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Abstract 

We assessed the genomic and phenotypic landscape of fitness-impaired E.coli lineages 

recovering from the deleterious effects of Muller’s ratchet via a combination of 

experimental evolution, genomics and global phenotypic screening. We found a 

seemingly paradoxical scenario where protein function appears to worsen in lineages 

as fitness increases. However, further investigation via functional perturbation 

analyses revealed that the deleterious effects of mutations that accumulated under 

the ratchet are probably being mitigated through novel molecular mechanisms – this 

gives the superficial impression that protein function is worsening. We argue that 

compensatory evolution explains this novelty, and we suspect compensatory 

mutations drive a substantial proportion of fitness and protein function recovery in 

the evolving lineages. 

Additionally, based on the Biolog colour change assay, which measures substrate-

dependent respiration, and rates-based measurements collected through time, we 

observed rapid and widespread metabolic erosion in populations subjected to the 

ratchet. Moreover, we found that phenotypic impairment was not mitigated following 

a period of fitness recovery.  

The results presented here suggest that both the genomic and phenotypic landscape 

for lineages recovering from the effects of Muller’s ratchet are novel compared to that 

of ancestral lineages. We comment on implications of these results with respect to 

various ideas on the emergence of biological complexity, and offer suggestions for 



 
 

future work. To our knowledge, this is the first report of how mutational changes that 

accumulate in recovering populations impact on protein function, and no other study 

to date has assessed the capacity for recovering populations to  grow in a very broad 

range of environments.
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Chapter 1 
Introduction: How mutation and drift 
drive Evolutionary Innovation 
 

Motivation 

Elevated mutation rates may increase the capacity for populations to adapt to new 

environments (Taddei et al., 1997; Tanaka, Bergstrom, & Levin, 2003). However, as the 

majority of mutations are deleterious, species must balance adequate mutation rates 

to facilitate adaptation, with fine-tuned error correction mechanisms to prevent 

fitness decline (Denamur & Matic, 2006). Because of such fitness costs, most 

organisms maintain low mutation rates via  high fidelity DNA repair mechanisms that 

are normally favoured by selection (Denamur & Matic, 2006). However, in 

evolutionary contexts where selection is ineffective, elevated mutation rates are 

sometimes unavoidable and slightly deleterious mutations can irreversibly drift to 

fixation. In small, asexual populations this is commonly known as Muller’s ratchet 

(Felsenstein, 1974; Muller, 1932; Muller, 1964). Under the ratchet, populations 

accumulate deleterious mutations at a rate that exceeds back mutations which can 

ultimately result in fitness decline and in some cases, mutational meltdown  (Lynch, 

Bürger, Butcher, & Gabriel 1993). 
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The concept of Muller’s ratchet has been supported by numerous studies that include 

computer simulations, theoretical studies (for review see Nei, 2005), experimental 

evolution (e.g. Andersson & Hughes, 1996; Funchain et al, 2000; Kibota & Lynch, 1996) 

and genomics (e.g. Jaramillo, Domingo, Munoz-Egea, Tabares, & Gadea, 2013; Lynch, 

1996; Tenaillon et al., 2016). However, few studies to date have examined how 

genotypic changes that accumulate under the ratchet impact on protein function and 

phenotype, and none have screened for rare beneficial mutations that may help a 

population survive in a novel environment – such events might be possible under 

elevated mutation rates. Moreover, no study to date has examined how these 

phenomena might operate in populations recovering from the ratchet - the aim of this 

study is to address exactly these issues. Using experimental evolution coupled with 

whole-genome sequencing, we tracked and correlated genomic and phenotypic 

changes over the course of two experimental regimes. The first regime is a mutation 

accumulation (MA) experiment in which initially identical lineages of E.coli strain 

REL606 + pGEM::mutD5 were subjected to repeated single-cell genetic bottlenecks on 

rich media (Lai, 2017). This effectively reduces the ability of natural selection to purge 

spontaneous mutations and increases their chances of drifting to fixation, and is thus 

analogous to Muller’s ratchet (Halligan & Keightley, 2009). In the second regime, these 

MA lines were allowed to evolve further under a bottleneck relief regime. In this case, 

selection is predicted to operate with more efficiency (Clarke et al., 1993a). 

Our lab group has already provided intriguing results from the bottleneck scheme. For 

example, we observed the emergence of slippage-type-editing (a process analogous 
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to RNA editing that rescues frameshift mutations) after approximately 4000 

generations of bottlenecking (Lai, 2017). Additionally, when a frameshift mutation was 

introduced into wild-type E.coli, a loss of fitness attributable to RNA editing was 

observed (Lai, 2017). This suggests more generally that increases in complexity (in this 

case the emergence of RNA editing) may result under conditions that favour drift, and 

that such events are more probable under elevated mutation rates. These 

observations are congruent with a more general theme of constructive neutral 

evolution, a model that proposes non-adaptive (selectively neutral) processes are 

fundamental in shaping some complex biomolecular systems, with natural selection 

of secondary importance (Stoltzfus, 1999). One goal here was to extend our previous 

observations by assessing whether phenotypic innovation is also achievable by a 

species subjected to Muller’s ratchet. In other words, as mutation rates become 

elevated under the ratchet, are we likely to see any novel gain-of-function phenotypes 

that might otherwise be avoided under conditions that favour natural selection.  

Overall, the combination of bottleneck and bottleneck relief experiments, coupled 

with genomic and phenotypic analyses, provides opportunities to comprehensively 

assess the evolutionary implications of Muller’s ratchet which previously has been 

limited to one or two areas. Combining experimental evolution with whole genome 

sequencing has previously provided incredible insight into how genotypic changes 

cause phenotypic changes in viruses, bacteria, yeast and flies (summarized in Barrick 

& Lenski, 2013). However, few studies have correlated genotypic changes with 

phenotypic changes under both a bottleneck and bottleneck relief regime. Moreover, 
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few studies have assessed the impact of genomic changes on protein function under 

such regimes, and how these changes may impact on phenotype. We implemented a 

newly described delta-bitscore (DBS) metric that assesses the functional severity of 

mutations, based on residue conservation and indel rates within a sequence  

(Wheeler, Barquist, Kingsley, & Gardner, 2016). Critically, this tool discriminates 

neutral from beneficial and deleterious mutational changes, and is favoured over the 

commonly employed dN/dS method that is unreliable over short evolutionary 

timescales (Rocha et al., 2006; Wheeler, Barquist, Ashari Ghomi, Kingsley, & Gardner, 

2015). By assessing the impact of mutation of protein function, we can better 

understand how mutational changes that accumulate under the ratchet impact 

phenotype.  

In Chapter 2 of this thesis, I explore the genomic basis that might allow severely 

bottlenecked populations to escape from “the click of the ratchet”, via bottleneck 

relief. In Chapter 3, I assess the phenotypic capacities of the bottlenecked populations 

as well as populations that have evolved under the bottleneck relief regime. I continue 

chapter 1 by discussing the importance of mutation and drift in evolution in general. 

This is important to appreciate because under Muller’s ratchet, natural selection is 

ineffective and thus evolution is expected to proceed more or less in a neutral fashion. 

However, mutation and drift that drive the ratchet are important evolutionary forces 

and there is substantial argument that these forces shape numerous complex 

biological phenomena with natural selection of secondary importance (Lynch, 2007; 

Nei, 2007; Stoltzfus, 1999). Motoo Kimura argued these forces are the main drivers of 
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evolution at the level of DNA and presented his case under a general model called 

neutral theory (Kimura, 1968). Nei 2007 goes further and argues that mutation and 

drift are the fundamental forces for phenotypic evolution also. One possible 

mechanism of how mutation and drift might facilitate evolutionary innovation at levels 

of biological organisation above that of DNA is presented under the constructive 

neutral evolution hypothesis (Lukeš, Archibald, Keeling, Doolittle, & Gray, 2011; 

Stoltzfus, 1999), which also has experimental support (Finnigan, Hanson-Smith, 

Stevens, & Thornton, 2012). Lynch (2007) and Doolittle (2012) argue that mutation 

and drift can facilitate the emergence of biological complexity particularly in small 

populations as natural selection is less efficient and slightly deleterious mutations can 

accumulate.  As previously mentioned, however, this is problematic and potentially 

catastrophic for asexual organisms that are subjected to the deleterious effects of 

Muller’s ratchet. I explore these themes in more detail below.  
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The Neutral Theory of molecular evolution 

The neutral theory asserts that the majority of evolutionary change at the level of DNA 

is caused by random mutation and drift, with selection having a negligible role (Kimura, 

1983). The theory was originally proposed by Kimura in 1968 and independently by J.L. 

King and T.H. Jukes in 1969 (Kimura, 1968; King & Jukes, 1969) and it received heavy 

criticism at the time, probably because it departed from classical Neo-Darwinism 

thinking that emphasizes the awesome power of natural selection in driving evolution 

(Zhang, 2016). For example, Simpson (1964) argued it improbable that proteins should 

have non-functional parts because completely neutral genes must be very rare. 

Therefore, it was claimed, that “natural selection is the composer of the genetic 

message, and DNA, RNA, enzymes and other molecules in the system are successively 

its messengers” (Simpson, 1964). This type of neutralist-selectionist debate amplified 

immediately following the conception of neutral theory and exists to this day. Since its 

inception, neutral theory has been adapted to include the nearly neutral theory (Ohta, 

1992), expanded to account for evolutionary change at the phenotypic level (Nei, 

2007), and applied to various aspects of genome architecture (Lynch, 2007; 

summarized in Zhang, 2016). Before discussing modern-day interpretations of neutral 

theory, I shall mention some important contributions that led to the development of 

the theory.  

The first major attempt to describe how biological systems evolve dates back to the 

early 19th century when Jean Baptiste Lamarck, in his book called Philosophie 

Zoologique, proposed that acquired characters caused by use or disuse are inherited, 
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which is ultimately influenced by environmental factors (Lamarck, 1809; for review see 

Kimura 1983). The Lamarckian description of evolution was rejected following the 

development of the modern synthesis and Charles Darwin’s evolution by natural 

selection became the new frontier in evolutionary thought. Darwin’s interpretation of 

evolution was that because variation exists between individuals and this variation may 

be inherited, variation that contributes optimally to survival and reproduction is more 

likely to be propagated. Over time, small-beneficial variations accumulate in a 

continuous process of adaptive evolution (Darwin, 1859; for review see Kimura 1983). 

The eventual merger of Darwinism and Mendelism (which could explain principles of 

heredity) contributed to the formation of classical population genetics (for review see 

Kimura, 1983). This field was pioneered by three key figures: R.A. Fisher, J.B.S Haldane 

and Sewall Wright. The former two emphasized the importance of natural selection in 

evolution while Wright argued that evolution is explained by a number of factors, 

including random genetic drift (Wright 1977; for review see Kimura, 1983). By the 

1960s, the consensus among evolutionary biologists was that evolution is primarily 

influenced by adaptation through natural selection. Some, for instance, argued that 

neutral mutations are very rare (e.g. Mayr, 1962) while others such as Fisher (1930b) 

argued for the importance of positive selection and downplayed any significant role of 

mutation in driving evolution. Kimura (1983) pointed out, however, that studies 

around this time were mainly focused on phenotypic models, and thus overlooked 

how evolution operates at the molecular level. As such, Kimura presented a thesis that 

proposed the nucleotide substitution rate in the mammalian genome exceeds the 
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upper limit of adaptive evolution that was originally put forward by Haldane (Haldane, 

1957b). This suggests that most genetic changes are selectively neutral and not under 

positive Darwinian selection (Kimura, 1968; Zhang, 2016). Unsurprisingly, this proposal 

was met with criticism. For example, Maynard Smith (1968) argued that Haldane’s 

upper limit of adaptive evolution is too low, suggesting the rapid nucleotide 

substitution rate in mammals which Kimura observed is possible under an adaptive 

model. Nevertheless, there were also studies around this time that parallel aspects of 

neutral theory (e.g. King & Jukes, 1969; Zuckerkandl & Pauling, 1965) and more recent 

work is also in favour of neutral theory (reviewed in Nei, Suzuki, & Nozawa, 2010b). In 

contrast, recent criticism of neutral theory can be found in Hahn 2008.  

 

Expansion of the Neutral Theory 

Ohta (1973) adapted neutral theory to include nearly neutral mutations. Ohta argued 

that slightly-deleterious mutations can go to fixation by drift if their selection 

coefficient is small enough, based on the assumption that the majority of mutations 

fall in the range of deleterious to selectively neutral (Akashi, Osada, & Ohta, 2012). In 

line with this, it was also suggested that effective population size is an important 

variable with respect to the likelihood of nearly-neutral mutations becoming fixed. For 

instance, Ohta (1972a)  identified a negative correlation between rates of protein 

evolution and population size, which was observed in Drosophila and mammals. This 

has since been verified in several genome-scale comparison studies that have 
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identified an inverse relationship between the ratio of non-synonymous to 

synonymous substitutions per nucleotide site (dN/dS) and population size, for 

example, in the Chimpanzee sequencing and analysis consortium 2005, and Rhesus 

Macaque Genome sequencing and analysis consortium 2007 (for review see Akashi et 

al., 2012; Zhang, 2016). Wright & Andolfatto 2008 argue this relationship extends to 

plants and bacteria also, the latter of which has been reported in studies that show 

faster rates of evolution in endosymbiont bacteria compared to their free-living 

relatives (Moran, 1996).  

Neutral theory has also been expanded to include the new mutation theory of 

phenotypic evolution that proposes phenotypic evolution is mainly driven by mutation  

(Nei, 2007). It is interesting that this contradicts arguments from the pioneers of 

neutral theory - Kimura, Jukes and King, who argued against the importance of 

selectively neutral forces at the phenotypic level. For example, Kimura states 

“Opportunism in evolution is an eloquent testimony that evolution at the level of form 

and function is largely determined by Darwinian natural selection that brings about 

adaptation of organisms to their environments” (Kimura, 1983). The arguments 

presented by Kimura stem from extrapolations based on the fossil record, for which 

there are numerous examples of opportunism and convergence. One such example is 

seen in the adaptive radiation of marsupials in Australia that show comparisons to 

placental mammals such as the mole-like Marsupials, squirrel-like Marsupials and dog-

like marsupials (Kimura, 1983). Despite this, Kimura later conceded that phenotypic 

evolution could, in some circumstances, be predominately driven by mutation and 
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drift rather than selection. One possibility, Kimura argued, is by gene duplication. 

Mutations in a newly duplicated gene allows that gene to drift into unique 

evolutionary space, which could conceivably facilitate adaptation (Kimura, 1991).  

Nei 2007  strongly argued for the importance of mutation and drift in phenotypic 

evolution in general. Nei proposes that the vast amount of phenotypic diversity that 

exists is a result of novel mutations which can facilitate adaptation to new 

environmental conditions. He put forward this proposal by examining the evolution of 

multigene families in Eukaryotes involved in basic developmental processes; for 

example, homebox genes that encode transcription factors involved in morphogenesis 

(Nei, 2007). These genes are highly conserved, however, there is generally a 

relationship between the number of gene copies and the complexity of the 

physiological or morphological character controlled by that family (Nei, 2007). 

Ultimately, changes in the number of member genes in a particular family is due to 

random deletion and duplication events under a process called random genomic drift 

and therefore the evolution of the homebox genes and the phenotypic characters they 

encode is largely determined by selectively neutral processes (Nei, 2007). One such 

example is seen in the evolution in the HOX gene family - a group of developmental 

genes in animals controlling anterior-posterior segmentation in the homebox 

superfamily. Vertebrates, which have more complex body plans than Invertebrates, 

typically contain much higher numbers of HOX gene copies. For example, Mammals 

contain 39 gene copies compared to 8 in Fruit flies. To some, this suggests random 

duplication events have facilitated the ability of mammals to exploit complex 



11 
 

morphological body plans, which in turn allows adaptation to novel environments 

(Nei, 2007). 

Nei (2007) also presents several other arguments that highlight the importance of 

mutation and drift in driving phenotypic evolution. For example, Nei points out that 

increases in the number of genes involved in complex genetic networks generally 

equates with increases in phenotypic character complexity, and this increase in gene 

number is a result of random gene duplication events (Nei, 2007). This is also argued 

in several other studies (Nei, 1969; Ohno, 1970; Pires-daSilva & Sommer, 2003). 

Finally, in a review by Nei (2005), Nei highlights how simple mutational events alone 

can contribute to significant changes at the phenotypic level. Perutz (1983) for 

example, found that in haemoglobin in crocodiles, just 5 amino acid substitutions can 

explain a gain-of-function phenotype (bicarbonate binding) that mitigates the effects 

of blood acidity that occurs during extended periods under water. Moreover, Hedge & 

Spratt (1985) found that only four amino acid substitutions are required to be 

introduced into Penicillin binding protein 3 of E.coli for resistance to beta-lactam 

antibiotics.  
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The Emergence of Biological Complexity: Positive selection or 

Neutral evolution? 

A common misconception in evolutionary biology is that natural selection encourages 

organisms to become more complex (Gould, 1996). However, some argue that 

reductions in the efficiency of natural selection facilitates the emergence of complex 

systems (e.g. Lynch, 2007). This is certainly true in small populations, as selection is 

ineffective at preventing deleterious mutations from becoming fixed when the 

effective population size is very small  (Lynch, 2007). For example, multicellular 

Eukaryotes that   experience reduced populations sizes have complex genomes that 

contain mobile elements, introns and other features that add to overall genome 

complexity  (Lynch, 2007). Some argue, albeit controversially (see Hickey (1982) for 

alternative hypothesis) , that this complex architecture emerged partly due to the 

effect of reduced population sizes that Multicellular species experience (Lynch, 2007). 

Prokaryotes that normally reside as large populations on the other hand have less 

elaborate genome architecture. These arguments are somewhat in line with models 

of constructive neutral evolution and the Zero Force Evolutionary Law (McShea & 

Brandon, 2010; Stoltzfus, 1999). The former describes how mutation and drift can 

facilitate the design of intricate intracellular systems and the latter argues for a 

tendency for life to become more complex when selection is ineffective. I explore 

these concepts in more detail below.  

The CNE model proposes that some examples of complex biological systems in nature 

emerged probably by selectively-neutral processes, with positive selection playing a 
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subsidiary role. This model contradicts arguments from Neo-Darwinists who argue 

complexity correlates with operational fitness (Stoltzfus, 1999). Nonetheless, there is 

compelling evidence that CNE can explain the origins of spliceosome splicing, the 

emergence of RNA editing, the retention of gene duplicates, and possibly even the 

elaborate structure of the ribosome (Stoltzfus, 1999). These complex systems might, 

at first glance, appear as fine-tuned products of natural selection, however, some 

argue that “pre-suppression” presents a simpler, more plausible explanation (Lukeš et 

al., 2011). 

 Lukeš and colleagues (2011) present a hypothetical model illustrating how CNE might 

operate (Figure 1.1). To summarize, let’s assume an enzyme called [A] facilitates a 

biological reaction independently of another enzyme called [B]. Fortuitous and neutral 

interactions may allow [A] and [B] to interact. A mutation in [A] might cause [A] to 

depend on an interaction with [B] for the reaction to occur. Further mutations in [A] 

could increase this dependency, and if there are many amino acid sites at which [A] 

becomes dependent on [B] then the capacity for [A] to revert to an independent state 

is unlikely (Figure 1.1). Due to this irreversibility, CNE is often described as an 

evolutionary ratchet, possibly in a nod to Muller’s ratchet (Lukeš et al., 2011). Let us 

consider one example where this might be possible - that of Neurospora mitochondrial 

group I introns which depend on a mitochondrial tyrosyl tRNA synthetase (mtTyRS) for 

splicing (Akins & Lambowitz, 1987). By designating the self-splicing introns as [A] and 

the mtTyRS as [B], and assuming [A] and [B] react fortuitously, then mutations in [A] 

that prevent self-splicing are suppressed by [B]. It is unlikely the ability to self-splice 
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would be salvaged following further mutations in the introns, and hence, a 1- 

component system becomes a more complex 2-component system following a 

selectively neutral walk through evolutionary space (Lukeš et al., 2011). An alternative 

explanation might be that mtTyRS evolved to compensate for defects in the intron 

sequence through positive selection (Paukstelis & Lambowitz, 2008). However, Lukeš 

and colleagues 2011 argue this “puts the cart before the horse” - that is, mutant 

introns would likely be removed by natural selection before mtTyRS had time to evolve 

its compensatory power.  

 

 

Figure 1.1. Depiction of how constructive neutral evolution could theoretically operate. [A] 

and [B] are enzymes that react fortuitously through neutral interactions (yellow dots). A 

mutation in component [A] (red dot) causes a dependency on [B] for an enzymatic reaction 

to take place that [A] could previously facilitate independently. Further mutations in [A] 

increases this dependency (more red dots). Interactions between [A] and [B] are maintained 

by negative selection, and [A] and [B] begin to co-evolve (black and white dots). Figure is 

adapted from Lukeš et al. (2011). 
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CNE is elegant in theory, however, few studies have directly tested it. Several studies 

show that spliceosomal splicing is less efficient than self-splicing by group 2 introns 

(e.g Baurén & Wieslander, 1994; Beyer & Osheim, 1988; Schmidt, Podar, Stahl, & 

Perlman, 1996), suggesting the highly complex spiceosomal machinery which 

comprises five small RNAs and over 300 proteins emerged not entirely through the 

action of positive selection (Nilsen, 2003; Stoltzfus, 1999). Possibly, the most 

convincing experimental evidence for CNE is provided by Finnigan and colleagues 

(2012). This group showed through ancestral gene reconstruction and manipulative 

genetic experiments, that a 3-component protein complex in Fungi evolved from a 

simpler 2-component system by simple mutation and drift events. The system this 

group disentangled was the vacuolar H+ -ATPase (V-ATPase) which is a multi-paralogue 

ring complex that acidifies subcellular compartments. They proposed that each 

component is expressed by a single gene, two of which emerged from a single gene 

following a gene duplication event. Following this event, each component encoded by 

the two daughter copies subsequently lost an ability to bind to specific interfaces of 

other proteins following an accumulation of neutral (or nearly-neutral) mutations. 

