Y10 residues and the additional mass, were in contrast to 

the single population of WT-Nter proteins detected using peptide MS.  The WT-Nter construct used 

for this comparison was generated from a pET151-D-TOPO plasmid. An important control 

expression of WT-Nter produced from the pET24a plasmid, the plasmid containing the Y10tag-Nter 
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construct, was never performed. Although it is unlikely to be an explanation for these puzzling 

observations, this needs to be verified as the change in plasmid (from pET151-D-TOPO) could have 

had an unknown effect on overall protein expression. It is curious that MB growth media seemed 

better at producing full length proteins compared with cells grown in TB (Figure 5.15 in Section 

5.5.2.1). As the composition of MB is propriety, it is not possible to examine what factors within 

this media that could cause greater expression of full length proteins. However, in both growth 

media, greater cell density and longer expression times produced more full length protein, 

although this did not necessarily mean pAzF was correctly incorporated as an active functional 

moiety.  

 

The increase in unexpected mass of 148 Da and 114 Da for the peptide sequence suggests that the 

azide group may have reacted with some other species, as this was not an observation for the WT-

Nter control proteins. This suggests that some pAzF residues may have been incorporated and then 

reacted with some other small molecule, which is a possibility due to the long protein production 

time. Section 5.6.6 explores pAzF accessibility and reactivity. This is a promising result that warrants 

further investigation into how yields for these species can be increased. 

 

The low levels of UAA incorporation and subsequent occasional production of full length HsPrx3 

monomers could have consequences for protein folding and stability. HsPrx3 proteins are never 

found as monomeric proteins in solution, as they form homodimers immediately after synthesis 

from the ribosome. Therefore, due to a lack of a partnering monomer, the occasional full folded 

UAA incorporated Y10tag-Nter monomer may become unfolded and insoluble. Again, the 

production of full length proteins is expected to occur at low levels, so any HsPrx3 protein bands 

in the insoluble fraction will not be overexpressed and may not be distinguishable from other E. 

coli proteins. Perhaps the parallel synthesis of full length WT-Nter monomers could be used to 

encourage pAzF incorporation into soluble full length HsPrx3 proteins. On this note, exploring 

F190tag-Nter as an option for pAzF incorporation may be a viable option, considering the truncated 

F190tag-Nter protein is mostly soluble, providing monomers to which UAA incorporated HsPrx3 

can bind. 

 

5.6.5 pUltra – how this can be improved? 
 

Although some promising results indicate Y10tag-Nter constructs were being made, an attributing 

factor to the poor incorporation of pAzF into HsPrx3 could have been the use of the designed pUltra 

plasmid (Section 5.3.1) which was smaller by 387 base pairs compared to the commercially 
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available equivalent. It must be assessed whether using the original commercial pUltra, which was 

only available recently, will result in better UAA incorporation into the HsPrx3 protein gene. Despite 

being based on the literature (described in Section 5.3.1), the expression outputs from pUltra, both 

the M. jannaschii aminoacyl-tRNA synthetase and the reciprocating tRNA, should have also been 

verified in-house.  

 

5.6.6 Exploring pAzF reactivity and accessibility to the protein sequence  
 

The reactivity of pAzF and, therefore, also its accessibility to the amber stop codon both play 

defining roles in the success and efficiency of UAA incorporation. The azide group in pAzF was 

partly chosen for its specific reactivity towards chemical groups not normally present in biological 

situations (Figure 5.2), enabling its synthesis in E. coli (Chatterjee et al, 2013). However, azides are 

also photoreactive: upon exposure to UV light, a highly reactive nitrene is generated which can 

react with an assortment of compounds, including protein backbones (Gritsan et al, 2010). Despite 

best efforts to avoid exposure to UV light, some pAzF may have cross-linked, rendering it 

unrecognisable to the protein translation machinery.  It has also been shown that sample 

preparation can reduce the pAzF residue into p-amino-L-phenylalanine (pAmF: 180 Da) (Shao et al, 

2015; Chin et al, 2003). This lack of azide group will render the protein no longer able to perform 

click chemistry.  

 

It is plausible that remaining viable pAzF residues had been incorporated sparingly into other 

amber stop codon sites within the E. coli genome hence the extremely low yields of full length 

proteins observed for the Y10tag-Nter construct. However, if this deleterious incorporation of 

UAAs into random amber stop codons had occurred, bacterial growth rates would have been 

expected to stall during the protein expression. This was not evident as bacterial pellets from 

cultures with and without pAzF addition were of similar weights/sizes. This suggests that the pAzF 

was not particularly accessible to incorporation. It is uncertain whether pAzF reacted with anything 

in the various growth medium, rendering the UAA unrecognisable by the protein translation 

machinery. The puzzling results for the full length Y10tag-Cter constructs, with added unexpected 

mass, support this hypothesis. As a future experiment, small volumes of this UAA should be mixed 

with all the solutions used throughout protein expression and purification in order to see if it is 

being modified in anyway using LC-MS. 

 

 



Chapter 5: Towards functionalisable peroxiredoxin tectons      135 
 

5.6.7 Future factors to consider for in vivo incorporation of pAzF into 

HsPrx3 using E. coli methods 
 

The titration of plasmid copy numbers containing the orthogonal translation machinery, such as 

for the predecessor plasmids to pUltra, were a contributing factor towards improving modified 

protein yields, with higher copy number resulting in higher full length protein production (Ryu et 

al, 2006; Young et al, 2010; Chatterjee et al, 2013). In fact, a recent paper divorces copy number 

of plasmids from the efficiency of UAA incorporation in order to directly improve the efficiency of 

UAA incorporation by the orthogonal tRNA/synthetase pair (Amiram et al, 2015). The translational 

machinery genes were embedded into the E. coli genome and produced at endogenous levels. 

Directed evolution experiments were performed to select for more efficient orthogonal 

tRNA/synthetase pairs to incorporate UAAs, as opposed to having this effect through increased 

copies of the tRNA/synthetase pairs themselves. An improved plasmid was derived based on this 

paper, called pUltramate, where the sequences of improved MjaaRS and tRNA have been 

incorporated into the pUltra plasmid. 

 

The location of the amber stop codon with the protein gene can influence the ability for the protein 

translation machinery to incorporate the UAA (Pott et al, 2014). Not only can certain nucleic acid 

sequences cause the ribosome to skip more (Weiss et al, 1987; Farabaugh and Björk, 1999), but 

certain residues surrounding the amber codon can influence the efficiency of UAA incorporation 

(Pott et al, 2014). The incorporation of UAA to the amber stop codon must compete with the 

release factor protein binding to the ribosome at the stop codon and signalling the subunits to 

disassemble. Mutants of this release factor protein (Schmied et al, 2014) and even its deletion from 

the E. coli genome (Zheng et al, 2016) have both resulted in higher UAA incorporation efficiency. 

Cell lines with deleted release factor genes are now also available for purchase and could be viable 

future option for the improved incorporation of UAA into proteins. Another improvement on the 

efficiency of UAA incorporation was by the synthetic evolution of a ribosome that can decode 

quadruplet codons (Neumann et al, 2010). These ribosomes work with the orthogonal protein 

translation machinery to assign the blank codons to certain UAA, including pAzF. This technique 

was used to probe the intra-protein crosslinking, but has also been adapted for fluorescently 

labelling proteins (Wang et al, 2014), and could very well be adapted to functionalising protein 

tectons. 

 

Position of the UAA on a protein can affect its folding, and this has implications on its efficiency of 

incorporation (Arpino et al, 2015), with the most efficient UAA incorporations occurring at 
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positions where native sidechains are buried. This poses a problem for applications as exposed 

functional groups are desired for further reactions for functionalisation of protein tectons. It is 

likely that the location optimisation of UAA incorporation needs to be protein specific, and 

therefore, this must be done for HsPrx3. 

 

5.6.8 Back to the drawing board? 
 

It is clear that in vivo UAA incorporation using E. coli is still an evolving field of research.  It will be 

interesting to see how these techniques improve over time to accommodate other proteins 

outside of the regularly used GFP.  With the end goal of functionalising HsPrx3 in mind, it may be 

more efficient to delay efforts to explore more reliable methods for generating proteins with 

functionalisable chemistries. HsPrx3 remains a versatile protein tecton that can tolerate amino acid 

substitutions and redesigns, and so utilising its surface chemistries may be the most viable route in 

order to achieve functionalisable tectons. The modification of canonical amino acids (such as lysine 

residues in Section 5.1.2), where a mutant tecton with just a single lysine designed onto the protein 

surface would make HsPrx3 a great functionalisable tecton, assuming this mutant still retains its 

ability to form complex quaternary structures. NHS-PEG4-azides are readily commercially available 

and can be used to react with these primary amines, with an end result similar to the aims of this 

chapter. 

 

5.7 Summary 
 

Chapter 5 introduces an attempt at progressing the work from the previous chapters onwards from 

the characterisation of HsPrx3 as a potential tecton for nanotechnology, towards the use of this 

tecton for applications. The functionalisation of HsPrx3 was the key goal of this chapter and, with 

only partial success in the expression of Y10tag-Nter constructs, there are many avenues left to be 

explored (detailed in Section 5.6) for functionalising this protein tecton. 



Chapter 6: Conclusions and future perspectives  137 
 

Chapter 6: Conclusions and future 

perspectives 
 

6.1 Overview 
 

Proteins that self-assemble into a variety of structures make great tectons for nanotechnology. 

