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ABSTRACT
Parameters that quantify the acceleration of cosmic expansion are conventionally de-
termined within the standard Friedmann-Lemâıtre-Robertson-Walker (FLRW) model,
which fixes spatial curvature to be homogeneous. Generic averages of Einstein’s equa-
tions in inhomogeneous cosmology lead to models with non-rigidly evolving average
spatial curvature, and different parametrizations of apparent cosmic acceleration. The
timescape cosmology is a viable example of such a model without dark energy. Us-
ing the largest available supernova data set, the JLA catalogue, we find that the
timescape model fits the luminosity distance-redshift data with a likelihood that is
statistically indistinguishable from the standard spatially flat Λ cold dark matter cos-
mology by Bayesian comparison. In the timescape case cosmic acceleration is non-
zero but has a marginal amplitude, with best-fitting apparent deceleration parameter,
q0 = −0.043+0.004

−0.000. Systematic issues regarding standardization of supernova light
curves are analysed. Cuts of data at the statistical homogeneity scale affect light
curve parameter fits independent of cosmology. A cosmological model dependence of
empirical changes to the mean colour parameter is also found. Irrespective of which
model ultimately fits better, we argue that as a competitive model with a non-FLRW
expansion history, the timescape model may prove a useful diagnostic tool for disen-
tangling selection effects and astrophysical systematics from the underlying expansion
history.

Key words: cosmological parameters —dark energy — cosmology: observations —
cosmology: theory

1 INHOMOGENEOUS ALTERNATIVES TO
DARK ENERGY

One of the most important discoveries in cosmology (Riess
et al. 1998; Perlmutter et al. 1999) is the observation that
the luminosity distances and redshifts of type Ia super-
novae (SneIa) are well matched to the expansion history of
a spatial homogeneous and isotropic Friedmann-Lemâıtre-
Robertson-Walker (FLRW) model only if the Universe be-
gan an epoch of accelerated expansion late in cosmic his-
tory. Since gravity with matter obeying the Strong Energy
Condition is universally attractive, this demands a cosmo-
logical constant, Λ, or some other unknown source of spa-
tially homogeneous dark energy with an equation of state,
P = wρc2, that subsequent tests find to be close to the cos-
mological constant case, w = −1. Independently of SneIa,
since the late 1990s other data sets including the cosmic mi-
crowave background (CMB) and galaxy clustering statistics,
have been found to independently require late epoch cosmic
acceleration in the FLRW model.

? E-mail: david.wiltshire@canterbury.ac.nz

Despite this success, the nature of dark energy remains
a mystery for fundamental physics. Furthermore, a number
of puzzles remain (Bull et al. 2016; Buchert et al. 2016)
which range from significant anomalies (Cyburt et al. 2008)
to lesser tensions (Delubac et al. 2015). While some puzzles
may inevitably boil down to statistical sampling biases, sys-
tematic problems in data reduction or potentially unknown
astrophysics, they may also in part be due to incorrect cos-
mological model assumptions. It is therefore important to
consider alternatives to the standard cosmology, particularly
any alternatives which do not change known gravitational
physics but which reconsider assumptions that are not de-
manded theoretically in light of observations. The assump-
tion of spatial homogeneity and isotropy falls in this cate-
gory. While the remarkable isotropy of the CMB points to
an initial state with a very high degree of smoothness, the
late epoch Universe encompasses a complex cosmic web of
structures (van de Weygaert et al. 2016). It is dominated in
volume by voids that are threaded and surrounded by clus-
ters of galaxies distributed in sheets, knots and filaments.

Spatial homogeneity is first encountered in some statis-
tical sense in averages on scales >∼ 70–120h−1Mpc based on
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the 2-point galaxy correlation function (Hogg et al. 2005;
Scrimgeour et al. 2012). This indicates that we can expect
cosmology to be modelled by some averaged description on
larger scales, but does not guarantee that such a description
is given at all times by the FLRW geometry, however. De-
manding FLRW geometry on arbitrarily large scales in space
and time presupposes one particular answer to the fitting
problem (Ellis 1984; Ellis & Stoeger 1987; Wiltshire 2011).
The fitting problem is an unanswered fundamental question
in general relativity: on what scale(s) are matter and ge-
ometry dynamically coupled via Einstein’s equations? Since
general relativity is a causal theory, the speed of light yields
a natural upper limit. However, most of the energy density
of the present epoch Universe in the energy-momentum ten-
sor on the right hand side of Einstein’s equations is in non-
relativistic matter subject to speeds much smaller than that
of light. Consequently, the effective causal scale for density
fluctuations is the matter horizon (Ellis & Stoeger 2009), the
comoving region which has significantly contributed matter
to the local physical environment of a given observer.

The matter horizon gives a natural effective causal up-
per limit for direct applicability of the Einstein equations.
Regardless of what the scale is, if Einstein’s equations ap-
ply only on small scales then generic large-scale averages do
not lead to the Einstein equations for a prescribed averaged
matter source. Instead one obtains averaged cosmological
models with backreaction (Buchert 2000, 2001; Buchert &
Räsänen 2012), whose evolution generically can differ signif-
icantly from that of the FLRW geometry. Since the cosmic
expansion history is phenomenologically very well described
by a FLRW model with a small number of parameters, then
any physically relevant model of backreaction must be sub-
ject to some simplifying principles that restrict many possi-
ble mathematical choices for defining the average expansion
history and its relation to local observables (Buchert & Car-
fora 2002, 2003).

The timescape scenario (Wiltshire 2007a,b, 2009; Duley,
Nazer & Wiltshire 2013) provides such principles. Within
Buchert’s scalar averaging formalism (Buchert 2000, 2001),
the relationship between statistical volume averages and
local observables is restricted by applying the Cosmologi-
cal Equivalence Principle (Wiltshire 2008), a generalization
of the Strong Equivalence Principle. The clocks and rulers
which best describe average cosmic evolution (the ‘bare’ or
‘volume–average’ quantities) in Buchert’s statistical formal-
ism are reinterpreted, and differ systematically from local
clocks and rulers of observers in environments where the
matter density differs significantly from the volume average.
Given the smooth initial state of the Universe, this only
becomes significant late in cosmic history, when spatial cur-
vature gradients grow between bound structures (which by
definition are greater than critical density) and the voids
which dominate by volume.

The timescape model has passed a number of indepen-
dent observational tests (Leith, Ng & Wiltshire 2008; Smale
& Wiltshire 2011; Smale 2011; Duley, Nazer & Wiltshire
2013; Nazer & Wiltshire 2015). Its distance–redshift rela-
tion is very close to that of particular Λ cold dark matter
(ΛCDM) models over small redshift ranges, but effectively
interpolates (Wiltshire 2009, 2014) between spatially flat
ΛCDM cosmologies with different values of ΩM0 and ΩΛ0

over larger redshift ranges. In particular, when the timescape

model is fit to the angular diameter distance of the sound
horizon in the CMB then the spatially flat ΛCDM model
with the closest comoving distance at redshifts z >∼ 100 has
a value of ΩM0 15–27% lower than that of the spatially flat
ΛCDM model with the closest comoving distance at red-
shifts z < 1.2 (Wiltshire 2009, 2014).

Geometric tests of the timescape expansion history are
most developed (Wiltshire 2009), and give rise to mea-
sures (Clarkson, Bassett & Lu 2008; Räsänen, Bolejko &
Finoguenov 2015) which will definitely distinguish both
the timescape model and other alternatives (Larena et al.
2009; Lavinto, Räsänen & Szybka 2013) from the standard
FLRW model using Euclid satellite data (Sapone, Majerotto
& Nesseris 2014). On the other hand, tests of the CMB
anisotropy spectrum in the timescape model are at present
limited by systematic uncertainties of 8–13% in parameters
which relate to the matter content (Nazer & Wiltshire 2015).
This is a consequence of backreaction schemes having not yet
been applied to the primordial plasma.

2 SUPERNOVA REDSHIFT-DISTANCE
ANALYSIS

In the case of the redshift range probed by SneIa the dif-
ference between the timescape and ΛCDM cosmologies is
comparable to the systematic uncertainties that arise be-
tween different methods for fitting the light curves of SneIa
to obtain “standard candles”. In particular, in the last full
analysis of the timescape model (using data available in
2010) Smale & Wiltshire (2011) found significant differences
between data reduced by the MLCS2k2 (Multicolor Light-
Curve Shape) fitter (Jha et al. 2007) and the SALT/SALT2
(Spectral Adaptive Light-curve Template) fitters (Guy et
al. 2005, 2007). While the relative Bayesian evidence was
sometimes ‘positive’ (but not very strong), the conclusion
as to which cosmological model fitted better depended on
the light-curve fitting method. Consequently the empirical
nature of light-curve fitting may mask effects due to the un-
derlying expansion history if this deviates from the FLRW
geometry.

The significantly larger Joint Light-curve Analysis
(JLA) SneIa catalogue (Betoule et al. 2014) now makes pos-
sible a renewed comparison of the timescape and ΛCDM
models, as well as further investigation of the systematics
of light-curve fitting. Recently, Nielsen, Guffanti & Sarkar
(2016) (NGS16) have used the JLA catalogue to reinves-
tigate systematic issues associated with SneIa light-curve
fitting within FLRW cosmologies using the SALT2 method.
They adopted maximum likelihood estimators (MLE) that
take into account the underlying Gaussianity of particu-
lar light-curve parameters (March et al. 2011). NGS16 con-
cluded that the significance for cosmic acceleration, as com-
pared to an empty Milne model (or any cosmology with
constant expansion), is “marginal” (at <∼ 3σ significance).
This conclusion was challenged by Rubin & Hayden (2016)
(RH16), who introduced 12 additional light-curve parame-
ters to allow for possible unaccounted systematics, conclud-
ing that the 2.8σ significance found by NGS16 increased
to 3.7σ for a general FLRW model, or to 4.2σ for the spa-
tially flat case. However, RH16 did not consider whether the
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increased model complexity was justified from a Bayesian
standpoint.