These losses resulted in each component having a specific spatial orientation and gave 

rise to the emergence of a more complex hetero-oligomeric complex (Figure 1.2). By 

introducing historical mutations into resurrected ancestral proteins,  the group argued 

that simple, high-probably mutations are a more likely the cause for increased 

complexity than positive selection (Doolittle, 2012; Finnigan et al., 2012).  
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As already mentioned, our lab group also found experimental evidence for the 

emergence of slippage-type editing in E.coli which appears have to resulted under 

conditions that minimises the efficiency of selection (Lai, 2017). Lai (2017) found that 

while slippage-type editing rescues frameshift mutations, it leads to a general loss of 

fitness when these mutations are introduced into wild-type bacteria. Through GFP 

reporter systems, it was also found that protein production is reduced. These results 

imply that slippage-type editing evolved through the action of random mutation and 

drift, a finding that is congruent with the constructive neutral evolution model and 

proposal by Finnigan and colleagues (2012) that the V-ATPase in Fungi became more 

complex as a result of mutation and drift.  

 

Figure 1.2. Depiction of how a molecular machine could become more complex. Left: All 

subunits [A] are encoded by a single gene. Middle: A gene duplication event allows subunits [A] and 

[B] to diverge via an accumulation of neutral (or nearly-neutral) mutations without impairing the 

original function of the protein complex, resulting in a hetero-oligomeric complex. Right: Further 

mutations may prevent subunits from binding to their own type. It is unlikely further mutations would 

cause a reversion of the complex to a homo-oligomeric state. This simple depiction reveals how 

mutation and drift can drive complexity in a molecular machine without invoking natural selection. In 

small populations, even sub-lethal mutations could theoretically accumulate in duplicated genes. 

Figure is adapted from Doolittle (2012). 
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CNE is in line with the Zero Force Evolutionary Law (ZFEL) hypothesis which proposes 

that life in general tends to increase in complexity when selection is inefficient 

(Fleming & McShea, 2013; McShea & Brandon, 2010). For example, Fleming & McShea 

(2013) present a study in which they assess the morphological complexity of 

laboratory mutants in Drosophila Melanogaster compared to wild-type lines. They 

observed laboratory strains (which are subjected to reduced selection pressures) to 

be more complex than wild-type strains where complexity is equated with the number 

of different part types as well as shape and colour. This parallels work from our group 

in which we observed the emergence of slippage-type editing because both studies 

were performed in environments that maximise drift and minimise selection (Lai, 

2017). Often advocates of ZFEL emphasize a latent potential for adaptation to new 

environments when complexity increases in a neutral fashion. Fleming & McShea 

(2013) write: “Who is to say that a mutant fly with one leg shorter than the others -

suitably stabilized in development by selection - could not in some ecological context 

become the next adaptive innovation for Drosophila?.” This is in line with work by 

Masatoshi Nei who emphasises the power of mutation and drift in generating 

phenotypes that might be advantageous in some novel environment (Nei, 2007). 

In summary, there is strong support for the emergence of biological complexity by 

neutral processes. As natural selection is ineffective under Muller’s ratchet, it may be 

that complexity emerges under populations subjected to the ratchet. One aspect of 

this project involved testing this prediction by screening for any rare beneficial 

phenotypes that might emerge by chance under a bottlenecking regime.  
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Replicating Muller’s Ratchet in the lab 

So far I have discussed the importance of mutation and drift in evolution. I have also 

mentioned how the effects of these forces are amplified in small populations. Here I 

focus on one implication of small population size, called Muller’s Ratchet - the 

irreversible accumulation of sub-lethal mutations in small, asexual populations 

(Felsenstein, 1974; Muller, 1964). Occurrence of the ratchet has been widely reported 

in bacterial, viral and protozoan populations (Andersson & Hughes, 1996; Chao, 1990; 

Lewis, 1990; Moran, 1996). Moran (1996) for example, compared Aphid 

endosymbionts to their free-living relatives and found that the endosymbionts evolved 

rapidly and accumulated low ratios of synonymous to non-synonymous substitutions, 

consistent with Muller’s ratchet. In another study, Chao (1990) investigated the role 

of Muller’s ratchet on the evolution of sex in RNA bacteriophage Φ6 and report that 

fitness decline associated with Muller’s ratchet is unable to be mitigated by beneficial, 

backward and compensatory mutations. 

However, several studies have demonstrated that avoidance of the ratchet can be 

achieved by a variety of mechanisms, the most prominent example of which is the 

ability of sexual organisms to undergo recombination, which can yield mutation-free 

individuals (Felsenstein, 1974). As such, implications of Muller’s ratchet have been 

proposed to account for the advantages of why some organisms undergo sexual 

reproduction (Felsenstein, 1974). Some asexual organisms also have similar avoidance 

mechanisms. For example, Asexual Amoebae and other protists avoid the ratchet 

through gene conversion events that are possible due to their Polyploid state. In gene 
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conversion, a mutated sequence is replaced by a wild-type sequence through 

homologous recombination (Maciver, 2016). Other asexual Organisms may achieve 

avoidance of the ratchet via horizontal gene transfer (Overballe-Petersen & Willerslev, 

2014; Overballe-Petersen et al., 2013), host-level selection on bacterial 

endosymbionts of insects that experience population bottlenecks upon infection 

(Allen, Light, Perotti, Braig, & Reed, 2009; Rispe & Moran, 2000), or via back and 

compensatory mutations that mitigate the deleterious effects of mutations (Bull, 

Badgett, Rokyta, & Molineux, 2003; Pfaffelhuber, Staab, & Wakolbinger, 2012).   

Reproducing a Muller’s ratchet-type scenario in the laboratory is possible via Mutation 

Accumulation (MA) Experiments. In MA experiments, conditions are adjusted to 

minimise the impact of selection such that mutations can accumulate in replicated 

lines over several generations. Therefore, MA experiments allow researchers to 

investigate the rates and properties of new mutations, as well their effects on fitness, 

transcriptome abundance, phenotype or any other measurable biological property 

(Figure 1.4) (Halligan & Keightley, 2009).  
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Figure 1.3. Depiction of how Muller’s ratchet operates. A mutation (red) appears in 

generation 2 in the genome (black) of members of a population. This is passed on to 

generation 3. Another mutation appears in the third generation (light blue). Further 

mutations (yellow and purple) emerge in generation 4 and 5, respectively. The original 

mutation (red) reverts in generation 5 however under conditions that minimise the efficiency 

of selection, the general trend of mutation accumulation continues irrespective of the impact 

of these mutations on fitness.  
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Figure 1.4 Depiction of a classic Mutation Accumulation (MA) experiment. Initially isogenic 

lines (Erlenmeyer flask) are subjected to multiple population bottlenecks by continuously 

passaging a very small number of individuals (horizontal arrows) to fresh media. Over time, 

fitness decline is normally observed due to the accumulation of sub-lethal mutations. In 

asexual systems, this is known as Muller’s ratchet. Given mutations evolve neutrally with 

respect to fitness, the average rate of increase in numbers of mutations per line is equivalent 

to the mutation rate (Lynch et al., 2016). The procedure is often followed up by genome 

sequencing, fitness assays and phenotypic analysis. 

 

So far I have addressed studies that have confirmed Muller’s ratchet through use of 

MA manipulations (e.g. Andersson & Hughes, 1996; Bull et al., 2003; Chao, 1990; 

Clarke et al., 1993c). MA experiments also allows one to assess how changes at the 

genomic level impact on phenotype, and thus potentially provide a useful tool for 

examining how genomic changes accumulated under the ratchet impact phenotype. 

Several studies have examined the phenotypic impact of mutations by utilizing MA 

experiments, some of which have addressed gene expression (e.g. Denver et al., 2005; 
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Rifkin, Houle, Kim, & White, 2005), and others of which have examined metabolism  

(e.g. Cooper & Lenski, 2000; Funchain et al., 2000; Leiby & Marx, 2014). For example, 

Rifkin et al. (2005) examined transcriptome abundance across 12 initially identical 

Drosophila lines that have independently accumulated mutations over 200 

generations. They observed that spontaneous mutations can cause widespread 

variation in gene expression, but such expression is constrained by stabilizing 

selection. In another study, Caenorhabditis elegans MA lines were compared to 

natural isolate lines (Denver et al., 2005). The authors reported massive variation in 

gene expression in MA lines compared to wild-type lines, conclusions in line with Rifkin 

et al. (2005) who argue that selective pressures prevent gene expression levels from 

varying significantly in wild populations (for review see Halligan & Keightley, 2009). In 

a MA-based study assessing metabolism, Funchain and colleagues (2000) examined 

the function of over 700 genes in mutator E.coli lineages following continuous cycles 

of single-cell bottlenecking. They observed populations with reduced fitness, 

increased auxotrophic requirements, colony size reductions and loss-of-function 

phenotypes that limited carbon utilization capacities. Leiby & Marx (2014) examined 

the ability of E.coli to utilize various carbon sources after 50 000 generations of growth 

on glucose. Whilst they found novel gain-of-function phenotypes associated with 

organic acids, strains that showed elevated mutation rates triggered declines in 

metabolic capacities.  
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Conclusions 

Muller’s ratchet is characterized by elevated mutation rates, small population size, 

intense genetic drift and irreversibility. The former components have been shown to 

drive evolutionary innovation at all levels of biological organisation. The latter 

component (irreversibility) is problematic (and potentially catastrophic) for asexual 

organisms that lack the mechanisms to halt the ratchet. In chapter 2 of this thesis we 

examine the mutational basis that might allow a bottlenecked population of E.coli to 

escape the ratchet under a bottleneck relief regime. How mutations that accumulate 

under such a regime impact on protein function, and how such changes relate to 

fitness recovery remains largely ignored in the literature. In chapter 3 we then focus 

on the phenotypic effects of Muller’s ratchet by assessing the capacity for 

bottlenecked and recovering lineages to grow in hundreds of different metabolic 

environments.  

To achieve such an undertaking, we analysed growth data, sequenced genomes and 

analysed the functional severity of mutations. To assess the functional impact of 

mutations, and to distinguish loss-of-function mutations from gain-of-function 

mutations, we screened our lines using Biolog phenotypic arrays.  
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Chapter 2  
Escaping the Ratchet: Novel molecular 

pathways to restoring Fitness and 

Protein Function 

 
Introduction 

Small, asexual populations are well known to experience fitness decline when 

subjected to Muller’s ratchet (Lynch, Bürger, Butcher, & Gabriel 1993). However, there 

are several mechanisms that may allow populations to escape from the deleterious 

effects of the ratchet. These include horizontal gene transfer events which can reverse 

the inactivation of genes by mutation, host-level selection pressures, as well as 

compensatory and reversion mutations (Bull et al., 2003; Pfaffelhuber et al., 2012; 

Rispe & Moran, 2000; Takeuchi, Kaneko, & Koonin, 2014). It has been demonstrated 

in several Mutation Accumulation (MA) experiments that compensatory and reversion 

mutations can partially or completely recapture wild-type fitness in populations 

recovering from severe population bottlenecks (Bull et al., 2003; Burch & Chao, 1999; 

Charlesworth, 2009; Clarke et al., 1993b; Perfeito, Sousa, Bataillon, & Gordo, 2014; 

Pfaffelhuber et al., 2012; Poon & Otto, 2000). Compensatory mutations are 

particularly prominent in these studies for these types of mutations are more likely to 

restore fitness than back mutations (Pfaffelhuber et al., 2012; Poon & Chao, 2005).  
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Haigh (1978), for example, stated that back mutations are rare because the 

“deleterious mutation rate is proportional to the full length of the genome of a clonally 

reproducing individual, while the compensatory mutation rate (which in this case 

means back mutation) scales with the length of a single base within the full genome” 

(for review see Pfaffelhuber et al., 2012). Even in bacteriophages that comprise small 

genomes the rate of compensatory mutations exceeds that of back mutations (Bull et 

al., 2003; Poon & Chao, 2005). For example,  Poon & Chao (2005) investigated the 

frequency at which compensatory mutations restore fitness in mutant populations of 

bacteriophage φX174 compared to reversion mutations. Following the introduction of 

21 deleterious missense substitutions into the φX174 genome, they observed that 

when lineages regained fitness the frequency of compensatory mutations was ∼70%. 

These types of observations are also reported in other studies (e.g. Bull et al., 2003; 

Escarmıś, Dávila, & Domingo, 1999; Moore, Rozen, & Lenski, 2000). Compensatory 

mutations are particularly relevant to our research due to their capacity to reduce the 

deleterious effects of mutations that could potentially be adaptive. For example, 

antibiotic resistance-causing mutations can sometimes have deleterious 

consequences in a wild-type background, the effects of which can be remedied by 

compensatory mutations (Maisnier-Patin & Andersson, 2004; Poon & Chao, 2005).  

Several possible mechanisms for which compensatory mutations might operate are 

described in Maisnier-Patin & Andersson (2004). The first possibility is through 

intragenic point mutations that recapture structural or functional defects of protein or 

RNA molecules. A second possibility is by intergenic mutations that repair mutated 
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multi-subunit complexes or organelles. Thirdly, compensatory mutations can trigger 

the recruitment of alternative pathways to circumvent existing pathways affected by 

mutation. Another possibility is through increased enzyme production that can 

compensate for lowered activity caused by a defect enzyme. There is substantial 

experimental evidence that these occurrences can provide a potential escape route 

for organisms subjected to the ratchet. This is true for fitness-impaired viruses (Bull et 

al., 2003; Burch & Chao, 1999; Clarke et al., 1993b; Poon & Chao, 2005), bacteria 

(Bjrkman, Hughes, Andersson, & Roth, 1998; Levin, Perrot, & Walker, 2000; Maisnier-

Patin, Berg, Liljas, & Andersson, 2002; Moore et al., 2000) and even multicellular 

organisms (Estes & Lynch, 2003).  

In summary, back and compensatory mutations provide a potential escape route for 

populations subjected to Muller’s ratchet. Such mutations aid in fitness recovery and 

compensatory mutations may even allow the persistence of adaptive mutations in 

populations that have a deleterious effect in a wild-type background. Numerous 

studies support this, and many of these studies have achieved this by observing these 

types of mutations in MA lines that have been subjected to further evolution under a 

bottleneck relief-type regime (Bull et al., 2003; Estes & Lynch, 2003; Poon & Otto, 

2000). Here, we undertook a similar procedure. However, as little is known about how 

mutations that accumulate under a relief regime (such as back, compensatory and 

other mutations) impact protein function, we decided to focus on exactly this. In turn, 

the aim here is to assess the mutational basis that might allow populations subjected 

to Muller’s ratchet to escape from a trajectory towards mutational meltdown, by 
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exploring the impact of these mutations on protein function and relating this to fitness 

recovery. To achieve such a goal, we employed a newly-described delta bitscore (DBS) 

tool (Wheeler et al., 2016). The DBS method utilizes Profile hidden Markov models to 

assess the functional severity of mutations by considering residue conservation and 

indel rates within a sequence, and is defined by the following equation: 

                              DBS = xref - xvar 

“Where DBS is delta-bitscore, and xref and xvar are bitscores for reference and variant 

sequences derived from alignments to the same profile HMM” (Wheeler et al., 2016). 

As such, mutations in highly conserved positions in a protein sequence alignment are 

scored with a greater penalty than those in positions that are free to vary. Critically, 

the DBS-based approach for assessing the functional impact of mutations has several 

advantageous over the commonly employed dN/dS tool for examining recently 

diverged strains. Often, dN/dS ratios are accompanied by high rates of false-positives 

and false negatives in addition to contradicting results (Kryazhimskiy, Plotkin, Smith, 

Simonsen, & Miller, 2008; Nei et al., 2010; Rocha et al., 2006; Wheeler et al., 2016).  

To this end, we decided to recover bottlenecked populations of E.coli close to 

extinction by repeatedly transferring large populations of cells under competitive 

conditions, which we call bottleneck relief and will sometimes refer to as BR. We 

sequenced genomes of recovering lines, performed fitness experiments and assessed 

the functional severity of mutations that emerged under this regime. We compare 

changes to the ancestral and wild-type populations. The ancestral line represents a 



28 
 

severely fitness-impaired mutator population that has accumulated thousands of 

mutations over 50 cycles of single-cell bottlenecking and thus represents an extreme 

case of Muller’s ratchet (Lai, 2017). Wild-type populations represent day 0 and the 

beginning of the bottleneck period. To control for media adaptation, we also 

compared changes to control lines that have been evolved in the same environmental 

conditions without being subjected to the bottleneck regime.  
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Methods 

Strain and media 

The strain used throughout this experiment was E.coli strain REL606 containing a 

pGEM::mutD5 plasmid. In short, this plasmid contains a mutation in the dnaQ (mutD) 

gene which reduces the ability of its encoded product, DNA polymerase III 

holoenzyme, to correct DNA replication errors (Degnen & Cox, 1974). The strain is 

derived from the bottleneck regime aforementioned and provided by Alicia Lai who 

carried out the bottleneck experiments.  

For cells growing in liquid media, Luria-Bertani (LB) media was used. For solid media, 

cells were grown in LB supplemented with agar added to a concentration of 1.5%w/v. 

All media was supplemented with antibiotics streptomycin and ampicillin at 

concentrations of 100μg/mL (Peptides International). All chemicals used in the 

experiments were purchased from Sigma-Aldrich Co. except where otherwise stated.  

Bottleneck Relief Regime 

The experiments undertaken are a continuation of a MA (bottleneck) experiment 

carried out by a member of our lab group, Alicia Lai. Under that regime, single colonies 

of wild-type REL606 + pGEM::mutD5 were isolated daily on LB agar for 50 cycles, thus 

forcing populations through severe bottlenecks. In total, 10 lines were forced through 

bottlenecks while 5 controls lines were passaged by transferring 100 µl of culture onto 

fresh LB agar for 50 cycles also. 
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For the bottleneck relief regime, the most severely impaired line at day 50 of the 

bottleneck regime was used as a starting point (designated BN50). This line has 

accumulated approximately 3790 mutations with an average overall impact of protein 

coding mutations calculated at a DBS value of 21.25 (note that > 5 is considered a 

functionally significant change based on benchmarking work by Wheeler, Barquist, 

Ashari Ghomi, Kingsley, & Gardner (2015). For controls, we selected one line from the 

five bottleneck control lines mentioned above as a starting point (designated BNC50). 

This line accumulated 80 mutations and the average impact of those mutations that 

encode proteins was measured at a DBS value of 0.098. The control lines served as a 

media control, to help distinguish changes that arise due to general laboratory 

adaptation versus those that arise in response to the effect of bottlenecking and 

subsequently, bottleneck relief. To this end, 10 independent lines derived from BN50 

were maintained in large population sizes, by transferring a 20µl suspension of cells to 

a new source of media, daily, for a total of 50 cycles. In parallel, 10 independent control 

lines derived from BNC50 were propagated in the same fashion. 

The experiments were initiated by scraping 10µl of frozen-down BN50 and BNC50 

cultures and inoculating two separate McCartney bottles containing fresh LB 

supplemented with streptomycin and ampicillin. Cultures were grown to saturation at 

37°C in a shaking water bath. 20µl of culture was dispensed into 20 separate wells 

containing 2mls of LB supplemented with antibiotics. Two cell-culture plates 

containing the wells were used, with one plate containing the control lines and the 

other plate containing the bottleneck relief lines. 10 wells were inoculated with cells 
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derived from BN50 while the other 10 wells were inoculated with cells derived from 

BNC50. Cells were grown for 24hrs in a shaking incubator at 37°C. Subsequently, 20µl 

of cells were dispensed into a new set of wells containing 2mls of fresh LB with 

antibiotics and the experiment was repeated as above for a total of 50 cycles. As such, 

10 independent bottleneck relief lines and 10 independent control lines were allowed 

to evolve for 50 days. Glycerol stocks for each line were prepared on a daily basis and 

stored in a -80°C freezer to provide a ‘fossil’ record of the evolving populations. 

 The bottleneck relief lines shall be designated as BR followed by the associated relief 

cycle followed by the lineage number. For example, BR50.1 represents lineage 1 from 

bottleneck relief day 50. The control lines shall be designated as BRC followed by the 

associated relief cycle followed by the line number. For example, BRC50.1 represents 

lineage 1 from bottleneck relief day 50.  
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Figure 2.1. Overview of the Experimental Regime. A) REL606 + pGEM::mutD5 populations 

were subjected to a bottleneck regime in which a random single-colony was repeatedly picked 

and streaked onto fresh LB agar for 50 cycles (Lai, 2017). Subsequently, 10 independent lines 

were then allowed to further evolve under a bottleneck relief regime in shaking, liquid media. 

B) In parallel, control populations were propagated by repeatedly transferring large 

populations to fresh media. Populations that evolved on solid media represent controls for 

the bottleneck regime while populations that evolved in liquid media represent controls for 

the bottleneck relief regime. The coloured circles in the “bottleneck” and “bottleneck relief” 

bottles may represent different populations that are continually propagated. In the 

bottleneck regime the blue circles could represent unfit populations that are transferred 

while remaining populations that are more fit (red and white circles) are left behind. On the 

other hand, under the bottleneck relief regime, the fitter red and white populations are able 

to be passaged and are thus expected to outcompete the fitness-impaired (blue) populations 

over time. 
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Contamination tests 

To check for contamination, independent contamination tests were performed on a 

regular basis throughout the relief regime, as well as prior to and after extracting DNA 

for genome sequencing. Cells were readily streaked out on solid LB agar to single 

colonies for visual examination of potential unwanted contaminants. In addition, cells 

were readily checked for sensitivity to bacteriophages T4 and T5: Briefly, 15µl of T4 

and T5 cultures are dispensed on separate LB agar plates and plates are turned upright 

to allow liquid to slide down a straight line in the centre of the plate. 1µl of bacterial 

culture is dispensed to the side of the plates and streaked through the vertical line of 

the phage. Plates are then incubated at 37°C overnight. Confirmation that cells are 

E.coli is determined by observing no colonies forming beyond the vertical phage line. 