Human peroxiredoxin 3 (HsPrx3) is one such protein, self-assembling from dimers into ringed-

shaped architectures, which can further stack to form protein tubes. Part of this thesis explored 

the self-assembly of HsPrx3, not only informing how to control the creation of these structures, 

with implications for its use in future applications, but also expanding on the knowledge of its 

biological function. This is evident in Chapter 2, where the first crystal structure of HsPrx3 in a 

stacked conformation was used as a blueprint for engineering new functions, as well as a basis for 

creating a novel hypothesis for its biological role, where the stacking of HsPrx3 rings is 

representative of a self-chaperoning function. Native mass spectrometry (nMS) analysis of HsPrx3 

at pH 4.0 revealed the self-assembling mechanism of protein tubes as non-commutative (Chapter 

3). The redox-influenced association of protein dimers into dodecameric toroids was also examined 

and muteins were engineered to disrupt this assembly, creating a stabilised toroid and a minimally 

active obligate dimer (Chapter 4). Having gained a deeper understanding of HsPrx3 self-assembly, 

the next step was to functionalise the protein surface with novel chemistries (Chapter 5). An 

unnatural amino acid (UAA), p-azidophenylalanine, was chosen for in vivo incorporation into 

HsPrx3 via an E. coli expression system. Although, not entirely successful, this marks a promising 

initial venture at functionalising HsPrx3. A visual overview of this thesis (Figure 5.1) highlights some 

of these key findings. The following sections will explore the future perspectives of each of these 

results. 
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Figure 6.1: Summary diagram of the results achieved in the context of chapters within this thesis 
The catalytic cysteine in the fully folded (CP

FF) and locally unfolded conformation (CP
LU). 

 

6.2 Future perspectives 
 

6.2.1 Examining the in vivo relevance of HsPrx3 high molecular weight 

structures 
 

Despite the various hypothesises that HsPrx3 ring stacking serves a chaperoning function, whether 

it be as a molecular chaperone or a self-chaperone (Section 2.4.3), the in vivo relevance of HsPrx3 

ring stacking has yet to be ascertained. New developments in cryo-tomography, a technique for in 

situ visualisation of proteins, could be used to address this in mammalian mitochondria. A similar 

study was performed in yeast mitochondrial matrix for the crystalline structures of aldehyde 

dehydrogenase, Ald4p (Fukuda et al, 2015, Misonou et al, 2014). It would not only be interesting 

to see whether these stacked Prx structures exist at all, but also the conditions in vivo, that would 

induce their formation. 
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6.2.2 Surveying the quaternary structure of hyperoxidised Prxs 
 

There are numerous examples of muteins with their stacked ring formation attributed to amino 

acid substitutions that mimic the hyperoxidised state (Section 2.1.3.2). However, hyperoxidised 

Prxs have only been shown to form spherical protein balls (Jang et al, 2004), or single ring 

chaperone species (Teixeira et al, 2015), with no direct link between hyperoxidised Prx to the 

formation of stacked ring protein tubes. Recent developments by Poynton et al, suggest that the 

quaternary structure of HsPrx3 is significantly impacted upon the formation of a sulfenic acid at 

CysP, resulting in the preferential formation of dimers and even unstable monomeric species. 

Crystallisation of the hyperoxidised HsPrx3 would provide clues as to how this modification to CysP 

can alter the protein quaternary structure. 

 

6.2.3 Controlling protein tube lengths 
 

The associations described for the R interface of the HsPrx3 crystal structure (Section 2.3.4) also 

need to be experimentally verified by introducing point mutations to critical residues, such as 

H164. In the case of H164, it is proposed that lowered pH increases its positive charge causing Prx 

stacks to associate. So mutating the H164 residue into a positively charged amino acid, such as 

lysine, could result in better electrostatic interactions at the R interface. It is important to note that 

HsPrx3 have the same R interfaces at the top and bottom of the rings; so rather than capping the 

tubes, having more stabilised stacks could shift the equilibrium of protein tube formation. In fact, 

mutations to the R interface interactions could be a viable means to control HMW tube lengths for 

applications in nanotechnology. Further investigations are required into how salts can affect the 

formation of large HsPrx3 protein tubes. This could be an easy means to control tube lengths 

without having to engineer new enzymes.  

 

The most promising results for controlling protein tube lengths is to use His6-tagged wild-type 

HsPrx3 to alter the equilibrium of tube formation to get smaller stacks of HsPrx3 (Section 3.3). It 

would be interesting to test different ratios of His6-tagged versus cleaved proteins at pH 4.0 using 

the nMS set up as well as the AUC to probe if the lengths of the protein tube population were 

changed.  

 

Another means to control tube lengths would be to create protein caps that limit the growth of 

the protein tubes, like that of Hcp1 ring proteins (Ballister et al, 2008). This could separate the 

inner tube space from the outside, creating a nano-container with variable lengths and different 
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sized inner volumes. These protein caps could be based on HsPrx3, perhaps the His6-tagged variety 

can cap the end of HsPrx3 protein tubes by also binding to a nanoparticle, such as for the nano-

peapods described (Ardini et al, 2014). 

 

6.2.4 Beyond the non-commutative mechanism: probing dimer 

swapping between rings 
 

Although the mechanism of HsPrx3 tube formation at pH 4.0 was found to be non-commutative, 

the kinetics of self-assembly has yet to be explored as it occurs on a time scale < 60 seconds. In 

order to probe this phenomenon, a stopped flow instrument set up can be used to lower solution 

pH incrementally prior to protein injection into the nMS instrument. 

 

With the aim of investigating dimer subunit swapping between cleaved and His6-tagged wild-type 

HsPrx3 protein rings at pH 8.0, these proteins were mixed together and sprayed onto the nMS 

(Section 3.3.1). Other homooligomers spontaneously associate and dissociate, swapping subunits 

between each HMW species within seconds to minutes (Sobott et al, 2002; Aquilina et al, 2005; 

Benesch et al, 2010). Dimer subunit swapping does not occur for this particular HsPrx3 mixture, 

but this could be a result of using stabilised His6-tagged wild-type HsPrx3 rings (Section 3.4.2). 

Alternatively, to truly test for subunit swapping, labelling proteins with heavy carbon or nitrogen 

would result in comparable cleaved wild-type protein species with which to mix (Rutsdottir et al, 

2017), and the mass difference between labelled and unlabelled proteins can be detected using 

nMS. 

 

6.2.5 Pinpointing a threshold H2O2 concentration that destabilises the 

protein ring 
 

Although formation of the disulfide bond between two Prx monomers in a homodimer is known to 

destabilise the formation of the A interface, leading to Prx ring dissociation, the question arises of 

how many disulfide bonds does it take to disrupt a ring? The dissociation of reduced wild-type 

HsPrx3 rings can be monitored by nMS in real-time during increasing exposure to H2O2, with 

stabilised S78C HsPrx3 rings as a control. From Prx protein crystal structures (Cao et al, 2015) and 

the stabilised S78C HsPrx3 mutein, it seems possible that HsPrx3 protein rings can remain intact 

even after disulfide bond formation (Section 4.6.3). Perhaps a threshold concentration of H2O2 in 

which the rings dissociate. This again, links the oligomerisation of Prxs to another yet unknown 
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cellular function, and would be crucial knowledge with regards to protein ring stability that could 

influence the use of these proteins as tectons for nanotechnology.  

 

6.2.6 Disentangling the redox switch as a means to use HsPrx3 as a 

cancer therapeutic 
 

As a crucial cellular peroxidase, HsPrx3 has been linked to a variety of cancers (Li et al, 2015; Section 

1.5.3.3), and so disrupting the toroidal structure may be a means to design therapeutics against 

this highly abundant human protein. That is, drugs that disrupt oligomerisation of HsPrx3 can be 

used to improve the efficacy of other chemotherapies by temporarily impairing HsPrx3 function, 

and by removing one of the pathways a cancer cell uses to circumvent cell death. Mouse 

experiments have been shown to survive Prx3 knockouts (Li et al, 2007; Zhang et al, 2016). 

However, cancer cells may not be able to tolerate its unusually highly oxidative environments and 

can undergo cell death mediated by reactive oxygen species (Song et al, 2011; Mishra et al, 2015).  

 

6.2.7 Towards functionalising HsPrx3 tectons 
 

The study of HsPrx3 structures and examination of their self-assembly concerned the first three 

results chapters, with Chapter 5 as a first survey of functionalising HsPrx3 tectons for applications 

beyond its original biological function. The incorporation of an UAA into specific locations of the 

protein would provide novel reactive groups, such as azides, with which to perform click chemistry. 

The suggestions for future troubleshooting of this were discussed in Section 5.6.  

 

In the course of functionalising HsPrx3, it is important to meld the novel characteristics of HsPrx3 

as a tecton with any of its future functions. The reversible assembly of HsPrx3 protein structures, 

via an environmental trigger such as changes on pH or presence of H2O2, can enable these proteins 

to act as switchable scaffolds. Enzymes can be tethered to the outer surface of HsPrx3 rings and 

these rings can be assemble into tubes. The enzyme-decorated tubes act as a biological scaffold 

for a cascade of reactions. Alternatively, the central cavity of HsPrx3 protein tubes can act as nano-

tunnel within which small enzymatic cascades can occur, like an ‘enzymatic highway’ where 

substrates can be channelled for different metabolic pathways (Dueber et al, 2009; Glover and 

Clark, 2016). The specific spatial separation between each stacked ring provides exquisite 

patterning at the nano-scale, which can be tuned to separate of fluorophores for complex 

fluorescence resonance energy transfer cascades (Buckhout-White et al, 2014). Conductive 

polymers, on the other hand, could be used to embellish the outer surface of protein tubes bound 
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with metal ions/nanoparticles in the central cavity, increasing the conductive properties of protein 

nanowires (Abdallh et al, 2014).  

 

Overall, this thesis enriches our understanding of the versatile nature of HsPrx3 protein as self-

assembling building blocks, with implications for its biological role as well as its for future 

applications in bionanotechnology. 
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Chapter 7: Materials and methods 
 

7.1 Reagents and chemicals 

 

Unless otherwise stated, all chemicals were obtained from Sigma-Aldrich (Auckland, New Zealand), 

or Invitrogen (Victoria, Australia). 0.22 µm filtration devices used in this thesis included Corning® 

Costar® Spin-X® centrifuge tube filters (ThermoFisher Scientific) and ReliaPrep™ Syringe Filters 0.22 

µm PES (Ahlstrom). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gels, 

MES running buffers and Novex® protein molecular weight ladders were all supplied by Invitrogen. 