In the SALT2 method each observed supernova redshift
is used to determine a theoretical distance modulus,

µ ≡ 25 + 5 log10

(
dL

Mpc

)
, (1)

where dL is the luminosity distance for each cosmological
model. This is then compared to the observed distance mod-
ulus, which is related to the supernova light-curve by

µSN = m∗B −MB + αx1 − βc, (2)

where m∗B is the apparent magnitude at maximum in the
rest-frame B band, MB is the corresponding absolute mag-
nitude of the source, x1 and c are empirical parameters that
describe the light-curve stretch and colour corrections for
each supernova, while α and β are parameters that are as-
sumed to be constant for all SneIa.

The theoretical distance modulus (1) is determined for a
bolometric flux, which is not directly measured. The SALT2
(Guy et al. 2005, 2007) relation (2) can thus be viewed as
a model for a band correction, ∆µB, that is linear in the
variables x1 and c,

∆µB ≡ (m−M)− (m∗B −MB) = αx1 − βc, (3)

where m and M are the bolometric apparent and absolute
magnitudes in the observer and emitter rest frames respec-
tively.

In the SALT2 method, the light-curve parameters are
simultaneously fit together with the free cosmological pa-
rameters on the entire data set.

NGS16 assumed that all SneIa in the JLA catalogue
(Betoule et al. 2014) are characterized by parameters, MB,
x1 and c, drawn from the same independent global Gaussian
distributions, with means MB,0, x1,0 and c0, and standard
deviations σMB,0

, σx1,0 and σc0 respectively. These 6 free
parameters were then fitted along with the light-curve pa-
rameters α, β and the cosmological parameters.

RH16 claimed that the mean light-curve stretch and
colour parameters, x1,0 and c0, of the Gaussian distribu-
tions analysed by NGS16 show some redshift dependence.
This may be partially due to astrophysical effects in the
host population, or – particularly for the colour parameter
– may arise from the colour–luminosity relation combined
with redshift–dependent detection limits. In other words,
Malmquist type biases may not be completely corrected for
in the JLA catalogue (Betoule et al. 2014). In the absence
of a known astrophysical model for such corrections, RH16
introduced 12 additional empirical parameters by replacing
the global Gaussian means according to

x1,0 → x1,0,J + xz,Jz, and c0 → c0,J + cz,Jz, (4)

where the index J runs over the four independent subsam-
ples in the JLA catalogue: (1) SNLS (SuperNova Legacy
Survey); (2) SDSS (Sloan Digital Sky Survey); (3) nearby su-
pernovae; (4) HST (Hubble Space Telescope), with xz,4 = 0,
cz,4 = 0 on account of limited HST data. The widths σx1,0 ,
σc0 were still treated as global parameters.

We perform a Bayesian comparison of fits of the JLA
catalogue (Betoule et al. 2014) to the luminosity distance-
redshift relation for the spatially flat ΛCDM model, and for
the timescape model (Wiltshire 2007a,b, 2009; Duley et al.
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Figure 1. The residual distance moduli µΛCDM(z) − µempty(z)

and µTS(z) − µempty(z) with the same H0. The best-fitting
parameters of Table 2 are assumed: ΩM0 = 0.365 for spa-

tially flat ΛCDM and fv0 = 0.778 for timescape. For redshifts

z < 0.927 over which µTS(z) < µΛCDM(z), the maximum dif-
ference between the ΛCDM and timescape distance moduli is

µΛCDM(z)− µTS(z) = 0.031 at z = 0.372.

2013). We first use the MLE methodology of NGS16 directly,
and then investigate the effect of changes to light-curve fit-
ting suggested by RH16. An empty universe with constant
expansion rate is also analysed, as a convenient demarca-
tion of accelerating from non-accelerating expansion in the
FLRW case.

Details of the theoretical luminosity distances used in
(1) are given in Appendix A. The model differences that we
are testing are best appreciated by comparing the distance
moduli of the timescape and spatially flat ΛCDM models
relative to an empty universe, as shown in Fig. 1. The time-
scape distance modulus, µTS(z), is closer to ΛCDM than the
empty case. Nonetheless, µTS(z) is always closer to µempty(z)
than µΛCDM(z) is, a consequence of cosmic acceleration be-
ing an apparent effect in the timescape model.

Further technicalities about systematic issues in imple-
menting the SALT2 method are discussed in Appendix B.

3 STATISTICAL METHODS

3.1 The likelihood construction

We adopt the likelihood construction (March et al. 2011)
used by NGS16. The likelihood, L, is the probability density
of the observed data – here (ẑ, m̂∗B, x̂1, ĉ)i, i = 1, 2, . . . , N
on N supernovae – given a model, M. The likelihood can be
written as (March et al. 2011)

L ≡ P [(ẑ, m̂∗B, x̂1, ĉ)i |M]

=

∫
dMN

B dxN1 dcN P [(ẑ, m̂∗B, x̂1, ĉ)i | (MB, x1, c)i,M]

× P [(MB, x1, c)i |M] , (5)

where hatted quantities denote measured data values includ-
ing all experimental noise, and unhatted quantities are in-
trinsic parameters that characterize the statistical distribu-
tions from which the supernovae are drawn. Only the intrin-
sic parameters satisfy the SALT2 relation (2). The empirical
light-curve model (2) and the theoretical distance modulus
(1) together constitute the model, M.

MNRAS DOI: 10.1093/mnras/stx1858, (2017)



4 Dam, Heinesen & Wiltshire

Cosmological parameter Prior distribution Range

Timescape: fv0 Uniform [0.500, 0.799]

Flat ΛCDM: ΩM0 = 1− ΩΛ0 Uniform [0.143, 0.487]

Nuisance parameters Prior distribution Range

α Uniform [0, 1]

x1,0 Uniform [−20, 20]

σx1,0 Uniform on log
10
σx1,0 [−5, 2]

β Uniform [0, 4]

c0 Uniform [−20, 20]

σc0 Uniform on log
10
σc0 [−5, 2]

MB,0 Uniform [−20.3,−18.3]

σMB,0
Uniform on log

10
σMB,0

[−5, 2]

Additional stretch and colour
Uniform [−20, 20]

parameters for models II-VIII

Table 1. All nuisance parameters in each model have identical priors. In the timescape model ΩM0 is defined in terms of fv0 hence we

take the latter to be the more ‘fundamental’ parameter and assign the prior to it.

The expansion in (5) allows one to explicitly model the
intrinsic scatter of the supernovae. For the NGS16 model (I)
we assume that the intrinsic parameters of each supernova
are drawn from identical independent Gaussian distributions

P[(MB, x1, c)i |M] =

N∏
i

P[(MB,i, x1,i, ci) |M]

=

N∏
i

N (MB,i ; MB,0, σMB,0
)

×N (x1,i ; x1,0, σx1,0) N (ci ; c0, σc0), (6)

where N (y ; y0, σ) ≡ (2πσ2)−1/2 exp
[
−(y − y0)2/(2σ2)

]
for each triple {y, y0, σ}, with 3N × 3N diagonal covari-

ance matrix Σl = diag
(
σ2
MB,0

, σ2
x1,0 , σ

2
c0
, σ2
MB,0

, . . .
)

.

The experimental part of the likelihood (5),
P [(ẑ, m̂∗B, x̂1, ĉ)i | (MB, x1, c)i,M] is assumed to be a
Gaussian in the intrinsic supernova parameters, and the
covariance matrix of experimental statistical and systematic
uncertainties is denoted Σd. Performing the integral in (5)
one obtains the final expression of the likelihood (Nielsen
et al. 2016)

L = P [(ẑ, m̂∗B, x̂1, ĉ)i |M] = P [(m̂∗B − µ(ẑ), x̂1, ĉ)i |M]

=
[
(2π)3N det (Σd +AᵀΣlA)

]−1/2

× exp
[
− 1

2

(
Ẑ − Y0A

)
(Σd +AᵀΣlA)−1

(
Ẑ − Y0A

)ᵀ ]
(7)

where Ẑ = (m̂∗B,1 − µ(ẑ1), x̂1,1, ĉ1, m̂
∗
B,2 − µ(ẑ2), . . . )

is a 3N -dimensional row vector containing the dis-
tance modulus residual and light-curve data, Y0 =
(MB,0, x1,0, c0, MB,0, . . . ) is a 3N -dimensional row vector
of the intrinsic Gaussian means, and A is the block diagonal
matrix that propagates Y0 to

Y0A = (MB,0 − αx1,0 + βc0, x1,0, c0, . . . ).

Note that the cosmological model enters only explicitly
through the conversion µ(ẑ) of the observed redshift to a

distance modulus. There can, however, be implicit model
dependence in the experimental covariance matrix1 Σd or in
corrections made to data prior to the analysis.

To implement the RH16 parametrization (4) we replace
(6) by

P[(MB, x1, c)i |M]

=

4∏
J=1

NJ∏
i=1

N (MB,i, MB,0, σMB,0
)

×N (x1,i, x1,0,J + xz,J ẑ, σx1,0) N (ci, c0,J + cz,J ẑ, σc0).

