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Abstract 

 
Active transport and physical activity behaviours are recognised as important determinants of 

a number of health outcomes, including obesity. Over the last decade, there has been a 

significant amount of research focused on the need to quantify the ‘walkability’ of 

neighbourhoods or urban environments as a means of predicting physical activity behaviours. 

The most common methods used to create indices of walkability focus on a combination of 

land use mix, street connectivity and dwelling density, as developed by Frank et al., (2005). 

What is largely missing in this research, however, is a focus on other modes of active transport 

(such as cycling) and a related recognition of how different delineations (Euclidean and 

network) of neighbourhoods may affect results. 

This thesis investigates the influence of the built environment at a number of spatial 

levels and different neighbourhood delineations, using both standard and novel methods. This 

research advances and improves our current understandings of the built environment by being 

the first to use a novel method based on kernel density estimation, to measure associations 

between the built environment, active transport, physical activity, and health outcomes in a city 

in New Zealand (Wellington City). This novel method is used to create an Enhanced Walk 

Index, improving on standard walk indices by including measures of slope, street lights and 

footpaths and tracks. In addition, this research is the first to test and validate indices of 

bikeability and neighbourhood destination accessibility (NDAI), based on the novel method.  

Results of the study suggest that the novel Basic and Enhanced Walk Indices had strong 

significant positive associations with active transport and overweight/obesity. In comparison 

the standard method had weaker significant associations, potentially indicating previous 

research has underestimated the effect of the built environment on active behaviours and health 

outcomes. In addition, the novel indices of bikeability and NDAI also showed significant 

positive associations with active transport and overweight/obesity, however effect sizes were 

small.  Furthermore, results varied depending on the type of neighbourhood delineation and 

spatial scale used. However, in general, the network buffer showed stronger associations 

between indices of the built environment and active transport, physical activity and 

overweight/obesity.  

This research thus strengthens current international and national evidence on how the 

built environment affects active transport, physical activity behaviours and health outcomes. It 

expands a preoccupation with walkability to encompass other modes of transport, such as 
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bikeability. Furthermore it provides an alternative, and potentially more nuanced novel method 

to assess the relationships between the built environment, active transport, physical activity 

and health outcomes.  
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Chapter 1. Introduction 

 

Active transport and physical activity behaviours such as walking and cycling are 

recognised as important determinants of a number of health outcomes. Health outcomes arising 

out of being physically inactive, overweight and obese are some of the major challenges facing 

individuals, society and governments in developed countries, but also increasingly in 

developing countries. Worldwide, trends in physical activity have fallen, we are now more 

sedentary than ever before, and trends in obesity rates have doubled since 1980 (WHO, 2016). 

The World Health Organisation (WHO) identified that in 2014 1.9 billion adults in the world 

were overweight and of those more than 600 million were obese (WHO, 2016).   

In New Zealand, there has been a consistent decline in physical activity levels. In 

2006/07, one in 10 people were physically inactive, but by 2014/15, one in seven adults were 

inactive, completing less than 30 minutes of any physical activity in the past week (Ministry 

of Health, 2015a). In addition, the decline in active transport modes, such as walking and 

cycling, along with a steady increase in sedentary or inactive transport modes such as using 

private motor vehicles (PMVs), has further compounded existing health inequalities in relation 

to overweight and obesity rates in New Zealand. Obesity rates in adults aged over 15 years old 

have steadily increased from 11 percent in 1989 to 28 percent in 2008, with one in four adults 

now identified as obese. Similar to other Western countries, New Zealand’s population is living 

longer and facing a growing burden of disease arising from long-term health conditions such 

as heart disease, diabetes and cancer, which are partially affected by rising obesity levels 

(Ministry of Health, 2016). These health conditions place enormous pressure on current and 

future resources within the health system and health care provision in New Zealand (Lal et al., 

2012) and worldwide (Withrow and Alter, 2011). 

The increased prevalence of overweight and obesity has been attributed to both 

significant changes in individual lifestyle behaviours such as diet and exercise and the wider 

food and urban environments. The term ‘obesogenic’ has been used to describe the obesity-

promoting aspects of the food and built environment (Swinburn et al., 1999). In the past, 

researchers were primarily concerned with understanding individual factors and behaviours 

such as age, gender, ethnicity, and lifestyle habits including diet and exercise, in explaining the 

rise in obesity (Macintyre et al., 2002). However, over the last two decades the focus has shifted 

to the wider context in which people live and share experiences in their daily lives, (Frank et 

al., 2005; Brownson et al., 2009; Ding and Gebel, 2012; Sallis et al., 2012).  
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International research focusing on the neighbourhood built environment and its 

associations with active transport, physical activity behaviours, and health outcomes have 

increased significantly over the past two decades. This scope of research is multidisciplinary, 

with scholars from urban planning, transport and public health investigating the links between 

elements of the built environment, travel behaviour, physical activity and health outcomes. 

Their goal is to assess individual and population exposures to elements of the built environment 

in order to identify features that facilitate or hinder active transport and physical activity 

behaviours. Central to this research is objectively quantifying how ‘place’, and in particular 

how different interpretations of the ‘neighbourhood’ environment can influence active 

transport, physical activity behaviours and health outcomes.  

This thesis builds on existing research focused on the built environment and its 

associations with active transport, physical activity behaviours and health outcomes. It also 

addresses current gaps in the field and, in this respect, focuses on three primary challenges, as 

follows.  

First, over the last decade, there has been a significant amount of research that has 

focused on the need to quantify the ‘walkability’ of neighbourhoods or urban environments in 

order to understand and predict physical activity behaviours (Frank et al., 2005; Frank et al., 

2010; Leslie et al., 2007; Witten et al., 2012). However, walkability is only one form of active 

transport. Consequently, other modes of transport used in the daily routines of individuals, such 

as cycling, remain under-researched (Winters et al., 2010). This research thus expands the focus 

on active transport by investigating both walking and cycling behaviours and their relationships 

with elements of the built environment. 

Second, the most common methods used to create indices of walkability and ‘capture’ 

exposures of the built environment were originally developed over a decade ago (Frank et al., 

2005). While these methods have been replicated a number of times, there have been limited 

attempts to expand and progress quantifying the built environment for walkability and other 

forms of active transport using alternative potential forms of measurement. This research 

progresses current understanding in the field of the built environment by being the first to use 

an alternative method, kernel density estimation (KDE), to measure associations between the 

built environment active transport, physical activity and health outcomes in a city in New 

Zealand (Wellington City; see below). This research thus challenges the standard methods of 

measuring walkability and goes on to explain why a more nuanced way of quantifying 

walkability is useful and valid. It is also the first study to test and validate additional indices of 
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bikeability and neighbourhood destination accessibility using the novel method, in relation to 

active transport, physical activity and health outcomes. 

Third, in addition to the methods used to ‘capture’ exposures of elements of the built 

environment, how different delineations of neighbourhoods affect results has not been 

adequately considered. Understanding which spatial scales are most appropriate to ‘capture’ 

individual exposures in relation to elements of the built environment is relevant if 

neighbourhoods are to be designed or transformed to facilitate active transport and physical 

activity behaviours. This research investigates the influence of the built environment at a 

number of spatial levels and different neighbourhood delineations, using both standard and 

novel methods, and thus contributes to the ongoing expansion of methodological discourses on 

the built environment, active transport, physical activity and health outcomes. 

Wellington City in New Zealand was selected as the empirical focus of this research for 

a number of pertinent reasons. It has an interesting terrain, surrounded by mountains and 

relatively flat in the city centre and has the highest proportion of active transport commuters 

and highest employment density in New Zealand (Statistics New Zealand, 2015a). In addition, 

previous research has found Wellington City to have higher walkability scores that other cities 

in New Zealand, reflecting a more compact design (Mavoa et al., 2009). This thesis thus also 

validates previous findings, and contributes new knowledge, to the relationship between the 

built environment, active transport, physical activity and health outcomes in Wellington City.  

1.1 Thesis rationale: 

 The rationale underpinning this thesis research is first, to validate the standard methods 

used to quantify the built environment for walking, and second, to advance these methods by 

addressing some of the central limitations to the standard approach. It is necessary to regularly 

test and replicate the standard method in different urban environments in order to better 

determine the reliability, validity and comparability of the method (Brownson et al., 2009). 

However, it is equally important to develop new and alternative methods to expand and 

improve our understanding of the relationship between the built environment and health-related 

outcomes. It is crucial to continually strive to improve methods for measuring the built 

environment, as they form an important component of the evidence base that in turn supports 

policy decisions on physical activity interventions and future urban planning. 
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1.2 Aims and objectives of this research 

The over-arching aims of this research are 1) to advance current methods and 

understanding by developing novel objective measures of the built environment for walking, 

cycling and neighbourhood destination accessibility; and 2) to comprehensively test 

associations between the novel indices and active transport, physical activity behaviours, and 

health outcomes, using available secondary data. Below is a series of measurable objectives 

listed to achieve the aims of this research.  

Objectives: 

1. Investigate the evidence of associations between the built environment, active transport 

behaviours, physical activity, and obesity 

2. Give an overview of the literature that objectively measures elements of the built 

environment for walking and cycling  

3. Explore issues of scale and delineation in current literature focused on the built 

environment and health 

4. Develop a set of objective built environment attributes and two versions of the walk 

index using standard (simple intensity) and novel (kernel density estimation; KDE) 

approaches. Create these indices using two neighbourhood delineations at a range of 

spatial scales 

5. Develop an Enhanced Walk Index using the novel approach (KDE) for two 

neighbourhood delineations at a range of spatial scales 

6. Develop novel (KDE) bikeability and neighbourhood destination accessibility indices 

using two neighbourhood delineations at a range of spatial scales 

7. Examine and compare the spatial variations between the methods used to create the 

Basic Walk Indices (BWIs), Enhanced Walk Index (EWI), Bike Index (BI) and 

Neighbourhood Destination Accessibility Index (NDAI) 

8. Test the sensitivity of the novel individual measures and composite indices of the built 

environment with time spent in active transport, including the influence of home, 

destination, and route buffers using the New Zealand Household Travel Survey 

9. Comprehensively test the validity and associations of each of the standard and novel 

indices with active transport behaviours using the New Zealand Census 

10. Comprehensively test the validity and associations of each of the standard and novel 

indices with physical activity and health-related outcomes using the New Zealand 

Health Survey. 
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Specific research questions related to objectives 7, 8 and 9 are presented in their respective 

chapters, 5, 6 and 7. Figure 1. provides an overview of the chapters in which each of the 

objectives are addressed. 

 

Figure 1. Schema of the objectives addressed in each chapter. 
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1.3 Thesis structure 

 

Chapter 1 presents the research problem, context, and research need, as well as the 

research aims and objectives. Chapter 2 focuses on the review of literature currently relevant 

to associations between the built environment and active transport behaviours, physical 

activity, and overweight/obesity health outcomes. In addition, it provides an overview of the 

standard methods used to measure the built environment and identifies issues relating to 

neighbourhood delineation and spatial scales. Chapter 3 addresses the fourth, fifth and sixth 

objectives of this thesis and develops measures, using standard and novel methods, of the built 

environment to investigate associations with active transport, physical activity behaviours and 

health outcomes. Chapter 4 examines each of the standard and novel composite indices 

developed in this research. Spatial variations of different neighbourhood delineations and 

scales are compared and contrasted. Chapter 5 investigates the associations between 

individual elements and composite indices of the built environment, around the home, 

destination and route, (based on the novel method), and time spent walking using the New 

Zealand Household Travel Survey. This is a standalone exploratory chapter, in contrast to 

following chapters, which test associations using the composite indices only. Chapter 6 

comprehensively tests the validity of the standard and novel methods used to create indices of 

the built environment for walking, cycling, and neighbourhood destination accessibility and 

active transport behaviours using the New Zealand Census. Chapter 7 comprehensively tests 

the validity of the standard and novel methods used to create indices of walkability, bikeability 

and neighbourhood destination accessibility with physical activity behaviours and 

overweight/obesity. Chapter 8 presents the discussion of the main findings and an overview 

of the challenges and opportunities in measuring walkability, bikeability and neighbourhood 

destination accessibility. In addition, the methodological contributions of this thesis are 

reviewed in relation to current research developed in the field, along with the limitations and 

strengths of this research. To conclude, future avenues of research into the built environment 

active transport and physical activity behaviours are presented.  
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Chapter 2: Literature Review 

2.1 Introduction 

The primary objective of this chapter is to examine the evidence and provide an 

overview of the literature on the relationship between the built environment, active transport, 

physical activity behaviours and health outcomes.  First, a summary of the importance of place 

in affecting health outcomes is provided along with an introduction to the context versus 

composition debate (section 2.2). Second, a brief introduction is offered to the main theoretical 

model (socio-ecological) frequently employed when researching the built environment and 

health-related behaviours (section 2.3). Third, an outline is provided of the international and 

national evidence on associations between the built environment, active transport, physical 

activity and health outcomes (section 2.4). Fourth, a summary of the limitations associated with 

self-selection are given (section 2.5). Finally, an overview of the literature on the standard and 

novel methods (developed as part of this research) is given (section 2.6). 

2.2 The significance of place  

 The places in which people live, play, socialise and interact in their daily lives are 

important for individual health outcomes. For example, people living in rural areas experience 

better health in comparison to those living in cities as a result of greater opportunities for 

physical activity (Macintyre and Ellaway, 2003). ‘Place’ as a concept became relevant from 

the 1990’s (Macintyre et al., 2002). Previous to this, research was driven by the political climate 

of neo-liberalism, focusing on the role of the individual and their lifestyle choices (e.g. exercise, 

diet, and smoking) on influencing health outcomes, overlooking the impacts of the built 

environment (Navarro, 1999, Coburn, 2000, Macintyre et al., 2002). There were a number of 

limitations, however, in explaining the disparities in health outcomes by focusing solely on the 

individual. In particular, the increasing prevalence of obesity could not be completely 

explained by individual, psychological and social factors (Cummins and Macintyre, 2006).  A 

‘new public health’ emerged focusing on place and the complex interactions of the social and 

built environmental influences on individual health and health behaviours (Baum, 1998). The 

attention was more on the upstream causes of health outcomes and health inequalities rather 

than the downstream individual lifestyle behaviours of ill-health (Kreiger, 1994). This shift in 

focus to the importance of place in influencing individual and population health has continued 

through to current research. Researchers acknowledge and often account for exposure to 

multiple types of environments (individual, built, social, political), known to influence 
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individual health outcomes (Sallis et al., 2009).  

Health Inequalities 

 Unequal exposure to area-level characteristics, in particular, features of the built 

environment may be important for influencing health. Researchers are increasingly considering 

the multiple pathways in which health and health inequalities can be influenced by features of 

the built environment (Gelormino et al., 2015; Gordon-Larsen et al., 2006; Leyden, 2003; Li 

et al., 2009; Rosenthal et al., 2007). Gelormino et al., (2015) provide a useful framework to 

understand the mechanisms through which the built environment could influence health and 

health inequalities. They propose three potential pathways, 1) the natural environment such as 

air quality, climate, soil, water and noise pollution, availability of green space; 2) the social 

context such as social interactions negatively impacted by long commutes, perceptions of 

safety, availability of public spaces and adequate local infrastructure (schools, libraries, leisure 

facilities); 3) the behavioural context, reduced physical activity and active mobility due to the 

need for car use, availability of amenities, perceived quality and proximity of greenspace and 

recreational facilities (Gelormino et al., 2015). Inequalities in health can be compounded 

depending on the direction and intensity of effect of each pathway based on the individual or 

socioeconomic environment (Gelormino et al., 2015).  

Context versus Composition   

 The context versus composition debate centres around whether it is more important to 

focus on place effects rather than the characteristics of the individual in explaining health 

outcomes. Compositional explanations attribute geographical disparities in health outcomes to 

the specific characteristics of individuals living in different areas (Cummins et al., 2005). For 

example, compositional influences on physical activity and obesity (BMI ≥30) can include 

differences in ethnicity (Duncan et al., 2004; Boardman et al., 2005; Sluyter et al., 2011; Derose 

et al., 2015); age (Lobstein et al., 2004; Witlock et al., 2009) gender (Borders et al., 2006; Shi 

and Clegg, 2009; Ladabaum et al., 2014; Seamans et al., 2015); socioeconomic status 

(McLaren et al., 2007; Lovasi et al., 2009; Ogden et al., 2010); and genetics (Herring et al., 

2014; Albuquerque et al., 2015), (Figure 2). 
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Figure 2. Compositional influences on physical activity and obesity. 

 Contextual explanations attribute differences in the spatial distribution of health 

outcomes to characteristics of the environment in which individuals live, independent of the 

individual residents (Diez Roux and Mair, 2010). A number of examples of contextual 

influences on physical activity and obesity have been suggested and include urban sprawl (Eid 

et al., 2008; Joshu et al., 2009; James et al., 2013; Congdon, 2016); and neighbourhood 

walkability (Frank et al., 2005; Berke et al., 2007; Sallis et al., 2009; King et al., 2011; Glazier 

et al., 2014). In the original walkability index (Frank et al., 2005) measures of street 

connectivity, dwelling density, land use mix were included, later versions of the walkability 

index additionally included a measure of retail floor area. Further contextual influences include 

food environments, (supermarkets, fast food outlets and restaurants) (Papas et al., 2007; Ball 

et al., 2009; Morland and Evenson, 2009; Sallis and Glanz, 2009); green space (Coen and Ross, 

2006; Ellaway et al., 2005; Mytton et al., 2012; Coombes et al., 2010) and crime and safety 

(Lopez and Hynes, 2006; Kavanagh et al., 2007), (Figure 3).  
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Figure 3. Contextual influences on physical activity and obesity. Note: the original walkability  

         index included the only three components, later versions of the index also included a    

                 measure of retail floor area. 

 

 Understanding differences in health outcomes between people and places is continually 

being investigated and is central to health inequalities research (Mitchell et al., 2000). 

However, distinguishing between composition and contextual effects on health outcomes is 

difficult. Macintyre et al., (2002) argued that the individuals’ characteristics, as well as 

households, can be influenced by the local environment. Put simply, the influences of both 

composition and contextual factors are influenced by one another, which means it is difficult 

to attribute the causes of health outcomes to one over the other (Figure 4).  

 

 

Figure 4. Compositional and contextual characteristics interact and influence each other. 

 This section has provided an overview of the importance of place in health research, 

and briefly outlined the pathways in which the built environment can affect health and health 
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inequalities. An introduction to the context versus composition debate in understanding health 

inequalities was also provided. However, further understanding of the multiple pathways by 

which health can be affected is still needed. In order to achieve this, section 2.3 will outline the 

socio-ecological model, one of the prevailing models regularly used in public health, urban 

transport and planning research, to understand determinants of physical activity such as 

overweight or obesity health outcomes.  

2.3 Understanding the relationship between the built environment and physical 

activity  

 This section provides a brief synopsis of the prominent models of health within public 

health, and then an overview of the conceptual framework underpinning this thesis research, 

namely the socio-ecological model of health. Next, the theoretical frameworks relating to the 

built environment and active transport and health put forward by Handy et al., (2002) and 

Pikora et al., (2003) are described.  

 Approaches to health issues have changed over time. This could be due to changes in 

the types of diseases prevalent in the community that could not be explained by the traditional 

biomedical approach. The biomedical approach to health care is centred on the individual’s 

health problems and seeks to fix the problem or condition rather than address the wider 

determinants of the disease (Davies and Kelly, 1993). While there are advantages to this model, 

such as developing specialist knowledge to treat common diseases and extend life expectancy 

through surgical and technological advances, it is, however, limited. It does not address the 

underlying causes and determinants of the disease, and it is not always an affordable approach, 

due to the cost of training medical practitioners and developing technologies (Davies and Kelly, 

1993). The socio-ecological model, on the other hand, is seen as the responsibility of society 

as a whole and could be interpreted as a reaction to limitations of the biomedical model, which 

focuses solely on the individual’s health problems. In the socio-ecological model priority is 

given to prevention rather than the curative or responsive approaches employed by the 

biomedical model (Davies and Kelly, 1993). 

2.3.1 Socio-ecological model of environmental influences on physical activity 

Active transport and physical activity behaviours and the processes influencing them are 

very complex. Identifying and understanding the factors and behaviours that encourage and 

hinder active transport and physical activity are essential. Therefore, it is useful to have a 
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comprehensive model such as the socio-ecological model to identify the associated factors and 

determinants of physical activity participation in different environments.  

The model was developed and influenced by a number of prominent academics. In 1979, 

Bronfenbrenner proposed the Ecological Systems Theory that focused on the relationship 

between the environment and the individual. This was followed by McLeroy’s Ecological 

Model of Health Behaviours in 1988, which grouped five different levels of influence on health 

behaviours; however, it failed to include the physical environment. Finally Stokols’s Social 

Ecology Model of Health Promotion (1992, 2003) identified the central assumptions 

underlining the social-ecological model (Glanz et al., 2008). 

Socio-ecological models provide a comprehensive approach to examining the multiple 

level factors that might be determinants of active transport and physical activity. They focus 

on the interaction between individuals and the social, institutional, community and built 

environments and policy factors (Sallis et al., 2012). A central principle is that interventions to 

improve the specific health outcomes are effective at multiple levels – from the individual to 

the social and built environment, as well as policy levels (Sallis et al., 2006).   

Multiple versions of the social-ecological model exist, however a useful and holistic 

example can be found in Sallis et al., (2006; 2012). They present a socio-ecological model 

categorising physical activity into four domains of life that describe how people spend their 

time. The four domains affecting physical activity behaviours include 

leisure/recreation/exercise, occupation, transportation and household; all of which are 

influenced by different built environment features and policies, (Sallis et al., 2012). Figure 5 

depicts the layers of influences on an individual’s health status, and the multiple pathways at 

the individual, physical activity, social/cultural environment level, built and policy 

environment levels. Importantly, the model highlights that individual health outcomes should 

not be investigated in isolation but rather in relation to the various determinants in each of the 

four domains. 
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Figure 5. An ecological model of the four domains influencing physical activity behaviours. This 

is an adapted model by Sallis et al., (2012). 

 The socio-ecological model offers a way to identify the complex, multilevel and 

multidimensional impacts of the built environment on an individual’s health. It provides a 

pathway to identifying features that can potentially influence health-related behaviours and 

outcomes. Understanding the pathways to good health can help create policies that will have 

the greatest impact on improving physical activity and associated health outcomes for all (Sallis 

et al., 2012).  

2.3.2 Theoretical frameworks of built environment influences on physical activity 

Theoretical frameworks specific to the built environment and physical activity are useful 

when hypothesising relationships between different environmental phenomena and health-

related concepts. This section discusses two frameworks, by Handy et al., (2002) and Pikora et 

al., (2003), that were used to guide this research in analysing relationships between the built 

environment, active travel behaviours, physical activity and health outcomes. 
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After reviewing the theoretical frameworks and challenges around the linkages of the 

built environment and active travel behaviour and physical activity, Handy et al., (2002) 

concluded that no theoretical framework was available to completely understand these 

linkages. They went further and suggested combining theories from other disciplines to 

elucidate the relationships between the built environment and travel behaviour.  

Early research from the urban planning and transportation disciplines started to examine 

how their fields affect human behaviour and health (Handy et al., 2002). Handy et al., (2002:65) 

defined the built environment as including “urban design, land use and the transportation 

system” that “encompasses patterns of human activity within the physical environment”. They 

proposed a number of interrelated and often correlated features of the built environment, (Table 

1). The transportation system included both the physical infrastructure and services making up 

the transportation system with the links providing connections. Design of the built environment 

included aesthetic qualities, land use patterns, the characteristics of outdoor spaces and the 

interior design of buildings. Finally, land use patterns consisted of the spatial distribution of 

human activities in the combined built environment and natural landscape (Handy et al., 2002). 

The importance of scale was also highlighted in each of these definitions.  
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Table 1. Dimensions of the built environment 

Dimension Definition Examples of measures 

Density and 

intensity 

Amount of activity in a given area Persons per acre or jobs per square 

mile 

Ratio of commercial floor space to 

land area 

Land use mix Proximity of different land uses Distance from house to nearest store 

Share of total land area for different 

uses 

Dissimilarity index 

Street connectivity Directness and availability of 

alternative routes through the 

network 

Intersections per square mile of area 

Ratio of straight-line distance of 

network distance 

Average block length 

Street scale Three-dimensional space along a 

street as bounded by buildings 

Ratio of building heights to street 

width Average distance from street 

to buildings 

Aesthetic qualities  Attractiveness and appeal of a place Percent of ground in shade at noon 

Number of locations with graffiti per 

square mile 

Regional Distribution of activities and 

transportation facilities across the 

region 

Rate of decline in density with 

distance from downtown 

classification based on 

concentrations of activity and 

transportation network 

Source: Handy et al., (2002:66) 

Pikora et al., (2003) investigated the effects of the physical environment on physical 

activity. They carried out a survey amongst experts in order to provide a theoretical framework 

for the assessment of environmental factors, both perceived and objective. The outcome of this 

survey resulted in models for various types of physical activity, such as walking for recreation, 

walking for transport, cycling for recreation and cycling for transport in which a number of 

physical environmental dimensions were determined, (Figure 6). 
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Figure 6. Schema of the physical environmental factors that may influence walking or cycling     

                (Pikora et al., 2003). 

 

 The model lists the theoretical individual and physical environmental level factors that 

can potentially influence walking or cycling in the local environment. This framework by 

Pikora et al., (2003) continues to be used when examining the subjective and objective 

influences of the built environment on physical activity levels (Brownson et al., 2009).  

To date, there has been limited research focusing on the effects of the built environment 

on other active transport modes aside from walking. This thesis research draws on some of the 

physical environmental dimensions presented by Handy et al., (2002) and Pikora et al., (2003) 

to create objective measures of the built environment and test associations with active transport, 

physical activity behaviours and health outcomes that go beyond indices of walkability. The 

particular features used are described in detail in Chapter 3.   
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2.4 The built environment, active transport, physical activity and obesity 

To maintain and achieve good health outcomes it is now widely accepted and 

recommended that adults should get at least 30 minutes of moderate intensity physical activity 

at least five days a week, and children up to 60 minutes every day of the week (Ministry of 

Health, 2012). Individuals are classified as being insufficiently active if they fall below this 

level of activity. In New Zealand, the 2014/15 national health survey found that only 50.7 

percent of adults were sufficiently active to receive adequate health benefits of physical activity 

(Ministry of Health, 2015a). This is important to consider as physical activity offers a range of 

health benefits, including counteracting and managing diseases such as obesity and associated 

co-morbidities of heart disease, type 2 diabetes, some types of cancers (Guh et al., 2009; 

Ministry of Health, 2015b), high blood pressure (Re, 2009) and depression (Sarwer and 

Polonsky, 2016).  