Chromatography media were obtained as pre-packed columns or loose gels from GE Healthcare 

Lifesciences (Auckland, New Zealand). Purified water from a MilliQ system (Millipore) was used 

throughout. 

 

The centrifuges used were Eppendorf 5810R (fixed angle rotor F-34-6-38) and Sorvall RC6 plus 

(rotor F10S6x500Y). The spectrophotometers used were Cary 4000 UV-Vis spectrophotometer 

(Varian) used for checking protein concentration for crystallography and Spectramax M5 

(Molecular Devices) that are able to hold microplates for assays as well as cuvettes for checking 

optical density of bacterial cultures. 

 

7.2 Molecular Biology and DNA manipulation 

 

7.2.1 Growth media 

 

All media and equipment for bacterial culture were sterilised by autoclaving prior to use. All 

bacterial work was carried out under sterile conditions using an updraft generated by a flame, and 

standard aseptic technique was employed (Bykowski and Stevenson, 2005).  

 

All components of media in Table 7.1 were dissolved in MilliQ water before being sterilised by 

autoclaving. When required and immediately before use, appropriate antibiotics were added to 

media, which was cooled below 50 °C. This is especially important when making LB agar, as agar 

must be heated to melt all solids and then cooled prior to addition of antibiotics, before being 

poured into Petri dishes to set.  
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Table 7.1 

Media Composition 

LB medium (Bertani, 1951) bacto-tryptone (10 g/L), yeast extract (5 g/L), NaCl (10 g/L) 

LB agar LB medium  + 1.5% agar 

TB medium 
bacto-tryptone (10 g/L), yeast extract (5 g/L) 
buffered with 1M potassium phosphate, pH 7.2 

Magnificent Broth™ unsure because propriety (MacConnell Research) 

 

7.2.2 Antibiotics and other media additives 

 

All antibiotics used were sterilised by passing the solution through a 0.22 µm filter and stored as 

1000x stock solutions at -20 °C. The working concentrations (Table 7.2) were used to select for 

appropriate bacterial strains. Stock isopropyl-β-D-thiogalactopyranoside (IPTG) was made up to a 

concentration of 1 M and added to media at a 1/4000 dilution to give a working concentration of 

0.25 mM. 

 

Table 7.2 

Antibiotic Working concentration (µg/mL) Solvent to dissolve 

Ampicillin 100 MilliQ water 

Chloramphenicol 50 100% ethanol 

Kanamycin 50 MilliQ water 

Spectinomycin  50 MilliQ water 
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7.2.3 Protein expression genes and plasmids 

 

Epoch Biolabs (Sugar Land, Texas, USA) were employed to perform all the molecular biology 

required for this work. The human peroxiredoxin 3 (HsPrx3) gene was originally obtained from  

Mark Hampton in the Christchurch School of Medicine, and subsequently cloned into a pET151-D-

TOPO vector (Novagen, 1999) by Pam Zhu in the Gerrard laboratory. This plasmid was sent to Epoch 

Biolabs for further DNA manipulations. All of the subsequent subcloning of HsPrx3 gene variants 

into new pET vectors was performed by Epoch Biolabs (Tables 7.3 - 7.5). 

 
Table 7.3: Protein names with the corresponding amino acid sequences, as single letter identifiers, 
designed to be expressed from the pET 151-D-TOPO (ampicillin resistance). The following features 
are coloured as follows: histidine tag (pink), linker region (blue), TEV protease cleavage site (green); 
native protein sequence (black). Mutated residues are highlighted in yellow. 

 

 
 
 
Table 7.4: Protein names with the corresponding amino acid sequences, as single letter identifiers, 
designed to be expressed from the pET 11a (ampicillin resistance). The following features are 
coloured as follows: histidine tag (pink), linker region (blue), TEV protease cleavage site (green); 
native protein sequence (black). Mutated residues are highlighted in yellow, with a dash (-) 
indicating the presences of the “tag” amber stop codon. 

Wild-type HsPrx3 
N-terminal  
His6-tag  
(WT-Nter) 

MHHHHHHGKPIPNPLLGLDSTENLYFQGIDPFT 

APAVTQHAPYFKGTAVVNGEFKDLSLDDFKGKYLVLFFYPLDFTFVCPTE 

IVAFSDKANEFHDVNCEVVAVSVDSHFSHLAWINTPRKNGGLGHMNIALL 

SDLTKQISRDYGVLLEGSGLALRGLFIIDPNGVIKHLSVNDLPVGRSVEE 

TLRLVKAFQYVETHGEVCPANWTPDSPTIKPSPAASKEYFQKVNQ 

 
S75E HsPrx3 MHHHHHHGKPIPNPLLGLDSTENLYFQGIDPFT 

APAVTQHAPYFKGTAVVNGEFKDLSLDDFKGKYLVLFFYPLDFTFVCPTE 

IVAFSDKANEFHDVNCEVVAVSVDEHFSHLAWINTPRKNGGLGHMNIALL 

SDLTKQISRDYGVLLEGSGLALRGLFIIDPNGVIKHLSVNDLPVGRSVEE 

TLRLVKAFQYVETHGEVCPANWTPDSPTIKPSPAASKEYFQKVNQ 

 

S78C HsPrx3 MHHHHHHGKPIPNPLLGLDSTENLYFQGIDPFT 

APAVTQHAPYFKGTAVVNGEFKDLSLDDFKGKYLVLFFYPLDFTFVCPTE 

IVAFSDKANEFHDVNCEVVAVSVDSHFCHLAWINTPRKNGGLGHMNIALL 

SDLTKQISRDYGVLLEGSGLALRGLFIIDPNGVIKHLSVNDLPVGRSVEE 

TLRLVKAFQYVETHGEVCPANWTPDSPTIKPSPAASKEYFQKVNQ 

Wild-type HsPrx3 
C-terminal His6-tag  
(WT-Cter) 

M 

APAVTQHAPYFKGTAVVNGEFKDLSLDDFKGKYLVLFFYPLDFTFVCPTE 

IVAFSDKANEFHDVNCEVVAVSVDSHFSHLAWINTPRKNGGLGHMNIALL 

SDLTKQISRDYGVLLEGSGLALRGLFIIDPNGVIKHLSVNDLPVGRSVEE 

TLRLVKAFQYVETHGEVCPANWTPDSPTIKPSPAASKEYFQKVNQ 

MENLYFQGGTHHHHHH 
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Table 7.5: Protein names with the corresponding amino acid sequences, as single letter identifiers, 
designed to be expressed from the pET 24a (kanamycin resistance). The following features are 
coloured as follows: histidine tag (pink), linker region (blue), TEV protease cleavage site (green); 
native protein sequence (black). Mutated residues are highlighted in yellow, with a dash (-) 
indicating the presences of the “tag” amber stop codon. 

 

  

Y10tag HsPrx3 
C-terminal His6-tag 
Y10tag-Cter 

M 

APAVTQHAP-FKGTAVVNGEFKDLSLDDFKGKYLVLFFYPLDFTFVCPTE 

IVAFSDKANEFHDVNCEVVAVSVDSHFSHLAWINTPRKNGGLGHMNIALL 

SDLTKQISRDYGVLLEGSGLALRGLFIIDPNGVIKHLSVNDLPVGRSVEE 

TLRLVKAFQYVETHGEVCPANWTPDSPTIKPSPAASKEYFQKVNQ 

MENLYFQGGTHHHHHH 

 

Y160tag HsPrx3 
C-terminal His6-tag 
Y160tag-Cter 

M 

APAVTQHAPYFKGTAVVNGEFKDLSLDDFKGKYLVLFFYPLDFTFVCPTE 

IVAFSDKANEFHDVNCEVVAVSVDSHFSHLAWINTPRKNGGLGHMNIALL 

SDLTKQISRDYGVLLEGSGLALRGLFIIDPNGVIKHLSVNDLPVGRSVEE 

TLRLVKAFQ-VETHGEVCPANWTPDSPTIKPSPAASKEYFQKVNQ 

MENLYFQGGTHHHHHH 

 

F190tag HsPrx3 
C-terminal His6-tag 
F190tag-Cter 

M 

APAVTQHAPYFKGTAVVNGEFKDLSLDDFKGKYLVLFFYPLDFTFVCPTE 

IVAFSDKANEFHDVNCEVVAVSVDSHFSHLAWINTPRKNGGLGHMNIALL 

SDLTKQISRDYGVLLEGSGLALRGLFIIDPNGVIKHLSVNDLPVGRSVEE 

TLRLVKAFQYVETHGEVCPANWTPDSPTIKPSPAASKEY-QKVNQ 

MENLYFQGGTHHHHHH 

Y10tag HsPrx3 
N-terminal  
His6-tag  
(Y10tag-Nter) 

MHHHHHHGKPIPNPLLGLDSTENLYFQGIDPFT 

APAVTQHAP-FKGTAVVNGEFKDLSLDDFKGKYLVLFFYPLDFTFVCPTE 

IVAFSDKANEFHDVNCEVVAVSVDSHFSHLAWINTPRKNGGLGHMNIALL 

SDLTKQISRDYGVLLEGSGLALRGLFIIDPNGVIKHLSVNDLPVGRSVEE 

TLRLVKAFQYVETHGEVCPANWTPDSPTIKPSPAASKEYFQKVNQ 

 
Y160tag HsPrx3 
N-terminal  
His6-tag  
(Y160tag-Nter) 

MHHHHHHGKPIPNPLLGLDSTENLYFQGIDPFT 

APAVTQHAPYFKGTAVVNGEFKDLSLDDFKGKYLVLFFYPLDFTFVCPTE 

IVAFSDKANEFHDVNCEVVAVSVDSHFSHLAWINTPRKNGGLGHMNIALL 

SDLTKQISRDYGVLLEGSGLALRGLFIIDPNGVIKHLSVNDLPVGRSVEE 

TLRLVKAFQ-VETHGEVCPANWTPDSPTIKPSPAASKEYFQKVNQ 

 

F190tag HsPrx3 
N-terminal  
His6-tag  
(F190tag-Nter) 

MHHHHHHGKPIPNPLLGLDSTENLYFQGIDPFT 

APAVTQHAPYFKGTAVVNGEFKDLSLDDFKGKYLVLFFYPLDFTFVCPTE 

IVAFSDKANEFHDVNCEVVAVSVDSHFSHLAWINTPRKNGGLGHMNIALL 

SDLTKQISRDYGVLLEGSGLALRGLFIIDPNGVIKHLSVNDLPVGRSVEE 

TLRLVKAFQYVETHGEVCPANWTPDSPTIKPSPAASKEY-QKVNQ 
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7.2.4 Bacterial strains 

 

The E. coli bacterial strains used for plasmid propagation (Table 7.6) and protein expression (Table 

7.7) are described below. These cells were all propagated from the original commercial stock (Life 

Technologies) and made chemically competent in-house (Section 7.2.5). All bacteria were snap 

frozen using liquid nitrogen and stored at -80 °C. 