(8)

We recover (7) with the one difference: in place of
three repeated entries, the vector Y0 is now par-
titioned into different pieces for each subsample,
Y0 = (MB,0, x1,0,1 + xz,1ẑ1, c0,1 + cz,1ẑ1, . . . , MB,0, x1,0,2 +
xz,2ẑi, c0,2 + cz,2ẑi, . . . , . . . ,MB,0, x1,0,4, c0,4).

From the likelihood (7) we can define frequentist con-
fidence regions and goodness of fit measures or alternative
Bayesian versions of these, following conventional statistical
procedures summarized in Appendix C.

In practice, estimating the Bayesian evidence is a com-
putationally intensive task, much more so than what is
required to obtain parameter estimates. We use standard
Markov Chain Monte Carlo (MCMC) methods to sample
parameter space. We estimate the evidence using the pub-
licly available MultiNest (Feroz et al. 2009) code,2 with
Python interface PyMultinest (Buchner et al. 2014), for the
efficient evaluation of the evidence integral (C5) with likeli-
hood (7). The accuracy of the Bayesian evidence estimate is
controlled by the number of ‘live’ points, nlive, with an error

σ ∼ O(n
−1/2
live ). In our analysis we choose 1000 points for the

1 The propagation of the error σz to σµ depends on the model.

However, by (A13)–(A15), to leading order for small z, σµ '
5σz/(z ln 10) for all cases.
2 This package is based on the Nested sampling algorithm

(Skilling 2004).

MNRAS DOI: 10.1093/mnras/stx1858, (2017)
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8 or 9 parameter base model and add 100 more points for
each additional parameter.

3.2 Choice of priors

Given the sensitivity of the Bayes factor to priors it is impor-
tant these are chosen as objectively as possible. The choice
of priors are summarized in Table 1.

3.2.1 Nuisance parameters

All nuisance parameters are common to both timescape and
ΛCDM models and we therefore assign the same priors to
both models. Where possible,3 we adopt priors that have
been used in previous Bayesian studies of the SALT2 method
(March et al. 2011; Shariff et al. 2016). The standard devia-
tions {σx1,0 , σc0 , σMB,0

} are ‘scale’ parameters (of the resid-

uals) and so it is more appropriate to assign a log-uniform
prior to these parameters. The priors for the nuisance pa-
rameters are wide to ensure the most likely regions of pa-
rameter space are supported, and provided they are wide
enough, this will have no overall effect on the Bayes factor
(as the evidence of each model will be similarly scaled).

3.2.2 Cosmological parameters

Only one free cosmological parameter can be constrained by
supernovae: ΩM0 for spatially flat ΛCDM or fv0 for the time-
scape model. Conventionally, the combination of ΩM0 and
H0 for the standard cosmology is strongly constrained by
the CMB acoustic peaks (Ade et al. 2016). Measurements
of the Baryon Acoustic Oscillation (BAO) scale in galaxy
clustering statistics (Aubourg et al. 2015; Alam et al. 2017)
at low redshifts and the Lyman α forest (Delubac et al.
2015; Aubourg et al. 2015) provide independent constraints.
In the case of the timescape model, however, our ability to
model the CMB is still limited by systematic uncertainties
of 8–13% (Nazer & Wiltshire 2015).

We therefore determine priors for fv0 in the timescape
model using best present knowledge. For the CMB we use
results of a model-independent analysis of the acoustic peaks
(Aghamousa et al. 2015) with Planck satellite data, and
choose a prior from a 95% confidence fit of the angular scale
of the sound horizon. To date BAO studies all implicitly
assume the FLRW model, and do not yet provide an equiv-
alent model independent constraint. We therefore adopt a
prior using FLRW-model estimates of the angular diameter
of the BAO scale, including the full range of values which
are currently in tension (Delubac et al. 2015; Aubourg et al.
2015; Alam et al. 2017). We take generous 95% confidence
limits determined by assuming that either the low redshift
galaxy clustering results (Aubourg et al. 2015; Alam et al.
2017) or the z = 2.34 Lyman-α results (Delubac et al. 2015)
are correct. Priors for the spatially flat ΛCDM model are
determined by an identical methodology. Further details are
given in Appendix D.

3 Given the complications introduced by empirical changes (4)

to x1,0, c0, we adopt uniform priors for for these parameters.

4 RESULTS

4.1 Analysis with supernova parameters drawn
from global Gaussian distributions

Since there is a degeneracy between the Hubble constant,
H0, and the magnitude, MB,0, we fix H0 for each model.
The value of MB,0 then depends on this choice. We are then
left with one free cosmological parameter, the matter den-
sity parameter ΩM0 in the spatially flat ΛCDM model, and
the present epoch void fraction fv0 in the timescape model.
We can alternatively define an effective “dressed matter
density parameter” ΩM0 = 1

2
(1 − fv0)(2 + fv0) (Wiltshire

2007a, 2009), which takes similar numerical values to the
concordance ΛCDM model, allowing likelihood functions to
be plotted on the same scale. (This parameter does not obey
the Friedmann equation sum rule, however.) The 9 parame-
ters {ΩM0, α, x1,0, σx1,0 , β, c0, σc0 ,MB,0, σMB,0

} are then fit
for each model by determining the likelihood function with
all parameters other than ΩM0 (or fv0) treated as nuisance
parameters. The empty universe has 8 parameters since
ΩM0 = 0.

4.1.1 Statistical homogeneity scale cuts

An important systematic issue in the timescape cosmology
is the fact that an average expansion law only holds on scales
greater than the statistical homogeneity scale (SHS) >∼ 70–

120h−1Mpc (Hogg et al. 2005; Scrimgeour et al. 2012). This
corresponds to a CMB rest frame redshift of order z∼ 0.023–
0.04. In fact, SneIa analyses using the MLCS method have
typically excluded SneIa below a cutoff at z = 0.024 (Riess
et al. 2007). However, the JLA catalogue (Betoule et al.
2014) includes 53 SneIa, with z < 0.024.

Following Smale & Wiltshire (2011) we determine cos-
mological model distances in the CMB frame, but make a
redshift cut at the SHS, taken at ∼ 100h−1Mpc. Further-
more, to examine the effect of the SHS cut on the fit of
light-curve parameters, we perform the entire analysis while
progressively varying the minimum redshift in the range
0.01 ≤ zmin < 0.1; i.e., up to a redshift 3 times larger than
the SHS. Systematic effects associated with the SHS can
then be revealed. Our key results will be quoted for a cut at
zSHS = 0.033 in the CMB rest frame. The best-fitting MLE
parameters with zmin = 0.033 are presented in Table 2.

For the priors given in Table 1 the Bayesian evidence
in favour of the timescape model relative to the spatially
flat ΛCDM model is lnB = 0.085± 0.01 with zmin = 0.033,
or lnB = 0.600 ± 0.007 with zmin = 0.024. Since | lnB| <
1 the two models4 are statistically indistinguishable. This
conclusion is insensitive to O(1σ) changes to the width of
the uniform priors on fv0 and ΩM0, or to variations of the
minimum redshift as shown in Fig. 2(e).

While the Bayes factors do not show significant vari-
ation with zmin, the values of particular best-fitting light-
curve parameters show a marked change at the SHS. As

4 Both models have positive relative Bayesian evidence compared
to the empty model. Although the evidence is not particularly

strong, | lnB2| ∼ 2.2 incorporates priors which demand standard
recombination for both ΛCDM and timescape. By that criterion

the empty model is simply ruled out.

MNRAS DOI: 10.1093/mnras/stx1858, (2017)



6 Dam, Heinesen & Wiltshire

Model ΩM0 α x1,0 σx1,0 β c0 σc0 MB,0 σMB,0

Timescape 0.309
+0.070 (1σ) 0.127 (2σ)
−0.088 (1σ) 0.210 (2σ)

0.134 0.1050 0.899 3.13 -0.0211 0.0689 -19.1 0.104

Spatially flat ΛCDM 0.365
+0.033 (1σ) 0.066 (2σ)
−0.031 (1σ) 0.060 (2σ)

0.134 0.1061 0.899 3.14 -0.0215 0.0688 -19.0 0.104

Empty universe − 0.133 0.1013 0.900 3.13 -0.0204 0.0690 -19.0 0.106

Table 2. Best-fitting MLE parameters corresponding to the likelihood L(Data|M) with the model M representing the cosmological
model, the SALT2 procedure and the intrinsic distributions of SneIa parameters. SneIa at redshifts z < 0.033 (statistical homogeneity

scale) are excluded. Confidence limits are given for the one free cosmological parameter. In the timescape case this corresponds to

fv0 = 0.778
+0.063 (1σ) 0.155 (2σ)
−0.056 (1σ) 0.104 (2σ)

. The value of MB,0 is obtained for h = 0.668 for the timescape, and h = 0.7 for the two FLRW models.

The difference of parameters from NGS16 is principally due to the SHS cut at zmin = 0.033, the effect of which is seen in Fig. 2.

shown in Fig. 2, there is a marked 30% jump in c0 as zmin

is varied from 0.01 up to z ' 0.033, when compared to the
subsequent fluctuations if zmin is increased up to 0.1. For
x1,0 there is a similar jump, although a linear trend remains
in the range 0.033 < zmin < 0.1. The parameter β parameter
shows a small (3%) jump up to the SHS followed by ±1%
fluctuations, while α remains relatively constant, fluctuating
by ±2% over the whole range.

Since the light-curve parameters are remarkably close
for all three cosmologies while showing a jump as the SHS
emerges (distinct from the residual c0 trend for the empty
model with zmin >∼ 0.05) there is clear evidence for some
systematic effect at precisely the scale where we expect it.