Increasingly, active forms of transport are recognised as a way to combat rising obesity 

rates at the population level. Active transport can be defined as a type of non-motorised 

physical activity such as walking or cycling to get to destinations (Genter et al., 2008). 

Increasingly, public transport trips are included in as an active form of transport as walking or 

cycling form part of the whole journey (Villanueva et al., 2008). Active transport has declined 

in many of the developed countries over the last few decades. This is in part due to increased 

affluence, population growth and greater access to private motor vehicles, which has resulted 

in increased growth worldwide in urban mobility since 1960 (Cameron et al., 2004). Distances 

travelled by car have increased while, at the same time, kilometres travelled using other modes 

of transport such as walking, cycling and using public transport have decreased.   

In New Zealand, Tin Tin et al., (2009) found a 28 percent increase in the number of 

people driving to work on census days between 1976 and 2006. Other work by Badland et al., 

(2009) reported a decline in walking and cycling for transport from 14 percent in 1981 to 9 

percent in 2006. Importantly, four out of five New Zealanders over 15 years of age indicated 

that the main mode of transport to work was through driving a motorised vehicle and only one 

in 14 walked to work, while only one in 40 used cycling as their main mode of transport to 

work (Badland et al., 2009). 

In a more recent report on how people travelled to work on the 2013 census day, 

Statistics New Zealand reported over seven in 10 people drove a private or company car, truck 

or van, similar to 2006 figures. The use of public transport across the country increased slightly 
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since 2006 from 3.9 percent to 4.2 in 2013, while other active forms of transport such as 

walking have remained consistent since 2001, with seven out of 100 walking to work. There 

was a marginal increase in those who cycled to work from 2.5 percent in 2006 to 2.9 in 2013 

(Statistics New Zealand, 2015a). Wellington City was identified as having the highest 

proportion of active transport users commuting to work on census day compared to the rest of 

New Zealand. Nonetheless, driving to work remained the main mode of transport in the city, 

decreasing slightly by 4.6 percent, from 69.2 in 2001 to 64.6 in 2013. Active transport modes 

such as walking, jogging or cycling were the second most common commute modes, more 

popular than public transport. In fact, there was a 54.7 percent increase in active transport 

(walking, jogging or cycling) in the city from 2001 to 2013 (Statistics New Zealand, 2015b). 

Despite the increase in active travel in Wellington City, the latest results from the New Zealand 

Household Travel Survey (HTS), 2011-2014, reported 52 percent of total travel time was spent 

driving and people aged between 35 and 64 spend approximately two thirds of their total travel 

time driving (Ministry of Transport, 2015). Increasing active transport behaviours and small 

changes in the daily routines of individuals, such as taking the stairs instead of the lift, parking 

the car a distance from the destination, and walking an extra few metres, all contribute to the 

overall daily physical activity levels of an individual. This is important as studies have shown 

that it is not just the intensity but also the amount of time spent doing some form of physical 

activity that is important for protective health effects (Warburton et al., 2006).  

In a systematic review by (Wanner et al., 2012) they reported a positive association 

between active transport (walking and cycling) and physical activity, and an inverse 

relationship between active transport and overweight/obesity. A study in Australia also 

reported an inverse association between cycling to work and overweight and obesity (Wen and 

Rissel, 2008). At the same time, car-dominated neighbourhoods were associated with a higher 

risk of being obese (Frank et al., 2004; Wen et al., 2006; Frank et al., 2007; Cao et al., 2009). 

For example, physical inactivity research from the United States of America (U.S.A) reported 

that every extra hour spent commuting by car led to a 6 percent increase in the odds of being 

obese (Frank et al., 2004).  When compared to walking as the main mode of transport, the odds 

of being obese decreased by 4.8 percent for every kilometre walked. In another study by Wen 

et al., (2006), examining car use in Australia, individuals driving more than ten times a week 

were 47 percent more likely to be overweight or obese compared to those driving less than six 

times a week who had a 30 percent risk. Research in New Zealand by Badland et al., (2008) 
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found that people who walked or cycled to work were more likely to be of a normal body mass 

size than those who used cars to get to work. 

A key finding in the literature on physical activity is that many health outcomes were 

more pronounced in those who engaged in active transport when compared to those who 

participated only in leisure-time physical activity (Hu et al., 2003; Bauman et al., 2008). This 

could be because active transport requires regular travel to and from a destination; the dual 

purpose of active transport may lead individuals to participate more regularly in physical 

activity than solely relying on leisure-time activity (Ministry of Transport, 2008). Therefore, 

incorporation and accumulation of physical activity through active transport in the daily 

routines of individuals could provide important health benefits.  

Key attributes of the built environment regularly examined in relation to active 

transport, physical activity and overweight/obesity are land use mix (residential, commercial, 

institutional), household density, location and variety of destinations, street connectivity to 

reach those destinations easily, and aesthetic qualities such as presence of trees and flowers.  

Having a variety of destinations such as those regularly accessed in everyday life for work, 

education, shopping and recreation, has been positively associated with walking and bicycling 

for transport (Heath et al., 2006; Saelens and Handy, 2008; Durand et al., 2011; Ewing and 

Cervero, 2010; Fraser and Lock, 2010).  

Increased bicycle use is associated with bicycle infrastructure such as paths or trails 

separating bicycles from traffic (Fraser and Lock, 2010; Krizek et al., 2007). Facilities 

connecting residential areas and destinations are also important for active transport. 

Neighbourhoods with street lights and paths, where pedestrians are away from traffic, were 

found to have residents that walk more and therefore have higher physical activity. Results, 

however, are not always consistent (Wendel-Vos et al., 2007; Sallis et al., 2009; Ewing and 

Cervero, 2010; Durand et al., 2011).  

Access to public bus and rail stops have also been positively associated with active 

transport (Sallis et al., 2009, U.S.A); De Bourdeaudhuij et al., 2003, Belgium); Moudon et al., 

2007, U.S.A). In fact people who used public transport tended to be more physically active and 

were less likely to be overweight or obese (Lindstrom, 2008, Sweden). Besser and Dannenberg, 

(2005) examined the proportion of Americans who achieved the recommended amount of daily 

exercise walking to and from public transport. They reported 29 percent of the 3312 transit 

users in the household travel survey walked for greater than or equal to 30 minutes purely by 
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walking to and from transit. In a study in the U.S.A, Saelens et al., (2014) found that transit 

users had more overall daily physical activity and more total walking than non-transit users. 

The association between mixed land use, active transport, physical activity and obesity 

has been shown to be important. The greater the concentration of different kinds of land use in 

an area such as residential, commercial, industrial, recreational, and institutional, the lower the 

obesity prevalence in neighbourhoods (Frank et al., 2004; Mobley et al., 2006). In New Zealand 

higher levels of walking for active transport was associated with mixed land use as a result of 

having a greater number and variety of destinations to walk to (Witten et al., 2012). In a study 

in the United States of America (U.S.A), the proportion of obese individuals declined from 

20.2 percent in the lowest land use mix quartile to 15.5 percent in the highest land use mix 

quartile (Frank et al., 2004). Furthermore, in another U.S.A study, residents living in areas with 

high mixed land use had a lower BMI than those living in single use environments, due to 

increased levels of walking and physical activity (Mobley et al., 2006).  

In a recent systematic review, by Mackenbach et al., (2014), investigating the 

associations between the physical environment and weight status in the U.S.A, land use mix 

and urban sprawl were consistently associated with overweight and obesity. Nonetheless, the 

review found very little evidence of association for other features of the built environment, 

such as residential density, walkability, density of food outlets, park area and perceptions of 

neighbourhood to name a few (Mackenbach et al., 2014). In addition, another recent review 

concluded that the evidence on associations between attributes of the built environment and 

adult adiposity remains moderate and they suggest further improvements in measurement 

methods (Sugiyama et al., 2014). The overview presented here suggests that the evidence is 

mixed and no clear conclusions can be made on whether urban design features influence active 

travel behaviours, physical activity and obesity. Further investigation into the relationships 

between the built environment and active behaviours and overweight/obesity is necessary and 

as suggested by Sugiyama et al., (2014), improvements in the methods of measurement are 

required.   

Other aspects of the neighbourhood environment such as the social and material context 

can influence active behaviours and health outcomes. For example, the consequences of 

neighbourhood deprivation, and scarce access to material resources associated with healthy 

lifestyles, have been researched in relation to neighbourhood environmental influences on 

physical activity and obesity. Area deprivation has been linked to proximity to food resources 
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in the U.S.A (French et al., 2000), and green and recreational spaces that enable physical 

activity in Australia and the United Kingdom (U.K) (Giles-Corti et al., 2003; Stafford et al., 

2007). International evidence also indicated that the quality and access of resources available, 

such as fruit and vegetable shops and recreation facilities, is inversely proportional to 

neighbourhood deprivation (Lee et al., 2005, U.S.A); Macintyre et al., 1993, U.K). However, 

New Zealand studies on the influence of deprivation and the quality of resources differed to 

the international literature in this regard (Field et al., 2004; Pearce et al., 2007a; Pearce et al., 

2007b; Pearce et al., 2008). Including measures of neighbourhood deprivation are important in 

research on the built environment and health in order to account for the social and material 

contexts in which people live.   

This section has outlined the main concepts of the socio-ecological model adopted to 

understand the relative influences of the physical and social environment and policies on 

physical activity (Sallis et al., 2006; 2012). The models are driven by the potentiality of 

positively influencing individual transport behaviours and thus health by changing the physical 

and social environments (Pikora et al., 2003). Second, a review of the theoretical frameworks 

proposed by transport, planning and health researchers to investigate the built environment 

influences on transport and health was provided. Third, an overview of the evidence on the 

built environment, active transport, physical activity and overweight/obesity was given. The 

following section briefly reviews the methods and evidence of associations between the indices 

of walkability and bikeability and health-related behaviours.  

2.4.1 Walkability 

Walking has been extensively reviewed and measured as a main component of physical 

activity and active transport. In particular, researchers have measured the built environment for 

different types of walking such as walking for recreation or exercise (physical activity) or 

walking to reach a destination (active transport) (Handy et al., 2006). There are a variety of 

ways the literature describes the latter category, including utilitarian walking, destination-

orientated walking, transport-related physical activity, non-motorised travel, and active travel.  

A ‘walkable’ environment has been described as one that supports active transport 

modes including walking, cycling and public transport, enabling equitable access to 

destinations (Freeman et al., 2013) and enhancing social inclusion (Leyden, 2003), while also 

improving health outcomes through promoting physical activity engagement (Frank et al., 

2010; Witten et al., 2012).  
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Composite measures of walkability have been developed to measure the degree to 

which neighbourhood design supports walking. In the U.S.A, Frank et al., (2007) found that a 

five percent increase in neighbourhood walkability was associated with a 32.1 percent increase 

in active transport modes and a 0.23 point reduction in BMI in American adults. Saelens et al., 

(2003), reported that residents within highly walkable neighbourhoods engaged in up to 70 

minutes more moderate physical activity per week than those living in low walkable 

neighbourhoods. Also, those living in low walkable neighbourhoods were nearly twice as likely 

to be overweight (60 percent) than those living in high walkable neighbourhoods (35 percent). 

However, other studies in the U.S.A have found there to be no significant association between 

higher neighbourhood walkability and proportion of residents that are overweight or obese 

(Berke et al., 2007; Scott et al., 2009).  

The standard and most frequently measured attributes of the built environment for 

walking are street connectivity, household/population density and land use mix, and later 

studies, when data was available, retail floor area (Brownson et al., 2009). Each of these 

attributes are regularly associated with walking and physical activity (Frank et al., 2010) and 

combined to form a walk index (Frank et al., 2005; Mayne et al., 2013). ‘High’ walkability has 

been defined as areas with high residential densities, high intersection connectivity and good 

access to a variety of destinations (Frank et al., 2010). In contrast, ‘low’ walkability usually 

reflects urban sprawl, with areas of low population densities, low street intersections and 

decentralised development (Lopez-Zetina et al., 2006). 

Many of the prominent studies in recent years have measured the degree of influence 

for each attribute separately (Frank et al., 2004, (U.S.A); Witten et al., 2012, New Zealand) 

and others have combined them to make a composite index of walkability in Geographical 

Information Systems (GIS) (Frank et al., 2005, U.S.A; Frank et al., 2010, U.S.A; Mavoa et al., 

2009, New Zealand). Briefly, GIS is a tool used to capture, store, analyse, manage and present 

spatially referenced data (described later in section 2.6) and is regularly used to quantify 

features of the built environment assumed to influence active transport, physical activity and 

health outcomes. Combining individual elements into an index is hypothesised to partially 

address issues of spatial collinearity (the correlation of built environment elements with each 

other over space) and capture the combined influence of multiple characteristics in one 

composite index (Brownson et al., 2009; Mayne et al., 2013). In addition, utilising composite 

indices of walkability resulted in a stronger relationship between the built environment and 
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rates of walking (Frank et al., 2010). The index can be easily communicated and interpreted by 

urban planning and health policy makers.  

However, there are limitations to the standard walk index. As discussed by Handy et 

al., (2002) and Pikora et al., (2003), multiple aspects of the built environment could influence 

active transport and physical activity behaviours. Restricting the index to just three 

components, land use mix, dwelling density and street connectivity (Frank et al., 2005), could 

potentially limit the applicability and usefulness of the measure. In a later version of the walk 

index, Frank et al., (2006) included a measure of retail floor area. Many studies have since 

replicated the four component index to characterise the built environment for walking (Leslie 

et al., 2007; Owen et al., 2007; Mavoa et al., 2009; Sallis et al., 2009; Mayne et al., 2013; Oliver 

et al., 2016). One study in Australia compared the three and four component indices, as some 

countries do not have available data on retail floor area, and found the abridged index was 

comparable to the four component index and had predictive validity for utilitarian walking in 

urban areas (Mayne et al., 2013). Even though Leslie et al., (2007), noted that utilising four 

characteristics was ‘a starting point to a more detailed and informed measure of walkability’ 

(p.118), the standard walk index has remained largely unchanged in the last decade. By 

continuously using the same index to quantify walkability it is likely that we are omitting other 

important features of the built environment related to walking and physical activity. Replicating 

this method and not including other features, limits it’s reliability and applicability. In addition 

to the limited number of features included in the standard walk index, the method used to create 

the index is problematic and not necessarily a true reflection of neighbourhood walkability. 

The limitations to this method are discussed later in Section 2.6.2.  

2.4.2 Bikeability 

Bikeability research, compared with walkability research, is a relatively new concept 

in the literature (Wahlgren and Schantz, 2011; Winters et al., 2010).  However, it is already a 

term used in the United Kingdom and is associated with professional training on the use of a 

bicycle rather than a measure of cycling accessibility/easiness in the built environment 

(Christie et al., 2011). Up until relatively recently, cycling has been measured as an auxiliary 

to walkability, physical activity and active transport research (Wahlgren and Schantz, 2011).  

Cycling as mode of transport is cheaper and more sustainable than driving a car 

(Ministry of Transport, 2008). It is important to consider cycling as a worthy alternative to 

walking or driving for short to medium sized trips as it is faster than walking, can link with 
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public transport, and allows one to navigate and park in many places for free when compared 

to those driving cars. The evidence to date, from ecological studies, opinion surveys, and focus 

groups, suggests that certain attributes of the built environment can influence cycling either 

positively or negatively (Winters et al., 2010; 2011, Canada). Factors that may influence 

walking can differ for cycling (Wahlgren and Schantz, 2011, Sweden; Winters, et al., 2011). 

However, this is not always the case. In an Australian study by Owen et al., (2007) comparing 

high and low walkability between two areas, they measured the effect on cycling for transport 

at the same time, and found significantly higher odds for cycling for transport in areas that were 

defined as highly walkable. Other researchers compared their bikeability index with a 

walkability index for Metro Vancouver and found a moderate positive correlation (r=0.58) 

(Winters et al., 2011), indicating areas considered walkable may also be conducive to cycling.  

Measuring factors that affect cycling has largely been included in active transport or 

walkability research rather than as a stand-alone mode. Few studies to date have focused 

exclusively on cycling and the built environment and, in particular, measuring it objectively 

through GIS. Early work by Landis et al. (1997) in the U.S.A, produced a ‘bicycle level of 

service’ tool, developed from a traditional car based audit of a road-segment. The tool measured 

the perceived safety and comfort of a hypothetical cyclist with attention to traffic volume and 

mix, speeds and lane widths. The tool is rooted in concepts from transport engineering and 

design fields, which limits its application fully to cycling. Cycling as a mode of transport is 

very different to driving a car and has a set of unique associated travel behaviours. 

Recent work by Winters et al., (2010; 2011) in Vancouver, Canada, and Wahlgren and 

Schantz (2011) in Stockholm, Sweden, has attempted to define and operationalise the concept 

of bikeability. Their findings indicate this is a growing field of research. The main findings 

from Winter’s et al., (2011) research was that higher intersection density, population or 

residential density, were associated with a higher likelihood of cycling. The built environment 

characteristics of the cycling routes were more influential than origin or destination attributes, 

suggesting that the spatial context and in particular the built environment along the route has a 

significant influence on active transport behaviours (Winters et al., 2011). Winters et al., (2011) 

also considered distance of travel and found it to be another fundamental factor when deciding 

on a transport mode choice. The relevance of trip distance has also been found in other literature 

on travel influences on behaviours (Cervero et al., 2009; Badland et al., 2008).  
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Wahlgren and Schantz, (2011) created a self-report questionnaire for individual cyclists 

to fill in details about their route to work based on eighteen items related to the physical, traffic 

and social environment and called it the active commuting route environment scale (ACRES).  

As this was based on subjective (perceived) influences of the environment such as safety, 

traffic, aesthetics, and commute route infrastructure condition, it could not be measured in GIS. 

Instead, an average score for a route was created by the tool and was used to compare urban 

and suburban environments (Wahlgren and Schantz, 2011).  

Winters et al., (2011) on the other hand, created a bikeability index through a 

comprehensive three step research process: firstly, they conducted a population based opinion 

survey of potential and current cyclists and identified the relative importance of potential 

motivators and deterrents of cycling, a third of which related to the built environment; 

secondly, they identified objective measures of the built environment through a two-step travel 

behaviour analyses, for details see (Winters et al., 2010 and Winters et al., 2011). Finally, they 

carried out a series of focus group sessions with different types of cyclists (regular, occasional 

and potential cyclists) to identify and rank the relative importance of the built environment 

factors previously determined through objective (GIS) measurement. The focus groups also 

provided more nuanced understandings of how to operationalise conventional concepts 

(Winters et al., 2013). An example of this is, when asked about highly connected grid based 

road networks, participants saw this as a positive outcome, encouraging more route choice, but 

also noted that congested streets with high levels of motorized vehicles were deterrents of 

cycling (Winters et al., 2013). This insight resulted in modifying the conventional connectivity 

measure used in walkability indices (intersection density) to include bicycle-friendly roads, 

that is, local roads and bicycle paths.  

Drawing from the empirical evidence obtained through the opinion survey, travel 

behaviour analysis and focus groups, Winters et al., (2010) synthesised findings and identified 

a set of readily mapped features that could be objectively measured in GIS.  They identified 

five factors to be included in their composite index: bicycle route density, bicycle route 

separation, connectivity of bicycle-friendly roads, topography, and density of destinations. 

They provide a detailed description of the steps taken at each stage of creating the index in 

GIS, with the intention of easy replication elsewhere. Finally, after testing associations, the 

index was positively correlated with cycling-to-work. 
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Increasingly, researchers are calling for walking and cycling to be measured separately 

because, for example, pedestrians and cyclists navigate the environment differently due to a 

range of factors including things like topography and street connectivity (Berrigan et al., 2015, 

U.S.A). Furthermore, this could potentially improve and strengthen future studies. To date 

there has been limited research investigating the influences of the built environment on modes 

of active transport other than walkability and their impact on physical activity participation in 

New Zealand. The evidence suggests that understanding these influences is vital in order to 

make the necessary changes to the built environment that will ultimately encourage active 

forms of transport and improve health outcomes.   

2.5 Self-selection 

Research on the built environment and physical activity is most commonly cross-

sectional in nature, which makes it difficult to draw any direct causal relationships. One 

limitation of this type of research is that an individual’s choice of neighbourhood is subject to 

the concept of self-selection, namely whether physically active individuals choose to live in an 

area that was active-friendly or by living in such an area they became more physically active 

(Handy et al., 2006). In addition, many factors such as affordability of housing, employment 

and school locations, and public transport accessibility can influence an individual’s choice of 

neighbourhood (Badland et al., 2012). Also, other groups in society such as those living in 

social housing or residential care homes could have limited or no choice but to live in 

neighbourhoods that are unfavourable to active lifestyle behaviours. However, few studies on 

the built environment and physical activity have accounted for self-selection because of cross-

sectional data limitations. Longitudinal research is the ideal platform to investigate these 

associations (Brownson et al., 2009). The type of research undertaken in this thesis cannot 

account for self-selection due to its use of secondary cross-sectional data sources. However, it 

is acknowledged that any interpretations of results will consider this factor.  

2.6 Methods for measuring the built environment for active transport, physical 

activity and health outcomes 

Research on the built environment has proliferated in the last decade.  It has generally 

been measured in three distinct ways, (1) subjectively, through self-reports, or face-to-face 

interviews, (2) subjectively, through an audit by trained experts and (3) objectively, by 

measuring in GIS. For a comprehensive and extensive review of how the built environment has 

been measured for walking, see Brownson et al., (2009). This thesis is concerned with 
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measuring the built environment through objective methods using GIS. The following section 

will provide a brief introduction to GIS, a tool employed in this research to create objective 

measures of the built environment. Next, descriptions of the standard methods used to measure 

elements of the built environment are described. An overview of the alternative method, kernel 

density estimation (KDE), as utilised in this research, is also provided. 

GIS has been defined as the “integration of software, hardware, and data for capturing, 

storing, analysing and displaying all forms of geographically referenced information” (ESRI, 

2008). GIS have been used in a range of settings including urban planning, geography, 

architecture and statistics research. Increasingly over the last decade, urban planners, public 

health and health geography researchers have seen GIS as a useful tool to examine the spatial 

associations between active transport, health outcomes and the built environment (Brownson 

et al., 2009; Thornton, et al., 2011; Witten et al., 2012).  

Measuring the built environment requires tools such as GIS technologies, which are 

robust, easy to replicate and understand. GIS is increasingly recognised as a more efficient and 

cost effective solution than other time consuming methods of measuring the built environment 

such as carrying out face-to-face surveys or auditing (Brownson et al., 2009; Berrigan et al., 

2015). In addition, it is useful to communicate and present findings through visual mapping of 

the results, which can help urban transport and health policy makers identify areas for 

interventions to improve active transport, physical activity and health outcomes. 

2.6.1 Neighbourhood environment and spatial scale 

 The spatial context of the built environment in which active transport and physical 

activity takes place is regularly described as the ‘neighbourhood’ environment. Urban features 

such as land use mix, street connectivity, dwelling density and composite measures of 

walkability are linked to individual health-related behaviours, based on geographical location 

of the individual (Witten et al., 2012; Mayne et al., 2013). Importantly, how the neighbourhood 

is defined can affect associations between individual behaviours and the built environment 

(Oliver et al., 2007; Chaix et al., 2009; Vallée et al., 2014). In general, two neighbourhood 

delineations are regularly used to define the neighbourhood boundary, one based on 

administrative units and the other based on ego-centric neighbourhoods. A brief summary of 

each of these neighbourhood delineations is presented next, followed by a discussion of the 

standard (simple intensity) and novel (kernel density based) methods. These sections provide 
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the theoretical basis for the key methods developed as part of this research, described in detail 

in Chapter 3.  

Administrative units 

 Secondary data, such as the Census, New Zealand Health Survey, and New Zealand 

Household Travel Survey, are regularly collected at the administrative unit scale, in particular 

the meshblock area unit (representing the smallest area unit). The administrative unit does not 

necessarily reflect where neighbourhoods begin or end. The protocols used to determine the 

administrative boundaries are often ambiguous, relatively arbitrary, and not well understood in 

the literature (Brownson et al., 2009; King et al. 2015). This is consistently recognised as a 

limitation in the literature when using secondary data containing social, cultural and 

demographic data and then assessing how geography influences the results (Brownson et al., 

2009). Neighbourhoods based on this definition might not reflect the behaviours of individuals 

residing in these areas, known as the ‘container effect’ (Maroko et al., 2009). For example, 

individuals may be influenced by built environment features in surrounding meshblocks and 

access parks or destinations outside of the meshblock in which they reside. Attributing 

influences of the built environment within the meshblock to individual’s behaviours, which 

take place outside of the meshblock, can lead to incorrect exposure estimates (Duncan et al., 

2014; Vallée et al., 2014). In addition, in using administratively created neighbourhoods, there 

is the potential issue of the modifiable area unit problem (MAUP), whereby if the boundaries 

were drawn differently there would be significant differences in results (Openshaw and Taylor, 

1981). The MAUP is important to consider when analysing spatially aggregated data, as the 

unit size at which the data is aggregated, in this case the meshblock level, determines the output. 

If the boundaries of these units are changed or altered, so too will the results of the spatially 

aggregated phenomenon being measured. The MAUP continues to be an issue in research on 

the built environment and is widely acknowledged as a limitation (Mitra and Buliung, 2012). 

There is also an assumption that all parts of the area unit are accessible, for example barriers 

such as motorways and lakes are assumed to be accessible. 

Ego-centric neighbourhoods 

Neighbourhoods defined around individual home or work environments are known as 

ego-centric neighbourhoods and aim to capture the influence of the built environment on active 

transport, physical activity and health outcomes within this area. Two types of buffers are 

regularly used to create ego-centric neighbourhoods, Euclidean, based on the straight-line 
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distance from a point and network buffers, based on the street-network distance from a point 

(Oliver et al., 2007). The Euclidean buffer, similar to the administrative unit, assumes that all 

areas within the buffer are accessible, which is not necessarily reflective of the features on the 

ground such as private land, rivers and motorways. On the other hand, the network buffer relies 

on the accuracy of the underlying road network data which can have varying accuracy and 

quality (Frizzell et al., 2009). Therefore, previous research has recommended using both types 

of buffers to determine which is most appropriate to investigate associations with active 

transport and physical activity behaviours (Oliver et al., 2007).   

In contrast to administrative units that are fixed to certain boundaries, ego-centric 

buffers represent sliding boundaries (Chaix et al., 2009), where the buffers move depending on 

the address of the individual being assessed. Importantly, the distance or scale is determined 

by the researcher and commonly hypothesised to represent the distance individuals are likely 

to walk or cycle within 10 to 20 minutes from their home address (Brownson et al., 2009). 