 

Table 7.6: The E. coli strains used for plasmid propagation. *originally purchased from Stratagene.  

 E. coli strain Genotype Antibiotic resistance 

XL1Blue* recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac  
[F- proAB lacIqZΔM15 Tn10 (Tetr)] 

tetracycline 

DH5α F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 
hsdR17 (rK–, mK+) phoA supE44 λ– thi-1 gyrA96 relA1 

none 

 

Table 7.7: The E. coli strains used as expression hosts for protein production. These cells contain a 
gene for T7 RNA polymerase making them compatible with pET vectors (Section 7.2.3) for protein 
over expression. Specifically, BL21 (DE3) cells were transformed with pET 11a and pET 24a vectors, 
whereas Rosetta (DE3) cells were transformed with pET 151-D-TOPO vectors. Rosetta (DE3) cells 
contains a pRARE plasmid, with chloramphenicol resistance, that encodes for tRNA synthetases 
found in human protein production for codons that are not often used in E. coli.  

 

 

7.2.5 Chemically competent cell preparation 

 

All chemically competent cell strains were prepared using a modified CaCl2 method (Chan et al, 

2013). Thawed bacterial stocks were plated on LB agar and incubated at 37 °C for 16-20h to allow 

for colonies to form. A single colony was picked and transferred into 10 mL LB media and this seed 

culture was incubated for 16-20h at 37 °C, 180 rpm. 50 mL LB was inoculated with 500 µL seed 

culture, and bacteria cells were grown at 37 °C, 180 rpm until OD6oo= 0.4-0.6 (as measured on 

Spectramax M5 spectrophotometer), when the cells were rapidly cooled on ice, and were kept on 

ice for the rest of the preparation. Bacterial cells were spun down at 4 °C, 3000 xg for 5 min. 

Supernatant was carefully discarded, and cells were gently resuspended in 25 mL ice-cold 0.1 M 

CaCl2. Resuspended cells were incubated on ice for 1 h, then centrifuged at 4000 xg, 8 min, 4 °C. 

The supernatant was carefully removed and cells were resuspended in ice-cold 0.1 M CaCl2, 15% 

(v/v) glycerol. 100 µL aliquots were snap frozen using liquid nitrogen and stored at -80 °C. 

E. coli strain Genotype Antibiotic resistance 

BL21 (DE3) F- ompT hsdSB (rB
– mB

– ) gal dcm (DE3) None 

Rosetta (DE3) F- ompT hsdSB (rB
– mB

– ) gal dcm (DE3) pRARE (CamR) Chloramphenicol 
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Both the cells stocks used to generate new competent cells, as well as the freshly made competent 

cells were plated on LB agar containing the range of antibiotics used routinely in the lab. These act 

as controls to ensure no contaminating cells were present before or after this protocol. 

 

7.2.6 Bacterial transformation protocol for chemically competent cells 

 

50 µL aliquots of competent cells were thawed on ice before the additions of approximately 100 

ng plasmid DNA. The DNA and cells were incubated on ice for 5 min, before heat shock treatment 

at 42 °C for 90 s, after which they were immediately transferred back onto ice. 350 µL LB medium 

was added and the cells were incubated at 37 °C, 200 rpm for at least 30 minutes to allow time for 

the transformed bacteria to express their antibiotic resistance genes. 30 µL recovered cells were 

spread onto LB agar plates containing appropriate selection antibiotics. The plates were incubated 

at 37 °C for 16-20 h, when colonies appeared, indicating successfully transformed cells.  

 

7.2.7 Plasmid propagation and isolation from E. coli 

 

All plasmids were amplified by transforming the desired DNA plasmids into either chemically 

competent XL1Blue or DH5α cells (Section 7.2.6). A single colony was picked and grown in 10 mL 

LB media containing appropriate antibiotics for 16-20h at 37 °C, 200 rpm. Plasmids were isolated 

from this bacterial cell culture using a commercial kit (QIAprep Spin Miniprep kit, QIAGEN) 

according to manufacturer’s instructions. The plasmids were collected in the supplied elution 

buffer and stored at -20 °C. 
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7.3 Recombinant protein expression in E.coli  

 

7.3.1 Small-scale test expressions for optimising protein expression 

 

Chemically competent cells, either BL21 (DE3) or Rosetta (DE3) cells, were freshly transformed with 

the desired pET plasmid (Section 7.2.6; Table 7.7). The protocol for a standard expression is as 

follows. A single colony was picked and grown in 10 mL LB media containing appropriate antibiotics 

for 16-20h at 37 °C, 200 rpm. 20 mL LB was inoculated with 500 µL seed culture, and bacteria 

cultures were grown at 37 °C, 180 rpm until OD6oo= 0.4-0.6. Protein production was induced upon 

the addition of 1mM IPTG (final concentration). The conditions that were varied, including protein 

expression conditions, are detailed in Table 7.8. 

 
Table 7.8 

Conditions varied How it was varied? 

Growth media  used See Table 7.1 for full list, otherwise specified in figure legends 

Final IPTG 
concentrations 

Ranged from 0.2 – 1 mM 

Protein expression 
temperature and times 

Flasks cooled before incubating cell culture at the following 
temperatures/time: 18 °C for 16-20 h; 37 °C for 3-5 h; 28 °C for 16 h 

 

Cells were harvested via centrifugation at 4 °C, 5000 xg for20 min. Cells were lysed either using 

BugBuster® (Merck Millipore; as per manufacturer’s instructions) or using sonication (Section 

7.3.3). Total lysate was spun at 4 °C, 20000 xg for 15 min to separate out soluble and insoluble 

fractions, which were run on an SDS-PAGE gel (Section 7.6.2) to discern proteins present in each 

fraction. 8M urea was added to insoluble pellets to solubilise proteins to ensure distinct bands 

were seen on SDS-PAGE gel. 

 

7.3.2 Large-scale expression of proteins 

 

This is the established standard protocol for N-terminally His6-tagged wild-type HsPrx3 protein 

expression. Chemically competent cells, either BL21 (DE3) or Rosetta (DE3) cells, were freshly 

transformed with the desired pET plasmid (Section 7.2.6; Table 7.7). A single colony was picked and 

grown in 10 mL LB media containing appropriate antibiotics for 16-20h at 37 °C, 200 rpm. 500 mL 

LB was inoculated with 5 mL seed culture, and bacteria cultures were grown at 37 °C, 180 rpm until 

OD6oo= 0.4-0.6. Flasks containing bacterial cultures were cooled to at least room temperature 

before protein production was induced upon the addition of 1mM IPTG (final concentration). 
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Induced bacteria were incubated with shaking at 200 rpm at 18 °C for 16-20h. Cells were harvested 

by centrifugation at 5000 xg for 20 minutes into pellets. The supernatant was carefully discarded 

and cell pellets were resuspended in buffer A (Table 7.9 in Section 7.4.1) before further lysis, or 

storage at -20 °C until use. 

 

7.3.2.1 The expression of unnatural amino acid proteins  

 

The method development, detailed in Chapter 5, uses H-4-Azido-Phe-OH reagent (Bachem F3075). 

 

7.3.3 Cell Lysis 

 

All cell lysis was performed either on ice or at 4 °C. Methods of cell lysis were chosen depending 

on the size of each protein preparation. BugBuster® or sonication using the smallest probe were 

employed for lysis of trail expressions. Large pellets of bacterial cells were lysed using sonication 

with the larger probe or the cell disruptor.  

 

7.3.3.1 BugBuster® protein extraction reagent 

 

BugBuster® protein extraction reagent was used, according to the manufacturer’s instructions, to 

resuspend small cell pellets from the small-scale protein test expressions. This reagent was used 

for a high-throughput check for overexpression of desired proteins in cell lysates. It was important 

to follow these instructions to achieve complete cell lysis, otherwise soluble proteins may 

incorrectly appear in the insoluble fraction. Sometimes the protein of interest was unstable in the 

presence of BugBuster®, causing these proteins to precipitate and appear insoluble, when they 

might not be in the correct buffer conditions. Therefore, sonication was the preferred method for 

cell lysis, after overexpression of protein bands was established using BugBuster®. 