4.2 Analysis with linear redshift variation for
mean stretch and colour parameters

Although RH16 considered four distinct subsamples, the
mean stretch parameter actually shows a global increasing
trend in the ΛCDM case evident in (Rubin & Hayden 2016,
Fig. 1, left panels). Our procedure of varying the minimum
redshift cut on the whole sample also isolates any global
trend. Such a trend is indeed evident in Fig. 2(c) beyond
the SHS, with x1,0 increasing 40% as the minimum sample
redshift increases from zmin = 0.033 to zmin = 0.1. Beyond
zmin = 0.034 an equivalent global trend in the mean colour
parameter, c0, is not evident in Fig. 2(d), however, except in
the case of the empty universe, which shows a 13% decrease
in c0 between zmin = 0.034 and zmin = 0.1. A global shift
in x1,0 would seem more consistent with an astrophysical
systematic in the source population, rather than sampling
biases with different thresholds for different samples.

To fully understand the differences that arise on making
the RH16 changes (4), we have also investigated the effect of
adding a smaller number of free parameters, by considering
linear z relations in just one of the parameters x1,0 or c0, and
the difference between global linear relations and a split by
subsamples. The advantage of our fully Bayesian approach is
that not only can we compare the relative Bayesian evidence
for different cosmological models with the same light-curve
parameters, but we can also compare the merits of different
empirical light-curve models. The values of the Bayesian ev-
idence are shown in Table 3, along with a selection of param-
eters. The changes to the parameters α and β are negligible
between models, and are not tabulated. We do not tabulate
all additional (up to 12) parameters for the case of the split
subsamples, but an average.

4.2.1 Stretch parameter x1,0

Consistent with remarks above, relative to the baseline
NGS16 model I, light curve model II provides positive (but
not strong) Bayesian evidence for a global linear trend in
x1,0 independent of cosmological model, with lnB1 = 1.28,
1.34, 1.74 for the timescape, ΛCDM and empty models re-
spectively. The BIC evidence for the same conclusion is very
strong (timescape, ΛCDM models) or strong (empty model).
By contrast model III gives strong evidence | lnB1| > 13
against a split linear law in x1,0 independent of cosmolog-
ical model. The Bayesian penalty for introducing new em-
pirical parameters depends on the choice of the priors, but
our conclusion is robust to reasonable changes. Furthermore,
the frequentist BIC statistic ∆BIC also strongly disfavours
model III relative to models I, II in the ΛCDM and time-
scape cases.

4.2.2 Colour parameter c0

In contrast to the stretch parameter, results involving the
colour parameter vary greatly with cosmological model. De-
spite model IV having the global minimum BIC statistic
for timescape, lnB1 shows no significant evidence5 for any
global linear redshift law. Relative Bayesian evidence for a
split linear law in c0 is marginal for timescape, positive for
the empty universe, and strong for ΛCDM, with lnB1 =
-0.91, -1.66 and -3.47 respectively.

The original RH16 model VII suffers similar problems
to model III in terms of Bayesian evidence, evidently on ac-
count of the split linear law in x1,0. However, model VIII
has the strongest Bayesian evidence of all models. It adds a
global linear redshift law in x1,0 to model V. The improve-
ment in Bayesian evidence for model VIII relative to model
V is marginal for timescape and the empty universe, and
positive for ΛCDM, with ∆ lnB1 = −0.74, −0.89 and −1.18
respectively.

Although lnB2 for model VIII gives positive (but not
strong) relative evidence for ΛCDM over timescape, any
conclusion drawn from this depends on additional empirical
light-curve parameters which now depend on the cosmologi-
cal model6. Furthermore, since the maximum likelihoods are

5 The empty universe has marginal evidence, consistent with

Fig. 2(d) for zmin > 0.05.
6 Some of the largest differences occur in the SNLS subsample:

c0,ΛCDM = 0.0483 and c0,TS = 0.0565, a 17% difference. For the

NGS16 model, by contrast, differences are 2%.
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Figure 2. MLE best-fitting parameters, and Bayes factor, for the NGS16 model as zmin is varied: (a) α; (b) β; (c) x1,0; (d) c0; (e)

ΩM0 (or fv0) with 1σ bounds; (f) lnB = ln(ETS/Emodel). Vertical dotted lines at zmin = 0.024 and zmin = 0.033 indicate the expected

rough redshift range of an emerging statistical homogeneity scale.

comparable, the difference in Bayesian evidence is primarily
due to the timescape maximum likelihood being driven to
the unphysical limit fv0 → 1 for any light-curve model with
linear variations in c0, as is shown in Fig. 3, which compares

likelihoods in ΩM0 (or fv0) for the NGS16 and RH16 models
for two choices of zmin.

Very similar results were found by Smale & Wiltshire
(2011) in applying SALT2 without the methodology of
NGS16, leading to a large discrepancy in the predictions of
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Timescape k ΩM0 〈x1,0〉 〈c0〉 〈xz〉 〈cz〉 BIC ∆BIC lnE Cb lnB1 fv0

I (NGS16) 9 0.309 0.105 -0.021 -185.0 80.38 8.53 0.778

II 10 0.278 -0.073 -0.021 0.511 -199.6 -14.6 81.67 9.28 -1.28 0.802
III 15 0.278 -0.183 -0.021 0.806 -169.9 15.1 66.46 14.11 13.93 0.801

IV 10 0.000 0.104 0.002 -0.065 -249.9 -64.9 78.52 9.19 1.86 1.000

V 15 0.010 0.092 0.054 -0.351 -157.7 27.3 81.29 14.15 -0.91 0.993
VI 11 0.000 -0.071 0.001 0.499 -0.062 -189.7 -4.7 79.35 10.21 1.94 1.000

VII (RH16) 21 0.000 -0.123 0.054 0.490 -0.348 -200.0 -15.0 65.85 19.47 14.53 1.000

VIII 16 0.000 -0.085 0.061 0.501 -0.348 -229.3 -44.3 82.03 15.30 -1.65 1.000

Flat ΛCDM k ΩM0 〈x1,0〉 〈c0〉 〈xz〉 〈cz〉 BIC ∆BIC lnE Cb lnB1 lnB2

I (NGS16) 9 0.365 0.106 -0.021 -192.5 80.30 8.93 0.08
II 10 0.353 -0.069 -0.021 0.503 -241.2 -48.7 81.64 10.01 -1.34 0.03

III 15 0.353 -0.186 -0.021 0.847 -159.8 32.7 66.62 14.60 13.68 -0.16

IV 10 0.303 0.106 -0.002 -0.057 -192.9 -0.4 79.60 9.98 0.70 -1.08
V 15 0.296 0.093 0.052 -0.354 -228.5 -36.0 83.77 14.87 -3.47 -2.47

VI 11 0.292 -0.069 -0.002 0.501 -0.057 -179.1 13.4 80.87 10.97 2.89 -1.52

VII (RH16) 21 0.286 -0.127 0.051 0.534 -0.352 -155.3 37.2 68.97 20.58 11.33 -3.12
VIII 16 0.286 -0.080 0.059 0.499 -0.354 -232.8 -40.3 84.95 15.89 -4.65 -2.92

Empty k ΩM0 〈x1,0〉 〈c0〉 〈xz〉 〈cz〉 BIC ∆BIC lnE Cb lnB1 lnB2

I (NGS16) 8 - 0.101 -0.020 -181.5 78.18 8.11 2.20

II 9 - -0.078 -0.019 0.517 -190.1 -8.6 79.92 9.02 -1.74 1.75
III 14 - -0.095 -0.020 0.749 -218.9 -37.4 64.43 13.75 13.76 2.03

IV 9 - 0.098 0.002 -0.054 -185.7 -4.2 78.56 9.05 -0.37 -0.03

V 14 - 0.087 0.054 -0.336 -180.4 1.1 79.85 14.19 -1.66 1.45
VI 10 - -0.072 0.002 0.489 -0.051 -186.3 -4.8 79.62 10.17 0.23 -0.27

VII (RH16) 20 - -0.122 0.054 0.460 -0.332 -198.7 -17.2 64.31 18.68 13.88 1.55

VIII 15 - -0.081 0.061 0.482 -0.334 -221.4 -39.9 80.74 14.89 -2.55 1.30

Table 3. Selected parameters fit for zmin = 0.033, with the following empirical models for light-curve parameters: (I) constant x1,0,

constant c0; (II) global linear x1,0, constant c0; (III) split linear xI,1,0, constant c0; (IV) constant x1,0, global linear c0; (V) constant

x1,0, split linear c0,I ; (VI) global linear x1,0, global linear c0; (VII) split linear x1,0, split linear c0; (VIII) global linear x1,0, split linear

c0. Notes: k ≡ number of free parameters; quantities 〈Φ〉 ≡ (
∑
NI ΦI)/(

∑4
I=1 NI) denote an average over subsamples with I = 1 . . . 4

for x1,0,I , c0,I and I = 1 . . . 3 for xz,I , cz,I for split models or 〈Φ〉 ≡ Φ otherwise; BIC = Bayesian Information Criterion; E = Bayesian

evidence; Cb = Bayesian complexity; ∆BIC = BICmodel −BICI and lnB1 = ln(EI/Emodel) are evaluated with cosmological model fixed;

lnB2 = ln(ETS/Emodel) is evaluated with light-curve model fixed.

the SALT2 and MLCS2k2 fitters for timescape. Since direct
application of the NGS16 methodology to the JLA catalogue
agrees with some previous MLCS2k2 fits to smaller data sets
(Leith et al. 2008; Smale & Wiltshire 2011), we conclude that
systematics similar to linear redshift variations in c0 may be
the key to earlier discrepancies.