This protocol was obtained from Richard Lenski’s lab group and is available online:  

myxo.css.msu.edu/ecoli/contam.html. This test does not distinguish between E.coli 

strains. Therefore, to confirm cells are not other strains of E.coli commonly found in 

the laboratory, PCR screens were also performed. In brief, cultures were streaked out 

to single colonies on LB agar followed by a PCR screening using trkD and rbsD primers 

that amplify REL606 strains with a band of approximately 3 kb. Finally, cells were 

regularly plated for single colonies on TA (tetrazolium and arabinose) agar which 

distinguishes Ara- from Ara+ strains. As REL606 + pGEM::mutD5 is an Ara- strain, 

colonies are expected to be red whereas formation of white colonies could be due to 

contamination from arabinose-utilizing organisms (Lenski, Rose, Simpson, & Tadler, 

1991). 
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Fitness Experiments 

Fitness was assessed by measuring growth rates every 10 days of the relief regime. For 

controls, growth rates were measured at day 50 only. Briefly, saturated cultures of all 

20 lines were dispensed into a 24 well cell culture plate at a 1:100 dilution in 1ml of LB 

with antibiotics supplemented. The OD595 of each line was measured using a 

FLUOstar Omega Microplate Reader (BMG Labtech). Runs were carried out at 37°C for 

24 hours with shaking. OD595 measurements were calculated every 6 minutes. 2 

biological replicates were tested for each line, however, for relief lines measured at 

day 50, four replicate tests were performed. As day 50 lines underwent genome 

sequencing, it was important to obtain highly reliable data to ensure genome-fitness 

comparisons were robust  

DNA extractions and Whole Genome Sequencing 

All 10 relief lines and 10 control lines from day 50 were streaked out to single colonies 

on LB agar. A single colony was then used to inoculate liquid LB and cells were grown 

to saturation. DNA extractions for all 20 lines was carried out using the Wizard 

Genomic DNA purification kit (Promega) for gram negative bacteria. The procedures 

for extracting DNA were performed according to the manufactures instructions. 

Subsequently, isolated DNA was quantified using the Nanodrop 1000 

spectrophotometer (ThermoFisher Scientific) and Qubit 2.0 Fluorometer 

(Thermofisher Scientific). Line BR50.5 and BRC50.2 did not meet the requirements for 

genome sequencing and due to time constraints, DNA extractions for these lines could 

not be repeated. As such, DNA from 9 relief lines and 9 control lines in total was sent 
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to Macrogen for whole-genome sequencing via the Illumina Miseq platform. Raw 

sequence data was later processed in Geneious version 9.1.7 (Kearse et al., 2012). In 

brief, The BBDuk plug-in for Geneious (Bushnell 2014) was implemented to filter and 

trim sequence data. Trimmed reads were then mapped to reference genomes using 

the Bowtie2 plug-in for Geneious (Langmead & Salzberg, 2012). For the relief lines, 

reads were mapped to the genome of BN50 while reads for the control lines were 

mapped to the genome of BRC50. Annotation and SNP calling was performed using 

Geneious software. For polymorphism detection, the minimum variant frequency was 

set to 0.75.  

Delta-bitscore Analyses 

To assess the functional severity of mutations, we employed a newly-described delta-

bitscore tool (Wheeler et al., 2016). This tool utilizes Profile hidden Markov models to 

assess the functional severity of mutations by considering residue conservation and 

indel rates within a sequence. HMM profile models for gamma-proteobacterial protein 

sequences were retrieved from the EggNOG database (Huerta-Cepas et al., 2016). 

Each of our protein sequences were aligned to their respective profile HMM to 

produce bitscore values, and by subtracting the bitscores of ancestral protein 

sequences from that of the evolved protein, a measure of divergence between the 

proteins is produced (Wheeler et al., 2016). In general, a high positive DBS value (>5) 

is indicative of sequence change that is likely to impair protein function while a high 

negative DBS value suggests an improvement in protein function. Changes that have a 

minor impact on function are likely to be scored with a minimal absolute DBS value. 
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Results  

10 initially identical lines of fitness-impaired BN50 were subjected to a bottleneck 

relief regime consisting of a series of independent passages that involved transferring 

a suspension of cells to 2ml of fresh LB for 50 cycles (Figure 2.1a). Additionally, 10 

initial identical lines of BNC50 were passaged as stated above – this served as a media 

control (Figure 2.1b). After 50 cycles, DNA was extracted from 9 bottleneck relief and 

9 control lines. Whole-genome sequencing was carried out on the Illumina Miseq 

Platform and reads were assembled using BN50 as a reference genome for the 

bottleneck relief (BR) lines and BNC50 for the control lines. Raw data statistics can be 

found in supplementary material.  

Fitness increases observed in bottleneck relief lines 

Growth rate was measured at 10-day intervals using a plate-reader. For controls, data 

was obtained from day 50 only. Growth rate was measured as the minimum doubling 

time over a 30 minute period. From BR day 20 onwards, growth rates were 

consistently measured as being above that of BN50. However it appears that beyond 

day 20, growth rates level off (Figure 2.2). A Wilcoxon rank sum test comparing 

doubling times of lines representing BR day 20 and BR day 50 yielded a P-value of 

0.150, indicating no significant difference in growth rate between these time points.  
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Figure 2.2.  Average Increase in growth rate of BR lineages relative to BN50 is observed from 

day 20 onwards. BR lines (light blue diamonds) show an increase in growth rate compared to BN50 

(dashed line) at day 20, 30, 40 and 50 of the bottleneck relief regime. Values above 1 represent an 

increase in relative growth rate and values below 1 represent a decrease in relative growth rate. Each 

point represents the average of the 10 lines. 

 

 

Figure 2.3. No major increase in growth rate observed following 10 days of bottleneck relief. 

BR lineages at day 10 (light blue diamonds) do not appear to deviate significantly from BN50 (dashed 

line) although BR10.3 and BR10.4 show a slight increase in growth rate. Values above 1 represent an 

increase in relative growth rate and values below 1 represent a decrease in relative growth rate. Each 

point represents the average of two replicates. 
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Figure 2.4. Increase in growth rate observed following 20 days of bottleneck relief. All BR 

lineages at day 20 (light blue diamonds) have increased in growth rate compared to BN50 (dashed 

line) with BR20.4 showing the greatest increase. Values above 1 represent an increase in relative 

growth rate and values below 1 represent a decrease in relative growth rate. Each point represents 

the average of two replicates. 

 

 

Figure 2.5.  Increase in growth rate observed following 30 days of bottleneck relief. All BR 

lineages at day 30 (light blue diamonds) have increased in growth rate compared to BN50 (dashed 

line) with BR30.3 showing the greatest increase. Values above 1 represent an increase in relative 

growth rate and values below 1 represent a decrease in relative growth rate. Each point represents 

the average of two replicates. 
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Figure 2. 6. Increase in growth rate observed following 40 days of bottleneck relief. All BR 

lineages at day 40 (light blue diamonds) have increased in growth rate compared to BN50 (dashed 

line) with BR40.10 showing the greatest increase. Values above 1 represent an increase in relative 

growth rate and values below 1 represent a decrease in relative growth rate. Each point represents 

the average of two replicates.  

 

 

Figure 2.7. Increase in growth rate observed following 50 days of bottleneck relief. All BR 

lineages at day 50 (light blue diamonds) have increased in growth rate compared to BN50 (dashed 

line) with BR50.5 showing the greatest increase. Values above 1 represent an increase in relative 

growth rate and values below 1 represent a decrease in relative growth rate. Each point represents 

the average of four replicates (x ̄± SE). 
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BR lines show lower growth rates than wild-type and control populations 

To assess whether the relief lines recaptured wild-type fitness (or captured control 

fitness), growth rates at BR day 50 were compared to wild-type and to control growth 

rates measured at day 50. All BR lineages show lower relative growth rates compared 

to both wild-type (Figure 2.9) and controls (Figure 2.8). To show significance, a 

Wilcoxon rank sum test was performed by comparing growth rates of BR day 50 lines 

and control lines. We found a statistically significant difference between each group 

(P-value = 0.000977).  

 

 

Figure 2.8. BR lineages at day 50 show lower growth rates compared to the average BR control 

growth rate. BR growth rates are depicted as light blue diamonds referenced against the average BR 

control growth rate (dashed line). Values above 1 represent an increase in relative growth rate and 

values below 1 represent a decrease in relative growth rate. Each point represents the average of four 

replicates (x ̄± SE). 
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 Figure 2.9. BR lineages at day 50 show lower growth rates compared to WT. BR growth rates are 

depicted as light blue diamonds referenced against the average WT growth rate (dashed line). Values 

above 1 represent an increase in relative growth rate and values below 1 represent a decrease in 

relative growth rate. Each point represents the average of four replicates (x ̄± SE). 

 

Fitness of Control lines remain similar to ancestral and Wild-type Levels 

To assess fitness changes that might be attributable to adaptation to media, growth 

rates of BR control lines at day 50 were compared to the average ancestral (bottleneck 

control) growth rate (Figure 2.10), and to wild-type (Figure 2.11). No major differences 

in fitness were observed, however, growth rates are marginally above wild-type levels 

and slightly below ancestral levels.  
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Figure 2.10. BR control lineages at day 50 show similar growth rates compared to BNC50. Control 

growth rates are depicted as dark blue diamonds referenced against the average ancestral (BNC50) 

growth rate (dashed line). Values above 1 represent an increase in relative growth rate and values 

below 1 represent a decrease in relative growth rate. Each point represents the average of two 

replicates. 

 

 

Figure 2.11. BR control lineages at day 50 show similar growth rates compared to WT. Control growth 

rates are depicted as dark blue diamonds referenced against the average WT growth rate (dashed 

line). Values above 1 represent an increase in relative growth rate and values below 1 represent a 

decrease in relative growth rate. Each point represents the average of two replicates. 
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Whole-Genome Sequencing reveals an accumulation of Mutations following 50 

cycles of bottleneck relief 

Whole-genome sequencing was carried out on the Illumina Miseq Platform and reads 

were assembled using the genome sequence of BN50 as a reference for the BR lines 

and the genome of BNC50 as a reference for the control lines. SNP calling and analyses 

were carried out  in Geneious version 9.1.7 (Kearse et al., 2012). The relief lines 

showed higher mutation rates than controls (P < 0.05, Wilcoxon rank sum), and a 

greater number of mutations accumulated over fewer generations (Table 2.1). For the 

BR lines, BR50.6 showed the highest mutation rate while BR50.4 has the lowest 

mutation rate. For the control lines, BRC50.1 has the highest mutation rate while 

BRC50.10 has the lowest mutation rate. All the BR lines have a lower mutation rate 

than BN50 (1.11 x 10-6). However, all control lines have a higher mutation rate 

compared to BNC50 (7.02 x 10-9).  
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Table 2.1. General overview of mutational changes observed in the day 50 relief and control 
genomes 

Lineage 
Number of 
Generations 

Number of 
Substitutions 

Number of 
Insertions 

Number of 
Deletions 

Total Number 
of Mutations 

Mutation 
Rate  

BR50.1 1518 556 39 26 621 8.83 x 10-8 

BR50.2 1266 448 21 25 494 8.42 x 10-8 

BR50.3 1288 568 42 34 644 1.08 x 10-7 

BR50.4 1498 492 29 15 536 7.72 x 10-8 

BR50.6 1320 587 36 43 666 1.09 x 10-7 

BR50.7 1426 565 42 1 608 9.68 x 10-8 

BR50.8 1298 423 23 22 468 7.78 x 10-8 

BR50.9 1408 507 23 34 564 8.64 x 10-8 

BR50.10 1499 499 27 27 553 7.96 x 10-8 

BRC50.1 2350 272 5 4 281 2.58 x 10-8 

BRC50.3 2377 214 3 8 225 2.04 x 10-8 

BRC50.4 2331 238 8 9 255 2.36 x 10-8 

BRC50.5 2394 232 8 8 248 2.24 x 10-8 

BRC50.6 2304 207 3 6 216 2.02 x 10-8 

BRC50.7 2245 242 9 4 255 2.45 x 10-8 

BRC50.8 2445 241 3 5 249 2.20 x 10-8 

BRC50.9 2366 219 8 5 232 2.12 x 10-8 

BRC50.10 2483 218 4 5 227 1.97 x 10-8 

 

SNP calling is based on mutational changes relative to ancestral genomes (BN50 for BR50.1-BR50.10 

and BNC50 for BRC50.1-BRC50.10). The number of generations calculated is based on doubling time 

calculated every 24 hours for the experimental regime. The total number of mutations is calculated 

by diving the number of mutations by the number of generations and number of nucleotides in the 

genome of E.coli REL606. 
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DBS Analysis reveals mutations in relief lines diverge from Ancestral Sequence 

Constraints 

Mutations that emerged under the relief regime were analysed using a newly-

described delta-bitscore metric that assesses the functional-severity of mutations 

based on protein sequence conservation (Wheeler et al., 2016).  

We found that BR lines accumulated mutations with typically high associated positive 

DBS values while relatively few mutations were scored as having negative DBS values 

(Figure 2.12). As the DBS method is based on sequence conservation, these results 

suggest that protein sequences are diverging from sequences favoured in the 

evolutionary history of those proteins, and that overall protein function is not 

improving relative to BN50 (see discussion for why this observation is superficial). 

Moreover, the average DBS of all the BR lines examined increased relative to the mean 

DBS of BN50, and this correlates with the number of SNPs emerging throughout the 

experimental regime (Figure 2.13). In contrast, the control lines appear to have 

accumulated substantially fewer deleterious mutations (Figure 2.12) and have a much 

lower mean DBS (Figure 2.13).   

Mapping BR DBS values to their corresponding COG category shows functionally 

significant DBS scores commonly found in sequences associated with energy 

production, amino acid transport/metabolism , carbohydrate transport/metabolism 

and in sequences that have unknown functions (Figure 2.12). For control populations, 

functionally significant DBS values mostly belong to sequences associated with 
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unknown function, signal transduction and cell wall/membrane processes (Figure 

2.12).  

For the relief lineages, the most extreme DBS values fall under COG categories 

associated with unknown function, amino acid transport/metabolism, energy 

production and cell well/membrane biogenesis. The lowest negatively scored DBS 

values are associated with carbohydrate transport/metabolism and cell 

wall/membrane biogenesis (Figure 2.12). High positive DBS values are in many cases a 

result of insertion or deletions causing Frame Shifts. The highest DBS values (1890.5 

and 1616.2) are associated with a hypothetical protein and bifunctional protein PutA, 

respectively, and are due to substitution mutations causing truncations (Table 2.2). 

The truncation mutation identified in the gene putA was found to occur in all nine 

sequenced BR lines (Table 2.2). 
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                   A   C    D    E    F     G    H     I     J     K    L    M   N    O    P    Q    S    T    U    V    W                

Figure 2.12. Scatterplot Depicting DBS values for BR and control lineages. Each point 

represents a DBS value for a particular protein sequence. DBS values in this depiction are 

relative to DBS values calculated for mutations in ancestral sequences which have been 

assigned here to 0. For functional categorization, DBS values are mapped to the COG category 

that its corresponding protein sequence belongs to. A = RNA processing/modification, C = Energy 

production, D = Cell cycle control , E = Amino acid transport/metabolism, F = Nucleotide transport/metabolism, 

G = carbohydrate transport/metabolism, H = Coenzyme transport/metabolism, I = Lipid transport/metabolism, 

J = Translation, ribosome structure, K = Transcription, L = Replication, recombination, M = Cell wall/membrane, 

N = Cell motility, O = Posttranslational modification, P = Inorganic ion transport/metabolism, Q = secondary 

metabolites, S = Function unknown, T = Signal transduction, U = intracellular trafficking, V = Defence 

mechanisms, W = Extracellular structures. 
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Figure 2.13. Relationship between mean delta-bitscore (blue lines) and the average number 

of SNPs (red lines) for WT (Day 0), bottleneck day 50 (BN Day 50) and bottleneck relief day 

50 (BR Day 50). Thick lines represent WT, bottleneck day 50 and Bottleneck relief day 50. 

Dotted lines represent data from our lab group (Lai, 2017) if BN50 was bottlenecked further 

for 50 cycles as opposed to undergoing bottleneck relief. Dashed lines (bottom of figure) 

depict the average number of SNPs and mean DBS for BNC50 (bottleneck control) and the BR 

control lines that evolved in parallel to the bottleneck and Bottleneck relief regime.  
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Table 2.2. Summary of the highest DBS Values (>1000) for the relief lines 

 

Above is an outline of the highest DBS values (calculated to be > 1000) in all the BR genomes analysed. 

It shows the coding sequence associated with these values and the mutational basis that are the cause 

for such changes, as well as the BR lines in which these mutations occurred. 

 

Sum of absolute delta-bitscore does not correlate with fitness of relief lineages 

To assess the relationship between DBS and fitness (measured by doubling time), a 

Pearson’s correlation test was performed on BR and control lineages based on the 

Σ|DBS| calculated for each line and the corresponding doubling time (Table 2.3).  A 

significant positive relationship was observed (P < 0.05, R2 = 0.9387) (Figure 2.14). In 

other words, populations calculated to have higher absolute DBS values typically also 

CDS COG category Change Protein Effect DBS Line(s)

Hypothetical Protein Function Unknown G -> A Substitution Truncation 1890.5 BR50.8

PutA Amino acid transport/metabolism C -> T Substitution Truncation 1616.2 All

RHS element protein Cell Wall/Membrane

(C)5 -> (C)4 Deletion 

(Tandem Repeat) Frame Shift 1321 BR50.6

RHS element protein Cell Wall/Membrane

(C)4 -> (C)3 Deletion 

(tandem repeat) Frame Shift 1302.9 BR50.10
 inverse 

autotransporter 

adhesin-like protein 

YeeJ Function Unknown

 (A)8 -> (A)9 Insertion 

(tandem repeat) Frame Shift 1276.3 BR50.10

trimethylamine N-oxide 

reductase I catalytic 

subunit Energy Production

(G)6 -> (G)5 Deletion 

(tandem repeat) Frame Shift 1252.7 BR50.4

membrane protein Function Unknown

 (G)3 -> (G)2 Deletion 

(tandem repeat) Frame Shift 1106.2 BR50.9

lacZ Carbohydrate Transport Metabolism  C -> T Substitution Truncation 1072.1 BR50.7

 ribonucleotide-

diphosphate reductase 

subunit alpha Nucleotide transport/Metabolism

 (T)6 -> (T)7 Insertion 

(tandem repeat) Frame Shift 1013.1 BR50.8
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had higher doubling times.  However, when the Σ|DBS| and doubling times for the 

control lines were excluded from the Pearson’s test, and only the values for relief lines 

were included, a non-significant relationship was calculated (P > 0.05, R2=0.034907) 

(Figure 2.15). 

Table 2.3. Sum of Absolute DBS and Doubling Time calculated for BR lines and Control lines  

Lineage Σ|DBS| Doubling Time (minutes) 

BR50.1 98776 47.2 ± 2.10 

BR50.2 97859 56.88 ± 4.18 

BR50.3 97859 55.91 ± 2.82 

BR50.4 100490 48.06 ± 4.13 

BR50.6 106955 54.56 ± 5.62 

BR50.7 108146 50.48 ± 3.92 

BR50.8 96489 55.47 ± 4.95 

BR50.9 101258 51.13 ± 1.67 

BR50.10 99992 48.03 ± 3.98 

BRC50.1 2614 30.64 ± 0.51 

BRC50.3 2840 30.29 ± 1.37 

BRC50.4 1245 30.88 ± 1.19 

BRC50.5 1130 30.08 ± 0.10 

BRC50.6 2231 31.25 ± 0.28 

BRC50.7 2076 32.08 ± 0.55 

BRC50.8 2038 29.45 ± 0.24 

BRC50.9 1199 30.43 ± 1.25 

BRC50.10 821 28.99 ± 0.14 
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Figure 2.14. Relationship between Sum of absolute DBS (y-axis) and Doubling time (x-axis). A 

significant correlation was identified (P < 0.05, R2 = 0.9387). Σ|DBS| and doubling times for all 

BR and control populations are included in calculation. 

 

 

Figure 2.15. Relationship between Sum of absolute DBS (y-axis) and Doubling time (x-axis). A 

non-significant correlation was identified (P > 0.05, R2 =0.034907). Σ|DBS| and doubling 

times for all BR lines are considered while values for control lines are excluded from 

calculation.  
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To assess whether DBS values that are outliers (such as those in table 2.2) might be 

contributing to fitness differences between the relief lines, two scatterplots depicting 

DBS values greater than |500| were aligned to a graph depicting doubling time (Figure 

2.16). DBS values > 500 and < -500 were used because this is the range in which the 

fewest DBS scores fall into. Visual inspection reveals no clear relationship (Figure 2.16). 

For example, BR50.8 which has a high doubling time and the highest DBS calculated 

(hypothetical protein, DBS = 1890.5, table 2.2), also has the second most significantly 

improved protein function predicted (cellulose synthase catalytic subunit, DBS = -

1131.1).  
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Figure 2.16. Comparison of doubling time and extreme DBS values calculated for the relief 

lines. Blue points represent DBS values greater than |500|. The top scatterplot represents 

positive DBS values while the bottom scatterplot depicts negative DBS values. Doubling time 

(middle) is the mean doubling time calculated for that lineage. Standard error is included also. 

 

 

 

 

 

 

0

500

1000

1500

2000 DBS

0

10

20

30

40

50

60

70

BR50.1 BR50.2 BR50.3 BR50.4 BR50.5 BR50.6 BR50.7 BR50.8 BR50.9 BR50.10

Doubling Time (minutes)

-2000

-1500

-1000

-500

0

DBS



54 
 

The occurrence of Parallel mutations in some cases appear deleterious 

We next investigated how reversion and parallel mutations could be impacting fitness. 