Multiple distances ranging from 400m to 3.2 kilometres have been used to test associations 

with active transport and physical activity behaviours (Brownson et al., 2009). However, 

determining the most appropriate distance to capture the influence of the built environment is 

still an area of debate (Oliver et al., 2007; Brownson et al., 2009; Chaix et al., 2009). It is 

recommended that multiple spatial scales are used when measuring the built environment in 

order to test the sensitivity of each scale to the behaviour or outcome being measured 

(Brownson et al., 2009; Leal and Chaix, 2011). In addition, a common theme of research on 

the built environment and health-related behaviours is measuring the neighbourhood around 

residential addresses. However, individual active transport and physical activity behaviours 

can occur in multiple environments outside of the residential address and it is recommended 

these environments are also included when measuring the built environment (Chaix et al., 

2009). 

In line with these recommendations, both Euclidean and network buffers were used in 

this research and created at range of spatial scales, 800m, 1600m and 2400m (described in 

detail in Chapter 3, section 3.6) and investigated for associations with active transport in 

Chapter 6, and physical activity and overweight/obesity in Chapter 7. In addition, Chapter 5 

examines the sensitivity of each individual measure and composite walk index of the built 

environment, based on both the Euclidean and network buffers at multiple spatial scales around 

three different environments, the home, route and destination.  An overview of the standard 
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(simple intensity) and novel (kernel density based) methods used to quantify the built 

environment for active transport and physical activity are presented in the following sections.  

2.6.2 Standard method (simple intensity) 

The standard methods used most frequently to measure walkability of the built 

environment in GIS rely on vector data which is made up of three types of data, polygon, line 

and point (Frank et al., 2005; Leslie et al., 2007; Frank et al., 2009; Mavoa et al., 2009). The 

method commonly used to create each of the measures included in the walk index has been 

referred to elsewhere as a simple intensity approach (Buck et al., 2015b). The density of 

features are calculated as the number of features divided by the size of an area, for example 

meshblocks or ego-centric buffers, and is referred to as the ‘container approach’ (Maroko et 

al., 2009). There are three limitations to the container approach, 1) the simple intensity measure 

depends on the chosen geographical unit of measurement which does not necessarily reflect 

the actual environment in which people walk or cycle; 2) the simple intensity measure does 

account for the proximity, density or clusters of features in relation to one another within the 

chosen geographical unit; 3) geographical units such as meshblocks vary strongly in size and 

make it challenging to compare the availability of features such as parks between areas (Buck 

et al., 2011). In addition, this approach is based on the assumption that the mean values of 

features of the built environment are distributed evenly within the meshblock or ego-centric 

buffer (Buck et al., 2015b). However, the location of features within these types of geographical 

units vary in their spatial distribution (Buck et al., 2015b). This approach implies that people 

living in these areas have equal exposure to features of the built environment, irrespective of 

where they reside within the geographical unit (Thornton et al., 2011). Improvements such as 

individual level density of attributes within a buffer from household locations, proximity based 

network analysis, activity spaces and accessibility measures using continuous surfaces such as 

kernel density estimations are ways to overcome this limitation (Thornton et al., 2011). The 

method described in the following section presents an alternative way to measure the built 

environment in GIS in relation to active transport and physical activity. 

2.6.3 Novel method (kernel density estimation)  

Kernel density estimation (KDE) is a weighted density function with point or line data 

represented by a smoothed continuous map surface divided into a grid of specified cell sizes 

(King et al, 2015). It estimates the density of kernels over a feature of interest (for example, 

destinations) within a fixed bandwidth or search radius of the point or line of interest. For 

example, cells that are located closest to the point or line will receive a weight close to 1 and 
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cells close to the edge of the radius will receive a density value close to 0. The choice of 

bandwidth is important in this approach, as there is a potential trade-off between bias and 

variance of the kernel density estimator (Buck et al., 2015b). Fixed bandwidths do not account 

for the residential density of the areas, which can directly influence the presence or absence of 

features such as destinations (shops, parks etc.). Adaptive bandwidths based on the underlying 

residential density may be able to quantify more accurately built environment features adjusted 

for space and proximity (Carlos et al., 2010; Buck et al., 2015b). For a further discussion on 

determining the most appropriate bandwidths see Carlos et al., (2010).  

KDE is most commonly used in estimating density of crime hotspots (Chainey, 2013; 

Hart and Zandbergen, 2014), however, some studies have used it to estimate the density of food 

outlets (Thornton et al., 2012, Scotland; Rundle et al., 2009, U.S.A; Bader et al., 2010, U.S.A), 

and density of greenspace and recreation facilities (Maroko, 2009). It is not common to use this 

technique to measure characteristics of the built environment associated with active transport 

or physical activity behaviours. Only a limited number of studies have used KDE to investigate 

associations between recreational resources (Diez Roux et al., 2007; in the U.S.A), and 

neighbourhood destinations (King et al., 2015; in Australia) and physical activity. Only Buck 

et al., (2011; 2015a; 2015b in Germany), investigated associations between KDE measures of 

the built environment and physical activity in children. Buck et al., (2011) for example, used 

KDE to quantify features of the built environment hypothesised to influence physical activity 

in children. The mean density of features were calculated within administrative areas. They 

found the KDE approach improved the assessment in comparison to the simple intensity 

approach (Buck et al., 2011). They combined the features into a moveability index and found 

modest but significant impact of the built environment on physical activity behaviours in 

children. In later research, Buck et al., (2015a), calculated the KDE for ego-centered 

neighbourhoods (vector component) around the child’s residence and found it to be a more 

useful method than the simple intensity method. Their revised and final moveability indices 

were strongly associated with moderate-vigorous physical activity in children (Buck et al., 

2015a). 

 In Australia, King et al., (2015) is the only study to investigate associations between 

the density of destinations and two physical activity outcomes in adults, walking frequency and 

physical activity sufficiency, using three different kernel sizes of 400m, 800m and 1200m. 

They found for all kernel distances there was significantly greater likelihood of residents 

walking more frequently if they resided in areas with greater density of destinations. They 
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acknowledged KDE was an underutilised method in GIS applications relating to the built 

environment and physical activity. KDE presents an alternative method of measuring the built 

environment at a finer scale than spatially aggregated units such as meshblocks. It improves on 

the simple intensity method by calculating the proximity and density of features in relation to 

one another unhindered by geographic unit measurements. In addition, it is a relatively new 

and underutilised method to measure the built environment in relation to active transport, 

physical activity behaviours and health outcomes.  

2.7 Conclusion  

In New Zealand, more than half of the population is insufficiently physically active and 

two thirds of the population is either overweight or obese (Ministry of Health 2015a). This can 

have serious implications for individual and population health outcomes and also create future 

financial burdens on the health system. Importantly, obesity and associated health outcomes 

are largely preventable diseases. The structure of the food and built environments are central 

to facilitating or hindering determinants of obesity such as physical activity and active transport 

behaviours. Identifying and modifying features of the built environment which influence 

physical activity for multiple purposes is necessary and could have significant health benefits 

in the long term.  

A current area of research is investigating the walkability of neighbourhoods or built 

environments in order to understand active transport behaviours, and health outcomes such as 

physical activity and obesity. However, walking is just one form of active transport. There is 

limited research that has measured, in conjunction with walking, other modes of transport used 

in the daily routines of individuals, such as cycling, and related them to active transport 

behaviours and health outcomes. This thesis aims to address this gap by measuring the built 

environment for walking and cycling, while investigating their associations with active 

transport, physical activity behaviours and health outcomes. Furthermore, methods used to 

measure walkability and features of the built environment have been limited to simple intensity 

methods, this thesis intends to contribute to an emerging field of research that is measuring the 

built environment for physical activity behaviours using an alternative method, KDE (Buck et 

al., 2015a; 2015b). This study will go further than the standard methods and use KDE to 

measure the walkability, bikeability and neighbourhood destination accessibility of the built 

environment in relation to active transport, physical activity and health outcomes.  
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This chapter provided an overview of the context-composition debate, the socio-

ecological model and frameworks to investigate the built environment. Evidence on the 

relationships between the built environment, active transport, physical activity and obesity 

were presented. The concepts of walkability and bikeability were also introduced. Finally, a 

discussion of the methods used to measure the built environment was provided. The following 

chapter addresses the fourth, fifth and sixth objectives of this thesis and comprises a description 

of the methods developed and tested in this research. 
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Chapter 3: Methods for Creating Individual Measures and Indices of the 

Built Environment  

3.1 Introduction 

This chapter addresses the fourth, fifth and sixth objectives of this research, which are 

to develop a set of objective built environment attributes and two versions of the walk index 

using the standard (simple intensity) and novel (kernel density estimation with a vector 

component- buffers; KDE) approaches; develop an Enhanced Walk Index using the novel 

approach; develop novel bikeability and neighbourhood destination accessibility indices. In 

addition included as part of these objectives is to develop the measures using two 

neighbourhood delineations at a range of spatial scales. The structure of the chapter is as 

follows: a brief context to this research is offered (section 3.2); the research design is outlined 

(section 3.3); along with a description of the study area (section 3.4); the theoretical rationale 

for selecting the features of each index (section 3.5) and an overview of the methods used to 

create the individual attributes and composite indices of the built environment is provided 

(sections 3.6 and 3.7). The chapter concludes with a brief overview of how each index was 

created (section 3.8). 

3.2 Context 

Previous research has utilised self-report instruments such as audits to assess attributes 

of the built environment assumed to influence active transport behaviours, physical activity 

and health outcomes. However, auditing is subjective and can be a time consuming and costly 

procedure (Brownson et al., 2009). Recently, GIS has become an important tool in objectively 

examining the complex relationships between the built environment, active transport, physical 

activity and health outcomes. An advantage of using GIS, to analyse characteristics of the built 

environment, is that it enables analysis and remote mapping utilising secondary data sources. 

Measures commonly included in objective GIS based analysis of the built environment for 

walking often include land use mix, dwelling density/population density, street connectivity 

(Frank et al., 2005; Mayne et al., 2013), and retail floor area ratio (Frank et al., 2009; Leslie et 

al., 2007; Mavoa et al., 2009; Mayne et al., 2013). These measures are occasionally assessed 

individually and in many cases have been combined into a composite index representing the 

walkability of the built environment. Advantages of combining the measures into one 

composite index include addressing issues related to multicollinearity in statistical models 

(Saelens and Handy, 2008) and ease of interpretation and translation of results (Brownson et 

al., 2009) for town planners, policy decision makers, transport and health advocates.  
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Neighbourhoods that are conducive to walking are typically classified as high walkable, 

and can encourage walking for recreation, utilitarian and transport purposes. There is some 

debate within the literature as to whether neighbourhoods that are highly walkable are also 

highly bikeable, that is, whether the factors that encourage walking also encourage cycling to 

a similar degree (Wahlgren and Schantz, 2011, Winters, et al., 2011). While there is much 

research on the concept of walkability and measuring specific attributes of the built 

environment in relation to walking, bikeability is a relatively new concept in the literature. 

Winters et al., (2010) is one of the first to use GIS to objectively measure attributes of the built 

environment associated with cycling for active transport. In addition, there is a limited number 

of research utilising indices of destination accessibility in the neighbourhood environment, 

which can also be associated with walking and physical activity behaviours (King et al., 2015, 

Australia; Witten et al., 2011, New Zealand). Indices of walkability, bikeability and 

neighbourhood destination accessibility can be useful to identify areas that encourage active 

transport and physical activity behaviours, which in turn can provide evidence for improving 

the built environment to encourage these behaviours.  

3.3 Research design and data 

Part of the overall aims of this thesis is to develop indices using available secondary 

data, in order to see if results on the relationship between the built environment, active 

transport, physical activity and health outcomes are useful to health policy makers, urban 

design and transport planners. In this way, methods could be reproduced in a cost-effective 

manner, utilising existing secondary data to make informed decisions about the built 

environment and health promoting behaviours.   

This research utilises data from three different data sets; the New Zealand Census, 

(referred to as the Census from this point onwards), the New Zealand Household Travel Survey 

(HTS), and the New Zealand Health Survey (NZHS) to test and validate associations with 

elements of the built environment. Brief descriptions of the surveys follow, with more in-depth 

descriptions in each of their respective chapters, HTS in Chapter 5, Census in Chapter 6 and 

NZHS in Chapter 7.  

The data of each of the three surveys was collected at a number of spatial levels based 

on administrative boundaries created by councils and central government. In New Zealand, the 

meshblock level is the smallest geographic unit, with each meshblock representing 

approximately 110 people (Statistics New Zealand, 2002). It is commonly used as a proxy for 
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the ‘neighbourhood’ in built environment and health research in New Zealand (Mavoa et al., 

2009; Witten et al., 2011; Witten et al., 2012; Pearson et al., 2014). In addition, ease of access 

to secondary data collected at this scale provides a relatively simple path for analysis.  

The HTS samples a nationally representative sample of 4,800 individuals continuously 

from 2003 until 2014 (inclusive). The survey collects information about the day-to-day travel 

patterns and choices of all types of people and is comprised of a household and an individual 

personal survey (Ministry of Transport, 2016). Members of households selected are invited to 

record all their travel over two days and then complete a personal interview reflecting on their 

travel choices (Ministry of Transport, 2016). The data from both the household and individual 

surveys is utilised in this research. Individual level data on walkers travel behaviours were 

generated by combining data from years 2010/11, 2011/12, 2012/13, 2013/14. More detailed 

information on the HTS and dependent variables used in this research is provided in Chapter 

5. 

The Census is a nationwide survey completed every 5 years (except in 2011, due to the 

Christchurch earthquakes) to keep track of population and dwelling numbers and other social 

areas of interest which helps determine how government funds are spent in the community  and 

plans for future development (Statistics New Zealand, 2016). Area level data from the 2013 

Census was obtained for meshblocks where people walked and cycled to work on census day. 

Chapter 6 provides a more detailed description of the dependent variables utilised from the 

Census. 

The NZHS is a nationally representative survey, which in the past was carried out every 

4-6 years up until 2011/12. It is now collected annually since 2011/12 with the current data 

available until 2015/16. The survey collects information on the health and wellbeing of New 

Zealanders and provides information to support development of health services, policy and 

strategy (Ministry of Health, 2016). A more detailed description of the NZHS and the 

dependent variables used in this research is provided in Chapter 7. 

3.4 Study area 

The main aims of this thesis are 1) to develop novel objective measures of the built 

environment for walking, cycling and neighbourhood destination accessibility; and 2) to 

comprehensively test associations between the novel indices and active transport, physical 

activity behaviours and health outcomes, using available secondary data. Wellington City is 

the capital city of New Zealand and the second most populous city in the country (Figure 7), 
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after Auckland. There are a number of reasons why Wellington was selected as the study 

region. Firstly, the terrain of the central business district is relatively flat while the surrounding 

terrain, where people live and commute from, is mountainous. The diverse landscape of 

Wellington City makes it particularly interesting and suitable for testing the novel methods 

created to assess the walkability, bikeability and neighbourhood destination accessibility of the 

built environment. Second, Wellington City has the highest employment density (Statistics 

New Zealand, 2015b) and the highest proportion of active transport commuters in New Zealand 

(Statistics New Zealand, 2015a) and part of the overall aims of this research is to test the novel 

walkability, bikeability and neighbourhood destination accessibility indices with active 

transport behaviours. Third, previous research has found Wellington City to have higher 

walkability scores, suggest a more dense urban design, than other cities in New Zealand, 

Christchurch, North Shore and Waitakere1 (Mavoa et al., 2009). Replicating methodologies 

and comparing findings with previous research is necessary for determining the reliability and 

validity of previous findings (Brownson et al., 2009) and adding to the field. 

                                                 
1 North Shore and Waitakere at the time of research by Mavoa et al., (2009) were cities in the greater Auckland 

Region, in 2010 they were incorporated into Auckland Council. 
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Figure 7. Map of the study region showing Wellington City and the greater Wellington Region. 
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Population demographics 

The usually resident population of Wellington City is close to 191,000 inhabitants, with 

the overall Wellington Region close to 471,400 inhabitants according to Statistics New 

Zealand, (2015c). The City accounts for 4.5 percent of New Zealand’s population (Statistics, 

NZ, 2015c). A breakdown of the socio-demographic characteristics of Wellington City in 

comparison to the total population of New Zealand is provided in Table 2. Briefly, the median 

personal income for individuals over 15 years old in 2013 was NZ$37,900 per annum, nearly 

ten thousand more than the national median income, NZ$28,500 per annum. The percentage of 

post-school qualifications is also higher in Wellington City than the national average. These 

statistics could be expected as most of the central government departments, with highly 

qualified civil servants, are located in Wellington City.  

Table 2. Socio-demographic characteristics in 2013 of Wellington City and New Zealand 

 Characteristics 

Wellington 

City 

New 

Zealand 

General population 190,959 4,242,048 

Māori population 14,433 598,602 

Median age 2013 (years) 33.9 35.9 

Median personal income in $NZ    

           (>15 years) 37,900 28,500 

Post-school qualification (%) 55.1 46.3 

Population under 15 years (%) 17.3 20 

Population increase 2006-2013 (%) 6.4 5.3 

Source: Statistics New Zealand, (2013). 

3.5 Theoretical framework for objectively measuring the built environment 

This research includes elements from the two frameworks (Handy et al., 2002 and 

Pikora, 2003) discussed in Chapter 2, section 2.3.2, which formed the basis in which to build 

indices for walking, cycling and neighbourhood destination accessibility. Initially at the 

beginning of the research process, a number of features of the built environment, identified in 

these frameworks, were selected for inclusion in the walk and bike indices. A list of up to 

twenty features were generated and requests for data were sent to Auckland, Wellington and 

Dunedin City Councils. Wellington City Council was the only authority, within the available 

time frame, able to provide data for many of the features included in the list and was therefore 

selected for this study. Other sources such as Land Information New Zealand, Statistics New 



 

40 

 

Zealand, Zenbu.co.nz and the Ministry of Health were also used to source data relating to 

features and destinations of the built environment hypothesised to influence active transport, 

physical activity and health outcomes (Tables 3 and 4).  

Three features of the built environment regularly included in the walk index include 

land use mix, street connectivity and dwelling density. These features were included in the 

standard and novel basic walk indices (BWIs) developed as part of this research and described 

in section 3.7.1 and section 3.7.2. Following preliminary analysis of both methods, an 

Enhanced Walk Index (EWI) was created in order to advance, test and validate the novel 

method with secondary data on active transport, physical activity behaviours and health 

outcomes. The additional features of slope, street lights and footpaths and tracks were included 

as they link to the features described in the framework described by Pikora et al., (2003) and 

are hypothesised to influence active transport and physical activity behaviours. Evidence to 

support the hypothesised associations between each element of the built environment, included 

in the novel indices (BWI and EWI), and active transport and physical activity are presented 

as the rationale and then followed by a description of the specific methods used to create the 

measures (section 3.7.1 and section 3.7.2). 

3.6 Methods for operationalising neighbourhood exposure 

Creating valid and replicable measures of the built environment are essential to refining 

our understanding of the relationship between the built environment, active transport modes, 

physical activity and health outcomes (Brownson et al., 2009; Sallis et al., 2009). Part of the 

fourth, fifth and sixth objectives of this research is to create two types of buffers at multiple 

scales of the built environment; and investigate how different neighbourhood delineations and 

scales impact on associations between individual and composite indices of the built 

environment, active transport, physical activity and health outcomes. The next section begins 

by providing a brief overview of the buffers and spatial scales used in this research. 

Neighbourhood delineations and scale 

While touched upon briefly in the previous chapter, neighbourhood delineations such 

as administrative units (meshblock) and in particular ego-centric buffers remain the most 

frequently utilised methods intended to capture ‘neighbourhood’ exposures of features of the 

built environment. They have been used as a way to manage issues arising from the ‘modifiable 

area unit problem’ (MAUP) which can result in artificial geographic units based on arbitrarily 

defined boundaries (Brownson et al., 2009). Buffers can be created around individual home 
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addresses, work places, meshblock based population weighted centroids (PWCs) and the 

meshblock area unit. One limitation commonly reported is that results can vary dramatically 

depending on the type of buffer used, whether Euclidean (circular) or network (line based) 

(Oliver et al, 2007; Brownson et al., 2009). Euclidean buffers may capture built environment 

features such as rivers, lakes, railways and cliffs, which may be inaccessible to walkers and 

cyclists (Oliver et al., 2007). It is for this reason that studies are increasingly using road network 

buffers (henceforth referred to as network buffers) to define accessible areas individuals can 

walk or cycle to by road (Oliver et al., 2007; Witten et al., 2011; Witten et al., 2012). There 

have been a limited number of studies comparing both types of buffers across a range of spatial 

scales (Oliver et al., 2007). The novel methods developed as part of this research aims to 

contribute to the debate and evidence base, by investigating built environment measures using 

Euclidean and network buffers at a range of spatial scales. 

There are no universally accepted spatial scales to investigate associations between 

active transport and physical activity with scales ranging from 400m to 3.2 km across many 

studies (Brownson et al., 2009). More recently, distances of 200m-1600m around an 

individual’s home have been used to represent different neighbourhoods and are seen as 

‘walkable’ distances to destinations (Villanueva et al., 2014). For example,  Forsyth et al., 

(2008) used buffers of 200m, 400m, 800m and 1600m to represent different walkable 

environments, (without defining a time in relation to these distances); Moudon et al., (2005) 

used a buffer size of 3km, to represent a comfortable cycling range of 20 minutes; Heinin et 

al., (2010) in their overview of the cycling and commuting literature concluded that shorter 

distances, access to good storage and a greater mix of destinations are factors that increase 

cycling share. The spatial scales used in this research, 800m, 1600m, 2400m, were selected to 

represent typical distances people can walk or cycle for transport, utilitarian or leisure purposes 

within 10, 20 or 30 minutes. Initially however, distances of up to 6.4km were considered for 

capturing the bikeability of neighbourhoods in this research, however due to the intense 

processing required in ArcGIS and multiple difficulties running the models, shorter distances 

were used instead. Also, previous research have used distances of up to 3km in their analysis 

(Moudon et al., 2005).  

The Euclidean and network buffers were created around meshblock based PWCs, to 

represent different types of neighbourhoods at a range of spatial levels (800m, 1600m, 2400m, 

Figure 8). In an ideal research study, the geographic locations of individual participants could 

be used to test the associations with physical activity, such as research by King et al., (2015). 
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However, secondary data such as the data analysed in this thesis, Census and NZHS, is usually 

only provided at the meshblock area unit to ensure confidentiality of survey participants. 

Therefore, meshblock based PWCs were used as a proxy measure for individual participants 

in the analyses presented in Chapters 6 and 7. However, individual address points were 

available for the HTS, therefore Euclidean and network buffers were created at multiple scales 

based on individual home and destination addresses (described in detail in Chapter 5). Figure 

8 presents an example of the Euclidean and network buffers utilised in this research. These 

different neighbourhood delineations represent potential areas of exposure to diverse built 

environment characteristics.  
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Figure 8. Example of Euclidean and network buffers around a meshblock based population  

weighted centroid in Wellington City. The extent of each buffer was clipped to the 

coastline of Wellington City. 

In relation to the meshblock based PWCs utilised in this research, it should be noted 

that, even though there are 2,023 meshblocks in Wellington City, only meshblocks with address 

points of dwellings were included in the analysis (n=1,988). 35 meshblock based PWCs were 

removed after identifying that these meshblocks were made up of train stations, parks and hills 

without any population residing there (Figure 9). This research is interested in measuring the 

built environment around hypothetical home addresses of participants; therefore, meshblocks 

without any dwellings were removed. Moreover, destinations such as parks and train stations 
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are already accounted for in the neighbourhood destination accessibility index, described 

further on in section 3.6.2.9.  

 

Figure 9. Map of meshblock based population weighted centroids removed as they do not 

represent areas where people reside or work. 

3.7 Creating individual measures of the built environment  

This section describes each of the components included in the Basic Walk Index (BWI) 

based on method 1 (standard method). Then, a description of the novel methods 2 and 3, used 

to create a second version of the BWI and an Enhanced Walk Index (EWI), Bike Index (BI) 

and Neighbourhood Destination Accessibility Index (NDAI) are given, along with a concise 
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rationalisation of each of the measures employed. All measures were created using ESRI’s 

ArcGIS (10.2) (Redlands, CA). 

3.7.1 Standard approach, Method 1 

 Standard walkability indices are usually created by combining simple intensity based 

measures of the built environment. Originally only three components were included in the walk 

index: land use mix, street connectivity and dwelling density (Frank et al., 2005), however, 

subsequent versions included a measure of retail floor area (Leslie et al., 2007; Frank et al., 

2009; Mavoa et al., 2009). Data for retail floor area was unavailable for this research and 

therefore only three components were used. However, previous research which tested a walk 

index based on three (land use mix, street connectivity, and dwelling density) versus four 

components (additionally including retail floor area), found that the abridged index was 

comparable to the four component index and had predictive validity for utilitarian walking in 

urban areas (Mayne et al., 2013). The simple intensity BWI created in this research was 

comprised of measures of land use mix, street connectivity and dwelling density and based on 

the methods described by Leslie et al., (2007), Mavoa et al., (2009) and Mayne et al., (2013). 

The following section describes the steps taken to create the BWI based on method 1. A 

description of the individual measures is then provided. 

Steps taken to create BWI based on method 1 

 

The steps taken to create the BWI based on method 1 are as follows:  

1) each of the vector based (polygon and line) components, land use mix, 

street connectivity and dwelling density were created separately using 

standard methods (simple intensity);  

2) network buffers were created at 800m, 1600m and 2400m around 

meshblock based PWCs, representing different neighbourhood 

environments;  

3) using the tool Tabulate Intersect in ArcGIS (version 10.2), each measure 

was intersected with the network buffers at 800m, 1600m and 2400m and 

dissolved based on the meshblock identifier;  

4) the values of these measures, (land use mix, street connectivity and 

dwelling density), at each spatial level, were standardised into deciles 

before being combined into a composite walk index (BWI);  
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5) the three measures were summed together at each spatial level, similar to 

previous research by Leslie et al., (2007) and Mavoa et al., (2009). The 

BWI created using this method will be referred to as method 1 for the 

remainder of this thesis.  

Figure 10 presents a schema of the BWI based on method 1 (steps 1-5). The following 

section gives a brief rationale for including each of these measures and a description of how 

the simple intensity methods for each measure was derived. Each of these measures is then 

mapped in order to visualise their distribution for Wellington City. A summary table of the 

objective methods and data sources for each measure is provided in Table 3.



 

Figure 10. Schema of method 1 used to create the standard Basic Walk Index using network defined neighbourhoods at 800m, 1600m and 2400m 

from the meshblock population weighted centroid. 
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3.7.1.1 Land use mix 

A greater mix of land uses has been shown to support active transport, physical activity 

behaviours and healthier BMIs through accounting for different accessible destinations 

encountered in everyday life (Saelens and Handy 2008; Li et al., 2008). Land use mix is 

regularly included in indices of walkability and associated with active transport modes, 

physical activity and lower BMI (Frank et al., 2005; Frank et al., 2010; Sallis et al., 2009; Van 

Dyck et al., 2010; Freeman et al., 2013; Mayne et al., 2013). 