4.2.3 Cosmological model dependency of linear redshift
changes to SALT2 methodology

To understand the origin of such differences consider the
Taylor series expansions (A13)–(A15) for the timescape, spa-
tially flat ΛCDM and empty universe models, as given in
Appendix A. Leading coefficients for (A13) and (A14) are
shown graphically in Fig. 4 as a function of the free cosmo-
logical parameter.

All cosmologies show improvement to a global increase
in x1,0 with redshift and piecewise decreases in c0, includ-
ing the empty model which has no free parameter to adjust.
However, if we incorporate linear corrections xzz to x1,0,
or czz to c0, in the SALT2 relation, then the difference of

(2) and (A13)–(A15) gives a potential degeneracy between
empirical parameters xz or cz and changes in the free cos-
mological parameter if the linear term in (A13)–(A15) can
be changed without greatly altering the next most impor-
tant O(z2) term. Such a possibility is admitted by ΛCDM
but not timescape.

For ΛCDM, the O(z) term in (A14) is linear in ΩM0,
and the O(z2) term is quadratic in ΩM0 with a minimum
at ΩM0 = 8

27
= 0.296. For model V with split linear red-

shift laws in c0 only, the best-fitting ΩM0 coincides pre-
cisely with this minimum. The decrease in ΩM0 by adding
a global linear z dependence to x1,0 is approximately the
same, ∆ΩM0 = −0.01, in going from model V to VIII, or
from model I to II. The difference in (A14) between models
I and VII/VIII,

µΛCDM(0.286)− µΛCDM(0.365) = 0.1287 z − 0.0085 z2

− 0.0481 z3 + 0.0249 z4 + 0.0161 z5 − 0.0232 z6 + . . .
(9)

is dominated by the linear redshift changes, with negligible
changes in the O(z2) term.
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Figure 3. Profile likelihoods in ΩM0 and fv0 for model I (NGS16) and model VII (RH16): (a) NGS16, zmin = 0.024; (b) NGS16,

zmin = 0.033; (c) RH16, zmin = 0.024; (d) RH16, zmin = 0.033. Model IV, V, VI and VIII results are very similar to model VII.

By contrast the terms in the Taylor series (A13) for
timescape are very slowly varying monotonic functions of
fv0 on the range 0.6 < fv0 ≤ 1.0 (as shown in Fig. 4), so
changes in µTS are much more constrained. The difference
in (A13) between models I and VII/VIII, is

µTS(1.0)− µTS(0.778) = 0.0674 z + 0.0444 z2

− 0.0242 z3 + 0.0190 z4 − 0.0193 z5 + 0.0173 z6 + . . .
(10)

A large change in fv0 is required make changes in µTS com-
parable to the ΛCDM case, and the effect of increasing fv0

increases both the O(z) and O(z2) terms. As seen in Fig. 5,
the likelihood is consequently peaked along narrow ridges
in the (xz,fv0) and (cz,J ,fv0) planes, with almost constant
values of xz and cz,J and no upper bound on fv0.

5 DISCUSSION

Our study has a number of important consequences. Firstly,
the timescape and spatially flat ΛCDM model luminosity
distance–redshift fits to the JLA catalogue are statistically

indistinguishable using either the approach of NGS16, or
with modifications to only the mean stretch parameter. As
shown in Table 3 the Bayesian complexity, Cb, is lower (bet-
ter) for timescape than for ΛCDM, for every choice of light-
curve model.

This completely reframes a debate (Nielsen et al. 2016;
Rubin & Hayden 2016; Shariff et al. 2016; Haridasu et
al. 2017; Tutusaus et al. 2017) about whether cosmic ac-
celeration is marginal or not, within the confines of a
FLRW expansion history. Current supernova data does
not distinguish between the standard ΛCDM model and
the non-FLRW expansion history of the timescape model,
which has non-zero apparent cosmic acceleration but with
a marginal amplitude. The apparent deceleration parameter
(A12) for the best-fitting value of Table 2 is q0 ≡ q(fv0) =
−0.043+0.004

−0.000.

Within the class of FLRW models the significance of
cosmic acceleration is often assessed by comparison to the
empty universe model. That model is unphysical, since stan-
dard nucleosynthesis and recombination can never occur
in a universe with a(t) ∝ t regardless of its matter con-
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Figure 4. Coefficients in the Taylor series (A13), (A14), µ = µ0(z)+
∑
n=1 µnz

n, of the spatially flat ΛCDM and timescape models, as a

function of the free cosmological parameter, ΩM0 or fv0. For timescape the coefficients µTS,n are very slowly varying monotonic functions
of fv0 on the range 0.6 < fv0 ≤ 1, whereas the coefficients µΛCDM,n are polynomials of order n. For each n, |µTS,n| < |µΛCDM,n|,
reflecting the “flatter” distance modulus (cf. Fig. 1). Linear changes of ΩM0 can become degenerate with empirical light-curve parameters

linear in z for parameters close to the minimum of µΛCDM,2 at ΩM0 = 0.296. The change in the coefficients between NGS16 model I
and models VII/VIII is indicated.

tent.7 The timescape model has positive lnB2 compared to
the empty universe.8 Nonetheless, |µTS(z) − µempty(z)| <
|µΛCDM(z) − µempty(z)| (c.f. Fig. 1) at late epochs, for a
simple physical reason. The timescape model is void dom-
inated at z < 1, and the expansion of individual voids is
close to an empty universe. While the timescape model has
apparent acceleration at late epochs, its expansion law is
closer to that of an empty universe than that of the ΛCDM
model.

The second important consequence of our study is that
allowing linear changes with redshift to the mean colour pa-
rameter, c0, produces cosmological model dependency. Since
the redshift–distance relation of the timescape model effec-
tively interpolates (Wiltshire 2009, 2014) between those of
spatially flat ΛCDM models with different values9 of ΩM0,

7 In particular, the Rh = ct model is unphysical for this reason

(Lewis, Barnes & Kaushik 2016).
8 This is true for the NGS16 model I and all light-curve models
for which lnB1 shows an improvement independent of cosmology,

viz. models II, V, VIII.
9 Note that the Planck best-fitting value ΩM0 = 0.3175 (Ade et
al. 2016) is lower than the best-fitting value for the spatially flat
ΛCDM model value ΩM0 = 0.365 from Table 2, consistent with

the timescape expectation.

particular care must be taken with piecewise linear relations
in redshift.

The improved 16 parameter model VIII (this being
a better fit than the original 21 parameter RH16 model)
has positive Bayesian evidence for ΛCDM relative to the
timescape model. However, this is contingent on degenera-
cies in the likelihood function between the free cosmological
parameter and additional empirical parameters. The RH16
parametrization allows the ΛCDM deceleration parameter
q0 = −1 + 3

2
ΩM0 contained in the O(z) term of the Tay-

lor series (A14) to be adjusted10 near the global minimum
ΩM0 = 0.296 of the O(z2) term in (A14). However, the same
procedure drives the timescape free parameter to an unphys-
ical limit, fv0 → 1. No fundamental model underlies the em-
pirical parametrization (4). Variations in c0 are most plau-
sibly related to selection effects, given we cannot fit them
by a global law. However, selection effects would be more
correctly modelled by removing the tail of a Gaussian dis-
tribution rather than shifting its mean linearly in redshift.

10 For the NGS16 model I and models VII/VIII one has best
fits q0 = −0.453 and q0 = −0.571 respectively. The respective

spatially flat ΛCDM values quoted by Rubin & Hayden (2016),
namely q0 = −0.412, −0.552, (or ΩM0 = 0.392, 0.299), differ

mostly on account of our SHS cut at zmin = 0.033.
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Figure 5. Likelihood function contours for model VIII with zmin = 0.033 projected in the planes: (a) (xz ,ΩM0); (b) (cz,1,ΩM0) (SNLS

sample, mean redshift 〈z〉 = 0.636); (c) (cz,2,ΩM0) (SDSS sample, mean redshift 〈z〉 = 0.199); (d) (cz,3,ΩM0 (low z sample with

z > 0.033, mean redshift 〈z〉 = 0.0495). 67.3%, 95.5%, and 99.7% confidence contours are shown. In panel (a) xz contours for model
II are also shown to demonstrate the effect of adding the cz,J parameters. For spatially flat ΛCDM the maximum likelihood is driven

to the vicinity of the minimum ΩM0 = 8
27

of the O(z2) Taylor series term (A14). The timescape Taylor series (A13) consists of slowly

varying monotonic functions of fv0, and the maximum likelihood is driven to the edge of parameter space, fv0 → 1.

Our results show that NGS16 did not account for ev-
ery possible selection bias that remains in the JLA cata-
logue, consistent with some comments of RH16. Nonethe-
less, NGS16 are correct to point out the possible pitfalls in
fitting SneIa data when empirical light-curve parameters are
mixed with the cosmological parameters of a single class of
cosmological models. If SneIa are to be used to distinguish
cosmological models, then systematic uncertainties and se-
lection biases should be corrected in as model independent
manner as possible before the data is reduced.

A related issue which remains to be explored is the ex-
tent to which the corrections for selection biases that have
already been made in the JLA catalogue depend on the
FLRW model. Betoule et al. (2014) follow a procedure of
Mosher et al. (2014, Sec. 6.2), who used the SNANA pack-
age to estimate selection biases. Simulated data (using the
FLRW model) is used in such estimates. While efforts have
been made to consider different dark energy equations of

state (Mosher et al. 2014), models which do not satisfy the
Friedmann equation fall outside the scope of such analyses.

Whether or not the timescape model is ultimately a
better fit than the standard FLRW model, it may provide a
useful diagnostic tool in comparing methods for SneIa light-
curve reduction purely at the empirical level. In particular, it
has an analytic non-FLRW redshift–distance relation which
is very close to that of the ΛCDM model, but which is con-
siderably more constrained in the free parameter fv0 than
the ΛCDM model is in ΩM0.