In total we identified 881 reversion mutations throughout all BR lines. For example, 

we identified 57 SNPs in BN50 that reverted in at least one relief line while only 8 SNPs 

present in BN50 reverted in all 9 relief lines (Figure 2.17). An overview is provided in 

figure 2.17 and some examples are provided in table 2.4. 

 

Figure 2.17. Number of cases in which a SNP that has occurred in BN50 has reverted to a 
wild-type sequence composition, and how many lineages that reversion was identified in. 

 

In addition to parallel reversions being identified, we also identified mutations that 

were absent in BN50 but present in all nine relief lineages. Some of these had a 

functionally-significant DBS value (>5). For example, in gene putA, a C to T transition 

SNP causing a truncation is found in all 9 BR lines (Figure 2.18). The DBS score for this 

sequence is 1616.2.  Likewise, all lines possess an aldehyde dehydrogenase gene 

containing a G to A transition SNP that is also predicted to code for a truncated protein 
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(Figure 2.19). The DBS score for this mutation is 368.7. Finally, a frame shift in a gene 

of unknown function caused by a T insertion was found in all lines (Figure 2.20). The 

DBS value for this mutation is 790. These results are surprising in that some of the 

most predicted functionally severe mutations are present throughout multiple relief 

lines.  

 

 

 

 

 

 

 

                                                                                                          ↑ 

Figure 2.18. Depiction of SNPs in the putA gene within the genomes of the BR lines. Shown here is 

the putA gene (green bar), CDS (yellow bar) and surrounding sequences. In blue is the WT REL606 

genome that reads were mapped to. Orange dashes represent SNPs and each white horizontal 

segment represents a BR line. The SNPs shown by the black arrow are responsible for premature stop 

codons which have resulted in a truncated protein for each of the nine BR lines sequenced. In the top 

white horizontal segment there is no SNP – this segment represents the genome of BN50 for which 

this mutation is absent.  
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                                                                                  ↑ 

Figure 2.19. Depiction of SNPs in an aldehyde dehydrogenase gene within the genomes of the BR 

lines. Shown here is an aldehyde dehydrogenase gene (green bar), CDS (yellow bar) and surrounding 

sequences. In blue is the WT REL606 genome that reads were mapped to. Orange dashes represent 

SNPs and each white horizontal segment represents a BR line. The SNPs shown by the black arrow are 

responsible for premature stop codons which have resulted in a truncated protein for each of the nine 

BR lines sequenced. In the top white horizontal segment there is no SNP – this segment represents 

the genome of BN50 for which this mutation is absent.  

 

 

                                                                                                                ↑ 

Figure 2.20. Depiction of SNPs in a hypothetical protein-encoding gene within the genomes of the 

BR lines. Shown here is a hypothetical protein-encoding gene (green bar), CDS (yellow bar) and 

surrounding sequences. In blue is the WT REL606 genome that reads were mapped to. Orange dashes 

represent SNPs and each white horizontal segment represents a BR line. The SNPs shown by the black 
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arrow are responsible for premature stop codons which have resulted in frame shifts for each of the 

nine BR lines sequenced. In the top white horizontal segment there is no SNP – this segment 

represents the genome of BN50 for which this mutation is absent.  
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Table 2.4. Examples of parallel reversions of mutations that occurred in BN50 

  

CDS COG Category Mutation in BN50

Lines showing 

Reversion

phage tail protein Function Unkown  T -> C Substitution All

Zn-dependent 

Hydrolase

Amino acid 

transport/metabolism G -> A Substitution All

NADPH-dependent 

oxidoreductase Energy Production  A -> G Substitution All

 protein AegA Function Unkown G -> A Substitution All

transposase

Replication, 

Recombination  T -> C Substitution

BR50.1, BR50.3, 

BR50.4, BR50.7, 

BR50.8, BR50.9, 

polymerase (A) Insertion

BR50.2, BR50.4, 

BR50.5, BR50.7, 

BR50.8, BR50.9, 

transferase Function Unkown  C -> T Substitution

BR50.2, BR50.4, 

BR50.5, BR50.7, 

BR50.8, BR50.9, 

 dTDP-4-

dehydrorhamnose 3,5-

epimerase Cell wall/membrane A -> G Substitution

BR50.2, BR50.4, 

BR50.5, BR50.7, 

BR50.8, BR50.9, 

glucose-1-phosphate 

thymidylyltransferase Cell wall/membrane  T -> C Substitution

BR50.2, BR50.4, 

BR50.5, BR50.7, 

BR50.8, BR50.9, 

dTDP-glucose 4,6-

dehydratase Cell wall/membrane  G -> A Substitution

BR50.2, BR50.4, 

BR50.5, BR50.7, 

BR50.8, BR50.9, 

wcaM Cell wall/membrane C -> A Substitution

BR50.2, BR50.4, 

BR50.5, BR50.7, 

BR50.8, BR50.9, 

colanic acid 

biosynthesis pyruvyl 

transferase Cell wall/membrane G -> A Substitution

BR50.2, BR50.4, 

BR50.5, BR50.7, 

BR50.8, BR50.9, 

transposase

Replication, 

Recombination C Insertion

BR50.2, BR50.6, 

BR50.7, BR50.8, 

BR50.10

transposase

Replication, 

Recombination A -> C Substitution

BR50.1, BR50.4, 

BR50.7, BR50.8, 

BR50.10
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Discussion 

The aim here was to assess the mutational basis that might allow populations 

subjected to Muller’s ratchet to escape from a trajectory towards mutational 

meltdown. While an abundance of studies report that compensatory and reversion 

mutations are important, few studies have assessed how mutations that accumulate 

under an escape regime impact protein function. Through delta-bitscore analyses, our 

lab group has previously shown that protein coding sequences accumulate 

functionally-severe mutations in populations subjected to Muller’s ratchet (Lai, 2017). 

We predicted then that halting the ratchet might be facilitated by mutations that 

improve protein function, and that the functional-severity of mutations that 

accumulate under an escape regime will be minimal. To address these issues, 10 

initially identical populations of E.coli close to extinction as a result of multiple 

population bottlenecks were subjected to a bottleneck relief regime. We performed 

fitness assays, sequenced genomes and examined the functional impact of mutations 

using the DBS method. 

We observed improvements in overall fitness in all 10 bottleneck relief lines which 

echoes previous studies where bottlenecked populations have been further evolved 

under larger population sizes (e.g. Bull et al., 2003; Burch & Chao, 1999; Clarke et al., 

1993). We found that fitness increase is most rapid between days 10 – 20 of the 

bottleneck relief regime, and that beyond day 20 fitness levels off (Figure 2.2). 

However, at day 50, average growth rate was calculated to be above that of day 40 

(Figure 2.2) suggesting further propagation of large population sizes might increase 
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fitness in these lines even more.  This observation of rapid fitness increase is also 

reported in other studies (Burch & Chao, 1999; Estes & Lynch, 2003; Whitlock & Otto, 

1999), however, these studies also report that on average populations completely or 

nearly recapture wild-type fitness which was not the case in our study (Figure 2.9). We 

also found that although on average lineages increase in fitness at some point between 

days 10 – 20, individual differences between in fitness between lines was observed 

throughout the regime, including at day 10. For example, at day 10, lineage BR10.8 

was calculated to have a doubling time of 102 minutes while BR10.3 was calculated to 

have a doubling time of 84 minutes. As such, BR10.3 has become fitter compared to 

its bottlenecked ancestor (BN50) which has a doubling time of 100 minutes. On the 

other hand, BR10.8 shows no increase in fitness relative to BN50 (Figure 2.3). Likewise, 

at day 50, the highest calculated doubling time is 56 minutes observed for BR50.2 

while the lowest doubling time was observed for BR50.5 which is 41 minutes (figure 

2.7). In addition, there is no obvious parallel pattern of fitness increase between lines 

over time, and in some cases fitness in a particular line decreased between two time 

points. For example, BR40.3 shows a lower growth rate relative to BN50 compared to 

BR30.3 - the same line tested 10 days earlier in the bottleneck relief regime (Figure 

2.5, 2.6). Such stochasticity could be attributable to the continual accumulation of 

deleterious mutations in the relief lines, or could be an artefact resulting from 

background noise occurring during growth rate trials - more fitness assays are required 

to determine this. Overall, the rapid average improvement in fitness, and the observed 
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individual differences between lines, is consistent with other studies (Bull et al., 2003; 

Estes & Lynch, 2003). 

To account for adaptation to the laboratory environment, control lines were also 

propagated similarly to the relief lines, the difference being the ancestral background 

from which the two sets of lineages are derived from. As the bottleneck regime was 

performed on solid LB agar, it was important to establish whether adaptation to a 

liquid, shaking environment that relief lineages were evolved under, might explain 

some fitness observations. The overall average growth rate of the BR control lines was 

calculated to be slightly less than their ancestral equivalent (BNC50) (Figure 2.10), and 

slightly greater than wild-type (Figure 2.11). For example the average calculated 

doubling time for the BR controls at day 50 was calculated to be 30.38 minutes. In 

contrast, the average doubling time for BNC50 is 28.37 minutes while wild-type 

populations have an average doubling time of 32.8 minutes. This negligible decrease 

in fitness of the control lines suggests fitness restoration in the BR lines is not driven 

mainly by general laboratory adaptation, and that reversion and compensatory 

mutations could be influencing fitness recovery (Estes & Lynch, 2003).  

We found a statistically significant difference in mutation rate of the BR lines 

compared to the control lines (P-value < 0.05, Wilcoxon rank sum), with BR lines 

showing a higher average mutation rate  of 8.97 x 10-8 compared to an average of 2.22 

x 10-8 for the controls (Table 2.1). In addition, we found the BR lines to have a lower 

average mutation rate compared to the ancestral (BN50) rate while the control lines 
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showed an increase in mutation rate relative to their ancestor (BNC50). This increase 

in mutation rate for the controls is surprising, however, it could reflect the minor 

decrease in fitness observed between the controls and BNC50. The lowered mutation 

rates observed in the relief lines reflects both the efficiency of selection that is 

expected to increase under the relief regime, and the relaxed genetic load that is 

predicted to occur as species adapt to new conditions (Kimura, 1967.,Taddei et al., 

1997).  

Although the average mutation rates have decreased in the BR lines, the average rate 

is still above that of wild-type E.coli (10-10 per nucleotide per generation) (Foster, Lee, 

Popodi, Townes, & Tang, 2015). This is not surprising, however, as all genomes 

including controls were found to carry the mutD5 mutator allele that was introduced 

into the wild-type genome at the very beginning of the experiment - including in 

bottleneck and control lines. Moreover, mutations were identified in DNA mismatch 

repair genes in the genome of BN50, many of which did not appear to revert in any of 

the BR lines.  For example, in the mutS gene, which performs the mismatch recognition 

step during the DNA repair process (Hsieh, 2001), a nonsynonymous mutation with an 

associated DBS score of 3.9 was found in the genome of BN50 and all BR lines. 

Pinpointing the cause of the observed decline in mutation rate observed in the relief 

lines relative is not straightforward. For instance we found parallel mutations in all BR 

lines in repair genes mutY and mutD5 however only mutD5 was identified as being 

important in terms of functional change (DBS = -0.4). Overall, the mutations in mutY 

and mutD5 were predicted to have no effect on protein function. 
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To assess the overall impact of all mutations on protein function, a delta-bitscore 

analysis of protein-coding sequences was undertaken in all 18 sequenced genomes. 

We predicted that as relief populations become fitter, protein function would 

generally improve relative to BN50 which accumulated numerous functionally severe 

mutations throughout the bottleneck regime. In other words - that fitness recovery 

would correlate with improved protein function. Surprisingly, we found that overall 

protein function does not appear to improve in the relief lines, and that functionally-

severe mutations continue to accumulate (Figure 2.12). Initially, this seemed 

somewhat as a paradox – how could protein sequences continue to accumulate 

functionally-severe mutations as lineages become fitter? - However, with further 

investigation into the literature these seemingly unusual observations became more 

transparent. For instance, the high number of positive DBS scores observed in the 

relief lines (Figure 2.12) is congruent with previous work that shows reversion 

mutations are rare when populations are able to recover from the deleterious effects 

of population bottlenecks (Haigh, 1978; Pfaffelhuber et al., 2012; Poon & Chao, 2005). 

If reversion mutations were commonly occurring under this experimental regime then 

we might expect to see more negative DBS values for the protein sequences, however, 

this is not the case (Figure 2.12). As such, we suspect that fitness recovery is occurring 

primarily through compensatory mutations. Some of these compensatory mutations 

could have fitness costs in a wild-type background, and some might be masking the 

deleterious effects of mutations that emerged in the bottleneck regime. This, in turn, 

might explain the apparent lack of protein function improvement observed,  despite 
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overall increases in fitness (Poon & Chao, 2005; Szamecz et al., 2014). Moreover, 

Fisher’s geometric model of adaptation predicts that the number of compensatory 

mutations increases with increasing distance from fitness optimum (Fisher, 1930). As 

relief populations were initially at about 30% wild-type fitness levels, then we should 

expect that compensatory mutations will be a common occurrence under the relief 

regime (Poon & Chao, 2005; Szamecz et al., 2014). Szamecz and colleagues (2014) 

write: “when a population with a gene defect is further away from a fitness peak, 

compensatory evolution may proceed through a wider range of mutations, including 

ones that have deleterious side effects.” Nonetheless, we did observe a large jump in 

fitness between days 10 to 20 suggesting some reversion events with large effects 

might have occurred during this time period. However, several studies have argued 

that even compensatory mutations can explain massive jumps in fitness (Burch & 

Chao, 1999; Estes & Lynch, 2003; Maisnier-Patin & Andersson, 2004). Moreover, some 

argue that the accumulation of deleterious mutations under conditions favouring drift 

and the subsequent emergence of compensatory mutations may trap populations in 

an inferior fitness peak (Poon & Chao, 2005; Szamecz et al., 2014). This could explain 

the fitness plateau we observed between days 20 to 50 and why the relief lines show 

growth rates lower than wild-type and control levels (Figure 2.8, 2.9). However, 

further long-term culturing accompanied with fitness experiments are required to 

determine long-term fitness trajectories of the relief populations. Finally, we argue 

that compensatory mutations explain at least some fitness increases as opposed to 

general laboratory adaptation because, as Estes & Lynch (2003) point out, general 
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laboratory adaptation would be expected would affect all lines equally. This was not 

the case, as figures 2.8 and 2.9 show, there are substantial fitness differences between 

recovering lines.  

A Pearson’s correlation test was performed to examine how well protein divergence 

correlates with overall fitness. We determined protein divergence by calculating the 

sum of absolute DBS for each line. We then compared these values to the fitness of 

each line, determined by measuring doubling time over a 30 minute interval (Table 

2.3). Previously our lab group found no statistically significant relationship between 

the sum of absolute DBS and doubling time in bottlenecked E.coli (Lai, 2017). Our aim 

here was to explore whether this relationship holds for lines that have evolved under 

a bottleneck relief regime. We found a statistically significant relationship when both 

relief lines and controls are included in Pearson’s test (Figure 2.14). However, when 

BR lines are considered only, the sum of absolute DBS and doubling time do not 

correlate significantly (Figure 2.15). For example, we found that while BR50.8 has the 

lowest |DBS| value (96 489) it also has one of the highest mean doubling times (55.47 

minutes) (Table 2.3). The differences in statistical correlation between these two tests 

performed suggests the sum of absolute DBS correlates well between populations with 

large fitness differences (i.e. controls versus relief lines) but not between populations 

with smaller fitness differences (i.e. relief lines versus other relief lines). One limitation 

of the DBS method is that it only considers protein-coding sequences. As mutations 

were found distributed both within and outside coding sequences, DBS measures do 

not reflect the global impact of mutation on fitness. This is problematic because 
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mutations in non-coding regions such as regulatory RNA and promoters can greatly 

impact critical cellular processes such as translation, metabolism, regulation, DNA 

replication, among others (Repoila & Darfeuille, 2009; Winkler & Breaker, 2005). 

Additionally, compensatory mutations can occur in extragenic regions and thus the 

DBS method fails to capture the impact of all compensatory mutations (Poon & Chao, 

2005). Moreover, DBS only looks at individual mutations, not combinations, which 

might be non-additive in their effect. Finally, the DBS method does not account for 

environmental context. Although some theoretical studies have argued that the effect 

of mutation on fitness is independent of environmental background (see Estes & Lynch 

(2003) for explanation), numerous studies argue that mutation effects are dependent 

on the environmental background(Burch & Chao, 1999; Elena & Lenski, 2001). As these 

experiments are conducted in rich media, some genes that might have been essential 

in the evolutionary history of the species, could now be non-essential. Possibly some 

of these mutations are contributing to the high DBS values observed in figure 2.12.  

Another explanation for the continual accumulation of functionally severe mutations 

in the relief lines is that although natural selection is expected to operate efficiently 

under this relief regime, genetic drift is still expected to be an importantly evolutionary 

force. As lines were severely bottlenecked, mutations rates remained significantly 

elevated even under the relief regime (Table 2.1). Some of these mutations are likely 

to be slightly deleterious and drift to fixation. To explore this further, we investigated 

how the accumulation of functionally-severe mutations in the relief lines compares to 

populations that were subjected to a further 50 cycles of bottlenecking without 
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undergoing a relief regime. Data for this was provided by a member of our lab group, 

Alicia Lai. We found that both under the relief regime, or alternative bottlenecking 

regime, mean DBS continues to climb (Lai, 2017). However, the rate at which 

deleterious mutations accumulate is reduced under relief conditions, reinforcing the 

idea that natural selection is limiting the overall impact of mutation on protein 

function, but not eliminating it (Figure 2.13).  

Could it be that specific mutations accumulating in the relief populations are 

responsible for fitness differences between lines, compared to many mutations of 

smaller effect? We found no clear indication of this. For instance, although we found 

the most severally impaired protein is a hypothetical protein that belongs to line 

BR50.8, which has one of the highest recorded doubling times, we discovered that the 

next most impaired protein, PutA, was truncated in all nine lines (Table 2.2, 2.3). 

Meanwhile, two frame shift mutations identified in the genome of BR50.10  have 

significantly high DBS values: A frameshift in a gene encoding an RHS element had an 

associated DBS value of 1302.9 while a mutation in a gene encoding an inverse auto-

transporter adhesion-like protein had an associated DBS value of 1276.3 (Table 2.2). 

Despite these mutations that are predicted to have large effects, BR50.10 has one of 

the lowest recorded doubling times of 48.03 minutes (Table 2.3). Moreover, BR50.2, 

the lineage with the highest average doubling time of 56.88 minutes does not carry a 

mutation with a large predicted effect on protein function (Table 2.2, 2.3). To examine 

this relationship further, all DBS values greater than 500 or lower than -500 were 

plotted against doubling times for each lineage (Figure 2.16). Again, there is no clear 
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evidence that outliers are responsible for fitness differences between lines. For 

example, BR50.8 which has one of the highest doubling times and the most 

significantly impaired protein (hypothetical protein, DBS = 1890.5), also has the second 

most significantly improved protein (cellulose synthase catalytic subunit, DBS = -

1131.1). It is intriguing that BR50.1 has a low relative doubling time and carries a 

functionally-significant reversion mutation (DBS = -1224.2) that probably recaptures 

functional activity of the enzyme α-xylosidase. This enzyme catalyses the transfer of 

an alpha-xylosyl residue from alpha-xyloside to various carbon sources and is 

therefore important in carbohydrate metabolism, and in overall bacterial fitness 

(Répérant, Porcheron, Rouquet, & Gilot, 2011). However, confirmation requires 

further experimental investigation via gene knock-in or knock-out experiments 

coupled with fitness assays. Our lab group previously found that a small number of 

mutations can have a large effect on fitness when populations are subjected to 

Muller’s ratchet. However, Fisher’s geometric model of adaptation predicts that 

because beneficial mutations are rare compared to deleterious mutations, adaptation 

proceeds in a gradual, step-wise fashion (Fisher, 1930) - which is also argued in more 

modern work (e.g. Burch & Chao, 1999; Tenaillon, 2014). As these lines are undergoing 

bottleneck relief, we could then expect that fitness restoration is achieved in many 

steps by mutations of small effect, in accordance to Fisher’s model. As such, it could 

be that compensatory mutations of smaller effect are responsible for fitness 

differences between lines as opposed to outliers (Burch & Chao, 1999, Fisher, 1930). 

These mutations will inevitably be more difficult to detect compared to outliers that 
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‘stand out in the crowd.’ This is only speculation – examining the individual impacts of 

mutation on fitness requires further experimental investigation. 

To summarize these results so far, we found that overall protein function does not 

appear to improve in the relief lines, and that protein coding sequences continue to 

accumulate deleterious mutations. However, this could be due to compensatory 

mutations that are obscuring the deleterious effects of mutations that occurred in the 

bottleneck regime rather than simple reversion mutations. Moreover, some of these 

compensatory mutations may themselves be deleterious in a wild-type background. 

However, as the DBS tool has several limitations, we therefore add that some of these 

unusual results could be attributed to these limitations.  

Finally, we explored whether the mutational basis for fitness recovery might be further 

unearthed by exploring mutations that occur across parallel lineages. We identified 

881 reversions in total, however, we found that most types of reversion mutations 

were present in one line only. For example, we identified 57 SNPs in BN50 that 

reverted in at least one relief line while only 8 SNPs present in BN50 reverted in all 9 

relief lines (Figure 2.17).  To determine whether these parallel reversions might be 

causing the general trend in fitness recovery observed in all lines (Figure 2.2), we 

examined more closely the function of the coding sequences for which reversions 

were present in all 9 relief lines (Table 2.4). We found no clear indication that these 

reversions are responsible for the general fitness increase. For example, example, we 

identified an A to G substitution in an NADPH-dependent oxidoreductase-encoding 
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sequence in the genome of BN50 that reverted in all 9 relief lines. However, although 

this mutation resulted in a nonsynonymous change at the amino-acid level, we found 

the associated DBS value to be – 0.5. Therefore, we are not strongly confident that this 

reversion is likely to cause any functionally significant change that is likely to impact 

overall fitness. Additionally, we identified a mutation in BN50 for a gene encoding a 

Zn-dependent hydrolase. This was predicted to have no effect on protein function 

(DBS = 0). Therefore, a reversion is unlikely to have any impact at the protein level. We 

also identified a reversion in all nine lines for a gene encoding a phage-tail protein. 