 

7.3.3.2 Sonication 

 

Cell pellets were thawed and resuspended in approximately 3 mL/g of cell pellet in buffer A (Table 

7.9). Proteolytic activity was inhibited by the addition of 1 cOmplete™, EDTA free protease inhibitor 

tablet per 50 mL of cell resuspension. Sonication with either the micro-probe for volumes < 5 mL, 

or the large probe for volumes > 50 mL. Sonication occurred on ice using a UP200S Ultrasonic 

Processor (Hielscher) at 65% amplitude, 0.5 s on, 0.5 s off, for 15 min.  
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7.3.3.3 Cell disruptor 

 

Cell pellets were thawed and resuspended in approximately 5 mL/g of cell pellet in buffer A (Table 

7.9). Proteolytic activity was inhibited by the addition of 1 cOmplete™, EDTA free protease inhibitor 

tablet per 50 mL of cell resuspension. The mechanical cell disruptor (Microfluidics™) was washed 

and equilibrated with buffer A before the addition of resuspended cell solution.  

 

7.4 Protein purification 

 

7.4.1 Buffers and equipment 

 

The following chromatographic techniques were performed using AKTA protein purification 

systems, peristaltic pumps and gravity flow methods. The standard purification buffers used for N-

terminally His6-tagged wild-type HsPrx3 protein are listed in Table 7.9. Protein purification 

procedures can be conducted at 4 °C or 25 °C with similar yields in pure protein. Prior to any 

procedure, all columns and resins used in gravity flow were pre-equilibrated with at least three 

column volumes of initial purification buffer. Prior to sample being loaded onto any columns, they 

were passed through a 0.22 µm filter. 

 

Table 7.9  

Buffer  Composition 

IMAC buffer A 20 mM HEPES, pH 8.0; 150 mM NaCl; 25 mM imidazole 
IMAC buffer B 20 mM HEPES, pH 8.0; 150 mM NaCl; 500 mM imidazole 
SEC buffer C 20 mM HEPES, pH 8.0; 150 mM NaCl; 2 mM TCEP 
Storage buffer D 20 mM HEPES, pH 8.0; 150 mM NaCl; 2 mM TCEP; 5% glycerol 

 

7.4.2 Immobilised affinity chromatography (IMAC) 

 

Since recombinant HsPrx3 proteins are His6-tagged, immobilised affinity chromatography (IMAC) 

was used as the initial purification step for these proteins. Bacterial lysate was loaded through 

either a 1 mL or 5 mL HisTrap FF column using a peristaltic pump. Columns were washed with at 

least five column volumes of buffer A (Table 7.9), before buffer B was used to elute off proteins 

remaining attached to the Ni2+ column. Fractions corresponding to any 280 nm absorbance peaks 

were analysed by SDS-PAGE for protein of interest prior to being pooled. 
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7.4.3 Preparative size exclusions chromatography (SEC) 

 

Depending on the amount of protein to be loaded onto the SEC column, either a HiLoad 

Superdex200 16/60 120 mL or Superdex200 10/300GL 24 mL columns were used for size exclusion 

chromatography. Pooled proteins were concentrated to either 500 µL or 2 mL and injected into 

pre-equilibrated 24 mL or 120 mL columns, respectively. Eluted fractions corresponding to the 280 

nm absorbance peak were analysed by SDS-PAGE for protein of interest prior to being pooled. 

 

Purified His6-tagged HsPrx3 proteins were either concentrated (Section 7.5.2) and then stored 

(Section 7.5.1) for later use, or the His6-tag was removed using rTEV protease (Section 7.5.3). 

 

7.5 Other protein manipulations 

 

7.5.1 Protein storage and handling 

 

Freshly purified proteins, whether it be His6-tagged or cleaved protein, were kept in storage buffer 

D (Table 7.9) and flash frozen using liquid nitrogen and stored at -80 °C. Proteins could be buffer 

exchanged into storage buffer D, but often 50% glycerol stock was added directly into the purified 

protein mix to a final concentration of approximately 5%.  

 

As a general rule, it was best to use freshly thawed proteins for every experiment. These proteins 

were buffer exchanged into fresh buffer required for the particular experiment (Section 7.5.2). 

However, purified proteins could be kept at 4 °C under reducing conditions (buffer C, Table 7.9) for 

a few hours without detrimental effects to quaternary structure or function. 

 

7.5.2 Concentrating proteins and buffer exchange 

 

In order to concentrate purified proteins, Vivaspin® centrifugal spin concentrators with PES 

membranes at the appropriate molecular weight cut off were used (Sartorius).  

 

Spin concentrators were also a method used for buffer exchange, where samples were 

concentrated then diluted with the new buffer and re-concentrated repetitively. This method took 

time for viscous solutions at high protein concentration and was not particularly effective for low 

concentrations of protein, as protein can become attached to the spin filter membrane. 
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Buffer exchange for small volumes of protein solution from 0.5 – 2 mL was achieved using Slide-a-

Lyzer™ MINI dialysis buttons with the correct molecular weight cut off (ThermoFisher Scientific). 

These buttons were placed in at least 1 L of new buffer and left for at least 3 h with stirring of 

buffer. Dialysis overnight was done to achieve complete buffer matching of proteins to the new 

buffer.   

 

Complete buffer exchange was also be achieved using the SEC column (Section 7.4.3). Micro Bio-

Spin™ P6 Gel disposable buffer exchange columns (Bio-Spin6 columns, BioRad) were pre-

equilibrated with buffer of interest, and buffer exchange performed according to manufacturer’s 

instructions. Buffer exchange using Bio-Spin6 columns was a fast process, and was used in both 

native mass spectrometry (Chapter 3) and for the activity assays (Chapter 4, Section 4.5).  

 

7.5.3 His6-tag removal using recombinant TEV protease 

 

7.5.3.1 rTEV protease expression and purification 

 

Recombinant tobacco etch virus (rTEV) protease was purified using a modified method inspired by 

Blommel and Fox, 2007. pRK793 encodes for the rTEV protease gene with a C-terminal His6-tag, 

followed by a TEV cleavage site, then an MBP-tag, which was co-expressed to improve solubility of 

the rTEV-MBP construct (Blommel et al, 2007). Glycerol stocks of E. coli BL21 RILP transformed 

with pRK793 were plated onto LB agar containing kanamycin and chloramphenicol. Seed cultures 

and large-scale protein expression was performed (Section 7.3.2), followed by cell lysis by 

sonication (Section 7.3.3.2), with the following modifications of buffers (Table 7.10). In order to 

remove insoluble proteins and cell debris, the lysate was spun at 18000 xg, 30 min, 4 °C. The 

supernatant, or soluble protein, was incubated at 4 °C for at least 5 h to allow self-cleavage of rTEV-

MBP construct and the separation of MBP from the rTEV-His6-tag. Successful self-cleavage was 

determined by SDS-PAGE gel before proceeding. rTEV protease was purified from the soluble lysate 

using IMAC (Section 7.4.2), and then buffer exchanged using SEC into rTEV storage buffer (Table 

7.10). The isolation of pure protein was confirmed using SDS-PAGE as a single band at ~ 28 kDa. 

 

Table 7.10: Buffers for rTEV purification 

Buffer Composition 

IMAC buffer A –rTEV 20 mM HEPES, pH 8.0; 150 mM NaCl; 25 mM imidazole; 0.3 mM TCEP 
IMAC buffer B –rTEV 20 mM HEPES, pH 8.0; 150 mM NaCl; 500 mM imidazole; 0.3 mM TCEP 
rTEV storage buffer 20 mM HEPES, pH 8.0; 150 mM NaCl; 5% glycerol; 3 mM TCEP 
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7.5.3.2 rTEV protease cleavage of His6-tags from other recombinant proteins 

 

rTEV protease was routinely used to remove the His6-tags from the HsPrx3 constructs, which all 

contained rTEV protease cleavage sites between the histidine tags and the protein sequence 

(Tables 7.3 – 7.5). Purified HsPrx3 proteins in buffer C (Table 7.9), contained the reducing agent, 

TCEP, required for correct rTEV protease function. Otherwise, buffer exchange of His6-tagged 

HsPrx3 into storage buffer (Table 7.9) were required before commencing. rTEV protease and His6-

tagged HsPrx3 proteins were mixed at approximately 1:20 ratio, and incubated at 4 °C for 16-20 h. 

This protein mix was incubated with Co2+ HisPur resin pre-equilibrated with buffer C (Table 7.9) for 

5 min at 25 °C. The cleaved protein was in the flow through, whereas the His6-tagged rTEV and 

cleaved His6-tags bound to the resin. It was important to ensure there was sufficient resin to bind 

rTEV protease and cleaved tags, according to the manufacturer’s instructions. The resin was 

washed with five column volumes of buffer C. The washes and flow through contained only cleaved 

HsPrx3 protein, verified as single bands at ~23 kDa on SDS-PAGE gels. This protein was then 

concentrated (Section 7.5.2) to ~ 10 mg/mL before storage (Section 7.5.1). 

 

7.5.4 Testing protein stability in different ammonium acetate 

concentrations 

 

In order to rapidly test the solubility of HsPrx3 proteins in different ammonium acetate 

concentrations, a 10 mg/mL aliquot of protein was diluted to 1 in 20 using different concentrations 

of pH 8.0 ammonium acetate solutions (10 mM, 50 mM, 100 mM and 200 mM). The samples were 

spun at 20000 xg for 10 minutes to remove precipitated proteins. This was done at 0 h, and also 

after 5 h and 25 h. 5 µL supernatant was run on an SDS-PAGE gel to visually check amounts of 

soluble proteins present. 

 

7.6 Protein characterisation 

 

7.6.1 Determination of protein concentration 

 

UV absorbance of aromatic amino acids at 280 nm provides a direct method for quantifying protein 

concentration, as long as the solution contained pure protein that is not bound to co-factors that 

adsorb in this region. The UV measurement was routinely done using a Nano-Drop-1000 

spectrophotometer. Protein concentrations exceeding 5 mg/mL were diluted to get a more 
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accurate absorbance reading. The extinction coefficient for each protein was measured using 

ExPASy ProtParam tool (http://web.expasy.org/protparam/). The Beer-Lambert law was used to 

convert the absorbance into concentration.  