 Land use and zoning data obtained from Wellington City Council (2014), (Table 3), 

were used to calculate the presence or absence of six land use categories: commercial, 

residential, retail/industrial, institutional, open space and other (e.g. vacant land) within each 

meshblock area unit. The land use mix was calculated using an entropy index similar to Leslie 

et al., (2007) and Mavoa et al., (2009). The following formula was used to calculate the land 

use mix score: the sum of meshblock land area was used, where k is the category of land uses; 

p is the proportion of land area attributed to a specific use; N is the number of land use 

categories (Equation 1; Leslie et al., 2007).  

 

 

The entropy calculation results in values ranging from 0, indicating homogeneous land 

uses, to values closer to 1 indicating greater heterogeneity of land uses. These values were 

standardised to deciles in order to visualise how land use mix is represented at the meshblock 

area unit in Wellington City (Figure 11). Values close to 1 indicate low land use mix, (not very 

accessible or interesting destinations for walking or cycling) while values close to 10 indicate 

high land use mix (highly accessible and interesting destinations supportive of walking or 

cycling). The map (Figure 11) shows that the area around the city centre has a low mix of land 

uses, which could reflect the zoning of only a few land areas such as residential, retail/industrial 

and commercial. Areas to north, south and west of the city have larger meshblock area units 

and higher land use mix. This measure was included in the Basic Walk Index ((BWI based on 

method 1) and investigated for associations with active transport, physical activity behaviours 

and health outcomes in Chapters 6 and 7.    

 

      Entropy index= -∑k(pk ln pk)   (1) 

       Ln N  
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Figure 11. Vector (polygon) data map of land use mix in Wellington City by meshblock area 

unit. 

3.7.1.2 Street connectivity 

Street connectivity is commonly included in walkability indices and regularly 

associated with active transport, physical activity and low BMI (Frank et al., 2005; Frank et 

al., 2010; Mavoa et al., 2009; Sallis et al., 2009; Van Dyck et al., 2010; Freeman et al., 2013; 

Mayne et al., 2013). Streets that are well-connected are hypothesised to positively influence 

physical activity behaviours. Previous research in New Zealand (Witten et al., 2012) found 

positive associations between high street connectivity (intersections with 3 or more roads) and 

self-reported and accelerometer-derived measures of physical activity.  
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The street connectivity measure derived for Wellington City as part of this research 

utilised a road layer, obtained from Land Information New Zealand (LINZ). The method 

frequently used in the literature and replicated in this research was estimated by calculating 

intersection density of three or more unique intersecting streets (Leslie et al., 2007; Mavoa et 

al., 2009). Similar to Mavoa et al., (2009), to ensure street intersections that coincided with 

meshblock boundaries were included, a buffer of 20 meters around each meshblock boundary 

was created.  Intersection density was calculated as the number of intersections per square 

kilometre within the meshblock buffer, including intersections with 3 or more roads (Mavoa et 

al., 2009) (Equation 2). 

 

 

 Values were standardised to deciles and mapped, in order to visualise the measure of 

street connectivity at the meshblock area unit (Figure 12). Values close to 1 indicate low street 

connectivity (not conducive to walking or cycling) and values close to 10 indicate high street 

connectivity (very conducive to walking and cycling). The map (Figure 12) shows high density 

of street connectivity in the city centre and low street connectivity in areas to the west and north 

of the city centre. This measure was also included in the BWI (method 1) and investigated with 

active transport, physical activity and health outcomes in Chapters 6 and 7. 

 

 

Street connectivity = 
number of intersections   (2) 

area  
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Figure 12. Vector (polygon) data map of street connectivity in Wellington City by meshblock area 

unit. 

3.7.1.3 Dwelling density 

Dwelling density is a measure regularly included in walkability indices and associated 

with active transport, physical activity and low BMI (Frank et al., 2005; Frank et al, 2010; 

Mavoa et al., 2009; Sallis et al., 2009; Van Dyck et al., 2010; Glazier et al., 2012; Freeman et 

al., 2013; Mayne et al., 2013). A number of studies have reported a positive association between 

dwelling density and walking and biking, (Carr, Dunsiger, and Marcus, 2010; Forsyth et al., 

2008; Witten et al., 2012). It is hypothesised that areas where there are high volumes of housing 

and thus residents, there are destinations such as shops and services closer together encouraging 

active transport and physical activity behaviours (Sallis et al., 2012).   
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Dwelling density was calculated using meshblock data containing the count of occupied 

private dwellings taken from the New Zealand 2013 Census (Statistics New Zealand, 2014). 

The area of private residential land was also provided by the Census 2013 and the dwelling 

density was calculated by dividing the count of dwellings by the residential area of land for 

each meshblock (Equation 3).  

 

 

Values were standardised to deciles and mapped in order to visualise dwelling density 

for Wellington City (Figure 13). Values close to 1 indicate low dwelling density and values 

close to 10 indicate high dwelling density. Areas adjacent to the city centre have high density 

of dwellings, whereas areas previously identified in Figure 9 as parks and hills, have low 

dwelling density (Figure 13). This measure was included in the BWI (method 1) and 

investigated for associations with active transport, physical activity and health outcomes in 

Chapters 6 and 7. 

 

Dwelling 

density   = 

Count of private dwellings in each meshblock   (3) 

residential area of land in each meshblock  
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Figure 13. Vector (polygon) data map of dwelling density in Wellington City by meshblock area 

unit. 
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Table 3. Summary table of built environment measures, data sources and methods. 

Method 1- Basic Walk Index data sources and methods 

Measure Database Data source Year GIS-methods 

Land use mix Zone areas Wellington City 

Council 

2014 An entropy index was calculated for 

Wellington City. The presence or 

absence of six types of land use, 

commercial, retail/industrial, open 

space, institutional, other, residential 

were included in the measure. The 

level of heterogeneity of land uses 

was calculated, based on the 

meshblock identifier, and ranged on a 

scale from 0, (homogenous) to 1 

(heterogeneous).  

Street 

connectivity 

Road centre line Land 

Information 

New Zealand 

(LINZ) 

2015 Intersection density was calculated as 

the number of intersections with 

greater than 3 intersecting roads per 

square kilometre in each meshblock. 

Dwelling 

density 

New Zealand 

Census 

Statistics New 

Zealand 

2013 Dwelling density was calculated as 

the number of dwellings divided by 

the residential land area in each 

meshblock. 

3.7.2 Novel approach, Methods 2 and 3  

After identifying limitations to the standard simple intensity based method, an 

alternative method, kernel density estimation (KDE) was utilised to create individual and 

composite measures of the built environment for walking, cycling and neighbourhood 

destination accessibility. KDE is a relatively new and underutilised method to measure the built 

environment in relation to active transport and physical activity behaviours. As mentioned in 

Chapter 2, section 2.6.3, previous research has used KDE to measure crime hotspots, (Chainey, 

2013; Hart and Zandbergen, 2014), food outlets (Thornton et al., 2012; Rundle et al., 2007; 

Bader et al., 2010) and less commonly greenspace and recreation (Maroko, 2009), recreational 

resources (Diez-Roux et al., 2007) and neighbourhood destinations (King et al., 2015). To the 

author’s knowledge, only recent research by Buck et al., (2015a; 2015b) have used KDE to 

measure the built environment and test associations with physical activity in children. This 

thesis research aims to address this gap by creating novel (KDE, with a vector component- 

buffers) built environment measures for walking, cycling and neighbourhood destination 

accessibility and test associations with active transport, physical activity and health outcomes 

in adults in New Zealand. The following section describes the steps taken to create each of the 

individual measures using the novel method.  
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Steps taken to create methods 2 and 3 

 Numerous models were created using Model Builder in ArcGIS (version 10.2), to 

automate and iterate through every process described below. The steps taken in all of the 

individual components of the built environment were as follows:  

1. Kernel densities were created for the individual measures based on a fixed bandwidth 

of 500m (Buck et al.,2015b) and raster cells of 10mx10m using the Spatial Analyst tool, 

Kernel Density 

2. Cells that contained no data were removed using the tool Set Null 

3. The analysis tool Slice, was used to split the range of KDE raster values into deciles of 

equal area in order to standardise for comparability in the analysis 

4. Two types of buffers were created at three levels of geography, 800m, 1600m and 

2400m  

 Method 2: Euclidean buffers at 800m, 1600m and 2400m were created around 

meshblock based PWCs using the Buffer tool from the proximity toolset.  

 Method 3: Network buffers at 800m, 1600m and 2400m were created around 

meshblock based PWCs by generating network service areas with the Network 

Analyst extension. 

5. Buffers were clipped to the Wellington City extent (Wellington Territorial Authority 

boundary) using the Clip tool from the extract toolset, in order to exclude areas 

calculated beyond the boundary such as the ocean 

6. Individual measures were summed to create indices of the built environment using the 

tool Cell Statistics.  

7. The mean and median kernel density values of each individual and composite index of 

the built environment were calculated within the Euclidean (method 2) and network 

buffers (method 3), based on the meshblock identifier, using the tool Zonal Statistics 

as Table. 

 

Figure 14 presents a schema of the steps taken to create the novel KDE and vector 

(Euclidean and network buffers) based measures for methods 2 and 3 (steps 1-7). The following 

section describes each measure that was included in the Basic Walk Indices (BWIs), Enhanced 

Walk Indices (EWIs), Bike Indices (BIs) and Neighbourhood Destination Accessibility Indices 

(NDAIs), based on methods 2 and 3. Raster maps are presented for each measure to illustrate 

their spatial and proximal density. This is followed by a description of the method of 
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standardisation and explanation of how each measure was combined into indices of walkability, 

bikeability and destination accessibility.  



 

Figure 14. Schema of methods 2 and 3 used to calculate the mean and median values of built environment measures calculated within the Euclidean 

and network buffers based on the meshblock identifier.
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3.7.2.1 Land use mix 

As described in the previous section 3.7.1.1, land use mix is regularly included in 

walkability indices of the built environment (Frank et al., 2005; Frank et al., 2010; Sallis et al., 

2009; Van Dyck et al., 2010; Freeman et al., 2013; Mayne et al., 2013). However, few studies 

have used KDE to measure land use mix in urban areas. The next section describes the steps 

take to create a more nuanced measure of land use mix based on the novel method. 

A 100m raster grid was created and clipped to the Wellington City extent. The clipped 

polygon grid was converted to points and 500m Euclidean buffers were created around the 

point grid. The vector based polygon land zone data was categorised into six land uses, 

commercial, residential, retail/industrial, institutional, open space and other (e.g. vacant land). 

The tool tabulate intersection was used to compute the intersection between the 500m buffers 

and land zone data and cross-tabulated the area, length and count of the intersecting features. 

The tabulated table was joined to the point grid layer and hectare values were converted to 

percentages of land use area. Similar to Mavoa et al., (2009), the entropy index was calculated 

based on the percentage of each land use in the buffers. Values close to 1 indicated 

heterogeneous land uses and values close to 0 indicated homogenous land uses. These values 

were used to compute KDE creating a smoothed continuous surface of mixed land use for 

Wellington City. Steps 1-7 described at the beginning of section 3.6.2 were completed to create 

a measure of land use mix based on methods 2 (Euclidean) and 3 (network buffers). This 

measure is an example of a more nuanced way of calculating land use mix at a fine grained 

spatial level, rather than the meshblock area level and deriving the mean density of land use 

within Euclidean and network buffers. A map of land use mix density is presented as a 

continuous kernel density surface in Figure 15. Values close to 10 in dark blue colour indicate 

areas of high density and proximity of land uses. In contrast to the simple intensity measure of 

land use mix (method 1), the city centre has high density of land uses (dark blue). This novel 

measure of land use mix is included in the BWIs, EWIs and BIs. 
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Figure 15. Kernel density estimation of land use mix in Wellington City. 

3.7.2.2 Street connectivity 

As described previously in section 3.7.1.2, measures of street connectivity are regularly 

included in analyses of the built environment, active transport, physical activity and health 

outcomes (Frank et al., 2005; Frank et al., 2010; Mavoa et al., 2009; Sallis et al., 2009; Van 

Dyck et al., 2010; Freeman et al., 2013; Mayne et al., 2013). Well-connected streets provide 

opportunities for individuals to walk or cycle short distances to neighbourhood destinations. 

The measure created for inclusion in the novel BWI, EWI and Bike Index (BI) is based on road 

valency. Valency refers to the number of arcs converging at a point, when applied to a road 
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network it refers to the number of roads converging at an intersection or node. Roads containing 

a valency of three or more were considered to reflect high connectivity. The final value was 

computed using the kernel density tool and used to create a continuous KDE of street 

connectivity for Wellington City. Steps 1-7, described in section 3.6.2, were taken to create 

methods 2 and 3. The KDE of street connectivity was standardised into deciles in order to 

include the measure in the BWIs, EWIs and BIs. A map of the measure is presented to visualise 

the spatial intensity and proximity of street connectivity in Wellington City (Figure 16). Values 

close to 10, in dark blue colours, indicate higher density of street connectivity which coincides 

with Wellington City centre. Roads to the west of the city have low density of street 

connectivity.    
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Figure 16. Kernel density estimation of street connectivity for Wellington City, with the highest   

density concentrated in the city centre.  

3.7.2.3 Dwelling density 

As described in section 3.7.1.3, dwelling density is commonly included in walkability 

indices and associated with active transport, physical activity and health outcomes (Frank et 

al., 2005; Frank et al, 2010; Mavoa et al., 2009; Sallis et al., 2009; Van Dyck et al., 2010; 

Freeman et al., 2013; Mayne et al., 2013). Areas with high density of dwellings also tend to 

have destinations such as services and shops close by, encouraging active transport and 

physical activity behaviours (Sallis et al., 2009). The dwelling density measure was calculated 
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based on the count of private dwellings in each meshblock. These values were computed into 

the kernel density tool and used to create a continuous surface of residential density for 

Wellington City. Steps 1-7 (section 3.6.2), were completed to create methods 2 and 3. Values 

were standardised to deciles and included in the BWIs and EWIs. A map of Wellington City, 

representing the density and proximity of dwellings is presented in Figure 17. Values close to 

10 indicate high density of dwellings. Similar to street connectivity, there is a high density of 

dwellings located in the city centre.  

 
Figure 17. Kernel density estimation of dwelling density for Wellington City, with the highest 

density concentrated in the city centre.  
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3.7.2.4 Footpaths and tracks 

The most common method of assessing footpaths in the literature is through subjective 

measurement. Many of the studies assessed footpaths in terms of functionality and quality, 

based on perceptions of individuals using them (De Bourdeaudhuij et al., 2003; Giles-Corti and 

Donovan, 2002; Duncan and Mummery, 2005). Duncan and Mummery (2005) found that 

Euclidean distance to the footpath network and perceptions of footpaths were significantly 

associated with the likelihood of recreational walking. Including footpaths and tracks in a 

walkability index is important as pedestrians do not necessarily walk along streets and 

potentially take advantage of cut through between buildings, parks and alleyways. Including 

an objective measurement of footpaths and tracks to the Enhanced Walk Index (EWI), adds 

additional detail of the influence of the built environment on active transport and physical 

activity behaviours.   

Polyline data of footpaths were obtained from Wellington City Council and combined 

with track data from Land Information New Zealand (LINZ) (Table 4). In order to capture 

tracks and cut-through in parks and side streets, all tracks that were classified as vehicle access 

were removed, while all tracks assigned to walking were kept. The two datasets were combined 

using a spatial join. A value of 1, representing the presence of footpaths and tracks was used to 

compute the KDE measure. Steps 1-7 (section 3.6.2), were completed to create methods 2 and 

3. The resulting values were standardised to deciles and included in the EWI. Figure 18 gives 

an idea of the density of footpaths and tracks in the Wellington Region. It is useful to note, this 

measure captures some of the great walking tracks such as the Skyline walkway in the middle 

of the map and captures tracks and alleyways not included in the street connectivity measure. 
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Figure 18. Kernel density estimation of footpaths and tracks in Wellington City. 

3.7.2.5 Street lights 

In relation to the built environment and physical activity, street lights are less frequently 

measured using objective measures in GIS (Brownson et al., 2009). They are more commonly 

measured using subjective self-reports, where the presence of street lights is examined in 

relation to perceptions of safety. However a couple of studies did use objective measurement 

methods to capture street light density, for example, the total amount of roadway within 20m 

of street lights within a set radii, (Duncan and Mummery, 2005) and the number of street lights 

per length of road (Forsyth et al., 2008). Through their examination of environmental factors 
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associated with physical activity, Duncan and Mummery, (2005) found no association between 

subjective self-reported presence of street lights and physical activity. Whereas Forsyth et al., 

(2008) found total walking in mean miles per day to be positively correlated with sidewalks 

and street lights. While walking for transport was positively correlated, walking for leisure was 

negatively correlated with street lights. Other research by Troped et al., (2003) found the 

presence of street lights was also positively associated with transport related physical activity. 

In relation to cycling, Titze et al., (2008) found that 60 percent of cyclists preferred the presence 

of street lights while cycling at night.   

Much of the literature on the subjective measures of the built environment includes 

street lights as a potential predictor of physical activity. However, completing a subjective 

study is beyond the scope of this research and previous research has found associations with 

objective measures of street lights, active transport and physical activity. Therefore, an 

objective measure of street lights was included in this research as a proxy for safety. Point data 

was obtained from Wellington City Council of all the street lights in Wellington City. Each 

point was given a value of 1 and computed into the kernel density tool. Steps 1-7, described at 

the beginning of section 3.6.2 were completed to create methods 2 and 3. Values were 

standardised to deciles and included in the EWIs and BIs. A map of the density and proximity 

of street lights in Wellington City is presented in Figure 19. Values close to 10 indicate high 

density of street lights. Similar to dwelling density, there is a high concentration of street lights 

in the city centre.  
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Figure 19. Kernel density estimation of street lights in Wellington City. 

3.7.2.6 Slope 

The justification for using slope is based on the assumption that topography affects 

whether people walk or cycle. Previous research on the walkability of the built environment 

does not frequently use slope as a possible attribute. For the studies that did include slope 

(Winter et al., 2010), it was found to be highly correlated with cycling. Winters et al., (2010) 

used a measure of hilliness where they calculated the average slope of the digital elevation 

model (DEM) in a neighbourhood. McGinn et al., (2007) created a slope with a cut off of ≥ 8 
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degrees, where any road over 8 degrees was classified as unwalkable. They calculated the slope 

for 100m segments along the road network.  

Drawing from McGinn et al.’s (2007) method a number of steps were taken in ArcGIS 

(version 10.2) to create a more nuanced measure of slope. They are as follows, 1) the road 

network for Wellington City was dissolved into one line; 2) using the command create points 

on line (obtained from Ianbroad.com, GIS expert, provides tools online), points were created 

every 100m distance from the start to the end of the line; 3) the tool split line at point was used 

to create 100m road segments; Note: some roads had dangles shorter than 100m and after visual 

screening of the location of the roads, roads segments down to a 50m cut off length were 

included, using roads less than 50m would create spikes of slope between two short points. 

This process accounted for most of the roads in Wellington City. 4) the tool  feature vertices 

to points was used to determine the points at the start and the end of each 100m road segment; 

5) a new columns in both the start and end point files were created, called start_id and end_id; 

6) using the tool extract values to points the slope values (from the digital elevation model; 

DEM) were extracted at the start and end points of the road segment; 7) a new column in both 

the start and end point files was created, called start_elevation and end_elevation and used 

calculate field to input the raster values into these columns; 8) the join field tool was used to 

join the start and end elevations to the original 100m road segments; 9) in the attribute table of 

the 100m road segment file, add field was used to create a new column titled PC_change and 

([end_elevation]-[start_elevation])/[Shape_Length]) * 100 was entered in the field calculator; 

10) a new column was created and any values ≥ 8 degrees were given a value of 1 and 

categorised as unwalkable and unbikeable. Values less than ≤ 8 degrees were given a value of 

0 and categorised as walkable and bikeable. KDE was calculated based on these values. Steps 

1-7, described at the beginning of section 3.6.2 were completed to create methods 2 and 3. 

Values were standardised to deciles and inverted whereby values close to 10 represented low 

density of slope ≥ 8 degrees and values close to 1 indicated high density of slope ≥ 8 degrees. 

This step was necessary in order to be included in the indices of walkability (EWI) and 

bikeability (BI). A map of the density of slope, defined as ≥ 8 degrees is presented in Figure 

20. It shows there is a high concentration of slope ≥ 8 degrees in and around the city centre.  
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Figure 20. Kernel density of slope ≥ 8 degrees along the road for Wellington City. 

3.7.2.7 Bike parking 

Providing cycling facilities at the end of trips can encourage cycling behaviours. For 

example, previous research by Buehler, (2012) found bicycle parking was associated with 

higher levels of bicycle commuting. In addition, providing facilities such as sheltered bike 

parking and showers in the workplace can encourage cycling for transport (Wardman et al., 

2007; Pucher et al., 2010). This thesis is interested in features of the built environment that 

could encourage cycling behaviours for transport and physical activity and thus included bike 

parking as one of the components in the Bike Index.  
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Data on bike parking was obtained from Wellington City Council, however they did 

not specify whether the parking was sheltered or not. Furthermore, data on showering facilities 

in workplaces in Wellington City was not available. The addresses of all bike parking in 

Wellington City were given a value of 1, representing the presence of parking. These values 

were used to calculate the density and proximity of bike parking based on KDE. Steps 1-7, 

described at the beginning of section 3.6.2 were completed to create methods 2 and 3. Values 

were standardised to deciles, whereby values close to 10 represented high density of bike 

parking and values close to 1 represented low density of bike parking. This measure of bike 

parking was then summed with other components of the built environment to create indices of 

bikeability, based on methods 2 and 3. A map of the density of bike parking in Wellington City 

is provided in Figure 21. Areas with high density of bike parking are concentrated in the city 

centre.  
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Figure 21. Kernel density map of bike parking in Wellington City. 

3.7.2.8 Cycle lanes 

 In addition to cycling facilities, infrastructure such as cycle lanes can encourage active 

transport and physical activity behaviours. Cycle lanes usually include dedicated road space 

and are painted with cycle signs or patches of road in bright colours (Pucher et al., 2010). Cycle 

paths on the other hand are separated from the road and are perceived as safer for cyclists than 

cycling on the road (Tin Tin et al., 2009). Previous research has found a positive association 

between measures of cycle lanes and cycling behaviours (Dill and Voros, 2007; Pucher et al., 

2010). This research is focused on features of the built environment that could facilitate and 
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encourage cycling for transport and physical activity and thus included cycle lanes in the 

bikeability index.  

Data on cycle lanes was obtained from Wellington City Council. The data did not 

specify on the type of lanes, whether separated or as part of the road. Each lane was given a 

value of 1 and used to compute KDE for Wellington City. Steps 1-7, described in section 3.6.2 

were completed to create methods 2 and 3. Values were standardised to deciles, whereby values 

close to 10 represented high density of cycle lanes and values close to 1 represented low density 

of cycle lanes. The cycle lane measure was summed with other components of the built 

environment hypothesised to influence cycling behaviours. Indices of bikeability were created 

based on methods 2 and 3. The density and proximity of cycle lanes is presented in Figure 22. 

As evidenced by the map, there was a limited amount of data on cycle lanes available for 

Wellington City. However, the density of cycle lanes available was concentrated along the 

coast and city centre.  
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Figure 22. Kernel density map of cycle lanes in Wellington City. 

3.7.2.9 Neighbourhood destinations  

Destinations are frequently cited as a key component to encouraging active transport 

and physical activity in the neighbourhood built environment. The rationale behind the concept, 

is that people need destinations to walk or cycle to and certain types of destinations such as 

cafés, restaurants, museums and parks to name a few, are believed to encourage active transport 

modes and physical activity (Brownson et al., 2009; Witten et al., 2011; King et al., 2015).  
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The index created as part of this research is an alternative version of the Neighbourhood 

Destination Accessibility Index (NDAI) created by Witten et al., (2011). The aim of their index 

was to provide a composite measure of pedestrian access to various destinations in the built 

environment. They used eight domains of neighbourhood destinations, education, transport, 

recreation, social and cultural, food retail, financial, and health and other retail, to create an 

NDAI for all four New Zealand cities. Their method was based on the simple intensity 

approach, the alternative NDAI developed as part of this research was based on the novel KDE 

(with a vector component- buffers) method. 

 A list of destinations in Wellington City, sourced free from zenbu.co.nz, Ministry of 

Education, Ministry of Health and LINZ, was used to collate all the addresses for each 

destination (data entries ranged from October 2006-June 2014, Table 4). Seven domains (28 

amenities in total) were collated and geocoded to point data. In contrast with Witten et al., 

(2011), the recreation domain included accessible greenspace and sports facilities only, 

accessible beaches were not included. The greenspace layer was provided as vector polygon 

data, therefore a method similar to the one utilised for the land use mix measure (section 

3.6.2.1) was completed. A 100m raster grid was created and clipped to the Wellington City 

extent and 500m Euclidean buffers were created around a point grid. The tool tabulate 

intersection was used to compute the intersection between the 500m buffers and greenspace 

data and the area of the intersecting features was cross-tabulated. The proportion of greenspace 

within each buffer was then calculated and joined to the point grid. Witten et al., (2011) 

included weights for each of the eight domains to represent the relative importance of each 

destination as an incentive for physical activity. These weights were applied to the point values 

of the eight destination domains (including greenspace) and KDE was used to calculate the 

density and proximity of these destinations across a continuous map surface. Similar to the 

previous individual measures, steps 1-7 described at the beginning of section 3.6.2, were 

completed for education, recreation (including greenspace), transport, social and cultural, food 

retail, financial, health and other retail destination domains. These individual raster’s were 

standardised to deciles and summed together to form an index of neighbourhood destination 

accessibility (NDAI) based on methods 2 and 3.  

A KDE map of the NDAI is provided in Figure 23. High density of destinations is 

clustered in the city centre with pockets of high destinations in areas to the north, south and 

east of the city.  
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Figure 23. Kernel density map of Neighbourhood Destination Accessibility Index for Wellington 

City. 

Table 4 provides an overview of the data sources and methods used to create each of 

the individual measures included in the BWIs, EWIs, BIs and NDAIs. The next section 

describes the steps taken to combine the individual measures into indices of walkability, 

bikeability and neighbourhood destination accessibility. 
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Table 4. Overview of the data sources and specific methods used to calculate each of the built 

environment measures using kernel density estimation, for Wellington City. 