However, we found that this also had no significant effect on protein function. 

Moreover, a separate frameshift-causing mutation was identified in this gene also that 

did not revert in any line suggesting the functional activity of this gene is impaired in 

the relief lines regardless. Nevertheless, as previously mentioned, DBS only considers 

protein level changes and ignores DNA-level or RNA-level effects. Additionally, to find 

reversion mutations in all 9 lines is a stunning number of lines to observe the same 

reversion in. To determine more robustly how these reversions impact on fitness, gene 

knock-in/knock-out experiments are required, along with competitive fitness 

experiments.  

In addition to parallel reversions, we also found several examples of parallel SNPs that 

have large impacts on protein function by causing premature stop codons (Figure 2.18, 

2.19, 2.20). As these mutations were found in all relief lines, it could be that these are 

examples of compensatory mutations where inactivation of one gene is compensating 

for the loss of another, an idea also proposed in (Szamecz et al., 2014). Because these 



71 
 

mutations are functionally significant, they also contribute to some of the high DBS 

values observed in figure 2.12. For example, inactivation of the gene putA has an 

associated DBS score of 1616.2 (Table 2.2). We can only speculate on how these 

mutations are contributing to fitness increases, and as compensatory and reversion 

mutations can occur in extragenic regions, more work is required to fully decipher the 

full effects of all mutations that emerged under the relief regime (Poon & Chao, 2005). 

In light of all this, it appears that the mutational basis for escaping the ratchet is 

achieved, at least under the experimental system presented in this study, through 

compensatory mutations that appear to have been avoided in the evolutionary past 

of the affected proteins. This is because the delta-bitscore method calculates the 

impact of mutation based on sequence conservation, and penalises novel sequences 

that go into the profile hidden markov model (Wheeler et al., 2016). It is likely that 

many of these compensatory mutations have rarely emerged and become fixed in the 

evolutionary past of the gamma-proteobacterial lineages that were included in the 

profile hidden markov model.  Throughout this chapter I have argued how overall 

protein function appears to have worsened in the relief lineages, at least according to 

the delta-bitscore predictions. However, I suspect that in reality overall protein 

function is in fact improving via unique molecular pathways that the DBS method is 

assigning as functionally deleterious, due to the fact that DBS bases such predictions 

on how well conserved sequences are. Finally, as there are numerous pathways in the 

mutational landscape for which compensatory mutations may act (Szamecz et al., 

2014), and because there are many ways in which a single mutation may be 
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compensated for (Poon & Chao, 2005), I suspect that intense drift conditions 

previously experienced by these recovering populations has opened up evolutionary 

doorways previously inaccessible due to constraints imposed by selection.  

 

Supplementary Material 

Supplementary Table 2.1. Raw data Statistics for Sequenced Genomes 

Sample 
Total 
Bases 

Read 
Count GC (%) AT (%) Q20 (%) Q30 (%) 

BR50.1 304,372,622 1,223,444 50.93 49.07 91.11 88.55 

BR50.2 395,431,399 1,588,884 50.87 49.13 92.36 90.05 

BR50.3 330,486,634 1,327,964 50.57 49.43 92.83 90.61 

BR50.4 320,775,998 1,289,350 50.76 49.24 93.38 91.28 

BR50.6 338,648,601 1,360,634 50.77 49.23 92.64 90.39 

BR50.7 321,925,479 1,293,866 50.85 49.15 92.54 90.26 

BR50.8 288,750,456 1,161,374 50.76 49.24 90.02 87.31 

BR50.9 336,403,996 1,352,834 50.84 49.17 92.78 90.53 

BR50.10 304,134,182 1,226,966 50.47 49.53 92.20 89.87 

BRC50_1 349,491,908 1,405,018 50.83 49.17 93.0 90.82 

BRC50_3 297,068,994 1,193,028 50.86 49.14 92.91 90.69 

BRC50_4 339,629,369 1,364,400 50.81 49.19 91.82 89.30 

BRC50_5 339,926,700 1,365,186 50.84 49.16 92.56 90.28 

BRC50_6 287,797,477 1,155,226 50.83 49.17 92.21 89.87 

BRC50_7 272,494,503 1,093,668 50.93 49.07 91.26 88.73 

BRC50_8 339,096,891 1,364,328 50.82 49.18 91.56 89.05 

BRC50_9 320,245,951 1,285,262 50.84 49.16 91.22 88.66 

BRC50_10 347,243,861 1,395,676 50.83 49.17 92.73 90.49 

 

Q20 (%) : Ratio of reads that have phred quality score of over 20 

Q30 (%) : Ratio of reads that have phred quality score of over 30 

Phred quality score numerically expresses the accuracy of each nucleotide. Higher Q number 

signifies higher accuracy. 
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Chapter 3  
Phenotypic effects of the Ratchet 
 

 

Introduction 

While there are numerous studies highlighting the fitness effects and mutational 

properties of Muller’s ratchet (e.g. Bull, Badgett, Rokyta, & Molineux, 2003; Clarke et 

al., 1993; Estes & Lynch, 2003; Perfeito, Sousa, Bataillon, & Gordo, 2014; Poon & Otto, 

2000; Poon & Chao, 2005; Rispe & Moran, 2000), there are far fewer studies that 

address phenotypic changes that occur under the ratchet, and even less that screen 

for very broad ranges of phenotypes that could be altered. Often studies focus on 

phenotypes of interest to the authors, in many cases with medical applications 

(Andersson, Hughest, & Smith, 1996; Bergstrom, McElhany, & Real, 1999; Escarmís, 

Perales, & Domingo, 2009; Maisnier-Patin & Andersson, 2004). Such studies have 

provided critical insight into the pathogenesis of important diseases such as foot-and-

mouth disease (Escarmís et al., 2009), AIDS (Yuste, Sánchez-Palomino, Casado, 

Domingo, & López-Galíndez, 1999) and bacterial diseases (Abel, Abel zur Wiesch, 

Davis, Waldor, & Baranowski, 2015). However, few studies have examined the 

vastness of phenotypic space that can be altered under the ratchet. Funchain and 

colleagues (2000) assessed various phenotypes such as auxotrophy, carbon utilization, 

motility, osmolarity and phage resistance that became impaired following multiple 
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cycles of single-colony bottlenecking. However, this study lacks in-depth genomic 

insight into the mutational basis for such impairment, and it lacks a follow-up 

bottleneck relief regime. This is important because compensatory mutations that 

emerge under a bottleneck relief regime can potentially provide an avenue for 

adaptive mutations to emerge that may have deleterious effects in a wild-type 

background (Maisnier-Patin & Andersson, 2004). Moreover, little is known about the 

phenotypic landscape that might emerge under a relief regime. On one hand 

compensatory and back mutations may restore eroded phenotypes, while on the 

other hand selection may prevent the recovery of impaired phenotypes if that 

phenotype does not contribute to overall fitness.   

Additionally, it is not commonplace to find studies that screen for rare gain-of-function 

phenotypes that might help a bottlenecked population survive in a new environment. 

I have already emphasized in chapter 1 how elevated mutation rates and intensified 

drift can facilitate the emergence of phenotypic innovation. Therefore, it should follow 

that such innovation might be conceivable under the ratchet. Moreover, it is argued 

that slightly deleterious mutations may be important in facilitating aspects of 

biological complexity (Lenski, Ofria, Pennock, & Adami, 2003; Lynch, 2007), and such 

mutations are synonymous with Muller’s ratchet.  How might mutation facilitate the 

ability of bacteria to adapt to new environments? In other words, what is the genetic 

basis for adaptation? 
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There is no simple answer to this question, for, the evolution of new traits can emerge 

by single SNPs (Viana et al., 2015), or multiple mutations (Lenski et al., 2003; Zhang & 

al., 2003), by larger rearrangements through recombination (Naas, Blot, Fitch, & Arber, 

1995) or by gene duplication followed by neo-functionalisation (Zhang & al., 2003), for 

example. Also, adaptive mutations can occur in both coding and non-coding regulatory 

regions of a genome (such as in Cis-regulatory elements), the latter of which can 

facilitate substantial adaptation (Elena & Lenski, 2003). To add to this complexity, 

mutations can promote adaptation by impacting genes encoding single enzymatic 

steps or global regulatory genes that control multiple interacting networks, for 

example genes that are involved in central metabolism (Elena & Lenski, 2003). Finally, 

adaptive mutations have trade-offs in their relative fitness across different 

environments, meaning that mutations beneficial in terms of fitness in one 

environment, could be costly in another – a mechanism known as antagonistic 

pleiotropy (Cooper & Lenski, 2000; Elena & Lenski, 2003). 

Understanding the evolutionary steps required to facilitate functional change can be 

disentangled by coupling experimental evolution with genomics (Elena & Lenski, 

2003). For example, one study identified the genetic causes of aerobic citrate 

utilization (Cit+) that appeared in E.coli after about 33 000 generations of long-term 

culturing. By sequencing genomes of Cit+ mutants and comparing reads to Cit- strains, 

the group concluded that tandem duplication events allowed expression of an 

aerobically-expressed promoter that resulted in the expression of a previously non-

functional citrate transporter (Blount, Barrick, Davidson, & Lenski, 2012). In another 
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study, genome sequencing revealed parallel chromosomal rearrangements in long-

term independently evolving E.coli populations that resulted in deletions of the ribose-

utilization operon, suggesting adaptation to glucose-limited media (Raeside et al., 

2014). Similar studies on E.coli that explore the mutational-basis for adaptation to 

media-limiting environments have also identified gain-of-function mutations; For 

example, mutations that increase the permeability of the LamB porin in glucose 

limited environments (Notley-McRobb & Ferenci, 1999a, 1999b), and mutations in 

ompF that increases the permeability of the OmpF porin in lactose-limiting media 

(Zhang & Ferenci, 1999).  

The goal here is to screen a very broad range of phenotypes at various time points of 

the bottleneck and bottleneck relief regime to test for both gain-of-function and loss-

of-function phenotypes that might emerge under the ratchet. Moreover, by coupling 

these experiments with genomics analyses, our aim was to assess the mutational basis 

for such changes. How mutational changes that accumulate under the ratchet impact 

on phenotype remains poorly understood. To achieve this, we extracted frozen-down 

cultures representing various time-points of the bottleneck and bottleneck relief 

regime. We then screened cells for active (or inactive) respiration in various metabolic 

environments using Biolog plates (Bochner, 2009). Biolog plates contain 96 wells with 

each well comprising a unique metabolic environment that cells may or may not 

respire in. Active respiration is coupled to the reduction of a colourless dye to purple; 

cells that can utilize a particular metabolic substrate are distinguished from inactive 

cells by purple colour formation. Biolog-based experiments have provided massive 
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insight in diverse contexts such as in studies on antibiotic resistance (Guard-Bouldin, 

Morales, Frye, Gast, & Musgrove, 2007), pathogenicity (Blin, Passet, Touchon, Rocha, 

& Brisse, 2017), microbial ecology (Keymer, Miller, Schoolnik, & Boehm, 2007), 

genotype-phenotype relationships (Ceapa et al., 2015), and, most relevant to this 

study, Biolog plates have also been implemented to screen for phenotypic changes 

that occur under MA regimes, though not following bottleneck relief (Funchain et al., 

2000; Leiby & Marx, 2014). To this end, we report here the results of a screen of 379 

metabolic environments covering carbon, nitrogen, phosphorous and sulphur at 

various time points of the bottleneck and bottleneck relief regime. To assess the 

mutational basis for our observations, we relate phenotypic changes back to 

mutational changes. 
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Methods 

96-well Biolog plates PM1 (carbon sources), PM2A (carbon sources), PM3B (Nitrogen 

sources) and PM4A (Phosphorous and Sulphur Sources) were tested for populations 

that represent different time points in both the bottleneck and bottleneck relief 

experiments. These lineages include Day 0 (wild-type, WT), Day 10 (BN10), Day 20 

(BN20), and Day 50 (BN50) of the bottleneck period as well as the control lineage that 

represents Day 50 (BNC50). For the bottleneck relief lineages, BR50.1 and the control 

lineage BRC50.1 were tested. These represent lines from day 50 of the relief regime.  

Experimental procedures were adapted from the protocol for E.coli developed by 

Biolog Inc:  

Glycerol stocks from each time point tested were streaked out for single colonies on 

LB agar and then sub-cultured a second time onto a fresh source of LB agar. Plates 

were checked visually for contamination. Additionally, genomic data was also used to 

assess for evidence of contaminants. Cells were incubated at 37°C for 1-3 days 

depending on growth. For example, wild-type and control lines grow more rapidly than 

bottleneck and relief lines. 

 For plates PM1 and PM2A the following procedures were used:  

5-10 Colonies were removed from a plate using a sterile inoculation loop and re-

suspended in 10mls of Biolog inoculating fluid IF-0a (1.2x) to reach a cell density of 

85% transmittance. 4mls of cells were added to a solution containing 16mls of IF-0a 

and 0.24mls of Biolog Redox Dye Mix A (100x). 3.76mls of water was added to give a 
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final volume of 24mls. 100ul of final mixture was dispensed into each well for plate 

PM1 and PM2A.  

For plates PM3B and PM4A, the following procedures were used: 

5-10 Colonies were removed from a plate using a sterile inoculation loop and re-

suspended in 10mls of Biolog inoculating fluid IF-0a (1.2x) to reach a cell density of 

85% transmittance. 4mls of cells were added to a solution containing 16mls of IF-0a, 

0.24mls of Biolog Redox dye Mix A and 0.24mls of sodium succinate/ferric citrate 

(100x) – these are carbon sources required for plates PM3B and PM4A. 3.52mls of 

water was added to give a final volume of 24mls. 100ul of final mixture was dispensed 

into each well for plates PM3B and PM4A.  

Plates were incubated at 37°C and the optical density (OD595) was measured with a 

FLUOstar Omega Microplate Reader (BMG Labtech) every 12 hours for 48-60hrs 

depending on the plate and strain being analysed. Where possible, technical replicates 

were performed. However, due to time constraints some time points were tested once 

only. Biolog plates were also visually inspected and photographed. Photos were taken 

several days following the experiments and as such, are not a complete reflection of 

results. PM3B and PM4A in particular show unusual patterns following incubation, 

including wells that form individual purple specs and in some cases, the negative 

control wells turn slightly purple. Therefore, only plate reader data for PM3B and 

PM4A is provided here. PM1 and PM2A, on the other hand, appear more reliable to 

examine visually, and therefore both visual and kinetic data is provided for 
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experiments conducted on these plates. When interpreting results, readers are 

encouraged to refer to the appendix for the names of the particular phenotypes being 

tested. Alternatively readers may download their own copies via www.biolog.com. 
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Results 

Biolog data reveals Widespread Metabolic Erosion in Bottlenecked and Bottleneck 

Relief Populations  

379 metabolic environments were screened using Biolog plates PM1, PM2A, PM3B 

and PM4A. Populations corresponding to 7 different time points in the bottleneck and 

bottleneck relief regimes were tested. These include wild-type, BN10, BN20, BN50, 

BNC50, BR50.1 and BRC50.1. To assess metabolic activity, optical density (OD595) was 

measured every 12 hours for 60 hours total using a FLUOstar Omega Microplate 

Reader (BMG Labtech). Absorbance values for well A1 (negative control) are 

subtracted from aborbance values for each other well in a plate to cancel out the 

impact of background noise. Note that for plate PM4A, well F1 is also a negative 

control. 

Biolog data reveals that for each of the four plate types: PM1, PM2A, PM3B and PM4A, 

all phenotypic capacity that wild-type populations can undergo is rapidly lost 

throughout the course of the bottleneck regime. Moreover, the majority of wild-type 

phenotypes are lost by 20 cycles of bottlenecking which means that a 100% loss in 

phenotypic capacity for all the Biolog reactions tested probably occurs much earlier 

than bottleneck day 50. In addition, no phenotype that is eroded is recaptured in the 

bottleneck relief regime and no gain-of-function phenotype was identified.  

For PM1, we counted about 65 carbon sources that could be utilized by wild-type cells 

and for PM2A we counted about 20 different carbon sources. As such, the 
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bottlenecking regime resulted in a loss of about 85 different carbon-based metabolic 

reactions that we measured (Figure 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8). For PM3B, 

about 35 positive reactions were counted for wild-type cells. Therefore, at least 35 

different nitrogen-based sources could no longer be metabolized following the 

bottleneck regime (Figure 3.9). For PM4A, wild-type cells were demonstrated to utilize 

about 30 different phosphorous and sulphur sources, the capacity of which became 

impaired by about day 20 of the bottleneck regime (Figure 3.10). These counts are 

conservative, because for some environments, respiration is slow and therefore 

purple colour formation can form beyond the recommended incubation time (48hrs). 

In some cases we observed purple colour change emerging beyond this time point. As 

results become less reliable past this time, we have avoided (where possible) assigning 

a reaction as positive if there is uncertainty.  Counts are based on visual inspection 

immediately following incubation, photographic evidence and by assessing kinetic 

changes over time via optical density-based measurements. 
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Figure 3.1. Biolog phenotypic array (PM1) for wild-type. Each well contains a different carbon 

source (see appendix). The ability to utilize a carbon source is determined by purple colour formation. 

A1 is a negative control containing no source of carbon.  

 

 

Figure 3.2. Biolog phenotypic array (PM1) for BN50. Each well contains a different carbon source 

(see appendix). The ability to utilize a carbon source is determined by purple colour formation. A1 is a 

negative control containing no source of carbon. 
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Figure 3.3. Biolog phenotypic array (PM1) for BR50.1. Each well contains a different carbon 

source (see appendix). The ability to utilize a carbon source is determined by purple colour formation. 

A1 is a negative control containing no source of carbon. 

 

 

Figure 3.4. Biolog phenotypic array (PM2A) for WT. Each well contains a different carbon source 

(see appendix). The ability to utilize a carbon source is determined by purple colour formation. A1 is a 

negative control containing no source of carbon. 
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Figure 3.5. Biolog phenotypic array (PM2A) for BN50. Each well contains a different carbon 

source (see appendix). The ability to utilize a carbon source is determined by purple colour formation. 

A1 is a negative control containing no source of carbon. 

 

 

Figure 3.6. Biolog phenotypic array (PM2A) for BR50.1. Each well contains a different carbon source 

(see appendix). The ability to utilize a carbon source is determined by purple colour formation. A1 is 

a negative control containing no source of carbon. 
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Figure 3.7. Kinetic data for WT, BN50 and BR50.1 tested on PM1. Change in purple colour formation was assessed by taking OD595 measurements every 12 hours. BN50 and BR50.1 were measured up to 60 hours. WT was measured 

to 48 hours. Two replicates for WT were performed. Each well is corrected by subtracting absorbance values from the negative control. 
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Figure 3.8. Kinetic data for WT, BN50 and BR50.1 tested on PM2A. Change in purple colour formation was assessed by taking OD595 measurements every 12 hours. BN50 and BR50.1 were measured up to 60 hours. WT was measured 

to 48 hours. Two replicates for WT were performed. Each well is corrected by subtracting absorbance values from the negative control. 
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Figure 3.9. Kinetic data for WT, BN50 and BR50.1 tested on PM3B. Change in purple colour formation was assessed by taking OD595 measurements every 12 hours. BN50 and BR50.1 were measured up to 60 hours. Two replicates for 

WT were performed; 1 replicate was measured to 48 hours and the other to 60 hours. Each well is corrected by subtracting absorbance values from the negative control. 
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Figure 3.10. Kinetic data for WT, BN50 and BR50.1 tested on PM4A. Change in purple colour formation was assessed by taking OD595 measurements every 12 hours. BN50 and BR50.1 were measured up to 60 hours. Two replicates 

for WT were performed; 1 replicate was measured to 48 hours and the other to 60 hours. Each well is corrected by subtracting absorbance values from the negative control. 



90 
 

Biolog Data reveals differences in respiration kinetics between bottleneck and 

bottleneck relief control lines (BNC50 and BRC50.1) 

To gauge whether long-term culturing itself can cause significant changes between 

lineages, we also tested bottleneck controls and bottleneck relief controls on Biolog 

plates. As a starting point, the number of wells per plate calculated to have an 

endpoint OD595 absorbance value greater than 0.1 was calculated. This value is often 

used as a threshold to indicate active metabolic activity. For PM1, we found that 

results were similar between wild-type, the bottleneck control (BNC50) and the 

bottleneck relief control (BRC50.1) (Figure 3.11), while for PM2A, BNC50 appears to 

show reduced activity (Figure 3.12). Differences are minor between control lines 

tested on plate PM3B (Figure 3.13) while for PM4A, BNC50 and BRC50.1 appear to 

show significantly reduced activity compared to wild-type (Figure 3.14). Further 

inspection of kinetic data reveals large differences in levels of respiration between 

control and wild-type lineages. For example, we observed a decrease in activity in 

BNC50 for utilization of carbon sources N-acetyl-D-glucosamine, L-proline, D-

mannose, D-galactonic acid-γ-Lactone, L-rhamnose, D-fructose, maltose, Thymidine, 

uridine, maltotriose, glycyl-L-proline, p-Hydroxy phenyl acetic acid, L-galactonic acid-

γ-lactone and D-galacturonic Acid (Supplementary figure 3.1). For BRC50.1, we 

observed some decreases in activity for utilization of succinic acid, maltose, uridine, L-

threonine, L-galactonic acid-γ-lactone and D-galacturonic acid (Supplementary figure 

3.1).  
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Figure 3.11. PM1: Number of wells with an endpoint absorbance (OD595) value greater than 

0.1. Endpoint data was calculated at 48hrs for WT, BNC50 and BRC50.1. For all other lines, endpoint 

data was calculated at 60hrs to account for slow growth. Data was corrected with the negative 

control. Where replicates were performed, mean optical density values for each well-type 

were calculated.  