Finally, Figs. 2(b),(c),(d) show evidence for a '
100h−1Mpc statistical homogeneity scale which has an ef-
fect on global fits of light-curve parameters – most notably
a 30% shift of c0 – independent of the cosmological model.
These systematics, which occur at a scale relevant from in-
dependent observations (Hogg et al. 2005; Scrimgeour et al.
2012), must be explained irrespective of the cosmological
model.
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APPENDIX A: LUMINOSITY DISTANCES IN
THE FLRW AND TIMESCAPE COSMOLOGIES

We compare SneIa observations to distance moduli (1) for
theoretical luminosity distances determined from the FLRW
and timescape models. Regardless of the matter content of
the universe, the distance modulus for any general FLRW
model can be expanded as a Taylor series of derivatives of
the scale factor a(t) for small redshifts, z. This leads to a
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distance modulus (Visser 2004)

µFLRW = 25 + 5 log
10

(
c z

H0 Mpc

)
+

5

ln 10

{
1
2
(1− q0)z + 1

24

[
9q0

2 − 10q0 − 7− 4j0 − Ωk0

]
z2

+ 1
24

[
s0 + 5− 10q0

3 − 16q0
2 − 9q0 + j0 (8q0 + 7)

− 4Ωk0 (q0 + 1)
]
z3 + . . .

}
, (A1)

where c is the speed of light, and H0, q0, j0, s0 and Ωk0 are
the present values of the Hubble, deceleration, jerk, snap
and spatial curvature parameters: H(t) ≡ a−1∂ta; q(t) ≡
−a−1H−2∂2

t a; j(t) ≡ a−1H−3∂3
t a; s(t) ≡ a−1H−4∂4

t a;
Ωk(t) ≡ −kc2(Ha)−2.

The luminosity distance-redshift relation in the ΛCDM
model is given exactly by

dL =
(1 + z)c

H0

√
|Ωk0|

sinn

√|Ωk0|
1∫

1/(1+z)

dy

H(y)

 ,

H(y) ≡
√

ΩR0 + ΩM0y + Ωk0y
2 + ΩΛ0y

4 ,

sinn(x) ≡


sinh(x), Ωk0 > 0

x, Ωk0 = 0

sin(x), Ωk0 < 0

, (A2)

where ΩR0, ΩM0 and ΩΛ0 are respectively the present epoch
values of the radiation, non-relativistic matter and cosmo-
logical constant density parameters, which at all epochs obey
the Friedmann equation sum rule ΩR + ΩM + Ωk + ΩΛ = 1.
Since ΩR0 = 4.15× 10−5h−2, the radiation term can be ne-
glected on the distance scales of supernovae. Furthermore,
for FLRW models Ωk0 is constrained to be close to zero by
the angular diameter distance of the sound horizon in the
CMB. Thus we will restrict attention to the spatially flat
ΛCDM model, with two effective free parameters, H0 and
ΩM0 ' 1 − ΩΛ0. We use eq. (A2) with Ωk0 = 0, ΩR0 = 0,
for computations but note that in the Taylor series (A1),
q0 = −1 + 3

2
ΩM0, j0 = 1, s0 = 1− 9

2
ΩM0.

We also consider the FLRW model with linear expan-
sion a(t) ∝ t. This solution is obtained by setting Ωk0 = 1,
ΩR0 = ΩM0 = ΩΛ0 = 0 in (A2) or Ωk0 = 1, q0 = j0 = s0 =
· · · = 0 in (A1). Following NGS16 we denote this the empty
universe, but note any matter content is admissible as long
as the luminosity distance is exactly dL = c z(1 + 1

2
z)/H0.

The timescape model (Wiltshire 2007a,b, 2009; Duley
et al. 2013), does not evolve by the Friedmann equation, and
its distance modulus does not yield a Taylor series that co-
incides with (A1) beyond the leading Hubble term. Instead
observables are determined by conformally matching radial
null geodesics of the regional “finite infinity” geometry of
observers in gravitationally bound systems to a statistical
geometry determined by fitting a spherically symmetric met-
ric to a solution (Wiltshire 2007b, 2009; Duley et al. 2013)
of the Buchert equations (Buchert 2000, 2001).

For the purpose of supernova distance analysis, the ra-
diation density parameter (though somewhat differently cal-
ibrated to the CMB (Duley et al. 2013)) is negligible at the
present epoch. To an accuracy of 0.3% the expansion history
at late epochs is then given analytically (Wiltshire 2007b,
2009). The “dressed” luminosity distance, dL, and angular

diameter distance, dA, are given by

dL =(1 + z)2dA, (A3)

dA =c t2/3
∫ t0

t

2 dt′

(2 + fv(t′))(t′)2/3

=c t2/3(F(t0)−F(t)), (A4)

F(t) ≡ 2t1/3 +
b1/3

6
ln

(
(t1/3 + b1/3)2

t2/3 − b1/3t1/3 + b2/3

)
+
b1/3√

3
tan−1

(
2t1/3 − b1/3√

3 b1/3

)
, (A5)

where the volume-average time parameter, t, is defined im-
plicitly in terms of the redshift by

z + 1 =
(2 + fv)fv

1/3

3f
1/3
v0 H̄0t

=
24/3t1/3(t+ b)

f
1/3
v0 H̄0t(2t+ 3b)4/3

, (A6)

b ≡ 2(1 − fv0)(2 + fv0)/(9fv0H̄0), fv0 is the present epoch
value of the void volume fraction,

fv(t) =
3fv0H̄0t

3fv0H̄0t+ (1− fv0)(2 + fv0)
, (A7)

and H̄0 is the “bare Hubble constant” related to the observed
Hubble constant by H̄0 = 2(2+fv0)H0/(4fv0

2+fv0+4). The
parameter t is related to the time parameter, τ , measured
by typical observers in bound structures by

τ = 2
3
t+

2(1− fv0)(2 + fv0)

27fv0H̄0

ln

(
1 +

9fv0H̄0t

2(1− fv0)(2 + fv0)

)
.

(A8)

The effective dressed scale factor a(τ) is given by

a ≡ γ̄−1ā, (A9)

where ā is the bare or volume-average scale factor and γ̄ is
the phenomenological lapse function. These have simple an-
alytic forms in terms of the volume-average time parameter,
t, namely

ā =
ā0

(
3H̄0t

)2/3
2 + fv0

[
3fv0H̄0t+ (1− fv0)(2 + fv0)

]1/3
(A10)

and

γ̄ = 1
2
(2 + fv) =

3(t+ b)

(2t+ 3b)
(A11)

respectively (Wiltshire 2007b, 2009). The bare Hubble pa-
rameter, H̄ ≡ ∂tā/ā, and dressed Hubble parameter, H ≡
∂τa/a, are given respectively by H̄ = (2 + fv)/(3t) and
H =

(
4fv

2 + fv + 4
)
H̄/[2(2 + fv)]. The bare deceleration

parameter, q̄ ≡ −ā−1H̄−2∂2
t ā, is always positive. However,

on account of the different time parameters (A8) the dressed
deceleration parameter inferred by observers in bound sys-
tems, q ≡ −a−1H−2∂2

τa, may change sign from positive to
negative, indicating apparent acceleration. The dressed de-
celeration parameter is given by

q =
− (1− fv) (8fv

3 + 39fv
2 − 12fv − 8)(

4 + fv + 4fv
2
)2 . (A12)

The onset of apparent acceleration is determined by a root
of the cubic in fv in the numerator of (A12), and begins
when fv ' 0.587.
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One may substitute (A3)–(A5) in (1) and then invert (A6) as a series in z using an algebraic computing package to arrive
at a low redshift Taylor series for the distance modulus, µTS, equivalent to (A1) for the FLRW model. The first terms are
given below, along with equivalent expressions for the spatially flat ΛCDM and empty universe models as determined from
(A1):

µTS = µ0(z) +
5

ln 10

{[
24 f4

v0 − 23 f3
v0 + 99 f2

v0 + 8

2 (4 f2
v0 + fv0 + 4)2

]
z ,

−
[

1984 f8
v0 − 4352 f7

v0 + 16515f6
v0 + 14770 f5

v0 + 7819 f4
v0 − 11328f3

v0 + 32080 f2
v0 − 128 fv0 + 960

24 (4f2
v0 + fv0 + 4)4

]
z2 + . . .

}
, (A13)

µΛCDM = µ0(z) + 5
ln 10

{
(1− 3

4
ΩM0)z −

[
1
2

+ 1
2
ΩM0 − 27

32
Ω2
M0

]
z2 +

[
1
3
− 1

8
ΩM0 + 21

16
Ω2
M0 −

45
32

Ω3
M0

]
z3 + . . .

}
(A14)

µempty = µ0(z) + 5
ln 10

{
1
2
z − 1

8
z2 + 1

24
z3 + . . .

}
. (A15)

Here the term µ0(z) ≡ 25 + 5 log
10

[cz/(H0 Mpc)] = 25 + 5 log
10

(2997.9h−1) + 5 log
10
z is common to all models, the Hubble

constant being H0 = 100h km sec−1 Mpc−1.