Measure Database Data 

source 

Year GIS methods 

Land use mix Zone areas Wellington 

City 

Council 

2014 A 100m grid was converted to points, 500m buffers were 

created around each point. Land zone data was 

intersected with the buffers. The percentage of six types 

of land uses, commercial, retail/industrial, open space, 

institutional, other, residential was calculated. An 

entropy index was calculated based on the presence or 

absence of six land use types. Values close to 1 indicated 

heterogeneous land uses and values close to 0 indicated 

homogenous land uses. These values were then used to 

compute kernel density estimation (KDE), a continuous 

surface of land use mix at a fine resolution (10m x 10m, 

500m bandwidth). The measure then was standardised to 

deciles and included in the walk and bike indices. 

Street 

connectivity 

Road centre 

line 

Land 

Information 

New 

Zealand 

(LINZ) 

2015 Calculated road valency measure based on 3 or more 

intersections and road length within 500m of each node. 

KDE was completed with each measure and standardised 

to deciles. Both measures were combined to create a 

measure of street connectivity. This value standardised 

to deciles and included in the composite walk and bike 

indices. 

Dwelling 

density 

New 

Zealand 

Census 

Statistics 

New 

Zealand 

2013 Count of dwellings was used to calculate KDE. The 

measure was standardised to deciles and included in the 

composite walk and bike indices. 

Footpaths and 

tracks 

Footpaths 

and NZ 

Track 

Centre-lines 

Wellington 

City 

Council and 

LINZ 

2014 Line Data from Wellington City Council and LINZ were 

combined in order give greater coverage of walk paths 

through parks and alleyways. A value was of 1, 

indicating presence of footpaths and tracks was used to 

compute KDE. The measure was standardised to deciles 

and included in the Enhanced Walk Indices (EWIs). 

Slope Digital 

Elevation 

Model 

LINZ  2014 The average slope of 100m street line segments were 

calculated by subtracting slope from the start of the line 

from the end of the line. Slope greater or equal to 8 

degrees were considered unwalkable and unbikeable 

(given value of 0), slope less than or equal to 8 degrees 

was considered walkable and bikeable (value of 1), these 

values were used to compute KDE. Values were 

standardised to deciles and inverted. This measure was 

then included in the EWIs and Bike Indices (BIs).   

 

Table 4. continued. 

Street lights  Wellington 

City 

Council 

2014 A value of 1 was assigned to point and line data 

indicating the presence of the built environment feature. 

This value was used to calculate KDE based on a fixed 

bandwidth of 500m and 10m x 10m cells. Each of these 

measures were individually standardised to deciles and 

included in specific composite indices. 

 

Weights were applied to each of the NDAI components, 

KDE was calculated based on the value attributed to each 

Bike racks  Wellington 

City 

Council 

2014 

Cycle lanes  Wellington 

City 
Council 

2014 
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NDAI 

Education 

facilities 

Wellington 

City 

Council 

2014 domain. For example, transport was given a weight of 5 

and social cultural a weight of 3. KDE was calculated 

based on these values. 

Social and 

cultural 

destinations, 

food outlets, 

financial 

services, 

retail 

outlets, 

other retail 

Internet, 

Zenbu.co.nz 

2008-

2014 

Public 

transport 

stops 

Wellington 

City 

Council and 

Internet, 

Zenbu.co.nz 

2015,  

 

2008-

2014 

Health 

facilities 

 

Ministry of 

Health and 

Internet, 

Zenbu.co.nz 

2015,  

 

2008-

2014 

Recreation 

(Accessible 

greenspace) 

LINZ 2014 Similar to land use mix, a 100m grid was converted to 

points, 500m buffers were created around each point. 

The proportion of greenspace within each buffer was 

calculated and assigned to the point grid. These values 

were used to compute KDE. Values were standardised 

to deciles and included in the composite NDAI. 

 

3.8 Constructing novel indices of the built environment 

Indices of walkability, bikeability and neighbourhood destination accessibility 

A brief summary is offered to reiterate how each index was created. After calculating 

the mean kernel density values for each individual built environment measure, within 

Euclidean (method 2) and network buffers (method 3) at a range of spatial levels, measures 

were standardised into deciles using the analysis tool, Slice, in ArcGIS, (version 10.2). Each of 

the measures were grouped into deciles based on equal area, where each zone represented a 

similar amount of area. Previous studies such as Leslie et al., (2007) and Mavoa et al., (2009) 

have standardised values of the built environment because each of the components have values 

that differ in range. Thus, in order to compare like with like, each of the elements needed to be 

converted to a comparable scale, such as deciles. The (deciled) individual components were 

summed together, similar to the standard method, using the tool, Cell statistics, which 

calculates a per-cell sum of multiple rasters (Figure 14). Land use mix, street connectivity and 

dwelling density, based on the novel methods 2 and 3, were combined to form a Basic Walk 

Index. Three additional measures, footpaths and tracks, street lights and slope, were included 

in the Enhanced Walk Index, based on methods 2 and 3.  
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An example of each measure included in the Enhanced Walk Index is included in Table 

5. Values close to 60 indicate a highly walkable area and values close to 6 indicate a low 

walkable area. It is important to note that, values for the slope measure were inverted, where 

values close to 1 reflected low walkability and values close to 10 reflected high walkability, 

similar to each of the other components.  

Table 5. Example of each standardised measure included in the Enhanced Walk Index, values close to 60    

indicating areas of high walkability. 

Meshblock 

identifier 

Land 

use 

mix
a 

(decile

s 1-10)
 

Street 

connectivity
a 

(deciles 1-10)
 

Dwelling 

density
 a 

(deciles 1-10)
 

Street 

lights
 a 

(deciles 

1-10)
 

Footpaths 

and tracks
 

a 

(deciles 1-10)
 

Slope
 b 

(deciles 

1-10)
 

Enhanced 

Walk 

Index score  

(6-60) 

Walk 

indicator 

MB10001 1 3 2 2 1 1 10 

Low 

walkability 

MB10002 4 5 3 7 2 6 27  

MB19990 9 10 7 10 8 7 51  

MB19889 10 10 8 10 9 10 57 

High 

walkability 
a
 Values close to 10 = high density of features hypothesised to influence walking and cycling behaviours, 

(walkable/bikeable environment), values close to 1 = low density of features (unwalkable/unbikeable 

environment). b Deciled slope values were inverted. Values close to 1= high density of slope ≥ 8 degrees 

(unwalkable), values close to 10 = low density of slope ≥ 8 degrees (walkable).  

Similar to the walk indices (BWIs, EWIs), a number of individual components were 

deciled and KDE values were summed to form a composite index of bikeability. Land use mix, 

street connectivity, slope (inverted), street lights, bike racks and cycle lanes, were included in 

the Bike Index (BI), and based on methods 2 and 3. In addition, each of the neighbourhood 

destinations, education, transport, recreation, social and cultural, food retail, financial, and 

health and other retail, were measured using the novel methods 2 and 3. Values were 

standardised to deciles and summed to create a composite index of neighbourhood destination 

accessibility (NDAI). A schema of each of the components included in each index is provided 

(Figure 24). 

 The walk indices (BWIs, EWIs) and NDAIs based on method 2 and 3 are investigated 

for associations with time spent in active transport in Chapter 5. The BWIs based on methods 

1, 2 and 3, and the EWIs, BIs and NDAIs based on methods 2 and 3 are examined in relation 

to active transport, physical activity and health outcomes in Chapters 6 and 7, respectively.    
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Figure 24. Schema of the components in each of the built environment indices examined in this 

thesis. 

3.9 Conclusion 

 This chapter described the context, research design and study area investigated as part 

of this research. The standard, simple intensity methods were used to create measures of land 

use mix, street connectivity and dwelling density. A BWI, based on these components was 

created and is henceforth referred to as method 1. An alternative method of measuring the built 

environment, based on KDE, was described in detail for each measure included in the BWIs, 

EWIs, BIs and NDAIs based on methods 2 and 3. Individual and composite measures, based 

on methods 2 and 3, are examined with time spent in active transport in Chapter 5. Each of the 

indices, of the built environment, based on methods 1, 2 and 3, are investigated for associations 

with active transport, physical activity behaviours and health outcomes in Chapters 6 and 7, 

respectively. The next chapter compares each of the indices at three spatial levels, 800m, 

1600m and 2400m utilising maps and histograms of the underlying data distributions.  
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Chapter 4: Assessing the Spatial Variations of Indices of the Built 

Environment 

4.1 Introduction 

This chapter addresses the seventh objective of this research by describing the results 

of each of the built environment indices described in Chapter 3, the Basic Walk Indices (BWIs) 

Enhanced Walk Indices (EWIs), the Bike Indices (BIs) and the Neighbourhood Destination 

Accessibility Indices (NDAIs). The differences between each method (standard and novel) 

used to create the multiple indices across multiple spatial scales are compared and contrasted. 

The average kernel density value for each index was calculated for multiple buffers and spatial 

scales using the tool zonal statistics as table. A meshblock area unit identifier was attached to 

the data, this enabled mapping of the indices and associated buffers at a range of scales. The 

maps present a new way of visualising the results of novel methods of walkability, bikeability 

and destination accessibility bound to the meshblock area unit. It represents a combination of 

deriving a fine grained analysis (KDE) of built environment features, averaging values to 

hypothetical neighbourhoods at a range of spatial scales but displaying the data at the 

meshblock area unit. Presenting the indices at a geographic level regularly used to collect 

information on demographic, travel and health behaviours can help health, urban and transport 

planners seeking to understand the influences of the built environment at a recognisable 

geographic scale.  

A number of choropleth maps, distribution histograms and correlations are presented 

for a better understanding of the indices. The numerous maps presented here serve as a 

foundation for understanding the results in the subsequent chapters, where the indices are 

validated against a range of outcomes from the New Zealand Household Travel Survey, (HTS), 

Census and New Zealand Health Survey, (NZHS). Sections 4.2.1 and 4.2.2 describe the results 

of each method used to create the BWIs and EWIs (Figure 25), respectively, represented at the 

meshblock area unit.  
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Section 4.3 compares the results of each of the methods used to create the Bike 

Indices (BIs) and Section 4.4 describes the results of each of the NDAIs represented at the 

meshblock area unit (Figure 26). The chapter concludes with a description of how each of the 

indices will be validated in the subsequent chapters through regression analyses.  
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Figure 25. Schema of comparison of the Basic Walk Indices and Enhanced Walk Indices results. 

BWI Method 1

BWI Method 3BWI Method 2

EWI Method  2 EWI Method 3

Comparison 

between BWIs 

Comparison 

between 

EWIs 

Comparison between the Basic Walk Indices and Enhanced Walk Indices 



 

83 

 

 

 

 

 

 

 

 

 
800m 1600m 2400m 800m 1600m 2400m 

  
 

Figure 26. Schema of comparison of Bike Indices and Neighbourhood Destination Accessibility 

Indices results. 

 

4.2 Walkability Indices 

The following two sections present, using maps and histograms, a descriptive analysis 

of the multiple methods and spatial scales used to create the BWIs and EWIs. The BWIs are 

described first, followed by the EWIs. Table 6 provides a reminder of the methods used to 

create the two walkability indices, described in detail in Chapter 3, sections 3.7.1 and 3.7.2. 

Briefly, after generating the kernel density estimation (KDE) maps of each built environment 

feature at a fine spatial scale (10mx10m cells), values were standardised to deciles and zonal 

statistics as table was performed in order to calculate the mean BWI and EWI ‘walkability 

score’ for each buffer (Euclidean and network) at three spatial scales (800m, 1600m and 

2400m), based on the meshblock identifier. The mean values of each index were calculated for 

Euclidean and network buffers, which included a meshblock identifier. This process was 

necessary in order to validate the indices using the Census and New Zealand Health Surveys, 

(Chapters 6 and 7), reported at the meshblock level.   

 

BI Method 2 BI Method 3 NDAI Method 2 NDAI Method 3
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between BIs 

Bike Indices 

Comparison 
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Table 6. Methods used to create of the Basic Walk Indices and the Enhanced Walk Indices 

Methods to create multiple indices 

Method 1 = BWI, standard simple intensity  

                    measure averaged to network      

                    based buffers around population            

                    weighted centroids (PWCs)                      

No standard method available to create the 

Enhanced Walk Index  

Method 2 = BWI, KDE values averaged to  

                   Euclidean based buffers around  

                   PWCs  

Method 2 = EWI, KDE values averaged to  

                    Euclidean based buffers around  

                    PWCs  

Method 3 = BWI, KDE values averaged to  

                    network buffers around PWCs 

Method 3 = EWI, KDE values averaged to  

                    network buffers around PWCs 

 

 The individual components of each index were aggregated into deciles and summed 

together to form an index. In order to visualise the underlying distribution of the raw data, the 

kernel density continuous surface maps of the BWIs and EWIs are presented in their raw form 

(Figure 27 and Figure 28). The darker shaded areas indicate high walkability and the lighter 

shaded areas indicate low walkability. Both maps indicate high walkability in central 

Wellington. Beyond the city centre in rural areas, both indices have low densities of 

walkability. No data was available to calculate walkability in the area to the west of the city 

due to the limited data on land use mix, street connectivity, dwellings, street lights, footpaths 

and tracks. This area is quite mountainous and rural. The EWI does, however, capture much 

more of this rural area due to the addition of slope in the index. Slope was calculated along the 

road network and can be seen in tubular patterns on the EWI map, (Figure 28).   
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Figure 27. Kernel density map of the Basic Walk Index Figure 28. Kernel density map of the Enhanced Walk Index 
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The walkability indices (BWI, EWI) were then rescaled in order to compare methods 1, 2 

and 3. This chapter explores the differences between each method based on the same scale (1-

10). Furthermore, subsequent chapters investigate the BWIs and EWIs based on the same scale 

(1-10) with active transport and health-related data (Chapters 5, 6 and 7). The BWIs (methods 

1, 2 and 3) were divided by three and the EWIs (methods 2 and 3) were divided by six (Table 

7), to enable comparison between methods. 

Table 7. Indices rescaled for comparison. 

Basic Walk Indices (methods 2 and 3) Enhanced Walk Indices (methods 2 and 3) 

 

BWI= (Land use mix) + (dwelling       

           density) + (street connectivity) 

3 

 

EWI= (Land use mix) + (dwelling density)      

          + (street connectivity) + (footpaths  

           and tracks) + (street lights)+(slope) 

6 

4.2.1 Basic Walk Indices 

This section describes the results of the Basic Walk Indices (BWI) based on various 

buffers and spatial scales. The indices are mapped to meshblock polygons and quintiles 

representing 7 classes are used to display the variability for each BWI across multiple spatial 

scales and methods. It should be noted that in addition to the 35 meshblocks removed, the BWI 

and EWI based on method 3 (network buffers), had 7 meshblocks with no data after KDE was 

averaged to the meshblock level. For consistency across all maps, dark coloured areas represent 

high densities of walkability and light coloured areas represent low densities of walkability. 

Meshblocks were set to no outline in order to see the general pattern across the city.  

800m Neighbourhood level 

The spatial distribution of density values for the three BWIs at 800m are concentrated 

in Wellington City centre. The standard BWI (method 1) has a positive (right) skewed 

frequency distribution, whereas BWI methods 2 and 3 have negative (left) skewed 

distributions. The BWI based on method 2 (KDE, Euclidean buffer) and the BWI based on 

method 3 (network buffer) and have similar patterns of walkability with high density in the city 

centre. In comparison, the BWI based on method 1, has a much more mixed density of 

walkability surrounding the city centre. Each of the novel methods (2 and 3) have a smoother 

density of walkability across the meshblocks, reflecting the underlying data. 
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Figure 29. Basic Walk Index, standard method, network 

buffer around PWCs, 800m (method 1).  
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Figure 30. Basic Walk Index, novel method, Euclidean buffer 

around PWCs, 800m (method 2). 

 
 

 
 

 

 
Figure 31. Basic Walk Index, novel method, network buffer 

around PWCs, 800m (method 3). 
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1600m Neighbourhood level 

Results of the BWIs using the 1600m buffers are presented in the following pages in 

Figures 32, 33 and 34. Each index shows a similar pattern of high walkability in the city centre. 

Method 2 (Euclidean buffer) has a circular pattern as density of walkability features decreases 

from the city centre. This is expected as Euclidean buffers are circular in shape, whereas the 

network buffers follow the road network and have different shapes depending on distance along 

the road. The frequency distribution of the standard BWI (method 1) is positively skewed, 

while each of the kernel density BWIs (methods 2 and 3) are negatively skewed. 

 

 
Figure 32. Basic Walk Index, standard method, network buffer 

around PWCs, 1600m (method 1). 
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Figure 33. Basic Walk Index, novel method, Euclidean buffer 

around PWCs, 1600m (method 2). 

 

 
 

 

 
 

 

 
Figure 34. Basic Walk Index, novel method, network buffer 

around PWCs, 1600m (method 3). 
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2400m Neighbourhood level 

At the 2400m spatial level however, the pattern changes for the BWI based on method 

2, (Euclidean buffer, Figure 36) in comparison to the circular trend at the 1600m level (Figure 

33). Again each index has the highest density of walkability in the city centre and decreasing 

values of walkability the further from the city centre. Each of the indices show similar 

frequency distributions to the 1600m level, with method 1 having right (positive) skewed 

distribution and methods 2 and 3 showing left (negative) skewed distributions.  

 

 
Figure 35. Basic Walk Index, standard method, network buffer 

around PWCs, 2400m (method 1). 
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Figure 36. Basic Walk Index, novel method, Euclidean buffer 

around PWCs, 2400m (method 2). 

 
 

 

 

 

 
Figure 37. Basic Walk Index, novel method, network buffer 

around PWCs, 2400m (method 3). 

 

 
 

 

 
 

 

BWI Method 3, 2400m

Walk Index

F
re

q
u

e
n

c
y

2 4 6 8 10

0

50

100

150

200

250

BWI Method 4, 2400m

Walk Index

F
re

q
u

e
n

c
y

2 4 6 8 10

0

100

200

300

400

500



 

93 

 

4.2.2 Enhanced Walk Indices 

This section reviews the results for each of the Enhanced Walk Indices (EWIs) for each 

spatial level, 800m, 1600m and 2400m. Similar to the BWIs, each EWI is mapped to meshblock 

polygons (with no outline) and uses quintiles to represent 7 classes of walkability. Dark 

coloured areas represent high densities of walkability.  

 

800m Neighbourhood level 

The spatial distribution of the EWI methods 2 and 3 at 800m (Figures 38 and 39) show 

a high density of walkability in the city centre. EWI based on method 2 (Euclidean buffer) 

shows a clear circular pattern around the city centre. The frequency distribution of each map at 

800m is similar for BWIs based on method 2 and method 3 with left (negative) skewed 

distribution. 

 

1600m Neighbourhood level 

Each of the EWIs at 1600m (Figures 40 and 41) show high density of walkability 

around the city centre and decreasing levels of walkability in the rural areas to the left of the 

maps. Circular patterns are evident for method 2 (Euclidean buffer). Method 3, (network 

 
Figure 38. Enhanced Walk Index, novel method, Euclidean 

buffer around PWCs, 800m (method 2). 
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buffer) shows a contrasting mix of density around the fringes of the city centre. The frequency 

distribution of values for methods 2 and 3 are close to normality, only slightly negatively 

skewed.  

 

 

 
Figure 39. Enhanced Walk Index, novel method, network 

buffer around PWCs, 800m (method 3). 
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Figure 40. Enhanced Walk Index, novel method, Euclidean 

buffer around PWCs, 1600m (method 2). 

 

 
 

 
 

 

 
Figure 41. Enhanced Walk Index, novel method, network 

buffer around PWCs, 1600m (method 3). 
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2400m Neighbourhood level 

The visual pattern in each of the EWI maps at the 2400m (Figures 42 and 43) take on a 

different shape to the1600m. Again, as expected, both indices have the highest density of 

walkability scores in the city centre. The frequency distributions are very similar to 

distributions reported at 1600m, methods 2 and 3 are marginally negatively skewed.  

 

 
Figure 42. Enhanced Walk Index, novel method, Euclidean 

buffer around PWCs, 2400m (method 2). 
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Figure 43. Enhanced Walk Index, novel method, network 

buffer around PWCs, 2400m (method 3). 

 

 
 

 
 

4.2.3 Comparing the Indices 

Summary statistics of each of the BWI and EWI methods at 800m, 1600m and 2400m 

are presented in Table 8. Across each of the spatial levels, the values for the standard BWI 

based on method 1, are lower for the maximum, mean and median values in comparison to 

each of the kernel density methods (2 and 3).  A contrasting pattern emerges for the BWIs and 

EWIs based on methods 2 and 3, where the mean and median decrease steadily as the spatial 

scale increases.  
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Table 8. Descriptive table of the Basic Walk Indices and Enhanced Walk Indices using various buffers 

and spatial levels. 

800m Mean Median Std. 

BWI (Method 1) 3.05 2.76 1.07 

BWI (Method 2) 7.39 7.53 1.60 

BWI (Method 3) 7.97 7.83 1.27 

EWI (Method 2) 7.00 7.06 1.35 

EWI (Method 3) 7.45 7.42 1.10 

1600m    

BWI (Method 1) 3.68 3.32 1.13 

BWI (Method 2) 6.62 7.17 2.05 

BWI (Method 3) 7.78 7.80 1.31 

EWI (Method 2) 6.28 6.68 1.78 

EWI (Method 3) 7.33 7.27 1.05 

2400m Mean Median Std. 

BWI (Method 1) 4.07 3.72 1.01 

BWI (Method 2) 6.03 6.78 2.18 

BWI (Method 3) 7.47 7.70 1.55 

EWI (Method 2) 5.70 6.40 2.00 

EWI (Method 3) 7.11 7.17 1.14 

 

Pearson’s correlations between each of the BWIs and EWIs based on methods 1, 2 and 

3, across the three spatial levels are presented in Table 9. The novel BWIs (methods 2 and 3) 

have a strong positive linear relationship with the novel EWIs (methods 2 and 3), indicating 

they are similar measures. When comparing the standard BWI (method 1) with the novel BWIs 

and EWIs, the linear relationship is not as strong. To summarise, the novel BWI is more similar 

to the novel EWI than to the standard BWI, indicating that the novel method is driving the 

difference. In addition, the additional parameters, slope, street lights and footpaths and tracks, 

did not impact the results greatly. While the Pearson’s correlations shows there is a linear 

relationship, it does not indicate whether the novel approach has a better model fit than the 

standard approach. In the subsequent chapters the standard and novel methods are tested using 

various regression analyses to determine which method of measuring the built environment 

shows stronger associations with active transport, physical activity and health outcomes. 
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Table 9. Pearson’s correlations comparing the various Basic and Enhanced Walk Indices for 800m, 

1600m and 2400m spatial scales, (α= 5%, p<0.001). 

Neighbourhood 

definition 

BWI 

(Method 

1) 

 

BWI  

(Method 

2) 

 

BWI 

 (Method 

3) 

 

EWI 

 (Method 

2) 

 

EWI 

(Method 

3) 

 

800m      

BWI (Method 1) 1.00 0.59 0.66 0.58 0.68 

BWI (Method 2)  1.00 0.76 0.95 0.76 

BWI (Method 3)   1.00 0.74 0.93 

EWI (Method 2)    1.00 0.79 

EWI (Method 3)     1.00 

1600m      

BWI (Method 1) 1.00 0.61 0.67 0.57 0.70 

BWI (Method 2)  1.00 0.62 0.94 0.63 

BWI (Method 3)   1.00 0.62 0.94 

EWI (Method 2)    1.00 0.64 

EWI (Method 3)     1.00 

2400m      

BWI (Method 1) 1.00 0.55 0.61 0.52 0.65 

BWI (Method 2)  1.00 0.64 0.93 0.62 

BWI (Method 3)   1.00 0.66 0.96 

EWI (Method 2)    1.00 0.64 

EWI (Method 3)     1.00 
 

Summary 

Clustered patterns of walkability scores in each of the maps reflects the high walkability 

density in the city centre in both the BWIs and EWIs. This is expected, as the components that 

make up each of the indices are more concentrated in the city centre, i.e. street connectivity, 

dwelling density, land use mix, street lights, footpaths and slope. Similarly, high density around 

the city centre in each of the KDE measures (methods 2 and 3) is expected since the methods 

are based on the same underlying data. However, patterns emerge at 1600m and 2400m and 

differences between the types of buffer, Euclidean and network, can be seen. It is interesting 

to note however, that the standard BWI based on method 1 also has similar walkability patterns 

to the novel methods (2 and 3), for most spatial scales, potentially indicating that the novel 

methods are a valid alternative to the standard BWI (method 1). This hypothesis will be tested 

in Chapter 6 and 7, when validating the indices with Census and New Zealand Health Survey 

(NZHS) data. Correlation values for each BWI and EWI and their respective methods were 

very high, which is expected since the EWIs includes the same data as the BWIs, with three 
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additional components. Each of the methods used to create the BWIs and EWIs, their visual 

differences and similarities, offer insights into the subtle differences between buffers and 

spatial scales.  

4.3 Bikeability Indices 

 The following section describes the results of the Bike Indices for methods 2 and 3. 

Choropleth maps, frequency distribution histograms, summary statistics and Pearson’s 

correlations are presented. Table 10 presents the six components of the Bike Index. Each of the 

individual components were standardised to deciles and summed into an index of bikeability 

ranging from 6-60.  

Table 10. Bike Index components. 

  

 

 

Similar to the walk indices, a map of the kernel density continuous surface of bikeability 

for Wellington City is presented, to visualise the underlying distribution of raw data (Figure 

44). Areas where there was no data on land use mix, street connectivity, street lights, cycle 

lanes and bike racks are represented in grey. Darker areas represent high bikeability and lighter 

coloured areas represent low bikeability. Similar to the BWI and the EWI maps, (Figures 27 

and 28), high bikeability is concentrated around the city centre and decreases as distance 

increases further from the city. Due to the addition of slope in the Bike Index, areas outside the 

city centre have low bikeability. It is acknowledged that mountainous areas are attractive to 

certain types of cyclists, however this research is interested in cycling for active transport and 

physical activity for the general population, not specific sub groups.  

 

BI = (Land use mix) + (Street connectivity) + 

           (Street lights) + (Slope) + (Bike racks) +          

           (Cycle lanes) 
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Figure 44. Kernel density map of the Bikeability Index for Wellington City. 

 

The Bike Index (BI) was then averaged to Euclidean (method 2) and network (method 

3) based buffers at 800m, 1600m and 2400m around meshblock population weighted centroids. 

The next three sections give a brief description of the visual representation of the BIs, (methods 

2 and 3) at each spatial level. Values close to 60 represent areas with high bikeability scores 

and areas with low values, close to 6, represent low bikeability scores. 
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800m Neighbourhood level 

 Both maps (Figures 45 and 46) have similar bikeability scores in Wellington City. 