 

Figure 3.12. PM2A: Number of wells with an endpoint absorbance (OD595) value greater 

than 0.1. Endpoint data was calculated at 48hrs for WT, BNC50 and BRC50.1. For all other lines, 

endpoint data was calculated at 60hrs to account for slow growth. Data was corrected with the 

negative control. Where replicates were performed, mean optical density values for each 

well-type were calculated. 
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Figure 3.13. PM3B: Number of wells with an endpoint absorbance (OD595) value greater 

than 0.1. Endpoint data was calculated at 60 hours for all lines. Data was corrected with the 

negative control. Where replicates were performed, mean optical density values for each 

well-type were calculated. Note that BNC50 appears to have acquired a gain-of-function 

phenotype. However, absorbance > 0.1 is used only as an arbitrary threshold to indicate 

active respiration. In some cases inactive wells may produce values that exceed this 

threshold.  

 

Figure 3.14. PM4A: Number of wells with an endpoint absorbance (OD595) value greater 

than 0.1. Endpoint data was calculated at 60 hours for all lines. Data was corrected with the 

negative control. Where replicates were performed, mean optical density values for each 

well-type were calculated. 
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Widespread metabolic erosion occurred between Bottleneck days 10-20 

As evident above (Figure 3.11, 3.12, 3.13, 3.14), the most prominent metabolic 

changes occur between days 10 – 20 of the bottleneck regime. Closer examination of 

purple colour formation for each Biolog plate and kinetic data supports this. For 

example, inspection of PM1 plates revealed about 57 phenotypes that were eroded 

between days 10-20 (Figure 3.15, 3.16, Table 3.1). PM2A, PM3B and PM4A also show 

a significant number of loss-of-function phenotypes (Table 3.1, Supplementary figure 

3.5, 3.6, 3.7). 

Table 3.1. Loss of function phenotypes observed between days 10-20 of the bottleneck 
regime 

Well PM1 - Loss of Function Phenotypes Well PM2A - Loss of Function Phenotypes 

A4 D-Saccharic acid A6 Dextrin       

A5 Succinate Acid B1 N-Acetyl-D-Galactosamine   

A6 D-Galactose B3 β-D-Allose     

A7 L-Aspartic Acid B5 D-Arabinose     

A8 L-Proline B12 3-0-β-D-Galacto-pyranosyl-D-Arabinose 

A9 D-Alanine C9 β-Methyl-D-Glucoronic Acid   

A10 D-Trehalose D6 D-Tagatose     

A11 D-Mannose E12 5-Keto-D-Gluconic Acid   

B1 D-Serine F3 Melibionic Acid     

B2 D-Sorbitol G2 L-Alaninamide     

B3 Glycerol G3 N-Acetyl-L-Glutamic Acid   

B5 D-Glucuronic acid Well PM3B - Loss of Function Phenotypes 

B9 L-Lactic Acid A7 L-Alanine       

C1 D-Glucose-6-Phosphate B1 L-Glutamine     

C2 D-Galactonic Acid-y-Lactone B9 L-Proline       

C3 D,L-Malic Acid B10 L-Serine       

C4 D-Ribose C3 D-Alanine     

C6 L-Rhamnose C8 D-Serine       

C7 D-Fructose D1 N-Acetyl-L-Glutamic acid   

C8 Acetic Acid E8 D-Glucosamine     

C9 α -D-glucose E9 D-Galactosamine     

C10 Maltose E11 N-Acetyl-D-Glucosamine   

C11 D-Melibiose E12 N-Acetyl-D-Galactosamine   

C12 Thymidine F1 N-Acetyl-D-Mannosamine   

D1 L-Asparagine F4 Cytidine       



94 
 

D6 α-Keto-Glutaric acid F7 Guanosine     

D8 α-Methyl-D-Galactosidase H1 Ala-Asp       

D9 α-D-Lactose H4 Ala-Gly       

D10 Lactulose H5 Ala-His       

D12 Uridine H6 Ala-Leu       

E4 D-Fructose-6-Phosphate H7 Ala-Thr       

E8 β-Methyl-D-Glucoside H8 Gly-Asn       

E10 Maltotriose H10 Gly-Glu       

E11 2-Deoxy Adenosine H12 Met-Ala       

E12 Adenosine Well PM4A - Loss of Function Phenotypes 

F1 Glycyl-L-Aspartic Acid A2 Phosphate     

F5 Fumaric Acid A3 Pyrophosphate     

F7 Propionic Acid A4 Trimeta-phosphate     

F8 Muicic Acid A5 Tripoly-phosphate     

F9 Glycolic Acid B5 Carbamyl Phosphate   

F12 Glyoxylic acid B9 Guanosine-3'-monophosphate 

G1 Glycyl-L-Glutamic acid           

G3 L-Serine           

G4 L-Threonine           

G5 L-Alanine           

G6 L-Alanyl-Glycine           

G8 N-Acetyl- β-D-Mannosamine           

G9 Mono Methyl Succinate           

G10 Methyl Pyruvate           

G11 D-Malic Acid           

G12 L-Malic Acid           

H2 p-Hydroxy Phenyl Acetic Acid           

H6 L-Lyxose           

H7 Glucuronamide           

H8 Pyruvic acid           

H9 L-Galacturonic  Acid-y-Lactone           

H10 D-Galacturonic Acid           

 

For PM1, carbon sources D-mannitol (well B11) and L-glutamic acid (well B12) are 

some of the few remaining carbon sources clearly able to be utilized by BN20 (Figure 

3.15, 3.16). Others might include N-acetyl-D-glucosamine, D-gluconic acid, D,L-α-

glycerol-phosphate, L-glutamine, D-glucose-1-phosphate and glycyl-L-proline however 

utilization of these compounds is very weak (Figure 3.15, 3.16) and confirmation 

requires further testing.   
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Figure 3.15. Comparison between BN10 (top) and BN20 (bottom) tested on BIOLOG plate 

PM1. Each well contains a different carbon source. The ability to utilize a carbon source is determined 

by purple colour formation. A1 is a negative control containing no source of carbon. Note that B11 

and B12 represent D-mannitol and L-glutamic Acid – based Biolog wells. 
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Figure 3.16. Kinetic data for WT, BN10, BN20 and BNC50 tested on plate PM1. Purple colour formation is assessed by taking OD595 measurements every 12 hours. Measurements were taken up to 60 hours for slow-growers BN10 and 

BN20 and 48 hours for WT and BNC50. Each well is corrected by subtracting absorbance values from the negative control. Data is from duplicate trials for WT and BNC50. BN10 and BN20 were tested once only
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To examine whether mutations correlate with loss of metabolic function, the genomes 

of BN10 and BN20 were analysed to disentangle the mutational basis for widespread 

metabolic erosion that occurred between these two time points in the bottleneck 

regime. Genes encoding key enzymes that are involved in metabolic pathways 

associated with the utilization of carbon sources found in PM1 were examined. In 

some cases, sequences encoding enzymes remained mutation-free or if a mutation 

was present, the mutational impact was minimal. For example, we found that while 

an inability to utilize carbon sources such as D-Galactose, D-Alanine and D-Mannose 

was apparent for BN20 (Table 3.1), sequences encoding enzymes directly involved in 

utilizing these carbon sources remain intact (Table 3.2). Even in sequences where a 

mutation has occurred, delta-bitscore values associated with these mutations are 

normally less than 5 suggesting minimal impairment on protein function. For example, 

PutA and PutP genes carry mutations due to substitutions that have associated DBS 

values of 2 and 1.6, respectively (Table 3.2). Nevertheless, further testing is required 

to determine exactly the impact of these mutations for the metabolic reactions tested 

(see chapter 2 for limitations of the DBS method). What these results are indicating 

however is that metabolic losses are not necessarily attributable to mutations in 

protein-coding regions directly involved in the degradation of specific Biolog sources 

(Table 3.2). Therefore, mutations in promoters or regulatory regions could be 

involved. Testing such cases are beyond the scope of this project however. 
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Table 3.2. Mutational changes to key enzymes involved in various metabolic processes 
that were impaired between days 10 and 20 of the bottleneck regime 

 

The genome of BN20 was analysed to determine if widespread loss of metabolic function that 

occurred between days 10 and 20 of the bottleneck regime was due to mutations in key enzymes 

involved in those impaired phenotypes. Here are some examples of carbon sources that were not 

usable by BN20. Shown are mutations (or lack of) that occurred in sequences encoding key enzymes, 

amino-acid changes resulting from mutations, the effect on the associated protein and overall DBS 

value for that sequence. Enzymes here represent essential components for the utilization of the 

various Biolog sources tested. 

 

Large-effect mutations might explain widespread metabolic erosion observed in 

BN20 

Based on our initial observations presented above, we decided to investigate whether 

mutations predicted to have significant functional implications may be the cause of 

widespread metabolic erosion observed between bottleneck days 10 - 20. These 

include sequences that carry DBS values greater than 5, which is often indicative that 

Biolog well Energy Source Key enzymes Mutations Amino-acid change Protein effect DBS

A6 D-Galactose GalM, GalK, GalU, GalT, GalE none

A8 L-Proline PutA, PutP T -> A  Substitution(PutA) D -> V Substitution 2

A -> G Substitution (PutP) K -> E Substitution 1.6

A9 D-Alanine DdlA,DdlB none

A11 D-Mannose ManA,ManX,ManY,ManZ none

B1 D-Serine DsdC, DsdX, DsdA A -> G Substitution (dsdA) none none 0

T -> C Substitution (dsdX) S -> P Substitution 0.5

B2 D-Sorbitol SrlA,SrlE,SrlB,SrlD T -> C Substitution (srlB) V -> A Substitution 3.2

B3 Glycerol GlpA, GlpB, GlpC, GlpK A -> G Substitution (glpB) S -> G Substitution 3.1

 G -> A Substitution (glpB) R -> H Substitution 3.1

C4 D-Ribose RbsD, RbsK none

C6 L-Rhamnose YiiL,RhaD, RhaA, RhaB, RhaS, RhaR, RhaT T -> C Substitution (yiiL)  T -> A Substitution 0

T -> C Substitution (rhaB) D -> G Substitution 2.7

A -> T Substitution (rhaR) S -> C Substitution 1.6

C7 D-Fructose FruA, FruK, FruB C -> T Substitution (fruB) A -> T Substitution 3.1

C10 Maltose MalG,MalF,MalE,MalK,LamB,MalM none

D1 L-Asparagine AnsB T -> C substitution (ansB) none none 0

D9 α-D-Lactose LacA,LacY,LacZ,LacI none

D10 Lactulose LacA,LacY,LacZ,LacI none

G3 L-Serine SdaA, SdaB, SdaC,TdcC,TdcG none

G4 L-Threonine TdcR, TdcA, TdcB, TdcC, TdcD,TdcE, TdcG none

G5 L-Alanine DadX, DadA none
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a particular SNP is having a functionally significant impact on protein function 

(Wheeler et al., 2015).      

Some of the most impacted protein encoding sequences are associated with energy 

production and carbohydrate transport/metabolism (Table 3.3). Alpha-xylosidase and 

oxidoreductase, for example, have associated DBS scores of 1224.2 and 1136 (Table 

3.3). Several cell membrane associated sequences were also hit by functionally-severe 

mutations in BN20, such as those encoding a cellulose synthase regulator protein, 

membrane protein and alanine racemase (Table 3.3). There appears to be no COG 

category for which protein sequences were hit substantially more than others, and 

several sequences encoding proteins of unknown function show high DBS scores, 

indicating the cause for widespread metabolic degradation occurring between days 10 

– 20 of the bottleneck regime is not clear-cut.  These observations imply that 

pinpointing such causes is beyond the scope of this project however in the discussion 

and also in chapter 4 I discuss possible ways one might approach this.
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Table 3.3. The most severely impacted protein-encoding sequences identified in the genome of BN20 

 

Shown here are the most functionally-deleterious mutations in the genome of BN20. The specific mutation responsible for 

severally impacted protein-encoding sequences are displayed, their effect, associated DBS score and COG category that the 

protein encoding sequences belong to.  

 

Product Mutation Protein effect DBS Cog Category
alpha-xylosidase (C)5 -> (C)6 Insertion (tandem repeat)  Frame Shift 1224.2 G

oxidoreductase subunit   (G)3 -> (G)2 Deletion (tandem repeat) Frame Shift 1136 C

 cellulose synthase regulator protein (T)7 -> (T)8 Insertion (tandem repeat) Frame shift 944.5 M

D-allose import ATP-binding protein  (T)7 -> (T)8 Insertion (tandem repeat) Frame shift 874.4 P

acyltransferase/acyl-ACP synthetase G -> A  Substitution Truncation 799.5 I

membrane protein G -> T Substitution Truncation 633 M

 type II citrate synthase  (T)4 -> (T)5 Insertion (tandem repeat) Frame Shift 596.7 C

phosphoethanolamine transferase (T)7 -> (T)8 Insertion (tandem repeat) Frame shift 594.4 S

hypothetical protein (A) insertion Frame shift 401.4 S

xanthine permease  T -> A substitution Truncation 356.7 F

DNA-binding transcriptional regulator C -> T Substitution Truncation 342.3 K

protease modulator  (A)3 -> (A)2 Insertion (tandem repeat) Frame Shift 338 0

ethanolamine utilization cobalamin adenosyltransferase  (T)6 -> (T)7 Insertion (tandem repeat) Frame shift 326.3 E

alanine racemase C -> T Substitution Truncation 317.1 M

NADPH quinone reductase C -> T Substitution Truncation 304 S

putative crotonobetaine/carnitine-CoA ligase (A) insertion Frame shift 195.7 I and Q

arginine ABC transporter substrate-binding protein (T)6 -> (T)5 Deletion (tandem repeat) Frame shift 179.6 E

rRNA (cytosine-C(5)-)-methyltransferase C -> T Substitution (truncation) Truncation 165.7 J

(A)3 -> (A)2 Deletion (tandem repeat) Frame shift 165.7 J

ultifunctional fatty acid oxidation complex subunit alpha  (T)6 -> (T)7 Insertion (tandem repeat) Frame shift 140.6 I

putative oxidoreductase (A)8 -> (A)7 Deletion (tandem repeat) Frame shift 118.9 S

LysR family transcriptional regulator (G)5 -> (G)6 Insertion (tandem repeat) Frame Shift 92.8 K

hypothetical protein  (C)6 -> (C)7 Insertion (tandem repeat) Frame shift 68.3 M

RNA-directed DNA polymerase (A)8 -> (A)9 Insertion (tandem repeat) Frame Shift 59.4 L

zince protease  G -> A Substitution Truncation 53.8 O

 sensory histidine kinase G -> A Substitution Substitution 37 T

fimbrial usher protein  G -> A Substitution Truncation 20.9 M

sulfite reductase subunit alpha A -> G Substitution Substitution 9.2 I

 G -> A Substitution Substitution 9.2 I

maltodextrin phosphorylase A -> T Substitution Substitution 7.2 G

hypothetical protein G -> A Substitution Substitution 7 S

hydrogenase 2 large subunit  G -> A Substitution Substitution 6.8 C

 C -> T Substitution Substitution 6.8 C

 reactive intermediate detoxifying aminoacrylate hydrolase  A -> T Substitution Substitution 6.4 F

TPM domain protein phosphatase G -> A Substitution Substitution 6.4 S

hybrid sensory histidine kinase in two-componentregulatory system A -> C Substitution Substitution 6.3 T

 lysine decarboxylase C -> T Substitution Substitution 5.8 E

glucan biosynthesis protein G  T -> C Substitution Substitution 5.6 P

 glutamate synthase G -> A Substitution Substitution 5.4 E

DNA-binding transcriptional dual regulator, repressor of N-acetylglucosamine T -> A Substitution Substitution 5.3 K
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Key enzymes involved in various metabolic pathways accumulate functionally severe 

mutations throughout the bottleneck regime and these persist in the relief Lines.  

Further inspection of SNPs that have accumulated up to bottleneck day 50, and 

whether these show any signs of reverting at bottleneck relief day 50, indicates the 

capacity for the evolving populations to utilize many of the Biolog sources tested might 

be impaired irreversibly (Figure 3.17, Figure 2.12 chapter 2). Figure 3.17 depicts an 

abundance of mutations in protein-coding genes associated with various metabolic 

processes identified in the genome of BN50. Additionally, comparing this figure to 2.12 

in chapter 2 suggests very few of these mutations are reverting. Moreover, we 

discussed in chapter 2 how the relief lines continue to accumulate mutations including 

in sequences associated with metabolism, some of which are even predicted to be 

functionally severe.  

To illustrate some examples, table 3.4 depicts some enzymes involved in metabolic 

pathways that have been impacted by mutation, some of which have significantly high 

associated DBS scores (e.g. GalU). Additionally, inspection of these sequences in the 

relief genomes reveals mutations in most cases do not revert, and in some cases more 

mutations have accumulated in the same genes in the relief lines (Figure 2.12, chapter 

2). For example, parallel truncations in the putA gene (responsible for proline 

utilization) identified in all relief genomes suggests recapturing the capacity to utilize 

L-proline that wild-type populations can perform is unlikely (Figure 3.18).  
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                            C              E             F            G           H             I             P             Q 

Figure 3.17. Scatterplot showing DBS values calculated for BNC50 (top) and BN50 (bottom) 

relative to WT. This depicts the abundance of functionally severe mutations that were 

predicted to occur over the 50-day bottleneck regime in protein sequences associated with 

metabolism. The bottom figure shows DBS values calculated based on analysis of protein 

encoding sequences in the genome of BN50 while the top figure shows DBS values 

calculated for the genome of BNC50 which represents the day 50 non-bottleneck control 

line. The letters represent COG categories that associated protein sequences belong to. C = 

energy production, E = amino acid transport metabolism, F = Nucleotide transport/metabolism, G = 

carbohydrate transport/metabolism, H = coenzyme transport/metabolism, I = Lipid 

transport/metabolism, P = Inorganic ion transport/metabolism, Q = secondary metabolites.  
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Table 3.4. Examples of mutations that have accumulated throughout the course of the bottleneck 
regime in enzymes critical in metabolic pathways. 

 

Shown are some examples of mutations identified in the genome of BN50 as well as the effects of 

these mutations on protein function and whether they are present in the BR lines.  

 

 

 

Energy Source Key enzymes Mutations Amino-acid change Protein effect DBS Present in BR lines?

D-Galactose GalM  C -> T Substitution G -> S Substitution 2.1 All

GalK none

GalU C -> T Substitution Truncation 266.5 All

GalT C -> T Substitution none none 0 All

GalT  T -> A Substitution none none 0 All

GalE none

L-Proline PutA C -> T Substitution G -> S Substitution 7.4 All

PutA G -> A Substitution S -> L Substitution 7.4 All

PutA  C -> T Substitution none none 7.4 All

PutA G -> A Substitution  P -> L Substitution 7.4 All

PutA  A -> G Substitution I -> T Substitution 7.4 All

PutA T -> A Substitution  D -> V Substitution 7.4 All

PutP C -> T Substitution none none 3.4 All

PutP G -> A Substitution A -> T Substitution 3.4 All

PutP A -> G Substitution  K -> E Substitution 3.4 All

PutP G -> A Substitution none none 3.4 All

α-D-Lactose LacA none

LacZ C -> T Substitution none none 0 All

LacZ  G -> A Substitution none none 0 All

LacI C -> T Substitution G -> E Substitution 0.5 All

Maltose MalG none

MalF  G -> A Substitution A -> V Substitution 4.8 All

MalF  C -> T Substitution A -> T Substitution 4.8 All

MalE  C -> T Substitution Truncation 517 All

MalE  C -> T Substitution A -> T Substitution 517 All

LamB C -> T Substitution none none 0 All

MalK G -> A Substitution E -> K Substitution 0.1 All

MalM none
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                                                                                                         ↑ 

Figure 3.18. Depiction of SNPs in the putA gene identified in the genome of BN50 and also in the relief lines. 

Shown here is the putA gene (green bar), CDS (yellow bar) and surrounding sequences. In blue is the WT REL606 

genome for which reads were mapped to. Orange dashes represent SNPs and each white horizontal segment 

represents a BR line. BN50 is the top white horizontal line. The SNPs shown by the black arrow are responsible 

for premature stop codons which have resulted in a truncated protein for each of the nine BR lines sequenced. 

In the top white horizontal segment this SNP is absent – this segment represents the genome of BN50 for which 

this mutation is absent. PutA is a proline dehydrogenase that acts as a bifunctional enzyme catalyzing reactions 

in the proline degradation pathway. 

 

Figure 3.19. Depiction of SNPs in the mal genes identified in the genome of BN50 and also in the relief lines. 

Shown here is the maltose regulon (green bars), CDS regions (yellow bars) and surrounding sequences. In blue 

is the WT REL606 genome for which reads were mapped to. Orange dashes represent SNPs. Each white 

horizontal segment represents a BR line. BN50 is the top white horizontal line.  
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Discussion 

The aim for this part of the project was to assess the phenotypic effects of Muller’s 

ratchet on populations of E.coli REL606 + pGEM::mutD5. Few studies to date have 

examined how populations subjected to the ratchet respond to specific metabolic 

environments, and even fewer have tested what happens when populations are 

allowed to recover under a relief-type regime. Moreover, few studies have tracked the 

genomic changes that occur over such regimes, and related these changes to 

phenotypic changes. The aim here was to achieve exactly that. Specifically, we tested 

bottlenecked MA lines and relieved lines on Biolog plates containing hundreds of 

different carbon, nitrogen, sulphur and phosphorous sources.  

Consistent with a previous study (Funchain et al., 2000), we found that repeated 

bottlenecking rapidly eroded the metabolic capacity of the bottlenecked populations, 

and this capacity did not appear to change under a relief regime. Based on the Biolog 

colour change assay, which measures substrate-dependent respiration, and rates-

based measurements collected through time, we counted a total loss of 150 

phenotypes that wild-type populations could undergo. This includes a loss of capacity 

to utilize about 85 different carbon sources, 35 different nitrogen sources and 30 

different phosphorous and sulphur sources. We tested populations following 50 cycles 

of single-cell bottlenecking and for each type of Biolog plate, no purple colour 

formation was observed (Figure 3.2, 3.5, 3.7, 3.8 3.9, 3.10). Likewise, when 
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populations were allowed to evolve under a relief regime for 50 cycles we observed 

exactly the same pattern (Figure 3.3, 3.6, 3.7, 3.8, 3.9, 3.10).  