 

For crystallographic screens, the Cary-4000 spectrophotometer instrument was used for accurate 

measurements of absorbance at 280 nm of protein solutions. Approximately 150 µL of diluted 

protein solution was scanned from 230-500 nm, with blank subtraction, to gain a more accurate 

measurement of absorbance at 280 nm. The absorbance peak was below 1 to ensure that the 

measurement was in the linear range of the spectrophotometer. 

  

7.6.2 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) 

 

All reagents for SDS-PAGE were supplied by ThermoFisher Scientific (Table 7.11). This technique 

was routinely used to assess the purity of proteins and their MW. Samples were mixed with 2x 

loading buffer and heated to 95 °C for 5 min to denature samples. Samples were centrifuged prior 

to loading onto gels. The gels were run at 165 mV, 275 mA for 35 minutes.  

 

Table 7.11: Reagents used for SDS-PAGE  

Components Details or methods 

Gel Bolt™ 4-12 % Bis-Tris Plus Gels, 10-well or 15 well gels (Invitrogen) 

Buffer Bolt® MES running buffer allows for a separation range of 3.5 kDa to 
160 kDa 

2x loading buffer stocks 
(reducing/non-reducing) 

For 5 mL of loading buffer: 2.5 mL NuPAGE® LDS Sample Buffer (4x); 
± 1 mL 500 mM DTT; making the rest up with MilliQ to 5 mL  
This buffer was pre-mixed and stored at -20 °C  

Molecular weight ladder Novex® Sharp Pre-stained Protein Standard (Life Technologies) 

 

The gels were stained using Coomassie Blue solution (1 g/L Coomassie R250 in MilliQ with 10% 

glacial acetic acid and 40% ethanol) for 30 min, before destaining for 1h using the destain solution 

(MilliQ with 10% glacial acetic acid and 40% ethanol). Complete destaining was achieved when gels 

are rinsed in MilliQ water overnight. Gels were imaged using a document scanner. 
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7.6.3 Western blot immunodetection 

 

Western blots were employed to identify the presence of His6-tags on proteins using a 

commercially available set up by Invitrogen that enables this to be done within one day. The full 

list of reagents used is in Table 7.12. Two identical SDS-PAGE gels were run containing the protein 

of interest (Section 7.6.2). One gel was Coomassie stained to in order to detect other proteins 

present without a His6-tag, whereas the other was used for the Western blot. Protein bands were 

transferred onto PVDF membranes using Program 5 on the iBlot® 2 system according to the 

manufacturer’s instructions. The PVDF membranes were blotted with 4 µL primary antibody and 

10 µL secondary antibodies using the iBind™ Flex Western system according to manufacturer’s 

instructions (Table 7.11) – this system also removes the need to wash the membrane repetitively 

or blot with milk powder. The iBind™ step was left for approximately 6 hours before proceeding to 

detection.  

 

Table 7.12: Reagents and instruments used for Western blotting 

Components Details or methods (Catalogue number) 

Transfer device iBlot® 2 Gel Transfer Device (IB21001) 

Transfer membrane iBlot® 2 Transfer Stacks, PVDF, mini or regular size depending on 
number of gels used. (IB24001 or IB24002) 

Western blotting device iBind™ Flex Western Device (SLF2000) 

Western blotting reagents iBind™ Flex Cards (SLF2010); iBind™ Flex Solution Kit (SLF2020) 

Chemiluminescence 
detection kit 

Enhanced Chemiluminescence Western Blotting Detection Kit 
(Amersham; RPN2108) 

Primary antibodies Anti-His6-tag mouse monoclonal antibody (Abcam; ab18184) 
Anti-His C-term mouse monoclonal antibody (Invitrogen) 

Secondary antibody Mouse IgG, HRP-linked from sheep (part of Amersham kit) 

 

Chemiluminescence detection was achieved using a Western Blotting Detection Kit (Amersham; 

RPN2108) according to the manufacturer’s instructions. Briefly, equal volumes of Enhanced 

Chemiluminescence detection solutions 1 and 2 were mixed and 1.5 mL of this mix was used per 

membrane. This mix is poured onto the membrane and allowed to stand at room temperature for 

60 s before an image was taken using the ImageQuant LAS-4000 (Fujifilm) in chemiluminescence 

mode with a 45 s exposure time.  
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7.7 Biophysical techniques – solution studies 

 

7.7.1 Circular dichroism 

 

Purified proteins were diluted into MilliQ water to ~ 0.2 mg/mL prior to addition into a 1 mm path 

length quartz cuvette kept at 20 °C. The Jasco J815 circular dichroism spectrophotometer was used 

to record wavelength scans between 180 nm and 260 nm in 2 nm increments. The background 

MilliQ data were subtracted from the sample data, and any data exceeding 600 V was removed. 

The data were converted to mean residue ellipticity by multiplying with a conversion factor 

(Equation 1) and plotted against wavelength (Greenfield, 2007). 

 

Equation 1: 

𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 (

𝑔
𝑚𝑜𝑙) ∗ 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (

𝑚𝑔
𝑚𝑙

)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠 ∗ 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ (𝑚𝑚)
 

 

7.7.2 Analytical size exclusion chromatography with static light 

scattering (SEC-SLS) 

 

Protein stocks were thawed and buffer exchange into appropriate buffers (Section 7.5.2). A 

Superdex200 Increase 10/300 GL (GE Healthcare) was connected to a Viscotek 302-040 Triple 

Detector GPC/SEC system (ATA Scientific) operated at 28 °C and equilibrated with said buffer. 100 

µL of protein samples were injected into the column and eluted at a flow rate of 0.5 mL/min. The 

absolute molecular weight was calculated from the refractive index and right-angle light scattering 

measurements calibrated against bovine serum albumin (BSA) (66.5 kDa, Sigma). BSA was run 

either side of the protein sample sequence to ensure consistency throughout the sample sequence 

in experiments which would take a few hours. Calibration and calculations of absolute MWs were 

done on OmniSEC (Malvern Company). 

 

7.7.3 Small angle X-ray scattering (SAXS) 

 

Small angle X-ray scattering (SAXS) data were collected on the SAXS/WAXS beamline (Australian 

Synchrotron), equipped with a Dectris-Pilatus 1M detector (170 mm × 170 mm, effective pixel size, 

172 × 172 μm). The X-ray wavelength was 1.0332 Å and the sample detect distance of 16000 mm 
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was used, providing a q range of 0.006-0.4 Å-1 (where q is the magnitude of the scattering vector, 

which is related to the scattering angle (2θ) and the wavelength (λ) as follows: q = (4π/λ)sinθ). For 

all proteins analysed, 50 µL of protein sample at approximately 10 mg/mL was injected into a 

Superdex200 5/150 GL column, pre-equilibrated with buffer. This size exclusion chromatography 

occurred prior to eluted samples being transferred into 1.5 mm glass capillary, kept at 20 °C, for 

data collection at 2 second intervals. 

 

Two dimensional intensity plots were radially averaged, normalised to sample transmission, and 

background subtracted using Scatterbrain software (Australian Synchrotron). All subsequent SAXS 

analyses were performed using the ATSAS version 2.3 software package (Petoukhov et al, 2012). 

PRIMUS was used to determine Guinier plots to assess data quality (Konarev et al, 2003). GNOM 

was used to perform indirect Fourier transformation of the scattering data to generate the P(r) 

distribution (Svergun, 1992). CRYSOL was used to generate theoretical scattering curves from 

atomic coordinates, and compared these to the experimental scattering curves (Svergun et al, 

1995). 

 

7.7.4 Analytical ultracentrifugation (AUC) 

 

Proteins were buffer exchanged into buffer of interest using SEC or Bio-Spin6 columns (Section 

7.5.2). 400 µL of reference buffer and 380 µL of sample solutions were loaded into 12 mm double 

sector cells with quartz or sapphire windows and mounted in an An-60 Ti eight-hole rotor. Larger 

blank volume was required to accurately place the meniscus of the sample (Cole et al, 2008). 

Sedimentation velocity experiments were performed in an XL1 Analytical Ultracentrifuge (Beckman 

Coulter; Lebowitz et al, 2002). Depending on the protein and the concentrations used, the 

absorbance optical system was set in the range of 230-285 nm. Initial scans performed at 3000 

rpm were used to determine optimal radial settings and wavelengths. Proteins were centrifuged 

at 20 °C at a various rotor speeds, depending on the size of the sample (Table 7.13). Radial 

absorbance data were collected at a single wavelength without averaging, using a 0.003 cm step 

size for a total of at least 70 scans. All data were collected at 20 °C. SEDINTERP was used to calculate 

the partial specific volume of both wild-type and S78C HsPrx3 (0.7423 g/mL and 0.7401 g/mL, 

respectively), the solvent density (1.006 g/mL) and viscosity (0.01031 poise) (Laue et al, 1992). Data 

were fitted to a continuous c(s) distribution model at a resolution of 300 and a confidence level of 

0.95 using SEDFIT (Schuck and Rossmanith, 2000). Data was fitted with an s value ranging between 

2 S and 12 S. The fit resulted in a frictional ratio (f/f0) of 1.1678 for wild-type HsPrx3 and 1.3634 for 

S78C HsPrx3.  
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Table 7.13: 

Figure 
number 

Sample name 
Rotor speed 
(rpm) 

Wavelength 
(nm) 

Figure 3.2 Cleaved wild-type, pH 8.0 42000 285 

Figure 3.6 C Cleaved wild-type, pH 4.0 30000 285 

Figure 3.7 C His6-tagged wild-type, pH 4.0 24000 280 

Figure 3.11 Cleaved and His6-tagged wild-type, pH 4.0 24000 280 

Figure 4.7 His6-tagged S75E mutein 50000 280 

Figure 4.17 Cleaved S78C mutein 45000 231 

 

7.8 X-ray crystallography 

 

7.8.1 Crystallisation 

 

Crystallisation trials were performed using freshly purified proteins, or thawed proteins that have 

been subjected to fresh buffer exchange via SEC. Proteins were concentrated to greater than 40 

mg/mL (Section 7.5.2), and precise concentration was verified (Section 7.6.1), before dilution to 

desired concentration ranges. The preparation and incubation of all plates occurred at 20 °C with 

a relative humidity of 85%.  