Visually, high bikeability is concentrated in the city centre with decreasing bikeability density 

the further from the centre. The BI based on method 3 has a higher concentration of values in 

the highest quintile in comparison to the BI based on method 2. In addition, both BIs (methods 

2 and 3) are normally distributed.  

 
Figure 45. Bike Index, novel method, Euclidean buffer around 

PWCs, 800m (method 2). 
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Figure 46. Bike Index, novel method, network buffer around 

PWCs, 800m (method 3). 

 

 

 
 

 

1600m Neighbourhood level 

 Patterns emerge at the 1600m spatial scale, with the BI based on method 2, (Figure 47), 

displaying a circular form of bikeability density in the city centre. This is expected as method 

2 is based on Euclidean buffers. In contrast, the BI based on method 3, (Figure 48), has a more 

disjointed pattern of bikeability density, reflecting the network based buffers. Similar to the 

BIs at 800m, the BI based on method 3 has higher values of bikeability in the highest quintile 

in comparison to the BI based on method 2. In addition, the underlying frequency distribution 

of both BIs is normally distributed.  
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Figure 47. Bike Index, novel method, Euclidean buffer around 

PWCs, 1600m (method 2). 

 

 
Figure 48. Bike Index, novel method, network buffer around 

PWCs, 1600m (method 3). 
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2400m Neighbourhood level 

 Similar to the 1600m spatial level, distinct circular patterns of bikeability density from 

the city centre are evident in the BI based on method 2 (Figure 49). The BI based on method 

3, (Figure 50), also displays a circular pattern in the highest quintile in the city centre. In 

addition, as with the 800m and 1600m scales, both BIs have frequency distributions close to 

normality. 

 
Figure 49. Bike Index, novel method, Euclidean buffer around 

PWCs, 2400m (method 2). 
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Descriptive statistics of the BIs based on methods 2 and 3 at 800m, 1600m and 2400m are 

shown in Table 11. Across each of the spatial levels the values for the BI based on method 3 

are higher than the BI based on method 2. In both BIs, the mean values decrease as the spatial 

scale increases.  

Table 11. Summary statistics of the Bike Indices using various methods and spatial levels. 

 Min Max Mean Median Std. 

800m      

BI (Method 2) 6.00 45.68 29.92 28.86 6.40 

BI (Method 3) 6.00 49.91 31.62 30.15 7.29 

1600m      

BI (Method 2) 6.00 37.40 28.04 27.70 5.53 

BI (Method 3) 6.00 45.01 31.44 29.80 6.03 

2400m      

BI (Method 2) 6.00 35.90 26.56 27.32 5.54 

BI (Method 3) 6.00 42.61 31.03 30.29 4.98 

 

Correlations between the BIs were relatively high (0.77 at 800m, 0.85 at 1600m and 0.79 

at 2400m). Methods 2 and 3 are most strongly correlated at the 1600m spatial level (Table 12). 

 

 
Figure 50. Bike Index, novel method, network buffer around 

PWCs, 2400m (method 3). 
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Table 12. Pearson’s correlation of Bike Indices for each method for 800m, 1600m and 2400m spatial 

scales, (α= 5%, p<0.001). 

Neighbourhood 

Definition 

BI (Method 2) 

 

BI (Method 3) 

 

800m   

BI (Method 2) 1.00 0.77 

BI (Method 3)  1.00 

1600m   

BI (Method 2) 1.00 0.85 

BI (Method 3)  1.00 

2400m   

BI (Method 2) 1.00 0.79 

BI (Method 3)  1.00 

 

Summary 

 This section described the visual representation of the BIs based on methods 2 and 3 at 

three spatial levels, 800m, 1600m and 2400m. Both methods show high concentration of 

bikeability scores in the city centre. Circular patterns emerge at 1600m and 2400m for method 

2 based on the Euclidean buffer. Furthermore, the frequency distribution of the underlying data 

was normally distributed for both BIs across each spatial scale. The BIs based on method 2 and 

3 are investigated for associations with active transport, physical activity and health outcomes 

in subsequent chapters 5, 6 and 7. 

4.4 Neighbourhood Destination Accessibility Indices  

The following section describes the results of the NDAIs using methods 2 and 3 for 

each spatial level, 800m, 1600m and 2400m. Choropleth maps, distribution histograms, 

summary statistics and Pearson’s correlation results are presented. Similar to the walk and bike 

indices, described previously, each of the individual components (education, transport, 

recreation, social and cultural, food retail, financial, and health and other retail) were created 

using KDE. Values were standardised to deciles and summed together to form an index of 

neighbourhood destination accessibility. Figure 51 displays the raw KDE values of the NDAI 

for Wellington City. The city centre has a higher density of darker colours, representing areas 

with high density of destinations. Clusters of high density NDAI scores are dotted north and 

south of the city centre. 
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Figure 51. Kernel density map of Neighbourhood Destination Accessibility Index for Wellington City. 

 KDE values of the NDAI were then averaged to Euclidean (method 2) and network 

buffers (method 3) at three spatial scales, 800m, 1600m and 2400m based on meshblock 

population weighted centroids. The following sections give a brief description of the NDAIs 

based on methods 2 and 3 at the three spatial scales. Values range from 8 to 80, where values 

close to 80 indicate high destination accessibility and values close to 8 indicate low destination 

accessibility.   
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800m Neighbourhood level 

 Figures 52 and 53 present the density of destinations based on methods 2 (Euclidean) 

and 3 (network) at the 800m spatial level. Both methods show a high concentration of 

destinations in the city centre. The NDAI, based on method 3, displays a more disjointed pattern 

of destination density in comparison to method 2. In addition, the frequency distribution of data 

for method 2 is normally distributed, whereas the distribution of data in method 3 is slightly 

right skewed (positive).  

 

 

 

 

 

 

 

 

 

 
Figure 52. NDAI novel method, Euclidean buffer around 

PWCs, 800m (method 2). 
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1600m Neighbourhood level 

 Similar to the walk and bike indices (BWIs, EWIs and BIs) described previously, 

circular patterns of destination density emerge at the 1600m spatial scale for the NDAI based 

on method 2 (Euclidean buffer, Figure 54). In contrast, the NDAI based on method 3 (network 

buffer, Figure 55) has a more clustered and disjointed pattern. Both methods have similar 

normal distribution of underlying data. 

 

 
Figure 53. NDAI novel method, network buffer around PWCs, 

800m (method 3). 
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Figure 54. NDAI novel method, Euclidean buffer around 

PWCs, 1600m (method 2). 

 
 

 
 

 

 
Figure 55. NDAI novel method, network buffer around PWCs, 

1600m (method 3). 

 

 

 
 

 

 
 

 

 

BI Method 3, 1600m

Bike Index

F
re

q
u

e
n

c
y

10 20 30 40 50 60 70 80

0

100

200

300

400

BI Method 4, 1600m

Bike Index

F
re

q
u

e
n

c
y

10 20 30 40 50 60 70 80

0

100

200

300

400



 

112 

 

2400m Neighbourhood level 

 The NDAI based on method 2 at 2400m, has similar circular patterns of destination 

density originating in the city centre (Figure 56). In contrast, the NDAI based on method 3 has 

a separated pattern, reflecting the form of the network buffers (Figure 57). Method 2 has a 

slightly right skewed data distribution, in comparison, method 3 has a normal distribution of 

underlying data.   

 
Figure 56. NDAI novel method, Euclidean buffer around 

PWCs, 2400m (method 2). 
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Figure 57. NDAI novel method, network buffer around PWCs, 

2400m (method 3). 

 

 

 
 

 

 
 

 
 

 Summary statistics of each NDAI based on methods 2 and 3 at 800m, 1600m and 

2400m, are presented in Table 13. Similar to the BI based on method 3, values were higher for 

the NDAI based on method 3, across each spatial scale, in comparison to the NDAI based 

on method 2. Furthermore, mean values for both methods decreased as the spatial scale 

increased. 

 

Table 13. Descriptive statistics of the Neighbourhood Destination Accessibility Indices using various 

methods and spatial levels. 

 Min Max Mean Median Std. 

800m      

NDAI (Method 2) 8.00 67.00 30.87 29.30 12.99 

NDAI (Method 3) 8.00 69.15 34.63 33.17 15.4 

1600m      

NDAI (Method 2) 8.00 67.21 28.33 26.02 12.87 

NDAI (Method 3) 8.00 67.66 34.29 32.17 12.35 

2400m      

NDAI (Method 2) 8.00 66.88 26.09 25.75 12.41 

NDAI (Method 3) 8.00 65.65 33.37 31.22 11.39 
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Similar to the BIs, both methods 2 and 3 were highly correlated. The highest correlation 

between the methods was at 800m, 0.91 and decreased as the spatial scale increased, (0.72 at 

2400m). 

Table 14. Pearson’s correlation of NDAI methods for 800m, 1600m and 2400m spatial scales, (α= 5%, 

p<0.001). 

 

Neighbourhood 

Definition 

NDAI (Method 2) 

 

NDAI (Method 3) 

 

800m   

NDAI (Method 2) 1.00 0.91 

NDAI (Method 3)  1.00 

1600m   

NDAI (Method 2) 1.00 0.83 

NDAI (Method 3)  1.00 

2400m   

NDAI (Method 2) 1.00 0.72 

NDAI (Method 3)  1.00 
 

Summary 

 Similar to the BI based on method 2, a circular pattern of destination density was found 

at the 1600m and 2400m spatial scales. In general, the data for both NDAIs based on methods 

2 and 3, were normally distributed across all three spatial levels. In addition, correlations 

between both methods were relatively high, with the highest correlation at 800m. Both NDAIs, 

based on 2 and 3 are investigated for associations with active transport, physical activity and 

health outcomes in Chapters 5, 6 and 7. 

4.5 Conclusion 

This chapter provided a brief description of each of the built environment indices 

(BWIs, EWIs, BIs and NDAIs) developed as part of this research. Standard (method 1) and 

novel (methods 2 and 3) were compared across three spatial levels, 800m, 1600m and 2400m. 

Further, the methods (Euclidean and network based buffers) were represented at the meshblock 

level, which is a new way of visualising the mean KDE values of the composite indices 

aggregated to two different buffers. Distinct circular patterns emerged for all indices based on 

method 2 (Euclidean buffer), whereas a more separated pattern was found all indices based on 

method 3 (network buffer) at 1600m and 2400m.  

Each of the indices, based on methods 1, 2 and 3, will be investigated and validated 

through regression analysis using the New Zealand Household Travel Survey (NZHS, Chapter 
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5), Census (Chapter 6) and New Zealand Health Survey (HS, Chapter 7). The following chapter 

utilises individual level data from the NZHS and investigates the sensitivity of individual and 

composite measures of walkability (BWIs and EWIs based on methods 2 and 3) with time spent 

walking.  
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Chapter 5: Measuring Associations between Individual Attributes and 

Indices of the Built Environment and Time Spent Walking 

5.1 Introduction 

The overall goal of this research is to create composite indices of the built environment 

that characterise walking and cycling behaviours, and neighbourhood destination accessibility 

for Wellington City. Understanding how individual elements of the built environment can 

enable or hinder physical activity remains necessary in order to identify areas that could be 

modified to facilitate physical activity and potentially lead to improved health outcomes at a 

population level. The previous chapter examined the spatial variations between the Basic Walk 

Indices (BWIs), Enhanced Walk Indices (EWIs), Bike Indices (BIs) and Neighbourhood 

Destination Accessibility Indices (NDAIs) across three spatial scales, 800m, 1600m and 

2400m. The following three chapters test the validity of these indices, through statistical 

analyses using three different surveys, New Zealand Household Travel Survey (HTS), the 

Census and the New Zealand Health Survey (NZHS), comprised of active transport behaviours 

and health outcomes.  

This chapter addresses the eighth objective of this thesis, which is to test the sensitivity 

of individual attributes separately, and together, in the form of composite indices, and their 

associations with active transport behaviours. It is an exploratory pilot study and serves as a 

sensitivity analyses for Chapters 6 and 7, which focus solely on the associations between the 

composite indices of the built environment and active travel behaviours and health outcomes. 

5.2 Methods 

Study data 

The New Zealand Household Travel Survey (HTS) was used to validate and test 

associations between individual attributes, and composite indices of the built environment and 

time spent walking in Wellington City. The survey is carried out throughout the year, obtaining 

information on how, where and when people travel. Travel behaviour data is available 

continuously from 2003-2014, and a new travel survey using GPS and online forms began in 

2015 (Ministry of Transport, 2016). Every one in seven households are randomly selected for 

inclusion in the survey, from meshblocks within each region around the country. Meshblocks 

are typically used to represent neighbourhoods in New Zealand, as they are the smallest 

geographic unit representing approximately 110 people (Statistics New Zealand, 2002). 
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Following a letter and visit by an interviewer describing the aims and content of the 

survey, participants are requested to report their travel behaviour throughout two consecutive, 

randomly assigned ‘travel days’. Following the ‘travel days’ the interviewer returns and 

completes a personal interview with each member of the household. The information gathered 

includes, for example: household information such as household structure, relationship of 

people in the house, number of people, type and make of vehicles; individual person 

information such as age, sex, employment, income, ethnicity, marital status, driving 

experience, number of road crashes, location of workplace/school and destinations; and trip 

based information, such as trip purpose, mode choice, date, time, origin and destination. A full 

description of the variables and methods are available from Ministry of Transport, (2016). This 

research was interested in testing associations between travel behaviour and indices derived for 

Wellington City; as such, the sample was restricted to meshblocks from Wellington City.  

 Individual participant’s address data for the HTS was obtained from the Ministry of 

Transport in May 2015. Even though data was available on multi-modal and multi-trip legs, 

this research was specifically concerned with testing associations between elements of the built 

environment and single, direct trips from home addresses to final destinations and therefore 

excluded multi-model trips. Importantly, sample sizes for the whole country each year ranged 

from 2,200 households from 2003/04 to 2007/08 (inclusive) to 4,600 households from 2008/09 

onwards. Due to the small sample size for Wellington City, multiple years were combined in 

order to increase the sample size. Five years of data were combined, between 2009 and 2014.     

Initially, the HTS dataset was filtered (in Excel) by transport mode (walk, cycle, public 

transport and car), trip start, (the home address), and trip purpose or destinations, (the work 

address). However, even after combining multiple years, the sample sizes of direct trips by 

walkers and cyclists from home to work were relatively small (Table 15). Therefore, a decision 

was made to include walking trips from home to any destination, which included work, 

education, shopping, social welfare, personal business, medical/dental, social 

visits/entertainment and recreational. In addition, the number of cyclists that cycled from home 

directly to work or any destination was deemed too small (n=44) to include in any exploratory 

analyses with the Bikeability Indices, which is examined in Chapters 6 and 7. As shown in 

Table 15, the majority of the participants in the sample drove directly from home to work 

(n=404) or any destination (including work, n=2,357). However, because active transport 

modes and their relationship with the built environment are the focus of this research, this 

examination was concerned solely with single trips originating at the home address and 
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finishing at any destination, directly via an active transport mode and excluded public transport 

users and drivers. Therefore, only individuals that walked from home directly to any destination 

were included in the subsequent exploratory analyses.  

Table 15. Sample sizes of the transport mode used leaving from the home address directly (without any 

multi-mode trips) to work or any destination in Wellington City. 

Mode of transport 
Home to 

work 

Home to any 

destination 

(including 

work) 

 (n) (n) 

Total trips by foot 81 133 

Total trips by bike 9 44 

Total trips by public transport 28 60 

Total trips by car 404 2357 

 

The home and destination addresses were geocoded in ArcGIS, (version 10.2) and the 

individual level travel behaviour data was attached to the neighbourhood level exposures of the 

built environment (BWIs, EWIs and NDAIs). The following sections describe the outcome 

variables of interest, possible confounders and briefly, the methods used to create the built 

environment exposure variables, (BWIs, EWIs and NDAIs) employed in these analyses.  

5.2.1 Time spent walking to any destination 

In order to compare findings with similar research that tested associations between 

attributes of the built environment and active commuting two outcomes based on the duration 

(in minutes) of walking trips to any destination were included in the analyses (Mackenbach et 

al., 2016). Although, Mackenbach et al., (2016) specifically used multi-walk trips from home 

to work, this sample is comprised of direct trips from home to work destinations which makes 

up 61 percent of total destinations. The first outcome was defined as individual walking trips 

from home to any destination for a duration of up to 10 minutes. Previous research has 

measured the availability in terms of count of destinations within a 720 metre network buffer 

of a tract centroid, generally representing locations within a 10 minute walk (Berke et al., 2007; 

Lee and Moudon, 2006; Moudon et al., 2007). The data was filtered to select individuals that 

only walked up to 10 minutes and a binary categorical variable was created, 1 = walked up to 

10 minutes, 0 = did not walk up to 10 minutes. In addition, the second outcome, total duration 

of walking trips (in minutes), was included as a continuous variable.  



 

119 

 

5.2.2 Individual level covariates- demographic and socio-economic variables 

Similar to previous research on the built environment and physical activity, (e.g. Witten 

et al., 2012; Pearson et al., 2014; Mackenbach et al., 2016) a number of demographic and socio-

economic variables were included in the analyses to control for potential confounding. 

Individual age of each participant was gathered in the HTS. Several age groups, similar to 

Witten et al., (2012), were created as categorical variables in order to represent individuals at 

different stages of their lives. The groups created were 0-14, 15-29, 30-44, 55-64 and over 65 

year olds. Sex and ethnicity were also included as a categorical variables. Three ethnic groups 

were identified in the sample data, European/Other, Māori and Asian. In addition, employment 

was categorised into five groups, 1) employed (full and part-time), 2) unemployed/looking for 

work, 3) full or part-time student, 4) unemployed, not looking for work (retired/keeping house), 

5) Other (not yet at school/don’t know). 

5.2.3 Area level covariate- neighbourhood deprivation 

 The New Zealand Index of Deprivation, 2013, (NZDep13) is an area level measure of 

deprivation, comprised of nine variables from the 2013 New Zealand Census. This index is 

regularly used to control for potential area level confounding in analyses on the built 

environment and physical activity (Witten et al., 2012; Pearson et al., 2014). The index is 

comprised of a number of elements hypothesised to represent deprivation in a population; as 

described in Table 16, this includes access to the internet, equivalised household income, 

means tested benefits, employment, single parent families, qualifications, home ownership, 

access to a car and household overcrowding (Atkinson et al., 2014). 
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Table 16. The 2013 New Zealand Index of Deprivation, (sourced from Atkinson et al., 2014). 

Dimension of 

deprivation 

Description of variable (in order of decreasing weight in the 

index) 

Communication People aged <65 with no access to the Internet at home 

Income People aged 18-64 receiving a means tested benefit 

Income People living in equivalised* households with income below an 

income threshold 

Employment People aged 18-64 unemployed 

Qualifications People aged 18-64 without any qualifications 

Owned home People not living in own home 

Support People aged <65 living in a single parent family 

Living space People living in equivalised* households below a bedroom 

occupancy threshold 

Transport People with no access to a car 

*Equivalisation: methods used to control for household composition. 

 

Figure 58 is a map of area deprivation for Wellington city, showing that the city centre 

has higher deprivation than the surrounding suburbs, with darker meshblocks indicating higher 

deprivation. 
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Figure 58. Measure of deprivation for the Wellington City, where areas that are darker reflect high 

deprivation. Note: NZDep was only calculated for areas that had addresses of buildings, (n=1,098), and 

areas with no address points were not analysed. 

5.2.4 Built environment exposure measures 

The kernel density based individual measures of the built environment, land use mix, 

street connectivity, dwelling density, slope, street lights and footpaths and tracks, based on 

methods 2 and 3, (described in Chapter 3), were included in this analyses with time spent 

walking. In addition, the composite indices measuring walkability, the BWI, comprised of land 

use mix, street connectivity and dwelling density and the EWI, comprised of slope, street lights 

and footpaths and tracks in addition to the BWI components, and the NDAI, comprised of 

densities of health, transport, education, retail, other retail, greenspace, financial and social 

cultural destinations, were also included as exposure measures. This chapter examines the 

relationship between the kernel density estimation (KDE) based measures only and active 
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transport behaviours, the standard BWI is investigated in Chapters 6 and 7. It is important to 

note that the methods and neighbourhood scales described in Chapter 3 were slightly altered in 

this analyses in order to take advantage of the available individual address point data from the 

HTS. The two novel methods described in Chapter 3 consisted of KDE based built environment 

elements aggregated to (vector) Euclidean (method 2) and network (method 3) buffers around 

population weighted centroids (PWCs) at 800m, 1600m and 2400m. In contrast, methods 2 and 

3 applied in this chapter, utilised individual address points, rather than PWCs, to create a 

number of additional buffers (400m, 800m, 1200m, 1600m, 2000m and 2400m), both 

Euclidean and network. Individual address points were unavailable for the subsequent chapters, 

due to restrictions on confidentially sensitive data, and thus PWCs were used as a proxy for 

individual addresses.  

In addition and in contrast with subsequent chapters, this chapter investigates three 

aspects of the participant’s built environment exposure:  

1) the home environment, (the area around the home based on Euclidean and 

network buffers);  

2) the route environment, (the most likely route taken from home to destination);  

3) the destination environment, (the area around the destination walked to, based 

on Euclidean and network buffers). 

Steps taken to create participant’s built environment exposures  

1) the residential home and destination addresses were geocoded.  

2) Euclidean and network buffers of 400m, 800m, 1200m, 1600m, 2000m and 

2400m were created.  

3) The most likely route, based on the road network and distance (in metres), was 

generated using the closest facility tool from the Network Analyst suite in 

ArcGIS (10.2).  

4) Buffers of 50m and 100m from the road centreline between the home and 

destination address were created. Routes were created for participants that 

walked directly from home to any destination (n=133).  

5) Following KDE of the individual attributes and standardising into deciles, as 

with methods 2 and 3, (the Euclidean and network buffers; described in detail 

in Chapter 3, Section 3.6.2), each of the attributes were computed into the zonal 

statistics as table. Values were averaged to the Euclidean and network buffers 
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around the home and destination addresses at 400m, 800m, 1200m, 1600m, 

2000m and 2400m and the route buffers between home and destination (50m 

and 100m) in ArcGIS (10.2).  

This method provided the average density of participant’s exposure to measures of the 

built environment, both individual and indices, in their home, destination and along their 

hypothetical route environments. Figure 59 is an example of a route with a 50m and 100m 

buffer from a participant’s home to a destination with the underlying KDE of dwelling density 

before entering the values into the zonal statistics as table model. As described in Chapter 4, 

section 4.2, (Table 7), each of the BWIs and EWIs based on methods 2 and 3 (Chapter 3, section 

5.6.2) were rescaled in order to conduct statistical analyses with exposure data based on the 

same scale.  
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Figure 59. Example of kernel density estimation of dwelling density along the route, including 50m 

and 100m buffers, between home and destination. 

 

5.3 Statistical analyses 

Summary statistics were calculated for the outcome variables and each of the individual 

index components and overall composite BWIs and EWIs. The next section describes the 

statistical analyses methods applied to test associations between the built environment 

exposures and time spent walking to any destination.  

All analyses of the exposure measures in the three environments, home, destination and 

route were analysed separately, similar to previous research by Witten et al., (2012) and 

Mackenbach et al., (2016). Separate logistic regression models were used to explore 

associations between attributes and indices of the built environment, for multiple 

neighbourhoods around participant’s home and destination, (both Euclidean and network at a 
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range of spatial scales 400m, 800, 1200m, 1600m) and along the route (50m and 100m buffers), 

and the outcome variable, walking up to 10 minutes to any destination. Individuals were 

categorised as 1, walking up to 10 minutes to any destination or 0, not walking up to 10 minutes 

to any destination. Logistic regression based on the binomial exponential family of distribution 

(UCLA, 2016) was used to investigate associations. Coefficients were exponentiated in order 

to report the odds ratios and confidence intervals (95%) were also computed.  

Similar to Mackenbach et al., (2016) total duration (in minutes) was included as a 

sensitivity analysis with repeated measures and additional distances. The continuous variable, 

total duration (in minutes) was analysed using individual generalized linear regression models 

(GLM) with log link and based on the Gamma distribution. The GLMs were utilised to test 

associations between elements of the built environment at various spatial levels 400m, 800m, 

1200m, 1600m, and additionally 2000m and 2400m (as the maximum distance walked for total 

duration outcome variable was 2400m). Coefficients were exponentiated enabling 

interpretation of results, where a unit increase in the exposure measures was associated with 

the percentage change in time spent walking (95% confidence intervals also computed). 

Finally, both the binomial logistic and GLM regression models were additionally 

adjusted for age, sex and ethnicity (Model 2) and employment and area deprivation (Model 3), 

(Table 17). Results for models 1, 2 and 3 are reported for the outcome variable, walking up to 

10 minutes, and only results for the fully adjusted model (3) of total duration spent walking are 

reported, as it serves as a sensitivity analyses. In addition, self-selection was not included in 

this analyses as previous research in New Zealand did not find any associations between 

neighbourhood choice, the built environment and time spent walking for transport, leisure or 

all purposes (Witten et al., 2012).  
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Table 17. Example table of multiple models applied to test for associations between outcome and exposure 

variables using binomial logistic regression models. 

 

Outcome 

variables a 

 

Model 1 a: Unadjusted 

bivariate models 

 

Model 2 b: 

Adjusted for demographics 

Model 3 b: 

Adjusted for socio-economic 

and area deprivation 

Up to 10 minutes 

walking from 

home to any 

destination 

 

 

Exposure variables run as 

individual models and tested 

using various buffers around 

the home, destination and 

route 

 

- Land use mix 

- Street connectivity 

- Dwelling density 

- Slope 

- Street lights 

- Footpaths and tracks 

- BWIs  

- EWIs  

- NDAIs  

 (methods 2 & 3) 

Exposure variables run as 

individual models and tested 

using various buffers around 

the home, destination and 

route 

 

- Land use mix 

- Street connectivity 

- Dwelling density 

- Slope 

- Street lights 

- Footpaths and tracks 

- BWIs  

- EWIs  

- NDAIs  

 (methods 2 & 3) 

Exposure variables run as 

individual models and tested 

using various buffers around 

the home, destination and 

route 

 

- Land use mix 

- Street connectivity 

- Dwelling density 

- Slope 

- Street lights 

- Footpaths and tracks 

- BWIs  

- EWIs  

- NDAIs  

 (methods 2 & 3) 

  Age: 

-  0-15 

- 15-29 

- 30-44 

 

- 45-54 

- 55-64 

- ≥65 

Age: 

-  0-15 

- 15-29 

- 30-44 

 

- 45-54 

- 55-64 

- ≥65 

  Ethnicity: 

- Māori 

-Asian 

-European/Other 

Ethnicity: 

- Māori 

-Asian 

-European/Other 

  Sex:  

-Female 

-Male 

Sex:  

-Female 

-Male 

   Employment: 

- Employed, full and part-time 

- Unemployed, looking for   

  work 

- Student, full and part-time 

- Unemployed, not looking for  

  work      

  (retired/keeping house) 

- Other 

   NZ Deprivation: 

- Quintile 1 

- Quintile 2 

- Quintile 3 

- Quintile 4 

- Quintile 5 
a The second outcome variable, total duration (in minutes) spent walking from home to any destination was also 

tested for associations using a generalised linear model with gamma distribution and log link for each of the 

individual component and composite measures (BWIs, EWIs and NDAIs). b The second outcome (total duration) 

was additionally controlled for potential confounders in models 2 and 3. 