APPENDIX B: IMPLEMENTATION OF THE
SALT2 METHOD

The SALT relation (2) refers to the actual emitter (em) and
observer (obs), but the luminosity distance relations (A2)
and (A4) refer to ideal observers who determine an isotropic
distance–redshift relation. Consequently, the theoretical re-
lations (A2) and (A4) must be transformed to the frame in-
volving the actually measured redshift ẑ = (λobs−λem)/λem

before the SALT relation is applied. The luminosity distance
entering (1) is then

d̂L(ẑ) =
1 + ẑ

1 + z
dL(z) = (1 + ẑ)D(z), (B1)

where for each cosmological model, D(z) = dL/(1 + z) =
(1 + z)dA is the (effective) comoving distance, and

1 + ẑ = (1 + z)(1 + zpec
obs)(1 + zφobs)(1 + zpec

em )(1 + zφem) (B2)

gives the measured redshift, ẑ, in terms of the cosmological
redshift, z, the local Doppler redshifts of observer, zpec

obs , and
emitter, zpec

em , and gravitational redshifts at the two loca-
tions, zφobs and zφem.

For our observations, ẑ, is the heliocentric redshift as
the Earth’s annual motion is averaged to the rest frame of
the Sun. In the standard cosmology gravitational potential
effects are assumed to be small, and the only relevant terms
on the r.h.s. of (B2) are assumed to be local boosts of order
v/c∼ 10−3. This leads to 0.1% corrections to the luminosity
distance which are often neglected. However, as noted by
Calcino & Davis (2017) differences of 0.1% in dL lead to
order 1% corrections to cosmological parameters, which we
have confirmed in our analysis.

In the timescape model, as in any inhomogeneous cos-
mology, expansion below the ∼ 100h−1Mpc SHS will gener-
ally differ from that of a global average geometry plus lo-
cal boosts. Equivalently, very slowly varying time-dependent
gravitational potentials also make a contribution to (B2).
Such terms encode non-kinematic differential expansion
(Bolejko, Nazer & Wiltshire 2016) from inhomogeneities be-
low the SHS. Spatial variations in the term zφem may have
significant consequences for interpreting the local “peculiar
velocity field” for sources within <∼ 100h−1Mpc of our loca-
tion (Wiltshire et al. 2013; McKay & Wiltshire 2016) but any

net anisotropy on SneIa redshifts on larger scales should only
make a small correction to the standard boost between the
heliocentric and CMB frames. Indeed, it could be a source
for a small systematic redshift uncertainty of the type con-
sidered by Calcino & Davis (2017). However, we do not in-
vestigate that possibility in the present paper as the RH16
empirical light-curve models we study are already very com-
plex. The peculiar velocity and gravitational potential terms
in (B2) that we are unable to determine will be assumed to
contribute to statistical uncertainties in measured redshifts
only.

We therefore compute cosmological luminosity dis-
tances is the CMB rest frame, exclude data below the SHS,
and study the effect of different choices for this cutoff.11 Fur-
thermore, we apply the SALT2 relation in the heliocentric
frame using the values tabulated in the JLA catalogue (Be-
toule et al. 2014), and calculate the corresponding CMB rest
frame redshifts ourselves.12

We do not use the JLA tabulated CMB frame redshifts
(Betoule et al. 2014) since in addition to our zpec

obs correction,
these values also already include a correction, zpec

em , for the
peculiar velocity field (Hudson et al. 2004; Conley et al.
2011) of galaxies up to z = 0.071, implicitly assuming the
FLRW model.

APPENDIX C: MODEL COMPARISON

C1 Frequentist approach

We are interested in the dependence of the likelihood (7) on
the model parameters, Θ. We write L(Θ) ≡ L(Data|Θ,M).

11 Since we do not constrainH0, we do not specifically investigate

the relationship between light-curve parameters and determina-
tions of the local Hubble constant, which have been discussed in

the past (Jha et al. 2007; Conley et al. 2007; Hicken et al. 2009;

Smale & Wiltshire 2011; Wiltshire et al. 2013; McKay & Wilt-
shire 2016). In the timescape model higher average values of H0

are expected below the SHS.
12 We use the NASA/IPAC Extragalactic Database standard,
371 km sec−1 in the direction (`, b) = (264.14◦, 48.26◦) (Fixsen

et al. 1996).
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We are interested in a subset of parameter-space Θ1 ⊂
Θ, for which we construct a profile likelihood Lp(Θ1) ≡
maxΘ2 [L(Θ)], where maximization is over the nuisance pa-
rameters Θ2 = Θ \ Θ1. In our case Θ1 is usually the free
parameter(s) of the cosmological model, and Θ2 the intrin-
sic supernovae parameters and the empirical parameters, α,
β, of the light-curve fitter.

Confidence regions for the parameters of interest are es-
timated from the coverage probability pcov of a region in the
k-dimensional slice of parameter space, k ≡ dim Θ1, given
asymptotically by the integral

pcov(region) =

∫ −2 ln(Lp(Θ1)/Lmax)

0

fχ2(Θ′1, k)dΘ′1 (C1)

where Lmax ≡ maxΘ1
[Lp(Θ1)], and fχ2(x, k) is the proba-

bility density function of a χ2 distributed variable with k
degrees of freedom. Having constructed confidence intervals
from (C1), one can compare nested models.

Since we wish to compare independent non-nested mod-
els,13 we need to go beyond the procedure of (C1). The
Akaike Information Criterion (AIC) (Akaike 1974) and
Bayesian Information Criterion (BIC) (Schwarz 1978) are
two widely used measures of the relative information loss
for non-nested models, given respectively by

AIC = 2k − 2 ln (Lmax) (C2)

BIC = k lnN − 2 ln (Lmax) (C3)

where k is the number of independent model parameters,
and N the number of data points fit. The AIC estimate
of relative probability of minimal information loss for two
models is PAIC ≡ exp

[
− 1

2
(AIC1 −AIC2)

]
, and similarly

for BIC. The BIC gives a greater penalty for introducing
additional parameters than AIC if N ≥ 8. Differences of at
least 2, 6 and 10 are considered to be respectively ‘positive’,
‘strong’ and ‘very strong’ evidence (Kass & Raftery 1995)
for the model with the lower IC value. Both tests reduce to
a maximum likelihood comparison when k1 = k2, as is the
case for the timescape and spatially flat ΛCDM models.

C2 Bayesian approach

The frequentist methods place emphasis on the maximum
likelihood, which is of limited use. We therefore perform a
fully Bayesian analysis of the JLA data set to determine the
relative statistical support for each cosmological model, as
well as for the introduction of additional redshift dependent
light curve parameters.

Given data, D, and a model, M, determined by a set
of n parameters Θ = (θ1, θ2, . . . , θn), by Bayes theorem the
posterior probability distribution, p(Θ|D,M), is given by

p(Θ|D,M) =
L(Θ)π(Θ|M)

p(D|M)
, (C4)

where L(Θ) ≡ p(D|Θ,M) is the likelihood, π(Θ|M) is the
prior distribution and p(D|M) is the Bayesian evidence. The

13 We note that only models II, IV, VI are extensions of the 9
parameter base model, i.e., model I is nested in II, IV and VI,
while II and IV are nested models of VI. Model V is nested in
model VIII.

prior represents a subjective initial state of belief in the pa-
rameters based on external information or previous experi-
ments, while the evidence is a normalization constant,

E ≡ p(D|M) =

∫
L(Θ)π(Θ|M) dΘ, (C5)

to ensure the posterior is a probability distribution. It is
independent of parameters and as such does not play a role
in parameter estimation, but becomes important for model
comparison.

Given two models, M1 and M2, for the same data D,
the Bayes factor (Kass & Raftery 1995)

B ≡ E1

E2
=
p(D|M1)

p(D|M2)
, (C6)

gives a measure for which model is more probable in view of
the data. The Bayes factor implicitly applies the principle of
Occam’s razor14 with a penalty for adding extra parameters.
This makes model selection natural in the Bayesian frame-
work. Values of B > 1 indicate preference for model 1, B < 1
for model 2. On a standard scale, evidence with | lnB| < 1
is ‘not worth more than a bare mention’ (Kass & Raftery
1995) or ‘inconclusive’ (Trotta 2007), while 1 ≤ | lnB| < 3,
3 ≤ | lnB| < 5 and | lnB| ≥ 5 indicate ‘positive’, ‘strong’
and ‘very strong’ evidences respectively (Kass & Raftery
1995).

In the Bayesian approach the nuisance parameters are
marginalized over, i.e., integrated out from the posterior
p(Θ|D,M). E.g., the marginal posterior of θ1 is obtained
from the n-dimensional posterior by

p(θ1|D,M) =

∫
p(θ|D,M) dθ2 dθ3 . . .dθn, (C7)

and from this 1-dimensional distribution parameter infer-
ences can be made. The posterior mean value is given by

θ̄1 =

∫
θ1 p(θ1|D,M) dθ1, (C8)

and more generally

f̄ =

∫
f(θ1) p(θ1|D,M) dθ1, (C9)

for some parameter dependent quantity f . Credible inter-
vals, or uncertainties in parameters, can also be obtained
from the marginal posterior. E.g., a 68% equal-tailed credi-
ble interval is defined in such a way that (1−0.68)/2 = 0.16
of the probability lies on either side of the interval.