 

7.8.1.1 Initial robot screens 

 

Initial protein crystallisation screens were set up as sitting-drop vapour diffusion experiments. 

Screening was carried out against six sets of 96-conditions (total of 576 conditions) prepared in-

house (by Dr Ivan Ivanovich, University of Auckland) based on precipitant solutions from a variety 

of screens, including: Hampton Sparse Matrix I and II, Hampton MPD, Precipitant Synergy, Clear 

Strategy, Top67, PEG/pH, PEG/ion, Stura Footprint, and MORPEUS (Moreland et al, 2005). The 

MultiPROBE II HT/EX liquid-handling robot (Perkin-Elmer) was used to dispense 70 µL in-house 

screen into 96-well Intelli-Plates (Hampton Research; 100 μl/reservoir). The Oryx4 Protein 

Crystallisation Robot (Douglas Instruments) dispensed protein solutions and mixed this with the 

reservoir solutions at a 2:1 and 1:1 ratio, with final droplet volumes being 0.45 nL and 0.3 nL 

respectively. The plates were sealed and monitored for crystal growth. Crystals were observed for 

wild-type HsPrx3 after 2 weeks resulted in diffraction (Chapter 2). 
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7.8.1.2 Crystal optimisation: making fine screens 

 

Once a promising crystal was found from this initial screening, optimisation was carried out. 

Promising conditions were checked for reproducibility by repeating the sitting-drop vapour 

diffusion experiments manually in CrystalClear P™ strip, with crystallisation buffers taken from the 

96-well plates. Often crystals could not be reproducibly grown, as hand pipetting and in-house 96-

well plates are not exactly the same as previous plates. In order to explore slight differences in 

pipetting that could occur when making screen, fine screens were made that had incremental 

changes to certain precipitant concentrations and pH. In particular, a fine screen was made around 

condition D12 of the MORPHEUS screen (Gorrec, 2009), which contained 96 slight variations to this 

condition, and was made up in a 96-well deep-well plate (Appendix B). The same method was used 

as above to combine protein sample solutions with reservoir solution in a sitting-drop vapour 

diffusion set up. This yielded diffracting crystals for S78C HsPrx3 after 2 weeks (Chapter 4, Section 

4.4.2).   

 

Other methods for crystal optimisation attempted for S75E HsPrx3 included using hanging-drop 

vapour diffusion in 24-well VDX plates (Hampton Research). Where 2 µL drops were manually set 

up as 1:1 protein:crystallisation buffer and were equilibrated with 500 µL reservoir solution in 

sealed wells. However, none of these conditions were fruitful (Chapter 4, Section 4.3.2). 

 

7.8.1.3 Is it salt or protein crystals? 

 

Crystal formation in the initial screens, although promising, does not necessarily mean it is 

proteinaceous. In fact, salt crystals often appear. The definitive way to test for salt crystals is by 

observing the crystal diffraction patterns, if the crystals diffract at all. Many crystals especially that 

of S75E HsPrx3 did not diffract (Chapter 4, Section 4.3.2). In order to rule out salt crystals, Izit Crystal 

Dye (Hampton Research) was employed to test the nature of crystals. Crystals in question were 

manipulated and washed twice in reservoir solution, before 0.1 uL of Izit Dye was added to the 

solution containing washed crystals. The dye is a small molecule that penetrates solvent channels 

of macromolecular crystals, colouring protein crystals blue and leaves salt crystals colourless. 

Crystals can also be manipulated, washed in reservoir solutions twice and loaded onto an SDS-

PAGE gel for observations of any protein bands (Section 7.6.2). However, since protein crystals are 

often so small, they would contain low amounts of proteins which result in very faint bands, if any. 
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7.8.2 Crystal preparation 

 

Crystals were mounted onto cryo-loops (Hampton Research) of appropriate sizes for the crystal of 

interest and briefly soaked in cryoprotectant solution (usually 20% glycerol added to the reservoir 

solution) before being flash cooled in liquid nitrogen. Cryo-protectant and rapid flash cooling 

technique was required in order to prevent build-up of ice crystals that disrupt crystal order. This 

step was successfully performed by Dr Dave Goldstone for the wild-type HsPrx3 crystal and by Dr 

Jeremy Keown for the S78C HsPrx3 crystal.  Crystals were maintained at -173 °C. 

 

7.8.3 Crystal diffraction and data collections 

 

X-ray diffraction data were collected on the MX2 micro crystallography beamline, equipped with 

an ADSC Quantum 315r Detector, at the Australian Synchrotron. The beamline was controlled using 

the Blu-Ice interface and are equipped with SAM loading robots that mounts crystals onto the 

goniometer under a constant stream of liquid nitrogen (McPhillips et al, 2002) 

 

7.8.4 Data processing 

 

MOSFLM was used to index and integrate data (Battye et al, 2011). POINTLESS was used for unit 

cell and space group prediction (from CCP4 program suite; Evans, 2006). AIMLESS was employed 

to scale and merge equivalent measurements (Evans, 2011; Evans and Murshudov, 2013). 

Appropriate high resolution limits were determined by comparing statistical parameters such as 

Rmerge, Rpim, mean I/σ(I), completeness and CC1/2 (Karplus and Diederichs, 2012, Evans, 2006). 

 

As an estimate of the number molecules in the asymmetric unit was obtained using the MATTHEWS 

COEFFICIENT program (Matthews, 1968; Kantardjieff and Rupp, 2003). 

 

7.8.5 Model building and refinement 

 

Molecular replacement was used to estimate the phases from a search model using Phaser (McCoy 

2007). Structure refinement was performed on REFMAC5 (Murshudov et al, 2011). Iterative 

improvement of both the map and the model was performed using alternative cycles of refinement 

and residue-by-residue analysis in COOT (Emsley et al, 2004). COOT was used to manually 

reposition residues to better fit electron density as well as to check residue identities by exploiting 
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known sequences of these recombinant proteins. Water molecules were added during a round of 

refinement on REFMAC5, followed by manual assessment for the fit of these waters into the 

observed spherical density map and whether they had appropriate hydrogen bonding. Following 

each round of refinement, the output residual factor (Rf) and free residual factor (Rfree) were both 

monitored for a decrease, and until no significant reduction (> 0.010) was afforded by subsequent 

cycles. All final images were generated in PyMOL (The PyMOL Molecular Graphics System, Version 

1.5.0.4 Schrödinger, LLC). 

 

7.9 Mass spectrometry 

 

7.9.1 Liquid chromatography mass spectrometry (LC-MS) 

 

The masses of purified proteins were confirmed by LC-MS using an Agilent (Santa Clara, CA) 1260 

infinity system equipped with an Agilent 6120 quadrupole mass spectrometer using electron spray 

ionisation in positive mode. Protein samples were mixed with 100% acetonitrile in 1:1 ratio and 

passed through a 0.22 µm filter (Section on filtration). A reverse phase column, Zorbix 300058-C3 

(3.5 µm; 3 x 50 mm) column (Agilent), was pre-equilibrated (5% acetonitrile, 0.1% trifluoroacetic 

acid) prior to loading 20 µL protein solution onto the column. A linear gradient method was used 

with 5%-95% acetonitrile, with constant 0.1% trifluoroacetic acid, at a flow rate of 0.3 mL/min. 

Spectra was recorded and molecular weight was calculated as in “Box 2” from Glish and Vachet, 

2003.  

 

7.9.2 Top-down mass spectrometry and peptide mass spectrometry 

 

Both top-down and peptide mass spectrometry were used as more precise checks for protein 

identity in Chapter 5. Top-down MS/MS allows for sequencing of proteins from the C-terminal end. 

A solution of purified protein in 20 mM HEPES pH 7.0, 150 mM NaCl was given to Martin 

Middleditch (Mass Spectrometry Facility, University of Auckland). The samples were run on a Linear 

Ion Trap- Fourier Transform mass spectrometer (Thermo Finnigan). Peptide mass spectrometry 

(MS) involves digesting proteins using proteases into peptides and using these peptide fragments 

to compare with how known protein sequences would fragment. Proteins were run on an SDS-

PAGE gel (Section 7.6.2), and the band of interest was cut out and given to Martin Middleditch 

(Mass Spectrometry Facility, University of Auckland). Gel bands were detained and proteins 

extracted from the bands. These denatured proteins were digested with trypsin and GluC 
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proteases and the mix of peptides were examined with the TripleTOF® 6600 (SCIEX). All data 

analysis for both of these techniques was also performed in collaboration with Martin Middleditch 

(University of Auckland). 

 

7.9.3 Native mass spectrometry 

 

Native mass spectrometry (nMS) was used in Chapter 3 to probe the oligomeric state of HsPrx3 in 

the gas phase, and the experiments were performed at the University of Oxford, in collaboration 

with Prof. Dame Carol Robinson. HsPrx3 proteins were thawed and buffer exchanged into 100 mM 

ammounium acetate, pH 8.0 or pH 4.0, using a Bio-Spin6 columns (Section 7.5.2), then diluted to ~ 

20 µM. Rapid dilution (of 1 in 20 for final concentration of 20 µM monomeric concentration) of 

concentrated protein at pH 8.0 to pH 4.0 ammonium acetate was also performed, with similar 

results to using buffer exchange columns. Nanoflow electrospray ionisation mass spectrometry 

(nESI-MS) was performed on a Synapt HDMS quadrupole time-of-flight mass spectrometer (Waters 

Corporation, Manchester, U.K.). 20 µM HsPrx3 was introduced to the spectrometer using gold-

coated borosilicate capillaries prepared in-house as previously described (Nettleton et al, 1998). 