 

5.4 Results 

The following section describes the results of the descriptive statistics and regression 

analyses. Then both the unadjusted and adjusted results for up to 10 minutes spent walking 
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(section 5.4.2, and 5.4.3), and the fully adjusted results for total time spent walking (section 

5.4.4) and the relationship with the measures of the built environment are presented. 

5.4.1 Descriptive characteristics of outcomes, covariates and built environment measures 

 Table 18 presents the summary statistics of the two outcomes of interest and distance 

travelled. The average duration of walking trips up to 10 minutes was 7.83 minutes (Std=2.89), 

and the average distance travelled was 540m (Std=30m) with a maximum of 1310m. In 

contrast, the average total time spent walking to a destination was 16.35 minutes (Std=10.39), 

and the average distance travelled was 950m (Std=610m). The maximum of total time spent 

walking was 60 minutes and a distance of 2490m. Due to the maximum distance travelled by 

individuals walking for up to 10 minutes, only neighbourhood scales in increments of 400m, 

from 400m up to 1600m were analysed. Neighbourhood scales from 400m up to 2400m were 

included for total time spent walking as the maximum distance walked by individuals was 

2490m. 

Table 18. Summary statistics of outcome variables; walking up to 10 minutes and total duration spent 

walking. Distance travelled for each outcome also included. 

Summary 

Statistics 

Walked up 

to 10 

minutes 

(minutes) 

Total time 

spent 

walking 

(minutes) 

Distance 

travelled up 

to 10 

minutes 

(kilometres) 

Distance 

travelled 

total 

duration 

(kilometres) 

Minimum 1.00 1.00 0.01 0.01 

Median 10.00 15.00 0.48 0.87 

Mean (Std) 7.83 (2.89) 16.35 (10.39) 0.54 (0.30) 0.95 (0.61) 

Maximum 10.00 60.00 1.31 2.49 

 

The socio-demographic characteristics of the HTS sample are presented in Table 19. 

The total number of individuals that walked directly from home to any destination was n=53, 

of that group 41.5% were under 15 years of age, with the 15-29 year olds making up the second 

highest group at 20.75%. In contrast, the total number of participants for total time spent 

walking was n=133, again the highest age group was under 15 (32.8%) and the 15-29 year olds 

second highest (20.9%). Both outcome variables, up to 10 minutes and total time spent walking, 

had a higher percentage of males to females, 60.4% vs. 39.6% and 57.9% vs. 42.1% 

respectively. There were strong differences in the percentage of ethnic groups for each 
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outcome. Māori had the smallest percentage for walking up to 10 minutes, 15.1%, and were 

the largest group, 68.4%, in the overall total time spent walking to a destination. In contrast, 

Europeans were the dominant group for walking up to 10 minutes, 58.5% and far behind second 

highest after Māori in total time spent walking, 18%. Up to 45.3% of participants walking up 

to 10 minutes were full or part-time students, whereas 34% were employed (full or part-time) 

and 22.6% were unemployed, not looking for work. In comparison to total time spent walking, 

40% were employed (full or part-time), 38% were students (full or part-time) and 22% 

unemployed, not looking for work. Finally, less than 8% of the sample that walked up to 10 

minutes and 9% of total time spent walking lived in the least deprived neighbourhoods 

(Quintile 1), whereas 28.3% and 21.8% respectively, lived in the second most deprived areas 

(Quintile 4). While most of the sample, for both outcomes, walking up to 10 minutes and total 

time spent walking to a destination, were in the middle quintile, 50.9% and 49.6% respectively. 

Table 19. Sample characteristics of the walkers in Household Travel Survey between 2009 and 2014. 

 Time spent walking 

Covariates Walked up to 

10 minutes  

Total time spent 

walking  

Total (n) 53 133 

Age (%)     

0-14 41.51 32.84 

15-29 20.75 20.90 

30-44 9.43 11.19 

45-54 9.43 10.45 

55-64 5.67 10.45 

≥65 13.21 14.18 

Sex (%)     

Female 39.62 42.11 

Male 60.38 57.89 

Ethnicity (%)     

Māori 15.09 68.42 

Asia 24.53 13.53 

European 58.49 18.04 

Missing n=1   

Employment* (%)     

Employed, full and 

part-time 
33.96 39.85 

Unemployed, looking 

for work 
0 1.50 

Student, full and part-

time 
45.28 37.59 

Unemployed, not 

looking for work 

(retired/keeping house) 

22.64 21.80 

Other 1.89 3.01 
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Table 19. continued. 

 
  

New Zealand 

Deprivation Index 

2013 (%) 

 Walked up to 

10 minutes % 

Total time spent 

walking %  

Q1 (Least deprived) 7.55 9.02 

Q2 9.43 18.05 

Q3 50.94 49.63 

Q4 28.31 21.80 

Q5 (Most deprived) 3.77 1.50 

*percentage is over 100 as some individuals counted twice, for example, 

a part time student with a part time job 

 

The mean and standard deviations of each individual and composite index exposure 

measure (standardised to deciles) for the home and destination addresses, both Euclidean and 

network, at 400m, 800m, 1200m, 1600m, 2000m and 2400m are presented (Tables 49 and 50 

in Appendix A). In addition, the summary statistics for each individual and composite measure 

(standardised to deciles) along the route, between home and destination at 50m and 100m 

buffers are also presented (Table 51, Appendix A).  

5.4.2 Associations of individual attributes of the built environment and walking trips up to 10 

minutes 

As mentioned previously, this is an exploratory study, and the results should be 

interpreted with caution, due to the small sample size. This section investigates associations 

between individual elements of the built environment and time spent walking. Individual 

measures, standardised to deciles were utilised in the subsequent analysis. The following 

research questions were used to guide the examination: 

A) Are individual built environment characteristics associated with walking 

from home to any destination for up to 10 minutes? 

B) Do results vary depending on 1) buffer delineation around the home, 

destination or along the route and 2) spatial scale? 

The results of model 1, with unadjusted bivariate associations between individual and 

composite attributes of the built environment, and walking to a destination for up to 10 minutes 

are presented (Table 20). These results show associations between the built environment, 

measured as both Euclidean and network buffers at 400m, 800m, 1200m and 1600m around 

the home and destination addresses, and walking trips for up to 10 minutes. The results of 

associations between the exposure measures, and routes are presented (Table 21). Binomial 

regression models with exponentiated coefficients were applied in this analysis in order to 
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report the odds ratios. Values greater than 1 indicate a positive association between walking 

for up to 10 minutes and a measure of the built environment. Model 2 was additionally adjusted 

for individual age, sex and ethnicity. Similarly, model 3 was adjusted adjustments for income, 

employment and area deprivation.
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Table 20. Separate, unadjusted binomial logistic regression models of associations between individual and composite measures of the built environment and 

walking up to 10 minutes for neighbourhood buffers, Euclidean and network, around the home and destination addresses at 400m, 800m, 1200m and 1600m 

buffers. Odds ratios and confidence intervals (95%) are presented. 

Up to 10 minutes spent 

walking 

Model 1 

 400m 800m 1200m 1600m 

Home address Euclidean 

buffer 

OR CI (95%) OR CI (95%) OR CI (95%) OR CI (95%) 

Land use mix 1.04 (0.87-1.25) 1.07 (0.84-1.37) 1.21 (0.81-1.83) 1.28 (0.65-2.55) 

Street connectivity 1.17 (0.94-1.51) 1.28 (0.98-1.73) 1.42 (1.01-2.09) 1.51 (1.00-2.37) 

Dwelling density 1.20 (0.96-1.56) 1.47* (1.05-2.20) 1.49 (1.02-2.31) 1.31 (0.92-1.90) 

Slope 1.19* (1.04-1.37) 1.29 (0.99-1.68) 1.37 (0.93-2.03) 1.48* (1.00-2.20) 

Street lights 1.34* (1.03-1.82) 1.39* (1.04-1.94) 1.42* (1.04-2.01) 1.31 (0.97-1.78) 

Footpaths and tracks 1.60 (0.91-3.25) 1.89 (1.04-4.25) 1.88 (1.06-3.96) 1.62 (0.95-2.97) 

BWI 1.05 (0.94-1.18) 1.14* (1.01-1.29) 1.17* (1.04-1.32) 1.10 (0.98-1.24) 

EWI 1.25*** (1.10-1.42) 1.20** (1.07-1.37) 1.14* (1.01-1.28) 1.12 (0.99-1.26) 

NDAI 1.49 (1.02-2.27) 1.77* (1.10-3.19) 1.80* (1.12-3.21) 1.58* (1.07-2.39) 

Values highlighted in bold indicate statistically significant associations, * =p<0.05, ** =p<0.01 and *** =p<0.001. 
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Table 20. continued.         

Up to 10 minutes spent 

walking Model 1 

 400m 800m 1200m 1600m 

Home address network buffer OR CI (95%) OR CI (95%) OR CI (95%) OR CI (95%) 

Land use mix 1.04 (0.88-1.24) 1.04 (0.86-1.26) 1.07 (0.83-1.37) 1.20 (0.85-1.69) 

Street connectivity 1.19 (0.95-1.56) 1.29 (0.99-1.75) 1.30 (0.95-1.82) 1.31 (0.91-1.94) 

Dwelling density 1.22 (0.97-1.60) 1.41* (1.06-1.95) 1.34 (0.99-1.88) 1.34 (0.95-1.95) 

Slope 1.18** (1.05-1.33) 1.28** (1.08-1.54) 1.35** (1.08-1.70) 1.35* (1.05-1.75) 

Street lights 1.35* (1.04-1.83) 1.36* (1.04-1.84) 1.39* (1.03-1.95) 1.40 (1.01-2.02) 

Footpaths and tracks 1.49 (0.81-3.22) 1.88 (0.90-4.82) 2.34 (0.95-6.99) 2.66 (0.98-9.03) 

BWI 1.04 (0.93-1.17) 1.19** (1.05-1.35) 1.13* (1.01-1.28) 1.14* (1.01-1.28) 

EWI 1.21** (1.08-1.38) 1.21** (1.07-1.37) 1.19** (1.06-1.35) 1.17** (1.05-1.33) 

NDAI 1.35 (0.97-1.93) 1.54 (1.02-2.46) 1.83* (1.08-3.37) 2.01* (1.14-3.98) 

Values highlighted in bold indicate statistically significant associations, * =p<0.05, ** =p<0.01 and *** =p<0.001. 
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Table 20. continued.         

Up to 10 minutes spent 

walking Model 1 

 400m 800m 1200m 1600m 

Any destination address 

Euclidean buffer 

OR CI (95%) OR CI (95%) OR CI (95%) OR CI (95%) 

Land use mix 0.86 (0.69-1.07) 0.70* (0.51-0.96) 0.77 (0.49-1.19) 0.99 (0.55-1.80) 

Street connectivity 1.45* (1.12-2.02) 1.39* (1.07-1.92) 1.40* (1.05-1.95) 1.34 (0.99-1.87) 

Dwelling density 1.63*** (1.28-2.18) 1.55** (1.19-2.09) 1.45* (1.10-1.97) 1.30 (0.97-1.76) 

Slope 1.04 (0.87-1.23) 0.91 (0.71-1.17) 0.84 (0.58-1.20) 1.03 (0.66-1.58) 

Street lights 1.44** (1.16-1.84) 1.39** (1.11-1.78) 1.32* (1.05-1.70) 1.23 (0.97-1.58) 

Footpaths and tracks 3.60** (1.72-9.35) 2.43* (1.35-5.27) 2.25** (1.31-4.39) 1.78* (1.13-2.95) 

BWI 1.04 (0.93-1.17) 1.11 (0.98-1.25) 1.13* (1.00-1.28) 1.09 (0.97-1.23) 

EWI 1.21** (1.07-1.38) 1.15* (1.02-1.30) 1.16* (1.03-1.31) 1.12 (0.99-1.27) 

NDAI 1.65* (1.12-2.74) 1.66* (1.13-2.66) 1.63* (1.14-2.45) 1.45* (1.07-2.01) 

Values highlighted in bold indicate statistically significant associations, * =p<0.05, ** =p<0.01 and *** =p<0.001. 
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Table 20. continued.         

Up to 10 minutes spent 

walking Model 1 

 400m 800m 1200m 1600m 

Any destination address 

network buffer 
OR CI (95%) OR CI (95%) OR CI (95%) OR CI (95%) 

Land use mix 0.95 (0.78-1.16) 0.92 (0.72-1.17) 0.91 (0.68-1.20) 0.88 (0.62-1.24) 

Street connectivity 1.29 (1.01-1.77) 1.22 (0.94-1.67) 1.15 (0.86-1.60) 1.11 (0.80-1.60) 

Dwelling density 1.53** (1.20-2.04) 1.49** (1.14-2.05) 1.39* (1.05-1.93) 1.31 (0.96-1.85) 

Slope 1.12 (0.97-1.30) 1.05 (0.87-1.25) 1.03 (0.82-1.28) 1.08 (0.83-1.39) 

Street lights 1.34* (1.07-1.73) 1.35* (1.05-1.79) 1.28 (0.98-1.72) 1.23 (0.93-1.66) 

Footpaths and tracks 2.98* (1.41-8.42) 2.46* (1.24-6.41) 2.98* (1.32-8.97) 2.66* (1.13-7.82) 

BWI 1.06 (0.94-1.19) 1.10 (0.98-1.24) 1.08 (0.96-1.22) 1.09 (0.97-1.23) 

EWI 1.23** (1.09-1.40) 1.14* (1.01-1.29) 1.11 (0.98-1.26) 1.09 (0.97-1.23) 

NDAI 1.43 (1.02-2.25) 1.42 (0.99-2.31) 1.33 (0.89-2.16) 1.34 (0.86-2.21) 

Values highlighted in bold indicate statistically significant associations, * =p<0.05, ** =p<0.01 and *** =p<0.001. 
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Table 21. Separate, unadjusted binomial regression models of associations between individual and 

composite measures of the built environment and walking up to 10 minutes for buffers along the route 

from home to destination at 50m and 100m. Odds ratios and confidence intervals (95%) are presented. 

Up to 10 minutes 

spent walking 

 

Model 1 

Route buffer 50m 100m 

  OR CI (95%) OR CI (95%) 

Land use mix 1.14 (0.93-1.42) 1.13 (0.91-1.40) 

Street connectivity 1.33 (1.01-1.89) 1.31 (1.00-1.86) 

Dwelling density 1.53** (1.15-2.17) 1.51** (1.14-2.14) 

Slope 1.19* (1.04-1.37) 1.19* (1.03-1.38) 

Street lights 1.39* (1.08-1.85) 1.40* (1.08-1.87) 

Footpaths and tracks 4.19* (1.53-16.68) 3.69* (1.43-13.39) 

BWI 1.24*** (1.10-1.41) 1.25* (1.10-1.42) 

EWI 1.23** (1.09-1.40) 1.20** (1.06-1.37) 

NDAI 1.62* (1.12-2.56) 1.60* (1.10-2.51) 

Values highlighted in bold indicate statistically significant associations, 

 * =p<0.05, ** =p<0.01 and *** =p<0.001. 

 

Land use mix 

In the unadjusted model, (model 1, Table 20), land use mix did not show any 

associations with walking up to 10 minutes around home addresses, with the Euclidean or 

network buffers across any neighbourhood scales, (400m, 800m, 1200m and 1600m). 

However, it was significantly and negatively associated with walking up to10 minutes at the 

800m neighbourhood around destinations, with the use of Euclidean buffer only. While in the 

positive direction, (greater than 1), there was no significant association between land use mix 

along routes from home to destinations and up to 10 minutes spent walking, with both the 50m 

and 100m buffers (Table 21).  
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After adjusting for age, sex and ethnicity in model 2, (Table 22), the models failed to 

reach statistical significance for both the Euclidean and network buffers around the home 

addresses. In model 1, there was a statistically significant negative association only the 800m 

spatial level based on the Euclidean buffer around the destination, this remained after adjusting 

for potential confounders in model 2, however, the OR decreased from 0.70 to 0.68, where the 

likelihood of walking up to 10 minutes was negatively associated with a unit increase in land 

use mix. Moreover, similar to model 1, there was no association between land use mix and 

destinations based on the network buffer at any scale. Regarding the route between home and 

destination, no association remained between land use mix and walking up to 10 minutes, after 

adjusting for covariates (Table 23). 

In model 3, (Table 24), after additionally adjusting for employment and area 

deprivation, no association remained for Euclidean and network buffers around the home 

addresses. However, a significant negative association remained between land use mix around 

the destination addresses based on the Euclidean buffer at 800m and walking up to 10 minutes. 

In addition, no association was found for both the network buffer around destinations and the 

route between home and destination (Table 24) and walking up to 10 minutes across any spatial 

level.  

 Street connectivity 

The results of model 1, (Table 20), show that there were no associations between street 

connectivity, for either the Euclidean or network buffer around home addresses at any 

neighbourhood level (400m, 800m, 1200m and 1600m). However, in relation to destinations, 

there was a significant positive association between walking up to 10 minutes and street 

connectivity at 400m, 800m and 1200m with Euclidean defined neighbourhoods with OR 1.45, 

1.39 and 1.40 respectively. In contrast, there was no association between the network defined 

neighbourhood around the destinations and walking up to 10 minutes. In relation to routes from 

home addresses to destinations and street connectivity, no significant association was found. 

However, the ORs were in the expected direction for both the 50m and 100m, but failed to 

reach statistical significance, (Table 21).    

After adjusting for age, sex and ethnicity in model 2, (Table 22), there was still no 

association between street connectivity and the neighbourhoods around the home address, both 

Euclidean and network, at any spatial level. Nevertheless, street connectivity around the 
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destination, based on the Euclidean buffer, remained significantly positively associated with 

walking up to 10 minutes at 400m and 800m only, with 1200m failing to remain statistically 

significant. However, similar to model 1, there was no association found for the network based 

buffer around the destinations or the route between home and destination at any spatial level 

(Table 23).  

In the fully adjusted model, (Table 24 and Table 25), no associations remained between 

density of street connectivity and walking up to 10 minutes at either the home, (both Euclidean 

and network buffers) or along the route at any spatial level. This finding shows the strong 

negative confounding effect of employment and area deprivation on walking up to 10 minutes 

and street connectivity. However, street connectivity was statistically significant at 400m only, 

(Euclidean buffer) around destinations where the odds of walking up to 10 minutes increased 

by 37% for every unit increase in street connectivity. Creating built environments with highly 

connected streets could potentially increase short walking trips. 

Dwelling density 

The results of model 1, (Table 20), show that 800m was the only spatial level 

significantly positively associated with walking up to 10 minutes in both the Euclidean and 

network defined neighbourhoods around the home. In addition, the ORs were similar, where 

an increase in dwelling density in the Euclidean defined neighbourhood was associated with 

47% increase in the odds of walking up to 10 minutes, and 41% increased odds in the network 

defined neighbourhood around home addresses. In addition, dwelling density around the 

destination neighbourhoods had a significant positive association with walking up to 10 

minutes at 400m, 800m and 1200m, both with Euclidean and network buffers. The ORs were 

highest for 400m, Euclidean buffer, OR1.63, network buffer, OR 1.53, and decreased as the 

spatial levels increased, with 1200m decreased to Euclidean OR1.45 and network OR1.39. 

Likewise, dwelling density along the route (Table 21) between home addresses and 

destinations, with both 50m and 100m buffers, showed significant positive associations with 

walking up to 10 minutes, OR1.53 and OR1.51 respectively.  

In model 2, after adjusting for demographic covariates (Table 22), dwelling density 

around the home address, based on the Euclidean buffer, did not remain significant at 800m, 

and no association was found across all spatial levels. However, it did remain significantly 

associated with walking up to 10 minutes at 800m based on the network buffer around the 
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home address, with ORs increasing marginally from 1.41-1.43. In relation to dwelling density 

around the destination address based on the Euclidean and network buffers, significant positive 

associations between walking up to 10 minutes remained at 400m, 800m (network only) and 

1200m (Euclidean). In addition, for both the Euclidean and network buffers, the 400m 

neighbourhood around the destination address had the strongest ORs, 1.75 and 1.58, 

respectively. Significant associations remained in model 2 with ORs slightly improved for 

dwelling density along the route and walking up to 10 minutes (Table 23).  

After additionally adjusting for employment and area deprivation (model 3, Table 24), 

no association remained between dwelling density and walking up to 10 minutes at any spatial 

level around the home address for the Euclidean buffers. However, a significant positive 

association remained between dwelling density at the 800m network buffer around the home 

and walking. In addition, the ORs improved, where the odds of walking up to 10 minutes to a 

destination increased by 53% for a unit increase in dwelling density around the home. Density 

of dwellings around the destination address remained significantly positively associated with 

walking up to 10 minutes for both the Euclidean buffers at 400m, 800m and 1200m and the 

network buffers at 400m and 800m only. Furthermore, statistically significant associations 

remained between dwelling density and walking along the route environment remained (Table 

25).  

Areas with higher density of dwellings around the home environment, (800m based on 

the Euclidean buffer) and the destination environments, both Euclidean and network, can 

potentially predict increased short walking trips to any destination. In addition, a high density 

of dwellings along the route could also encourage short walking trips.  

Slope 

Similar to all the other individual attributes of the built environment, the slope measure 

was standardised into deciles. However, unlike the other measures, the values were then 

inverted, whereby a value of 10 equalled low slope density and 1 equalled high slope density, 

therefore ORs greater than 1, indicate lower slope density. In model 1, (Table 20) low density 

of slope was statistically significant and positively associated with the Euclidean defined 

neighbourhood around home addresses at 400m and 1600m spatial levels only. However, at 

the network defined neighbourhood around home addresses, low slope density was 

significantly positively associated with walking up to 10 minutes across all spatial levels, 
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(400m, 800m, 1200m and 1600m). Therefore, the lower the slope around home addresses, the 

higher the odds of walking up to 10 minutes with ORs ranging from OR1.18 at 400m increasing 

to OR1.35 at 1600m. This association reveals that low slope may be a factor impacting 

positively in the decision to walk for up to 10 minutes around homes in Wellington. 

Conversely, there was no association between the Euclidean or network defined 

neighbourhoods around destinations and slope density, for any spatial level. However, there 

was a significant positive association between the density of slope along the route from home 

addresses to destinations and walking up to 10 minutes (Table 21). At both the 50m and 100m 

buffer along the route (Table 21), low slope density was significantly associated with increased 

odds of walking, OR 1.19 and OR 1.19, respectively. This finding indicates that the slope along 

the route can influence whether a person decides to walk to a destination or not.   

After adjusting for age, sex and ethnicity, model 2, (Table 22), low density of slope 

remained significantly associated with walking up to 10 minutes around the home address 

based on the Euclidean buffer at 400m and 1600m, but also became significant at 800m and 

1200m. In addition the effect sizes of the ORs increased from moderate to strong as spatial 

scale increased, from OR1.37 at 400m to OR2.06 at 1600m. In addition, low density of slope 

remained significantly positively associated with walking around the home based on the 

network buffer across all spatial levels. ORs ranged from 1.33 at 400m to 1.64 at 1600m. 

However, no association between walking up to 10 minutes and density of slope was found for 

either the Euclidean or network buffers around the address points. In contrast, density of slope 

along the route from home to destination remained significantly associated with walking up to 

10 minutes even after adjusting for covariates, OR1.29 (both 50m and 100m buffers), (Table 

23).      

Model 3 was additionally adjusted for employment and area deprivation, (Table 24). 

Results show that low slope density, only at the 1600m spatial level around the home address 

(Euclidean buffer), remained significantly associated with walking for up to 10 minutes. In 

addition the ORs improved, where low slope density around the home at 1600m was associated 

with an increase in walking by a factor of 2.26 (CI 1.07-5.05). In contrast, only the 400m 

network buffer around home addresses remained significantly associated with walking, 

OR1.26, (CI 1.01-1.61). Similar to model 2, there was no association between slope density 

around the destination addresses, for both the Euclidean and network buffers and walking up 
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to 10 minutes. In addition, no association remained between slope along the route from home 

to destination and walking up to 10 minutes (Table 25).  

Density of low slope around the home environment was found to be associated with 

walking up to 10 minutes at 400m for the network buffer and 1600m for the Euclidean buffer. 

These results indicate the potential importance of considering slope as a factor that can 

influence whether or not people walk short trips from their residential home environment.  

Street lights 

The results of model 1, presented in Table 20, show that street light density around 

home addresses for both the Euclidean and network buffers was positively associated with 

walking up to 10 minutes at 400m, 800m, and 1200m. Effect sizes were moderate with ORs 

similar for both the Euclidean and network defined neighbourhoods around home addresses 

and ranged from OR 1.34 and OR 1.35 at 400m to OR 1.42 and OR 1.39 at 1200m, respectively. 

Likewise, street light density around destinations with Euclidean neighbourhoods at 400m, 

800m and 1200m and the network defined neighbourhoods at 400m and 800m only, were 

statistically significant and positively associated with walking up to 10 minutes. For example, 

an increase in street light density at the 400m levels was associated with a 44% (Euclidean) 

and 34% (network) increased odds of walking up to 10 minutes. Furthermore, in Table 21, the 

density of street lights along the route between home addresses and destinations showed a 

significant positive association with walking up to 10 minutes, with both the 50m and 100m 

buffers (OR 1.39 and OR 1.40 respectively). 

In model 2, (Table 22), after adjusting for demographic covariates, density of street 

lights around the home address for both Euclidean and network buffers did not remain 

significantly associated with walking up to 10 minutes, indicating possible negative 

confounding. In contrast, positive associations remained between walking up to 10 minutes 

and street light density around the destination address, for the Euclidean buffers at 400m, 800m 

and 1200m and only the 800m network buffer. ORs were strongest for the Euclidean buffer as 

opposed to the network buffer, where an increase in street light density around destinations was 

associated with a 52% (Euclidean, 400m and 800m) and 35% (network, 400m) increased 

likelihood of walking up to 10 minutes. After adjusting for covariates, density of street lights 

along the route from home to destination remained significantly associated with walking, 
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however the ORs remained the same, indicating no confounding effect of the covariates, (Table 

23).  