In cases where the Bayes factor is close to unity giving
no clear preference for either model, the Bayesian complexity
(Spiegelhalter et al. 2002) can provide a secondary measure
to the model selection process. It is defined as

Cb ≡ −2
(
DKL(p, π)− D̂KL

)
, (C10)

where

DKL(p, π) ≡
∫
p(Θ|D,M) ln

[
p(Θ|D,M)

π(Θ|M)

]
dΘ, (C11)

14 The AIC and BIC statistics also include a penalty using simple
approximations to Bayesian methods which derive from different

assumptions about the priors. The factor of two difference in the
IC evidence scale (Kass & Raftery 1995) reflects the factor of 2

multiplying ln (Lmax) in the definitions (C2), (C3).
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is the Kullback-Leibler divergence measuring the information
gain of the inference, and D̂KL is a point estimator evaluated
at the posterior mean Θ̄ measuring the expected information
gain:

D̂KL ≡ p(Θ̄|D,M) ln

[
p(Θ̄|D,M)

π(Θ̄|M)

]
= lnL(Θ̄)− ln p(D|M),

(C12)

where we have used Bayes theorem in the second equality.
As the data may not be able to constrain all parameters,
the Bayesian complexity determines the effective number
of parameters supported by the data. Thus for models with
| lnB| < 1, the model with the lower Cb indicates the simpler
model and is therefore preferred. By defining the effective
chi-squared χ2(Θ) ≡ −2 lnL and invoking Bayes theorem
(C4), we can rewrite (C10) as

Cb = χ2(Θ)− χ2(Θ̄), (C13)

with χ2 being the posterior mean of χ2.

APPENDIX D: COSMOLOGICAL MODEL
PRIORS

We construct priors for the timescape model (Wiltshire
2007a,b, 2009; Duley et al. 2013) based on CMB and BAO
observations, to the best of our knowledge. We will also
construct equivalent priors for the ΛCDM model based on
the same assumptions. The resulting priors are wider than
in conventionally assumed, but do not unfairly weight a
Bayesian comparison by integrating the ΛCDM model like-
lihood function over a narrow parameter range as compared
to the timescape case.15

D1 CMB acoustic scale constraint

In the case of the CMB, a cosmology independent analy-
sis of the angular scale and heights of the acoustic peaks
has been undertaken by Aghamousa et al. (2015) from the
Planck data. We use the information resulting from the an-
gular scale of the acoustic peaks alone. The angular scale
depends on the angular diameter distance of the sound hori-
zon alone, which is constrained in the timescape model. By
contrast, the relative peak heights are related to the baryon–
to–photon ratio, ηBγ , and the spectral index, ns, which are
parameters with the largest systematic uncertainties in the
timescape case.

A non-parametric fit of the acoustic scale alone gives
286 ≤ `A ≤ 305 at 95% confidence (Aghamousa et al. 2015).
Our CMB prior is then determined by demanding that the
angular diameter distance of the sound horizon at decou-
pling matches the corresponding angular scale θA = π/`A;
i.e., 0.01030 ≤ θA ≤ 0.01098. In earlier work (Leith et al.

15 If we were to use conventional narrower priors for ΛCDM then

the timescape model is either unfairly advantaged or disadvan-
taged, depending on whether the maximum likelihood lies within

the range of the narrower prior or not. For the NGS16 model, for

example, this is not the case for the spatially flat ΛCDM model,
and the timescape model is unfairly advantaged. For model VIII

the situation is reversed.

2008; Smale & Wiltshire 2011; Duley et al. 2013), given
that non-parametric fits had not been performed, we had
demanded a match to the FLRW parametric estimate of the
acoustic scale θA = 0.01041 to within 2%, 4% or 6%. The
non-parametric fit represents a considerable improvement,
particularly since the FLRW model value is not in the mid-
range of the non-parametric 95% confidence interval.

To constrain the angular diameter distance of the sound
horizon dA dec = D̄s(zdec)/θA in the timescape model, we de-
termine the redshift of decoupling, zdec, and the comoving
distance of the sound horizon D̄s at that epoch (Duley et al.
2013; Nazer & Wiltshire 2015), which require the baryon–to–
photon ratio to be specified. In the FLRW model this ratio is
very tightly constrained by the ratio of CMB peak heights,
as first measured by WMAP (Bennett et al. 2003). However,
to achieve a similarly precise constraint in the timescape
model we would need to include backreaction in the primor-
dial plasma (Nazer & Wiltshire 2015), which is beyond the
scope of current investigations. In previous work (Duley et
al. 2013; Leith et al. 2008; Smale & Wiltshire 2011) we used a
range of pre-WMAP baryon–to–photon ratios (Tytler et al.
2000), 4.6 < 1010ηBγ < 5.6, for which all light element abun-
dance measurements are within 2σ, i.e., with no primordial
lithium abundance anomaly. In the present analysis, we wish
to use the same priors on ηBγ for both the timescape and
ΛCDM models, and thus need to include the standard model
value ηBγ = 2.736 × 10−8ΩM0h

2 = (6.08 ± 0.07) × 10−10

for which the primordial lithium abundance is problematic.
We therefore adopt the more conservative pre-WMAP range
given by Olive et al. (2000), namely 4.2 < 1010ηBγ < 6.3.

D2 Baryon Acoustic Oscillation constraints

Determinations of the BAO scale from galaxy clustering at
low redshifts and Lyman alpha forest statistics at z = 2.34
provide complementary constraints on the expansion his-
tory. In previous work (Duley et al. 2013; Leith et al. 2008;
Smale & Wiltshire 2011) we simply demanded that the time-
scape effective comoving BAO scale match a single estimate
determined from the FLRW cosmology to within ±2%, ±4%
or ±6%, which was a crude method but the best available
given the earlier precision of measurements. The number and
precision of measurements has now improved.

For the present investigation, we have considered esti-
mates of the BAO scale at different redshifts (Delubac et
al. 2015; Aubourg et al. 2015; Alam et al. 2017) using the
best available data from the BOSS survey. Unfortunately
the standard FLRW cosmology plays an implicit role in the
data reduction, and limits the extent to which bounds can
be placed on non-FLRW models. The systematic issues can
be most directly understood by noting that the BAO scale is
determined separately in the angular and radial directions,
by converting angular separations and redshift separations
in the galaxy–galaxy correlation function into the displace-
ments

α⊥ =
[dA(z)/rd]

[dA(z)/rd]fid

and α‖ =
[dH(z)/rd]

[dH(z)/rd]fid

(D1)

where rd is the present comoving scale of the sound horizon
at the baryon drag epoch, dH(z) ≡ c/H(z), and the sub-
script “fid” refers to quantities computed in a fiducial FLRW
model that is used to convert the raw angular and redshift
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Figure D1. Cosmological parameter constraint priors from on the timescape model (left panel) and the spatially flat ΛCDM model
(right panel). Independent 2σ constraints are determined for: (i) the angular scale of sound horizon in the CMB (contours from top left

to bottom right); (ii) the fit of the angular BAO scale from BOSS galaxies at low redshift (contours from bottom left to top right); (iii)

the angular BAO scale from one measurement of the Lyman-α forest at z = 2.34 (wide contours). A range of possible baryon–to–photon
ratios are allowed, with the extremes indicated. The joint confidence region is determined by applying the CMB constraint and allowing

one or other BAO constraint.

displacements into 3-dimensional comoving space. (Here we
neglect the effect of redshift–space distortions which are also
often modelled with N -body Newtonian simulations based
on the ΛCDM model.)

The conversion to 3-dimensional comoving space can be
problematic for a non-FLRW model. While use of purely an-
gular results should pose no problems for the timescape cos-
mology, the conversion of redshift increments to a radial co-
moving distance involves different assumptions about spatial
curvature in the FLRW and timescape models. One could
in principle use the values determined by a fiducial ΛCDM
model (Delubac et al. 2015; Aubourg et al. 2015; Alam et al.
2017) to recompute the radial comoving distance except for
an additional problem: in particular redshift ranges the rela-
tive Alcock–Paczyński factor

[
α⊥/α‖

]
ΛCDM

/
[
α⊥/α‖

]
TS

=

[H(z)dA(z)]
ΛCDM

/ [H(z)dA(z)]
TS

between a fiducial ΛCDM
model and the timescape model varies over the redshift slices
∆z∼ 0.2 used in the BOSS survey (Alam et al. 2017) by
an amount similar in magnitude to the uncertainty. Conse-
quently, to have any confidence in radial measurements, one
really needs to recompute the radial BAO scale from the raw
data assuming a fiducial timescape model. That is beyond
the scope of the present paper.

For the present analysis we will consequently restrict
constraints on the BAO scale to 2σ bounds obtained from
the angular estimates of BOSS data (Alam et al. 2017) at
low redshifts 0.38 <∼ z <∼ 0.61 and in the Lyman-α forest
(Delubac et al. 2015) at z = 2.34. In the former case, the ra-

dial and angular measurements are actually also somewhat
correlated. Consequently, and also in view of the fact that
the measurements at low and high redshifts are in tension
in the ΛCDM model, we will take bounds that result from
the union of the constraints at low and high redshifts, rather
than their intersection. In practice, the bounds are mostly
set by the Lyman-α measurement since it has a much larger
uncertainty.

D3 Joint constraints

The joint 2σ confidence regions from applying the CMB con-
straint and either the low-z or z = 2.34 BAO constraint
is shown in Fig. D1. Since a range of possible baryon–to–
photon ratios are admitted, with no information from the
relative heights of the acoustic peaks used in either model,
the width of the allowed regions is larger than in conven-
tional analyses for ΛCDM.

For timescape the confidence regions are fv0 ∈
(0.588, 0.765) at 1σ, fv0 ∈ (0.500, 0.799) at 2σ, fv0 ∈
(0.378, 0.826) at 3σ. The corresponding effective dressed
ΩM0 = 1

2
(1 − fv0)(2 + fv0) is ΩM0 ∈ (0.325, 0.534) at 1σ,

ΩM0 ∈ (0.281, 0.625) at 2σ, and ΩM0 ∈ (0.245, 0.740) at 3σ.
For spatially flat ΛCDM the corresponding confidence re-
gions are ΩM0 ∈ (0.162, 0.392) at 1σ, ΩM0 ∈ (0.143, 0.487)
at 2σ, and ΩM0 ∈ (0.124, 0.665) at 3σ. We adopt the 2σ
bounds as priors.
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