Extensive, although less substantial, loss of phenotypic functions were also reported 

in Funchain et al. (2000). In this study it was observed that following 40 cycles of 

bottlenecking mutator E.coli populations on rich media, several catabolic defects were 

observed based on tests using carbon-based Biolog plates. For example, they reported 

that in 11% of lineages glycolic acid utilization was impaired and in 10% of lineages L-

threonine utilization was also impaired. Additionally, they found that D-galacturonic 

acid metabolism was impaired in only 1% of the lines tested. Overall they report that 

70% of lines experienced a defect in at least one sugar pathway. These results are less 

substantial than those reported in our study, which is probably due to the differences 

in mutation rate. For instance in Funchain et al. (2000)  they introduced a defective 

mutS gene into lines to elevate mutation rates whereas this study involved the 

introduction of an impaired mutD5 allele. MA lines experiencing phenotypic erosion is 

also reported elsewhere (Escarmís et al., 2009; Estes & Lynch, 2003; Leiby & Marx, 

2014b; Uchimura et al., 2015). For example, in Leiby & Marx (2014), it was argued that 

metabolic erosion primarily occurs through mutation accumulation, as opposed to 

physiological trade-offs. They tested this hypothesis on Biolog plates and found 

metabolic erosion was more substantial in lines that showed elevated mutation rates 

compared to lines with lower mutation rates. Overall, the results presented here are 

consistent with previous MA studies – that is, elevated mutation rates tends to result 
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in the impairment of metabolic pathways if conditions favour genetic drift and 

minimise the efficiency of selection.  

The extent to which impaired phenotypic functions are able to be recaptured in 

mutation accumulation lines remains poorly understood. Previous studies have 

typically focused on general fitness recovery as opposed to recovery of specific 

phenotypes (e.g. Bull et al., 2003; Burch & Chao, 1999; Estes & Lynch, 2003). In this 

study, we found that recapturing impaired metabolic phenotypes is unlikely in severely 

bottlenecked MA lines, even when populations become fitter overall. This is evident 

in figures 3.3, 3.6, 3.7, 3.8, 3.9 and 3.10 which shows no indication that bottleneck 

relief line BR50.1 can utilize any carbon, nitrogen, phosphorous or sulphur sources 

contained in Biolog plates PM1, PM2A, PM3B and PM4A. Overall, the widespread loss-

of-function phenotypes observed in the bottlenecked lines, and the inability of the 

relief populations to recapture such phenotypes is consistent with several arguments 

in evolutionary biology. Firstly, that it is easier to lose a function than to gain one. This 

is exemplified here by how rapidly phenotypic functions were lost and how 

populations failed to recapture these phenotypes over an equivalent time period. 

Secondly, that elevated mutation rates are typically attenuated in natural populations 

to avoid significant functional impairment such as that observed here (McDonald, 

Hsieh, Yu, Chang, & Leu, 2012; Wielgoss et al., 2013). For instance, we initially 

hypothesized to observe at least one or two novel gain-of-function phenotypes as a 

result of elevated mutation rates that populations experienced under the 

bottlenecking regime. However, we found no such case. It is likely that under our 



108 
 

experimental regime that the deleterious effects of elevated mutation rates has 

outweighed any chance for a rare beneficial mutation to emerge in some functional 

capacity (Denamur & Matic, 2006). Fine-tuning mutation rates to avoid error 

catastrophe has been shown to be important for mutator populations adapting to new 

environments (Tanaka et al., 2003; Travis & Travis, 2002), as well as pathogens 

evolving rapidly in response to novel antibiotics (Bjorkholm et al., 2001; Eliopoulos & 

Blazquez, 2003). Further delta-bitscore analyses may allow the detection of novel gain-

of-function phenotypes that are difficult to detect in growth impaired (bottleneck and 

relief) lineages, and this could be followed up by downstream tests of phenotype via 

gene replacement.  

To gauge how lineages respond to different metabolic environments that have evolved 

via long-term culturing, though not under a bottleneck regime per se, we also tested 

bottleneck controls and bottleneck relief controls on Biolog plates. We observed large 

differences in respiration between wild-type and both control lines, however, 

inspection of endpoint data and kinetic data over time reveals that losses are mainly 

due to decreases in activity as opposed to complete loss of function. However, there 

are cases where loss of function activity was observed, particularly in plate PM4A in 

which control lines appear to show a limited capacity to utilize phosphorous and 

sulphur sources compared to wild-type populations (Figure 3.14, Supplementary 

Figure 3.4). We suspect that this general reduction in activity observed in the 

bottleneck and relief control lines could be due to both costs associated with elevated 

mutation rates as well as physiological trade-offs. As mutation rates remain high in 
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control lines (see chapter 2), it is likely that some mutations have impaired metabolic 

pathways, which is in line with other MA studies (e.g. Leiby & Marx, 2014). In terms of 

physiological trade-offs, we suspect that because cells are growing in rich media, some 

unused metabolic pathways are inevitably becoming eroded over time (Cooper & 

Lenski, 2000). As populations adapt to their environment, mutations will inevitably 

accumulate in genes that encode unused pathways, as these pathways are not under 

any selective pressure. As such, we suspect some decline in metabolic capacity 

observed in the control lines could be examples of antagonistic pleiotropy, whereby 

mutations beneficial in one environment are costly (or neutral) in another (Cooper & 

Lenski, 2000).  

Intriguingly, we found that most metabolic activity was eroded between days 10 – 20 

of the bottleneck regime. It appears that at day 10, a wild-type metabolic capacity 

remains largely intact, however, from day 20 we observed very few positive metabolic 

signals. For example, in plate PM1 we observed that utilization of D-mannitol and L-

glutamic acid is possible while utilization of almost all other carbon sources is not 

(Figure 3.15, 3.16). This rapid and widespread erosion of metabolic function tends to 

support the argument that the general decline in function that occurs under Muller’s 

ratchet is caused by mutations of large effect, compared to a “death by a thousand 

paper cuts” scenario. If the latter were true then we might expect to see a gradual 

decay of metabolic activity over an extended period of time. Instead, we found that 

significant metabolic erosion occurred in only 10 cycles of single-cell bottlenecking (i.e. 

between days 10 -20). Testing each day between days 10-20 using biolog plates, of 
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course, would provide more illumination into exactly how rapidly these functions 

erode, and whether such erosion occurs in parallel across different sources in different 

types of Biolog plates.  

To explore this further, we compared genomes derived from days 10 and 20 of the 

bottleneck regime. Focusing on Biolog plate PM1, we looked at coding sequences in 

the genome of BN20 that are important for the utilization of carbon sources that are 

impaired at this time point. In general, we observed few mutations in these coding 

sequences, and for mutations that were present, their associated DBS scores were 

typically low. For example, no mutations were identified in genes encoding enzymes 

GalM, GalK, GalU, GalT and GalE that are essential in galactose metabolism (Table 3.2). 

Despite this, BN20 shows a reduced capacity to utilize D-galactose (Figure 3.15, 3.16, 

table 3.1). Moreover, BN20 is unable to utilize L-proline (Figure 3.15, 3.16, table 3.1) 

and although mutations were identified in putA and putP genes that are responsible 

for L-proline metabolism, the DBS scores associated with these mutations are 2 and 

1.6 respectively, suggesting the impact of these mutations on protein function is 

minimal (Table 3.2). Overall, it appears that metabolic erosion is not caused by 

mutations of small effect accumulating in individual pathways. However, this 

possibility cannot be excluded, because mutations could be accumulating in 

surrounding regulatory or promoter regions and these could be impacting on 

metabolic pathways. Additionally, only a limited number of genes were assessed here. 

Clearly more extensive work is required to examine how mutations that accumulated 
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between days 10 to 20 of the bottleneck regime impact on individual metabolic 

pathways. 

Because of this uncertainty, we decided to investigate large effect mutations in the 

genome of BN20, based on the largest DBS values calculated. We identified several 

enzymes predicted to be significantly impaired that are associated with carbohydrate 

metabolism and transport and energy production as well as several enzymes that are 

involved in cell membrane processes (Table 3.3). We suspect these could be 

reasonable candidates to decipher the mutational basis for the widespread metabolic 

erosion observed during days 10 to 20. For example, a frameshift mutation in a gene 

responsible for alpha-xylosidase has the largest associated DBS value (1224.2). The 

function of this enzyme is to catalyse the transfer of an alpha-xylosyl residue from 

alpha-xyloside to xylose, glucose, mannose, fructose, maltose and other carbon 

sources (Okuyama, Mori, Chiba, & Kimura, 2004). While it is not clear whether an 

impaired alpha-xylosidase eliminated the capacity for the bottlenecked populations to 

utilize the carbon sources tested, one study does report that the yicJI operon that 

encodes an alpha-xylosidase is important for overall fitness under different carbon-

based conditions (Répérant et al., 2011). It is worth mentioning that this mutation 

reverted in line BR50.1 (see chapter 2), however, as it did not revert in other BR lines, 

it is difficult to determine how important this mutation is. Although these severely 

impaired enzymes that are listed in table 3.3 are reasonable candidates for 

determining the mutational basis for the widespread metabolic erosion observed 

between days 10 to 20, determining the causes by genomic analyses alone is limited. 
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In order to investigate this more rigorously, gene knock-out or knock-in experiments 

coupled with fitness experiments would be required. Moreover, as DBS analyses only 

considers protein-coding sequences, we leave ourselves vulnerable here to 

disregarding the impact that mutations in non-coding regions have on metabolism. 

Testing each time point via further biolog assays between days 10 to 20 coupled with 

genomic analyses might be a good approach to narrow-down the mutational basis for 

the widespread metabolic erosion that occurred over this time period. 

As mentioned previously, it is not commonplace to find studies that have examined 

the phenotypic changes that occur to MA lines that have subsequently evolved under 

a relief regime. Perhaps the most relevant study is by Estes & Lynch (2003). This group 

propagated large population sizes of MA lines of Caenorhabditis elegans that had 

acquired several morphological defects as well as extreme body sizes. They found that 

over time these defects reverted to wild-type morphologies. Additionally, they 

observed that one MA line that acquired an uncoordinated (Unc) phenotype as well as 

a high incidence of males (Him) lost these abnormalities following 10 generations of 

fitness recovery. In our study, we found no such reversion of phenotypes, even after 

50 cycles of bottleneck relief. However, when we examined the genome of bottleneck 

day 50 and the relief lineages, this is not all that surprising. We found numerous 

functionally-severe mutations in genes encoding enzymes that are essential for 

various aspects of metabolism (Figure 3.17, Figure 2.12 chapter 2). For example, we 

looked at the genome of BN50 and found that the gene encoding PutA, a 

multifunctional protein that functions in proline catabolism, as well as PutP, a proline 
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symporter, carry several mutations each. The DBS values for these mutations are high, 

with mutations in the PutA gene responsible for a significant DBS value (7.4) (Table 

3.4). All these mutations were retained in the relief lines. Moreover, we found 

additional mutations in putA genes for all the relief lines (Figure 3.18). The DBS value 

associated with these mutations is 1616.2 due to predicted truncations. Additionally, 

upon inspection of the relief genomes, we found that mutations present in BN50 that 

are associated with metabolic function in most cases have not reverted (Figure 2.12, 

chapter 2). Furthermore, we found in some cases (e.g. the PutA example above), BR 

lines continue to accumulate functionally severe mutations in these metabolic 

pathways (Figure 3.18, Figure 2.12 chapter 2). As such, it is not surprising that we 

observed no evidence that BR50.1 recaptured any phenotype impaired in the 

bottleneck regime. Therefore, I suspect that for some phenotypes, the effect of 

Muller’s ratchet has caused these evolving populations to cross the point of no return. 

Although further work is required, I will nevertheless put a stake in the ground and 

argue that some of these impaired metabolic functions are irreversibly impaired, and 

therefore unlikely to return to a functional wild-type state. I argue this for several 

reasons.  Firstly, relief lines are continuing to accumulate functionally severe 

mutations at an elevated rate, and in genes associated with energy production and 

carbohydrate transport/metabolism (see figure 2.12 chapter 2). Secondly, the 

abundance of mutations in genes associated with these eroded pathways, and the rare 

occurrence of back mutations that would be necessary to restore functional activity in 

these pathways means that recapturing previously accessible phenotypes is unlikely. 
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At this point, the reader is probably wondering about compensatory mutations that 

could potentially mitigate these impaired phenotypes. However, when considering 

physiological trade-offs (Cooper & Lenski, 2000), I suspect that natural selection would 

not necessarily favour recapturing the functional capacity of these impaired 

phenotypes if relief lines were allowed to evolve even further in the same, rich media 

- why would relief populations evolving in rich LB media be under strong selection 

pressures to be able to utilize many of the highly specific biolog substrates tested? If 

some phenotypes are recaptured, and assuming back mutations are rare, I suspect 

that the overall trend would see phenotypes re-emerge in slow, ‘hill-climbing’ fashion 

analogous to Fisher’s geometric model of adaptation (Fisher, 1930), and not in 

proportion to the massive parallel losses of phenotypes that occurred between 

bottleneck days 10 -20. Nevertheless, such speculation requires further testing and 

therefore it would be worth evolving relief lines further (beyond day 50) and testing 

multiple lines on Biolog plates.  
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Supplementary Material 

 

Supplementary Figure 3.1. Kinetic data for WT, BNC50 and BRC50.1 tested on Biolog plate PM1. Active respiration is assessed by taking OD595 measurements every 12 hours. Measurements were taken up 

to 60 hours. Each well is corrected by subtracting absorbance values from the negative control. Data is from duplicate trials
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Supplementary Figure 3.2. Kinetic data for WT, BNC50 and BRC50.1 tested on Biolog plate PM2A. Active respiration is assessed by taking OD595 measurements every 12 hours. Measurements were taken 

up to 60 hours. Each well is corrected by subtracting absorbance values from the negative control. Data is from duplicate trials. 
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Supplementary Figure 3.3. Kinetic data for WT, BNC50 and BRC50.1 tested on Biolog plate PM3B. Active respiration is assessed by taking OD595 measurements every 12 hours. Measurements were taken up 

to 60 hours. Each well is corrected by subtracting absorbance values from the negative control. Data is from duplicate trials. 
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Supplementary Figure 3.4. Kinetic data for WT, BNC50 and BRC50.1 tested on Biolog plate PM4A. Active respiration is assessed by taking OD595 measurements every 12 hours. Measurements were taken 

up to 60 hours. Each well is corrected by subtracting absorbance values from the negative control. Data is from duplicate trials. 



119 
 

 

Supplementary Figure 3.5. Kinetic data for WT, BN10, BN20 and BNC50 on plate PM2A. Active respiration is assessed by taking OD595 measurements every 12 hours. Measurements were taken up to 60 hours for slow-growers BN10 

and BN20 and 48 hours for WT and BNC50. Each well is corrected by subtracting absorbance values from the negative control. Data is from duplicate trials for WT and BNC50. BN10 and BN20 were tested once only. 
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Supplementary Figure 3.6. Kinetic data for WT, BN10, BN20 and BNC50 on plate PM3B. Active respiration is assessed by taking OD595 measurements every 12 hours. Measurements were taken up to 60 hours. Each well is corrected 

by subtracting absorbance values from the negative control. Data is from duplicate trials for WT and BNC50. BN10 and BN20 were tested once only. 
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Supplementary Figure 3.7. Kinetic data for WT, BN10, BN20 and BNC50 on plate PM4A. Respiration is assessed by taking OD595 measurements every 12 hours. Measurements were taken up to 60 hours. Each well is corrected by 

subtracting absorbance values from the negative control. Data is from duplicate trials for WT and BNC50. BN10 and BN20 were tested once only. 
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Supplementary Figure 3.8. BN20 tested on Biolog plate PM2A. 

 

Supplementary Figure 3.9. BN20 tested on Biolog plate PM3B. 

 

Supplementary Figure 3.10. BN20 tested on Biolog plate PM4A. 
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Appendix 

PM1  Carbon Sources 

 

 

PM2A Carbon Sources 

 

1 2 3 4 5 6 7 8 9 10 11 12

A Negative 

Control

L-Arabinose N-Acetyl-D-

Glucosamine

D-Saccharic 

Acid

Succinic Acid D-Galactose L-Aspartic 

Acid

L-Proline D-Alanine D-Trehalose D-Mannose Dulcitol

B D-Serine D-Sorbitol Glycerol L-Fucose D-Glucuronic 

Acid

D-Gluconic 

Acid

D,L-α-

GlycerolPhos

phate

D-Xylose L-Lactic Acid Formic Acid D-Mannitol L-Glutamic 

Acid

c D-Glucose-6- 

Phosphate

D-Galactonic 

Acid-y-

Lactone

D,L-Malic 

Acid

D-Ribose Tween 20 L-Rhamnose D-Fructose Acetic Acid α-D-Glucose Maltose D-Melibiose Thymidine

d L-Asparagine D-Aspartic 

Acid

D-

Glucosamini

c Acid

1,2-

Propanediol

Tween 40 α-Keto-

Glutaric Acid

α-Keto-

Butyric Acid

α-Methyl-D-

Galactoside

α-D-Lactose Lactulose Sucrose Uridine

e L-Glutamine m-Tartaric 

Acid

D-Glucose-1- 

Phosphate

D-Fructose-6- 

Phosphate

Tween 80 α-Hydroxy 

Glutaric Acid-

y- Lactone

α-Hydroxy 

Butyric Acid

β-Methyl-D-

Glucoside

Adonitol Maltotriose 2-Deoxy 

Adenosine

Adenosine

f Glycyl-L-

Aspartic Acid

Citric Acid m-Inositol D-Threonine Fumaric Acid Bromo 

Succinic Acid

Propionic 

Acid

Mucic Acid Glycolic Acid Glyoxylic 

Acid

D-Cellobiose Inosine

g Glycyl-

LGlutamic 

Acid

Tricarballylic 

Acid

L-Serine L-Threonine L-Alanine L-Alanyl-

Glycine

Acetoacetic 

Acid

N-Acetyl-β-D-

Mannosamin

e

Mono Methyl 

Succinate

Methyl 

Pyruvate

D-Malic Acid L-Malic Acid

h Glycyl-L-

Proline

p-Hydroxy 

Phenyl Acetic 

Acid

m-Hydroxy 

Phenyl Acetic 

Acid

Tyramine D-Psicose L-Lyxose Glucuronami

de

Pyruvic Acid L-Galactonic 

Acid-y-

Lactone

D-

Galacturonic 

Acid

Phenylethyla

mine

2-

Aminoethan

ol

1 2 3 4 5 6 7 8 9 10 11 12

A Negative 

Control

Chondroitin 

Sulfate C

α-

Cyclodextrin

β-

Cyclodextrin

y-

Cyclodextrin

Dextrin Gelatin Glycogen Inulin Laminarin Mannan Pectin

B N-Acetyl-

DGalactosa

mine

N-

AcetylNeura

minic Acid

β-D-Allose Amygdalin D-Arabinose D-Arabitol L-Arabitol Arbutin 2-Deoxy-D-

Ribose

i-Erythritol D-Fucose 3-0-β-D-

Galactopyra

nosyl-D-

Arabinose

c Gentiobiose L-Glucose Lactitol D-Melezitose Maltitol a-Methyl-

DGlucoside

β-Methyl-D-

Galactoside

3-Methyl 

Glucose

β-Methyl-D-

Glucuronic 

Acid

α-Methyl-D-

Mannoside

β-Methyl-D-

Xyloside

Palatinose

d D-Raffinose Sedoheptulo

san

L-Sorbose Stachyose D-Tagatose Turanose Xylitol N-Acetyl-

DGlucosamin

itol

y-Amino 

Butyric Acid

Amino 

Valeric Acid

Butyric Acid

e Capric Acid Caproic Acid Citraconic 

Acid

Citramalic 

Acid

D-

Glucosamine

2-Hydroxy 

Benzoic Acid

4-Hydroxy 

Benzoic Acid

β-Hydroxy 

Butyric Acid

y-Hydroxy 

Butyric Acid

a-Keto-

Valeric Acid

Itaconic Acid 5-Keto-D-

Gluconic Acid

f D-Lactic Acid 

Methyl Ester

Malonic Acid Melibionic 

Acid

Oxalic Acid Oxalomalic 

Acid

Quinic Acid D-Ribono-1,4- 

Lactone

Sebacic Acid Sorbic Acid Succinamic 

Acid

D-Tartaric 

Acid

L-Tartaric 

Acid

g Acetamide L-

Alaninamide

N-Acetyl-

LGlutamic 

Acid

L-Arginine Glycine L-Histidine L-

Homoserine

Hydroxy-

LProline

L-Isoleucine L-Leucine L-Lysine L-Methionine

h L-Ornithine L-

Phenylalanin

e

L-

Pyroglutamic 

Acid

L-Valine D,L-Carnitine Sec-

Butylamine

D.L-

Octopamine

Putrescine Dihydroxy 

Acetone

2,3-

Butanediol

2,3-

Butanone

3-Hydroxy 2- 

Butanone
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PM3B Nitrogen Sources 

 

 

PM4A Phosphorous and Sulphur Sources 

 

1 2 3 4 5 6 7 8 9 10 11 12

A Negative 

Control

Ammonia Nitrite Nitrate Urea Biuret L-Alanine L-Arginine L-Asparagine L-Aspartic 

Acid

L-Cysteine L-Glutamic 

Acid

B L-Glutamine Glycine L-Histidine L-Isoleucine L-Leucine L-Lysine L-Methionine L-