 

Experiments were performed under positive ion mode, with the following instrument parameters: 

capillary voltage 1.35 kV; sample cone voltage 15 V; extraction cone voltage 1.0 V; source 

temperature 20 °C; ion trap collision energy 10 V; transfer collision energy 4 V; trap flow 3.5 mL/min 

(argon gas); ion mobility source 20 mL/min (argon gas); backing pressure 5.0 mBar (nitrogen gas). 

 

Spectra were analysed using MassLynx software (Waters) and UniDec (Marty et al, 2015).  
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7.10 Peroxidase activity assay 

 

7.10.1 Horse radish peroxidase competitive assay 
 

7.10.1.1 Preparation of the reagents 

 

HsPrx3 was concentrated to at least 20 µM, then reduced using 2 mM β-mercaptoethanol for 30 

minutes. The reductant was removed by passing the protein through Bio-Spin6 columns twice 

(Hugo et al, 2009). To avoid oxidant contamination, activity assay buffer had argon gas bubbled 

through for at least 30 min prior to use, and experiments were performed within the hour of buffer 

exchange. The final HsPrx3 protein concentration was determined using the Nano-Drop (Section 

7.6.1). The spectrophotometer was used to determine the concentration of H2O2 at a wavelength 

of 240 nm, ε240 = 43.6 M-1cm-1 and horse radish peroxidase (HRP) at a wavelength of 403 nm, ε403 

= 1.02 x 107 M-1cm-1 (as per Ogusucu et al, 2007). 

 

7.10.1.2 The assay 

 

Reaction mixtures contained 10 µM HRP and 8 µM H2O2 with varying concentrations of 

peroxiredoxin (between 1 µM to 10 µM) in 100 mM potassium phosphate, 0.1 mM DTPA, pH 7.5 

at 25 °C. Final reaction volume of 250 µL. 

 

The reactions were triplicated in Geunier black well, clear-bottomed 96 well plates. Peroxiredoxin 

and HRP were pre-mixed, and the reaction was initiated when H2O2 was added. The absorbance 

measurements at 403 nm were taken after 2 minutes using plate reader on the Spectramax M5 

spectrophotometer. 

 

7.10.1.3 Data analysis 

 

The HRP concentration was re-checked by dividing by ε403 = 1.02 x 107, and the values F and 1-F 

were calculated (Equation 2). Along with kHRP = 1.78 x 107 M-1s-1, the value of (
𝐹

1−𝐹
) 𝑘𝐻𝑅𝑃[𝐻𝑅𝑃] in 

s-1 can be calculated. The slope of the line derived from (
𝐹

1−𝐹
) 𝑘𝐻𝑅𝑃[𝐻𝑅𝑃] versus [𝑃𝑟𝑥], gives the 

second order rate constant, kPrx in M-1s-1 (Equation 2; Figure 7.1). Fitting data points onto a linear 

plot was achieved using Origin Pro 8.5 (OriginLab Corporation). 
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(
𝐹

1−𝐹
) 𝑘𝐻𝑅𝑃[𝐻𝑅𝑃] =  𝑘𝑃𝑟𝑥[𝑃𝑟𝑥] Equation 2 

 

 
Figure 7.1: Data analysis to derive kPrx 

In this case, stop-flow experiments enable sub-second monitoring of reactions and the decrease in 

absorbance at 403 nm (left). Equation 2 was used to derive (
𝐹

1−𝐹
) 𝑘𝐻𝑅𝑃[𝐻𝑅𝑃] in s-1 , and this was 

plotted against Prx concentration in µM (right). From this, a linear best fit line can be plotted, and 
the gradient is kPrx. These diagrams are from Cox et al, 2009b. Permission pending. 
 

7.10.2 Catalase competitive assay using SDS-PAGE  

 

HsPrx3 proteins were incubated with 5 mM DTT for at least 30 min to fully reduce disulphide bonds, 

before reductant was removed using the Bio-Spin6 columns (Section 7.5.2). HsPrx3 and human 

catalase concentrations were determined using the Lowry assay (Section 7.6.1). The 

spectrophotometer was used to determine the concentration of H2O2 at a wavelength of 240 nm, 

ε240 = 43.6 M-1cm-1. These experiments were performed at 25 °C and in collaboration with 

Alexander Peskin (University of Otago).  

 

Visualised using SDS-PAGE gels, human catalase (Sigma) was used to probe the range at which 

HsPrx3 activity towards H2O2 would occur. This was achieved by pre-mixing 5 µM reduced HsPrx3 

with a range of human catalase concentrations (0.1, 0.2, 0.4, 0.8, 1.0, 2.0 µM). 5 µM H2O2 was 

added to the pre-mix, the samples mixed vigorously and any free cysteine residues were then 

capped with 20 µM NEM. Samples were mixed with loading buffer and run on an SDS-PAGE gel 

(Section 7.6.2). Visual inspection of the gels gave an indication of the relative rates of reaction 

between the catalase and the HsPrx3 in question. 
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7.10.3 Time course SDS-PAGE assay to monitor slow reaction rates 

towards H2O2 
 

This experiment was used to probe the reaction rate of S75E HsPrx3 in Chapter 4. Again, HsPrx3 

proteins were incubated with 5 mM DTT for at least 30 min to fully reduce disulphide bonds, before 

reductant was removed using the Bio-Spin6 columns (Section 7.5.2). HsPrx3 and human catalase 

concentrations were determined using the Lowry assay (Section 7.6.1). In this case, the catalase 

was used to stop the reaction between the slow HsPrx3 and H2O2 (Nagy et al, 2011).  5 µM H2O2 

and 5 µM S75E HsPrx3 was used in each reaction, the reaction being stopped after 10, 20, 40, 60, 

180 and 360 seconds after mixing. The samples were mixed with loading buffer and run on an SDS-

PAGE gel (Section 7.6.2). The SDS-PAGE gel allowed the visual monitoring of the disappearance of 

the reduced monomeric species (Nagy et al, 2011).  

 

The band intensities from the scanned gel were assessed using ImageJ and plotted, against time, 

as a percentage decrease when compared to the reduced protein. The data points were fitted in 

Origin Pro 8.5 to an exponential equation: 𝑦 = 𝐴 + 𝐵 ∗ 𝑒𝐶𝑥, where C gives a pseudo-first order 

reaction rate in s-1, which is corrected with the concentration of H2O2 (in this case, 5 µM) to get a 

second order reaction rate in M-1s-1 (Nagy et al, 2011).  
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Changes in population of HsPrx3 stacks as seen for changes in real-time MS spectra 

Mass spectrum of 20 µM cleaved HsPrx3 in 100 mM ammonium acetate, pH 4.0, ionised in positive 
ion mode recorded over time. Each spectra was taken at a certain time point between 30 and 38 
minutes after the sample was initally sprayed into the spectrophotometer. Similar to Figure 3.6, 
these spectra also show the characteristic distinct charge state series for each discrete HMW 
HsPrx3 stacked species. The intensities of the charge state series can change over time. In this case, 
the peaks with m/z ranging from 6000 to 8000, corresponding to single and double rings, decrease 
as time progresses. This could be a result of variations in complex needle chemistries that occur as 
protein solutions become ionised overtime.
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From Section 7.8.1.2, the fine screen conditions that resulted in the diffracting protein crystal of 

S78C HsPrx3 protein was based around the D12 condition from the MORPHEUS screen (0.1 M tris-

bicine at pH 8.5, 12.5% PEG1000, 12.5% PEG3350, 12.5% MPD, 0.02M alcohol additives). 

 

The concentrations of the alcohol additives (0.02 M) and buffer (0.1 M) were kept constant 

throughout the fine screen. Whereas, the solution pH was varied at increments of pH 7.7, 8.1, 8.5, 

and 8.7 (according to Gorrec, 2009) for each set of the concentration variations for the PEG1000, 

PEG3500 and MPD components. The final concentrations of each of these components were as 

follows: 

 

 1 2 3 

A 
10% PEG1000 
10% PEG3500 

10% MPD 

10% PEG1000 
10% PEG3500 

12.5% MPD 

10% PEG1000 
10% PEG3500 

15% MPD 

B 
10% PEG1000 

12.5% PEG3500 
10% MPD 

10% PEG1000 
12.5% PEG3500 

12.5% MPD 

10% PEG1000 
12.5% PEG3500 

15% MPD 

C 
12.5% PEG1000 
10% PEG3500 

10% MPD 

12.5% PEG1000 
10% PEG3500 

12.5% MPD 

12.5% PEG1000 
10% PEG3500 

15% MPD 

D 
12.5% PEG1000 
12.5% PEG3500 

10% MPD 

12.5% PEG1000 
12.5% PEG3500 

12.5% MPD 

12.5% PEG1000 
12.5% PEG3500 

15% MPD 

E 
12.5% PEG1000 
15% PEG3500 

10% MPD 

12.5% PEG1000 
15% PEG3500 

12.5% MPD 

12.5% PEG1000 
15% PEG3500 

15% MPD 

F 
15% PEG1000 
10% PEG3500 

10% MPD 

15% PEG1000 
10% PEG3500 

12.5% MPD 

15% PEG1000 
10% PEG3500 

15% MPD 

G 
15% PEG1000 

12.5% PEG3500 
10% MPD 

15% PEG1000 
12.5% PEG3500 

12.5% MPD 

15% PEG1000 
12.5% PEG3500 

15% MPD 

H 
15% PEG1000 
15% PEG3500 

10% MPD 

15% PEG1000 
15% PEG3500 

12.5% MPD 

15% PEG1000 
15% PEG3500 

15% MPD 

 