Phenylalanin

e

L-Proline L-Serine L-Threonine L-Tryptophan

c L-Tyrosine L-Valine D-Alanine D-Asparagine D-Aspartic 

Acid

D-Glutamic 

Acid

D-Lysine D-Serine D-Valine L-Citrulline L-

Homoserine

L-Ornithine

d N-Acetyl-

LGlutamic 

Acid

N-Phthaloyl-

LGlutamic 

Acid

L-

Pyroglutamic 

Acid

Hydroxylami

ne

Methylamine N-Amylamine N-

Butylamine

Ethylamine Ethanolamin

e

Ethylenedia

mine

Putrescine Agmatine

e Histamine β-

Phenylethyla

mine

Tyramine Acetamide Formamide Glucuronami

de

D,L-

Lactamide

D-

Glucosamine

D-

Galactosami

ne

D-

Mannosamin

e

N-Acetyl-

DGlucosamin

e

N-Acetyl-

DGalactosa

mine

f N-Acetyl-

DMannosami

ne

Adenine Adenosine Cytidine Cytosine Guanine Guanosine Thymine Thymidine Uracil Uridine Inosine

g Xanthine Xanthosine Uric Acid Alloxan Allantoin Parabanic 

Acid

D,L-α-Amino-

N-Butyric 

Acid

y-Amino-N-

Butyric Acid

Amino-N-

Caproic Acid

D,L-α-Amino-

Caprylic Acid

Amino-N-

Valeric Acid

α-Amino-N-

Valeric Acid

h Ala-Asp Ala-Gln Ala-Glu Ala-Gly Ala-His Ala-Leu Ala-Thr Gly-Asn Gly-Gln Gly-Glu Gly-Met Met-Ala

1 2 3 4 5 6 7 8 9 10 11 12

A Negative 

Control

Phosphate Pyrophospha

te

Trimetaphos

phate

Tripolyphosp

hate

Triethyl 

Phosphate

Hypophosphi

te

Adenosine- 

2’- 

monophosph

ate

Adenosine- 

3’- 

monophosph

ate

Adenosine- 

5’- 

monophosph

ate

Adenosine- 

2’,3’- cyclic 

monophosph

ate

Adenosine- 

3’,5’- cyclic 

monophosph

ate

B Thiophospha

te

Dithiophosp

hate

D,L-α-

Glycerol 

Phosphate

β-Glycerol 

Phosphate

Carbamyl 

Phosphate

D-2-

PhosphoGlyc

eric Acid

D-3-

PhosphoGlyc

eric Acid

Guanosine- 

2’- 

monophosph

at

Guanosine- 

3’- 

monophosph

ate

Guanosine- 

5’- 

monophosph

ate

Guanosine- 

2’,3’- cyclic 

monophosph

ate

Guanosine- 

3’,5’- cyclic 

monophosph

ate

c Phosphoenol 

Pyruvate

PhosphoGlyc

olic Acid

D-Glucose-1- 

Phosphate

D-Glucose-6- 

Phosphate

2-Deoxy-

DGlucose 6- 

Phosphate

D-

Glucosamine- 

6-Phosphate

6-

PhosphoGluc

onic Acid

Cytidine- 2’- 

monophosph

ate

Cytidine- 3’- 

monophosph

ate

Cytidine- 5’- 

monophosph

ate

Cytidine- 

2’,3’- cyclic 

monophosph

ate

Cytidine- 

3’,5’- cyclic 

monophosph

ate

d D-Mannose-1- 

Phosphate

D-Mannose-6- 

Phosphate

Cysteamine-

SPhosphate

Phospho-

LArginine

O-Phospho-

DSerine

O-Phospho-

LSerine

O-Phospho-

LThreonine

Uridine- 2’- 

monophosph

ate

Uridine- 3’- 

monophosph

ate

Uridine- 5’- 

monophosph

ate

Uridine- 2’,3’- 

cyclic 

monophosph

ate

Uridine- 3’,5’- 

cyclic 

monophosph

ate

e O-Phospho-

DTyrosine

O-Phospho-

LTyrosine

Phosphocrea

tine

Phosphoryl 

Choline

O-

PhosphorylEt

hanolamine

Phosphono 

Acetic Acid

2-Aminoethyl 

Phosphonic 

Acid

Methylene 

Diphosphoni

c Acid

Thymidine- 3’- 

monophosph

ate

Thymidine- 5’- 

monophosph

ate

Inositol 

Hexaphosph

ate

Thymidine 

3’,5’- cyclic 

monophosph

ate

f Negative 

Control

Sulfate Thiosulfate Tetrathionat

e

Thiophospha

te

Dithiophosp

hate

L-Cysteine D-Cysteine L-

CysteinylGlyc

ine

L-Cysteic 

Acid

Cysteamine L-Cysteine 

Sulfinic Acid

g N-Acetyl-

LCysteine

S-Methyl-

LCysteine

Cystathionin

e

Lanthionine Glutathione D,L-Ethionine L-Methionine D-

Methionine

Glycyl-

LMethionine

N-Acetyl-

D,LMethioni

ne

L- 

Methionine 

Sulfoxide

L-Methionine 

Sulfone

h L-Djenkolic 

Acid

Thiourea 1-Thio-β-

DGlucose

D,L-

Lipoamide

Taurocholic 

Acid

Taurine Hypotaurine p-Amino 

Benzene 

Sulfonic Acid

Butane 

Sulfonic Acid

2-

Hydroxyetha

ne Sulfonic 

Acid

Methane 

Sulfonic Acid

Tetramethyl

ene Sulfone
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Chapter 4 

Conclusions, Limitations, and Future 

Directions 
 

 

Conclusions 

We tracked the genomic and phenotypic changes to populations of E.coli that have 

evolved under both a bottleneck regime and bottleneck relief regime. A previous 

member of our lab group, Alicia Lai, reported fitness decline, elevated mutation rates 

as well as impaired protein function that worsened over the course of 50 cycles of 

single-cell bottlenecking on rich media (Lai, 2017). In turn, this system resembled what 

is predicted to occur under Muller’s ratchet. As reported in chapter 2, I found that 

evolving fitness-impaired lineages further via a bottleneck relief regime provided an 

escape route from the continual decline in function and fitness that is expected under 

the ratchet. I found that while fitness clearly improved, as measured by growth rates, 

protein function appeared to worsen, at least according the delta-bitscore analyses 

we performed. However, we came to the conclusion that the pathway to protein and 

fitness restoration may lie in untapped territory at the genomic level, and not strictly 

in the direction of the ancestor per se. This gives the false impression that protein 

function is not improving when in it fact it probably is. We argued that mutations that 

have rarely occurred in the history of the sequences that went into the profile hidden 
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markov models are responsible for fitness improvements. We argue this for several 

reasons. Firstly, because the DBS method calculates the functional severity of 

mutations based on sequence conservation. As there are many ways in which a single 

mutation may be compensated for, it is likely that the abundance of mutations that 

occurred in populations throughout the bottleneck regime has opened doorways to 

novel genomic landscapes that selection would normally restrict. Deleterious 

mutations were not strongly selected against in the bottleneck period and their 

continual accumulation was later mitigated via the emergence of compensatory 

mutations in the subsequent relief regime, many of which have probably rarely 

occurred before - at least in the context of the gamma-proteobacterial sequences that 

went into the profile HMM. This echoes arguments that propose the importance of 

compensatory evolution in facilitating aspects of biological complexity; for example, 

the emergence of antibiotic resistance in some cases that, without some form of 

compensatory suppression to minimise deleterious side-effects, can result in fitness 

costs (Maisnier-Patin & Andersson, 2004; Zuckerkandl, 1997; Zuckerkandl, 2001).   

In addition to the accumulation of compensatory mutations that may be restoring 

protein function and fitness, we argued that because mutation rates remain high in 

the relief lines, some protein encoding sequences have probably accumulated slightly 

deleterious mutations to some degree throughout the relief regime. Additionally, we 

suspect that some compensatory mutations themselves may have fitness costs in a 

wild-type background. These conclusions are not uncommon in evolutionary biology 

(Denamur & Matic, 2006; Poon & Chao, 2005; Szamecz et al., 2014) . In our case, we 
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argue that these explain at least some of the seemingly paradoxical figure presented 

in chapter 2 (Figure 2.12) that appears to show no improvement in protein function in 

the relief lines under the assumption that the principle of the delta-bitscore metric is 

to assess the functional severity of mutations.  

Our next aim was to assess how populations respond to different metabolic 

environments throughout the course of the bottleneck regime and also at the end of 

the relief regime. For all phenotypes that were observed in wild-type lines, we found 

complete erosion of these phenotypes throughout the bottleneck regime, none of 

which were recaptured in the relief lines. Additionally, we found that these losses were 

rapid, with most occurring within 20 cycles of bottlenecking. These observations 

reflect the consequences of elevated mutation rates and the general dilemma that 

organisms experience – that is, balancing adequate mutation rates to facilitate 

adaptation with fine-tuned repair systems to prevent an over-accumulation of 

deleterious mutations (Denamur & Matic, 2006) . In line with other studies, we found 

that MA can drive metabolic erosion (Funchain et al., 2000.; Leiby & Marx, 2014). 

However, as few studies have examined how recovering populations respond to 

different metabolic environments, we present a novel result here showing that 

extreme MA can cause long-term losses in overall metabolic capacity even as lineages 

become fitter. We determined this by looking at how relief lines respond to the various 

environments in each Biolog plate tested. Visual inspection of plates and kinetic data 

shows no evidence for active respiration in any of the 379 environments tested.  
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Genomic analyses also provided intriguing insight. For instance, we found an 

accumulation of functionally-severe mutations in bottleneck day 50 and relief 

genomes in sequences associated with metabolism (Figure 3.17 and 2.12, 

respectively). Closer inspection of some of these genes revealed mutations were in 

genes that are essential for the utilization of some of the Biolog sources tested. In 

addition, some of these mutations did not appear to revert in the relief lines and even 

more mutations in some of these genes had accumulated throughout the relief 

regime. Therefore, I argue that unless compensatory mutations allow these impaired 

phenotypes to be recaptured, I suspect some are irreversibly impaired. Moreover, 

assuming relief lines were evolved even further (beyond 50 cycles) under the same 

constant conditions, I doubt there would be strong selective pressures to recapture 

some of these impaired phenotypes when considering antagonistic pleiotropy and the 

idea that deleterious mutations in unused genes can even confer a selective advantage 

under some circumstances (Cooper & Lenski, 2000; Elena & Lenski, 2003). 

Overall, the results presented here suggest that the genomic and phenotypic 

landscape for lineages escaping the deleterious effects of Muller’s ratchet is novel 

compared to that of ancestral lineages, and might be quite complex, in fact. 

Additionally, the molecular mechanisms that sent populations into fitness decline are 

not proportional to the molecular mechanisms that allowed populations to escape the 

ratchet.  
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Limitations 

Chapter 2 

Throughout chapter 2, I argued that novel compensatory mutations probably account 

for fitness recovery observed in the relief lineages. However, I provided very few 

examples showing how compensatory mutations may be interacting with, and 

reducing the effects of, other mutations that have deleterious effects. Nevertheless, 

based on DBS analyses, I am confident that a substantial proportion of fitness recovery 

is accounted for via compensatory mutations. If reversion mutations were common 

then figure 2.12 would show DBS values distributed mainly below zero however we 

found this is not the case. Moreover, it is commonplace in the literature to find 

arguments that place importance on compensatory evolution for mitigating the effects 

of deleterious mutations compared to reversion mutations (Bull et al., 2003; Burch & 

Chao, 1999; Estes & Lynch, 2003; Maisnier-Patin & Andersson, 2004). Furthermore, 

this is argued to be particularly true for populations that have gene defects that are 

responsible for causing populations to be at a significant distance from a fitness peak 

(Szamecz et al., 2014). Overall, although I have not provided many examples of 

compensatory interactions under this system, I am nevertheless confident that their 

occurrence has accounted for important aspects of protein function improvement and 

fitness recovery.  

I mentioned several times throughout chapter 2 that the delta-bitscore method does 

not capture information on sequences outside coding regions of a genome. This of 

course is a significant limitation because fitness restoration could be partly explained 
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by mutational changes outside of coding regions. Such regions are critical for many 

aspects of cellular function such as rRNA and tRNA genes that are essential for 

translation. I suspect that these essential genes would be under strong selection 

pressures in the relief regime if mutations were impairing their activity. As the DBS 

method does not consider these changes, we fail to capture the complete picture as 

to how fitness recovery is occurring. Nevertheless, we did find some degree of 

correlation between delta-bitscore and doubling time implying that mutations in 

protein-coding regions contribute to fitness to some degree. Additionally, delta-

bitscore represents the most relevant tool for this type of study. Other approaches 

such as the dN/dS method are less reliable over short evolutionary timescales and fail 

to score indels (Kryazhimskiy et al., 2008; Wheeler et al., 2016). 

Another limitation to this study is that we sequenced genomes that represent 

populations from day 50 of the bottleneck relief regime only. This means that we did 

not capture the full extent of genomic changes that occurred throughout the 50 cycle 

relief period. Therefore, assessing the mutational causes for fitness changes that 

occurred at earlier time points via genomic changes that are detected by examining 

day 50 genomes is somewhat limited. This is particularly of concern when interpreting 

changes that occurred between days 10 and 20 of the relief regime because during 

this time period the most significant improvements in fitness were observed. Any 

mutational changes that contributed to this rapid fitness improvement can only be 

interpreted in the day 50 genomes if such changes remained unaltered up until day 50 

of the experiment.  
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Contamination that is possible between populations is also worth mentioning. 

Experiments were undertaken in two sets of 12-well culture plates in a shaking 

environment. Because wells are close together, there is a possibility that liquid from 

one well (which represents a single lineage) can transfer to another well close by (that 

represents a different lineage). However, our lab group has previously tested the 

speed limits in which plates should be shaking. We have found that agitating 2ml 

cultures at 160rpm does not allow liquid spill-over. Therefore, I am confident that spill-

over did not occur. Finally, external sources of contamination were readily screened 

for using the various approaches described in the methods section of chapter 2.  

Chapter 3 

The Biolog results presented were based on visual inspection of plates and kinetic 

data. As such, the lack of statistical power to support our results, and the element of 

human error that comes with visual inspection is certainly a limitation to consider. 

Nevertheless, there are certainly benefits to these approaches. For instance some 

wells contain material that appears very thick at the bottom of the plates. We found 

that some of these wells were calculated at a high absorbance even though no colour 

change was identified following visual inspection - these types of occurrences can only 

be reported through visual inspection alone. Other factors that may contribute to false 

positives can also be detected through visual inspection. For example condensation 

may also cause optical density readings to be high even if no purple colour formation 

occurs. Additionally, inspection of kinetic data over time allows one to identify a 

reading at a particular time point that might not makes sense relative to the rest of 
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the time period. For example, as the purple colour formation that occurs is irreversible 

in wells that populations are respiring in, absorbance readings that decrease suggests 

background noise could be having an impact. Where absorbance values increase then 

decrease rapidly it could be that the readings that appeared to show an increase are 

actually false positive readings. Observing kinetic data allows one to tease apart 

change that is due to respiration as opposed to changes that are due to background 

noise.  

There are several statistical tests that could have been performed here to improve 

statistical power. Some groups for example divide absorbance readings by the average 

well colour development (AWCD) while other groups perform principle component 

analyses (Garland, 1996; Hackett & Griffiths, 1997). In-house procedures are readily 

adopted also, or basic statistical procedures such as an ANOVA can be performed 

(Gryta, Frąc, & Oszust, 2014; Mackie et al., 2014; Vehkala, Shubin, Connor, Thomson, 

& Corander, 2015)   However, our primary objective was to test for loss-of-function 

and gain-of-function phenotypes rather than decreases or increases in metabolic 

activity, per se. We argue that inspecting kinetic data and observing purple colour 

formation (or lack of) is a reasonably robust approach for this type of study. 

Additionally, as time limitations prevented us performing replicates for some lines 

(e.g. BN10 and BN20), statistical measures would not have been appropriate in these 

instances regardless.   Finally, there is some debate about how robust these commonly 

adopted statistical tools are. For example, many argue against the reliability of the 

commonly used AWCD approach (e.g. Hackett & Griffiths, 1997; Sturino et al., 2010). 
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Future Directions 

As cultures were frozen down on a daily basis, significant improvements could be 

made to provide more insight from this experiment. Here, I discuss some of these 

before offering suggestions as to how this work could be expanded even further.  

Based on the limitations presented above, there are multiple ways in which this 

research could be improved. For example, we could better relate mutational changes 

to fitness changes through gene knock-out or knock-in experiments coupled with 

fitness assays. Such procedures would enable us to better understand the effect of 

single mutations on overall fitness. The delta-bitscore metric we employed only gives 

us clues as to the impact of mutations, and because mutations have different effects 

depending on the environmental context, there is no way of knowing with absolute 

certainty how mutations effect populations evolving in different environments. Of 

course, one benefit the delta-bitscore provides is a starting point as to which 

mutations should be candidates for knock-in/knock-out experiments. Under this 

experiment particularly, there were thousands of mutations to consider. What the DBS 

method does is aid in teasing apart mutations that are likely to have an impact versus 

those that are redundant.  

Other ways to improve on this research would be to sequence more genomes at 

different time points of the relief regime. In particular, sequencing genomes for days 

10 through to 20 would enable us to better understand the mutational basis that 

caused significant fitness increases for all relief lines during this period. At this point 
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we have no indication as to whether back mutation or compensatory mutations are 

responsible for fitness increases. Furthermore, we are unsure if mutations occurred 

inside or outside protein encoding genes. To facilitate this, fitness experiments could 

be performed on populations from day 10 through to 20. This would allow us to 

correlate mutational changes with fitness changes more precisely than that reported 

in this study. In turn, this would provide a better opportunity to pinpoint the exact 

causes for fitness improvements.  

The Biolog experiments could be significantly improved. For example, only seven time 

points throughout the bottleneck and bottleneck relief regime were tested. Testing 

time points between days 10 – 20 of the bottleneck regime would be particularly 

useful because over this time period significant metabolic losses were reported (see 

chapter 3). To test whether these losses are due to a small number of mutations with 

large effect (‘death by knockout’) or many mutations of small effect (‘death by a 

thousand paper cuts’) we could perform Biolog screens at all time points from days 10 

to 20 then follow this up with genomic analyses at these time points also. Additionally, 

for the relief lines, only line BR50.1 was tested. Although we found no evidence for 

metabolic activity in any of the Biolog wells tested, it could be that other relief lines 

are able to respire in some wells. Finally, we could perform more replicates and follow 

these up with statistical analyses to ensure results are more robust. Already 

mentioned are principle component analyses, AWCD analyses, or simple ANOVA tests 

that could bring more clarity to results. Another possibility is implementation of a 

recently described pipeline that adopts a three-step grouping, normalization, and 
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effect identification procedure (Vehkala et al., 2015). One advantage of this tool, the 

authors claim, is that it treats actively respiring wells and non-actively respiring wells 

separately while normalizing (Vehkala et al., 2015). This is important because bacteria 

that respire have completely different metabolisms from inactive bacteria.   

Testing for the Emergence of Complex Features 

Throughout this thesis I have mentioned several times that one of the aims of this 

experiment was to screen for rare gain-of-function phenotypes that might emerge as 

a by-product of elevated mutation rates that occur under Muller’s ratchet. However, 

testing bottlenecked lines and relief lines in 379 metabolic environments revealed no 

novelty. Nevertheless, this does not rule out the possibility of that some type of novel 

gain-of-function mutation has occurred - it could be that the capacity for such a 

function to emerge phenotypically is hidden as a result of the bottlenecked and relief 

lines being growth impaired. As such, I propose that extending the bottleneck relief 

regime further may allow us to better assess the phenotypic capacity of these 

recovering populations. It could be that at the present cells are unable to utilize Biolog 

media in general, irrespective of what particular metabolic environment is being 

tested. By evolving relief lines for another 200 cycles, for instance, we might expect to 

see fitness improvements as well as a heightened metabolic capacity. Of course, as 

cells continue to adapt to a constant environment it could be that their metabolic 

capacity remains limited, however, it is difficult to know for sure and whatever the 

outcome would be an intriguing result regardless. Moreover, additional phenotypes 

could be tested such as phage sensitivity, antibiotic resistance, chemical sensitivity etc. 



137 
 

Ultimately, the long-term goal of this experiment is to test for the emergence of 

complex features that emerge via mutation and drift. The idea that these forces can 

drive biological complexity with natural selection of secondary importance is 

underpinned in many hypotheses, such as Constructive neutral evolution (Stoltzfus, 

1999) , the new mutation theory of phenotypic evolution (Nei, 2007), coadaptional 

drive (Zuckerkandl, 2001) and the Zero Force evolutionary Law (McShea & Brandon, 

2010). However elegant these theories may seem, few studies have experimentally 

tested for the emergence of complex systems that emerge via mutation and drift. MA 

experiments coupled with recovery experiments circumvent these issues by 

generating conditions that reduce natural selection then allow it to re-emerge. Our lab 

group previously discovered the emergence of slippage-type editing under this type of 

regime and found that its origins were rooted in selectively neutral processes (Lai, 

2017). Here, we wondered whether novel phenotypes may emerge via processes of 

mutation and drift. Evolving relief lines further may help us to answer this. Assuming 

we were to discover a novel phenotype, we could then test the fitness costs of 

mutations responsible for this phenotype via gene replacement experiments using 

wild-type lines, and competing these lines with evolved populations. If there are 

fitness costs (or no benefits, at least) associated with this phenotype in a wild-type 

background then we could argue that such a phenotype emerged more or less 

neutrally, rather than through the action of positive selection per se. Such insight could 

provide answers to previous ideas such as those that argue conditions that minimise 

the efficiency of selection may allow the emergence of complex features that would 
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previously be inaccessible due to constraints imposed by natural selection (Doolittle, 

2012; Lynch, 2007). By combining experimental evolution with genome sequencing, 

the latter of which is becoming increasingly accessible, we have the tools at our 

disposal to test these long-standing evolutionary theories that bring about widespread 

debate while remaining largely untested. 
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