In model 3, after additionally adjusting for employment and area deprivation, (Table 

24), there was still no association between street light density around the home environment, 

both Euclidean and network buffers, and walking up to 10 minutes. However, a significant 

positive association continued between density of street lights and walking in the Euclidean 

defined neighbourhoods at 400m and 800m only around destinations. However, in contrast to 

model 2, no association was found between street light density for the network buffer around 

destinations and along the route with time spent walking (Table 25). 

These results could indicate the utility of measuring the destination environment rather 

than focusing solely on the home environment to predict associations with walking. The results 

could also reflect the common tendency of street lights in urban areas where destinations such 

as cafés, restaurant and parks are located. Having street lights at destinations could potentially 

encourage people to walk short distances from their home environments. 

Footpaths and tracks 

The results of model 1, (Table 20) showed there was no association between density of 

footpaths and tracts around home addresses, at the Euclidean defined neighbourhood at any 

level and walking up to 10 minutes. Even though the ORs were in the expected direction, 

greater than 1, no significant statistical association was found. In addition, the results were 

similar for the network defined neighbourhoods, with no association found for all spatial levels. 

However, footpath and track density around destinations, both with Euclidean and network 

buffers, was significantly positively associated with walking up to 10 minutes across all spatial 

levels 400m, 800m, 1200m and 1600m. In addition, the effect sizes were strong, showing that 

an increase of footpath and track density at 400m was associated with an increased odds of 

walking up to 10 minutes by factor of 3.60 (Euclidean) and 2.98 (network). Although the ORs 

decreased as the size of neighbourhoods increased, the effect sizes remained strong, OR1.78, 

Euclidean, 1600m and OR2.66, network, 1600m. Furthermore, the density of footpaths and 

tracks along the route between home addresses and destinations was significantly positively 

associated with walking up to 10 minutes for both the 50m and 100m buffers, and effect sizes 

were very strong, OR4.19 and OR3.69 respectively (Table 21).  
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After adjusting for age, sex and ethnicity in model 2, (Table 22), no association 

remained between footpaths and tracks around the home addresses, both Euclidean and 

network, and walking up to 10 minutes. However, in relation to density of footpaths and tracks 

around destinations (Euclidean buffers), ORs remained significantly positively associated with 

time spent walking, and had improved effect sizes for all spatial levels. The highest OR was 

found at the 400m neighbourhood scale around the destination (Euclidean buffer), where an 

increase in footpath and track density was associated with an increase in odds of walking up to 

10 minutes by a factor of 4.26. In relation to the network buffer around destinations, 

associations remained at 400m and 1200m only, with 1200m scale having the strongest effect 

size, OR2.94. Regarding the relationship between footpath and track density along the route 

and walking up to 10 minutes, strong, positive, significant associations remained for 50m 

buffer only, however the ORs reduced from 4.19 to 3.59, indicating possible negative 

confounding (Table 23).  

In model 3, after also adjusting for employment and area deprivation, (Table 24), no 

association between footpath and track density and walking up to 10 minutes in the home 

environment, for both the Euclidean and network buffers, at any spatial scale. In relation to 

footpath and track density around the destinations, associations remained for the Euclidean 

defined neighbourhoods at 400m, 800m and 1200m only. Although effect sizes reduced after 

controlling for employment and area deprivation, ORs were again strongest at the 400m scale, 

where the odds of walking up to 10 minutes from home to a destination increased by a factor 

of 3.91 per unit increase in footpath and track density around destination addresses. In contrast, 

no associations remained for the network defined neighbourhoods around destinations. 

However, statistically significant positive associations remained along the route environment 

(Table 25) between home and destinations and footpath density. Remarkably, the odds of 

walking up to 10 minutes increased by a factor of 4.64 (50m) and 4.09 (100m), per unit increase 

in footpath and track density. 

These findings are interesting and could suggest that footpath and track density are not 

as important around the home environment as the destination and route environments. Ensuring 

footpaths and tracks are available around destinations and along the route could encourage 

short walking trips. This finding lends to the growing discussion about the need to consider 

objectively measuring the built environment around destinations and the route environment 

rather than the commonly focused residential home environment.
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Table 22. Separate, binomial logistic regression models, adjusted for age, sex and ethnicity, of associations between individual and composite measures of the built 

environment and walking up to 10 minutes for neighbourhood buffers, Euclidean and network, around the home and destination addresses at 400m, 800m, 1200m 

and 1600m buffers. Odds ratios and confidence intervals (95%) are presented. 

Up to 10 minutes 

spent walking 
Model 2 (adjusted for age, sex and ethnicity) 

  400m 800m 1200m 1600m 

Home Address 

Euclidean Buffer  
OR CI (95%) OR CI (95%) OR CI (95%) OR CI (95%) 

Land use mix 1.12 0.91-1.38 1.18 0.88-1.58 1.38 0.87-2.26 1.37 0.65-2.99 

Street connectivity 1.13 0.89-1.49 1.20 0.89-1.65 1.30 0.89-1.96 1.46 0.92-2.44 

Dwelling density 1.21 0.92-1.65 1.40 0.97-2.18 1.47 0.95-2.46 1.41 0.91-2.24 

Slope 1.37** 1.13-1.68 1.61** 1.14-2.32 1.87* 1.14-3.16 2.06** 1.23-3.58 

Street lights 1.34 0.99-1.91 1.32 0.96-1.91 1.42 0.99-2.15 1.42 0.99-2.10 

Footpaths and tracks 1.43 0.77-3.15 1.63 0.87-3.75 1.69 0.90-3.79 1.60 0.86-3.30 

BWI 1.04 0.921.18 1.12 0.98-1.29 1.16* 1.01-1.33 1.10 0.96-1.26 

EWI 1.29*** 1.12-1.51 1.21** 1.06-1.40 1.14 0.99-1.31 1.13 0.99-1.30 

NDAI 1.58 0.98-2.52 1.69 1.00-0.24 1.84* 1.07-3.55 1.94* 1.18-3.39 

Values highlighted in bold indicate statistically significant associations, * =p<0.05, ** =p<0.01 and *** =p<0.001. 
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Table 22. continued. 

Up to 10 minutes 

spent walking 
Model 2 (adjusted for age, sex and ethnicity) 

  400m 800m 1200m 1600m 

Home address 

network buffer  
OR CI (95%) OR CI (95%) OR CI (95%) OR 

CI 

(95%) 

Land use mix 1.10 0.91-1.34 1.10 0.88-1.38 1.16 0.87-1.55 1.38 0.93-2.09 

Street connectivity 1.15 0.90-1.54 1.23 0.92-1.70 1.23 0.88-1.79 1.22 0.82-1.88 

Dwelling density 1.24 0.94-1.71 1.43* 1.04-2.09 1.40 0.98-2.10 1.40 0.93-2.21 

Slope 1.33* 1.13-1.60 1.52*** 1.20-1.98 1.61** 1.21-2.19 1.64** 1.19-2.29 

Street lights 1.28 0.90-1.86 1.33 0.99-1.87 1.39 0.99-2.05 1.44 0.98-2.22 

Footpaths and tracks 1.31 0.67-3.04 1.59 0.73-4.31 2.12 0.78-7.20 2.53  0.83-10.46 

BWI 1.02 0.90-1.16 1.19* 1.04-0.38 1.13 0.99-1.30 1.13 0.99-1.29 

EWI 1.25** 1.09-1.46 1.24** 1.08-1.44 1.21** 1.06-1.39 1.18* 1.04-1.36 

NDAI 1.40 0.97-2.14 1.55 0.97-2.66 1.91 1.06-3.89 2.23* 1.15-5.03 

Values highlighted in bold indicate statistically significant associations, * =p<0.05, ** =p<0.01 and *** =p<0.001. 
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Table 22. continued. 

Up to 10 minutes 

spent walking 
Model 2 (adjusted for age, sex and ethnicity) 

 400m 800m 1200m 1600m 

Any destination 

address Euclidean 

buffer  

OR CI (95%) OR CI (95%) OR CI (95%) OR CI (95%) 

Land use mix 0.86 0.67-1.09 0.68* 0.47-0.98 0.74 0.43-1.26 1.03 0.51-2.09 

Street connectivity 1.45* 1.08-2.07 1.40* 1.03-2.02 1.43 1.02-2.13 1.39 0.97-2.07 

Dwelling density 1.75*** 1.32-2.43 1.70** 1.24-2.45 1.64** 1.16-2.41 1.44 1.01-2.13 

Slope 1.08 0.89-1.30 0.97 0.73-1.29 0.93 0.60-1.44 1.20 0.70-2.05 

Street lights 1.52** 1.18-2.04 1.52** 1.15-2.09 1.45* 1.09-2.00 1.34 0.99-1.83 

Footpaths and tracks 4.26** 1.81-12.75 2.77* 1.37-6.87 2.62* 1.35-5.90 2.05* 1.18-3.90 

BWI 1.01 0.88-1.15 1.12 0.97-1.29 1.16* 1.00-1.34 1.11 0.97-1.29 

EWI 1.25** 1.09-1.46 1.17* 1.02-1.36 1.20* 1.04-1.39 1.17* 1.02-1.35 

NDAI 1.63 1.06-2.84 1.83* 1.13-3.27 1.93** 1.23-3.27 1.73** 1.17-2.68 

Values highlighted in bold indicate statistically significant associations, * =p<0.05, ** =p<0.01 and *** =p<0.001. 
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Table 22. continued. 

Up to 10 minutes 

spent walking 
Model 2 (adjusted for age, sex and ethnicity) 

 400m 800m 1200m 1600m 

Any destination 

address network 

buffer  

OR CI (95%) OR CI (95%) OR CI (95%) OR CI (95%) 

Land use mix 0.96 0.77-1.20 0.95 0.73-1.25 0.95 0.69-1.31 0.93 0.62-1.39 

Street connectivity 1.23 0.95-1.71 1.15 0.86-1.61 1.07 0.76-1.56 1.04 0.70-1.57 

Dwelling density 1.58** 1.20-2.22 1.53* 1.13-2.23 1.43 1.03-2.11 1.36 0.94-2.06 

Slope 1.18 0.99-1.40 1.09 0.89-1.34 1.10 0.85-1.44 1.19 0.88-1.62 

Street lights 1.35* 1.04-1.80 1.34 1.00-1.88 1.31 0.95-1.87 1.29 0.92-1.86 

Footpaths and tracks 2.89* 1.30-9.07 2.25 1.08-6.32 2.94* 1.17-10.12 2.75 1.02-9.75 

BWI 1.02 0.89-1.16 1.11 0.97-1.28 1.09 0.95-1.25 1.09 0.95-1.26 

EWI 1.26** 1.09-1.48 1.14 0.99-1.31 1.10 0.96-1.27 1.11 0.97-1.27 

NDAI 1.37 0.94-2.22 1.35 0.90-2.29 1.29 0.81-2.28 1.42 0.84-2.59 

Values highlighted in bold indicate statistically significant associations, * =p<0.05, ** =p<0.01 and *** =p<0.001. 
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Table 23. Separate, binomial regression models, adjusted for age, sex and ethnicity, of associations between individual and composite measures of the built 

environment and walking up to 10 minutes for buffers along the route from home to destination at 50m and 100m. Odds ratios and confidence intervals (95%) are 

presented. 

Up to 10 minutes 

spent walking 
Route buffer (Model 2) 

  50m 100m 

  OR CI (95%) OR CI (95%) 

Land use mix 1.25 0.98-1.63 1.23 0.96-1.61 

Street connectivity 1.24 0.94-1.80 1.23 0.93-1.78 

Dwelling density 1.54* 1.12-2.28 1.53* 1.11-2.27 

Slope 1.29** 1.09-1.54 1.29** 1.09-1.56 

Street lights 1.39* 1.04-1.95 1.40* 1.04-1.97 

Footpaths and tracks 3.59* 1.27-15.47 3.22* 1.20-12.90 

BWI 1.26** 1.09-1.47 1.27** 1.10-1.48 

EWI 1.27** 1.09-1.49 1.25** 1.08-1.46 

NDAI 1.57* 1.06-2.58 1.55* 1.04-2.57 

Values highlighted in bold indicate statistically significant associations, 

* =p<0.05, ** =p<0.01 and *** =p<0.001. 
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Table 24 Separate, binomial logistic regression models, adjusted for age, sex and ethnicity, employment and area deprivation, of associations between individual 

and composite measures of the built environment and walking up to 10 minutes for neighbourhood buffers, Euclidean and network, around the home and 

destination addresses at 400m, 800m, 1200m and 1600m buffers. Odds ratios and confidence intervals (95%) are presented. 

Up to 10 minutes 

spent walking 
Model 3 (adjusted for employment and area deprivation) 

  400m 800m 1200m 1600m 

Home address 

Euclidean buffer  
OR CI (95%) OR CI (95%) OR CI (95%) OR CI (95%) 

Land use mix 0.97 0.73-1.28 0.99 0.68-1.44 1.09 0.62-1.95 0.99 0.41-2.40 

Street connectivity 1.23 0.91-1.74 1.29 0.89-1.93 1.33 0.85-2.17 1.31 0.77-2.31 

Dwelling density 1.37 0.95-2.16 1.53 0.97-2.70 1.45 0.86-2.66 1.25 0.74-2.17 

Slope 1.26 0.99-1.65 1.25 0.81-1.95 1.46 0.78-2.76 2.26* 1.07-5.05 

Street lights 1.33 0.96-1.92 1.31 0.93-1.94 1.33 0.89-2.06 1.26 0.84-1.95 

Footpaths and tracks 2.07 0.91-6.17 1.83 0.88-4.95 1.62 0.79-3.90 1.32 0.66-2.85 

BWI 0.92 0.78-1.07 1.1 0.94-1.29 1.09 0.93-1.29 1.01 0.86-1.19 

EWI 1.28** 1.08-1.53 1.16 0.98-1.37 1.06 0.91-1.24 1.04 0.88-1.23 

NDAI 1.43 0.89-2.44 1.63 0.88-3.43 1.57 0.83-3.33 1.49 0.83-2.83 

Values highlighted in bold indicate statistically significant associations, * =p<0.05, ** =p<0.01 and *** =p<0.001. 
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Table 24. continued.         

Up to 10 minutes 

spent walking 
Model 3 (adjusted for employment and area deprivation) 

  400m 800m 1200m 1600m 

Home address 

network buffer  
OR CI (95%) OR CI (95%) OR CI (95%) OR CI (95%) 

Land use mix 0.95 0.72-1.24 0.93 0.69-1.25 0.91 0.61-1.34 1.07 0.65-1.78 

Street connectivity 1.3 0.94-1.88 1.32 0.93-1.95 1.38 0.90-2.22 1.32 0.79-2.31 

Dwelling density 1.46 1.00-2.34 1.54* 1.05-2.40 1.52 0.97-2.51 1.38 0.82-2.47 

Slope 1.26* 1.01-1.61 1.32 0.99-1.81 1.36 0.98-1.92 1.38 0.95-2.04 

Street lights 1.34 0.98-1.91 1.29 0.94-1.83 1.36 0.94-2.05 1.34 0.87-2.16 

Footpaths and tracks 2.14 0.87-7.04 2.32 0.91-7.60 3.6 1.05-16.87 3.05 0.81-15.99 

BWI 0.9 0.77-1.05 1.18 1.00-1.41 1.11 0.95-1.30 1.06 0.90-1.26 

EWI 1.23* 1.05-1.47 1.22* 1.03-1.46 1.17 0.99-1.40 1.11 0.93-1.33 

NDAI 1.31 0.87-2.03 1.32 0.79-2.32 1.75 0.89-3.80 1.89 0.86-4.83 

Values highlighted in bold indicate statistically significant associations, * =p<0.05, ** =p<0.01 and *** =p<0.001. 
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Table 24. continued. 

Up to 10 minutes 

spent walking 
Model 3 (adjusted for employment and area deprivation) 

  400m 800m 1200m 1600m 

Any destination 

address Euclidean 

buffer  

OR CI (95%) OR CI (95%) OR CI (95%) OR CI (95%) 

Land use mix 0.76 0.56-1.01 0.52** 0.32-0.81 0.55 0.28-1.02 0.76 0.33-1.73 

Street connectivity 1.37* 1.03-1.98 1.38 0.99-2.02 1.39 0.96-2.10 1.29 0.87-1.98 

Dwelling density 1.67** 1.23-2.42 1.64** 1.18-2.43 1.53* 1.05-2.31 1.29 0.86-2.00 

Slope 1.02 0.82-1.26 0.83 0.57-1.15 0.67 0.36-1.20 0.97 0.44-2.04 

Street lights 1.43* 1.09-1.97 1.45* 1.07-2.03 1.37 0.99-1.93 1.23 0.88-1.75 

Footpaths and tracks 3.91* 1.55-13.54 2.82* 1.31-7.86 2.39* 1.20-5.63 1.81 0.97-3.67 

BWI 0.9 0.76-1.04 1.08 0.92-1.26 1.11 0.95-1.31 1.07 0.91-1.27 

EWI 1.19* 1.01-1.42 1.12 0.95-1.32 1.16 0.99-1.37 1.13 0.96-1.34 

NDAI 1.55 0.96-2.84 1.68 0.99-3.21 1.76* 1.04-3.24 1.52 0.94-2.58 

Values highlighted in bold indicate statistically significant associations, * =p<0.05, ** =p<0.01 and *** =p<0.001. 

         



 

151 

 

 

Table 24. continued.         

Up to 10 minutes 

spent walking 
Model 3 (adjusted for employment and area deprivation) 

  400m 800m 1200m 1600m 

Any destination 

address network 

buffer  

OR CI (95%) OR CI (95%) OR CI (95%) OR CI (95%) 

Land use mix 0.87 0.67-1.12 0.84 0.61-1.16 0.82 0.55-1.19 0.77 0.47-1.23 

Street connectivity 1.23 0.94-1.72 1.17 0.86-1.67 1.09 0.74-1.65 1.04 0.67-1.67 

Dwelling density 1.48* 1.10-2.15 1.45* 1.06-2.15 1.36 0.95-2.04 1.25 0.83-1.95 

Slope 1.11 0.92-1.34 0.96 0.74-1.21 0.9 0.65-1.24 0.99 0.67-1.45 

Street lights 1.26 0.96-1.71 1.25 0.92-1.77 1.21 0.86-1.76 1.2 0.83-1.78 

Footpaths and tracks 2.77* 1.22-9.47 2.34* 1.04-7.53 3.16* 1.13-12.96 2.82 0.94-11.20 

BWI 0.91 0.77-1.06 1.05 0.90-1.23 1.02 0.88-1.19 1.01 0.86-1.19 

EWI 1.18 0.99-1.41 1.08 0.92-1.26 1.02 0.87-1.20 1.04 0.89-1.22 

NDAI 1.33 0.88-2.21 1.31 0.84-2.26 1.17 0.70-2.14 1.16 0.63-2.30 

Values highlighted in bold indicate statistically significant associations, * =p<0.05, ** =p<0.01 and *** =p<0.001. 
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Table 25. Separate, binomial regression models, adjusted for age, sex and ethnicity, employment and area deprivation, of associations between individual and 

composite measures of the built environment and walking up to 10 minutes for buffers along the route from home to destination at 50m and 100m. Odds ratios and 

confidence intervals (95%) are presented. 

Up to 10 minutes 

spent walking 
Route buffer (Model 3) 

  50m 100m 

  OR CI (95%) OR CI (95%) 

Land use mix 1.14 0.84-1.55 1.11 0.82-1.52 

Street connectivity 1.29 0.95-1.93 1.29 0.94-1.91 

Dwelling density 1.44* 1.04-2.20 1.45* 1.04-2.25 

Slope 1.19 0.98-1.47 1.19 0.97-1.48 

Street lights 1.31 0.97-1.85 1.32 0.97-1.87 

Footpaths and tracks 4.64* 1.34-28.14 4.09* 1.27-22.95 

BWI 1.22* 1.03-1.47 1.24* 1.04-1.49 

EWI 1.24* 1.04-1.49 1.24* 1.04-1.49 

NDAI 1.43 0.95-2.35 1.42 0.94-2.34 

Values highlighted in bold indicate statistically significant 

associations, * =p<0.05, ** =p<0.01 and *** =p<0.001. 
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5.4.3 Associations of indices of walkability and neighbourhood destination accessibility and 

walking trips up to 10 minutes 

This section examines associations between the rescaled composite indices of the built 

environment, BWIs and EWIs, (as discussed in Chapter 4, Table 7) and NDAIs with time spent 

walking. The following research questions were used to guide the analyses: 

A) Are indices of walkability (BWIs and EWIs) and neighbourhood destination 

accessibility associated with walking from home to any destination for up to 

10 minutes? 

B) Do results vary depending on 1) buffer delineation around the home, 

destination or along the route and 2) spatial scale? 

Basic Walk Index 

 The results of the BWI (comprised of the measures land use mix, street connectivity 

and dwelling density) in model 1 are presented in Table 21. The BWI was significantly 

positively associated with walking up to 10 minutes at 800m and 1200m around the home, 

based on the Euclidean defined neighbourhoods. The ORs were highest at 1200m, where a unit 

increase in walkability (BWI) was associated with a 17% increased odds of walking up to 10 

minutes. Similarly, the walkability of the network defined neighbourhood around the home 

was significantly associated with walking at 800m, 1200m and 1600m. Within these levels, the 

400m neighbourhood level had the highest OR, 1.19, a relatively small effect size. In relation 

to destinations, walkability of the Euclidean defined neighbourhoods was significantly 

associated with walking up to 10 minutes at 1200m only. In contrast, however, there was no 

association between walkability (defined as BWI) and the network defined neighbourhood 

around destinations at any spatial level. Conversely, the walkability of routes showed 

significant positive associations with walking up to10 minutes for both the 50m and 100m 

buffers (Table 21). 

 Comparing between the network and Euclidean buffers around the home address, OR 

was highest for the network buffer at 800m, OR1.19 vs. OR1.16 for the Euclidean buffer. 

However, only the Euclidean buffer was associated too with the destination address at 1200m, 

with OR1.16. 

 After adjusting for demographic covariates in model 2, (Table 22), walkability around 

the home, based on the Euclidean buffer, remained significantly associated at 1200m only, and 
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800m for the network buffer around the home. In relation to walkability around the 

destinations, 1200m Euclidean buffer remained significantly positively associated with 

walking up to 10 minutes, whereas there was no association for the network buffers across any 

spatial scale. However, a strong association remained for the walkability of the built 

environment and walking up to 10 minutes along the route, OR1.26, at 50m and OR1.27 at 

100m buffers (Table 23). 

 In model 3, after adjusting for employment and area deprivation, (Table 24), no 

associations between the BWI and walking up to 10 minutes was found for neighbourhoods 

around the home or destination addresses, for both Euclidean and network buffers across all 

spatial levels. However, the walkability of the route between home and destination remained 

significantly positively associated with time spent walking for both the 50m and 100m buffers. 

At the 50m and 100m buffers along the route, a unit increase in the BWI was associated with 

an estimated 22% and 24 %, respectively, increase in the odds of walking up to 10 minutes 

from home to destination environments (Table 25).   

While there was no association between the BWI at either the home or destination 

environments in the fully adjusted models, significant associations were found along the routes. 

This finding indicates that further research into the route environment is required, rather than 

focusing solely on the residential home environment. Walkability along the routes from home 

to any destination can positively influence short walking trips.   

Enhanced Walk Index  

 In model 1, (Table 20), the EWI (comprised of measures of land use mix, dwelling 

density, street connectivity, slope, footpaths and tracks, and street lights) around home 

addresses, was significantly positively associated with walking up to 10 minutes, with 

Euclidean buffers of 400m, 800m and 1200m. In addition, the ORs are highest at 400m and 

decreased as the spatial levels increased indicating that the walkability of 400m 

neighbourhoods predicts higher odds of time spent walking. The walkability (EWI) of the 

environment around home addresses, based on the network buffer, was also positively and 

significantly associated with walking up to 10 minutes across all spatial levels, (400m, 800m, 

1200m, and 1600m). The ORs were highest for the 400m and 800m neighbourhood levels, 

OR1.21, and OR1.21. In relation to walkability around destinations, the Euclidean based 

neighbourhoods at 400m, 800m and 1200m were significantly positively associated with 
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walking up to 10 minutes, similar to the home neighbourhoods, with relatively small effect 

sizes. In contrast, the walkability of only the 400m and 800m network defined neighbourhoods 

around the destinations were significantly positively associated with walking up to 10 minutes. 

In comparison to Euclidean buffers around the destinations, the OR at 400m was higher with 

the network buffers, where an increase in the walkability of the built environment was 

associated with 23% increased odds of walking up to 10 minutes. Regarding the routes between 

home and destinations, walkability was significantly associated with walking up to 10 minutes 

for both the 50m and 100m buffer (Table 21).  

After adjusting for age, sex and ethnicity, (Table 22), the EWI remained significantly 

associated with walking up to 10 minutes around the home addresses, based on the Euclidean 

buffer, at 400m and 800m only. In addition, the walkability around the home, based on the 

network buffers, remained significantly positively associated across all levels. Walkability 

(EWI) around the destination addresses (Euclidean buffer) remained significantly associated 

with walking up to 10 minutes at 400m, 800m and 1200m and also reached significance at 

1600m. In comparison, walkability of the network defined neighbourhood remained associated 

only at the 400m level. However, the walkability of the route between home and destination 

remained significantly associated with walking up to 10 minutes for both the 50m and 100m 

buffers (Table 23). 

In the fully adjusted model (Table 24), after additionally controlling for employment 

and area deprivation, significant positive associations remained between walking up to 10 

minutes and only the 400m Euclidean based neighbourhoods around home addresses, 

(OR1.28). In the network defined neighbourhoods around homes, the EWI remained significant 

and positively associated with time spent walking at both the 400m and 800m buffers (OR1.23 

and OR1.22, respectively). ORs were marginally higher for the Euclidean buffers around the 

home. In relation to walkability around the destination environments, significant positive 

associations were found at the 400m Euclidean buffers only (OR1.19), however, there was no 

relationship found for the network buffers. In contrast, significant positive associations 

remained between the walkability along the route and up to 10 minutes spent walking, after 

adjusting for potential confounders (Table 25). A unit increase in the walkability, based on the 

EWI, along the route between home and destination environments was associated with an 

estimated 24% increase in the odds of walking up to 10 minutes, for both the 50m and 100m 

buffers. 
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Comparing results between the BWIs and the EWIs around the home, destination and 

route environments, the EWIs were found to be associated with all three environments (with 

the exception of only the network buffer around destinations) and walking up to 10 minutes. 

However, both the BWI and EWI along the route between home and destination predicted an 

increased likelihood of walking up to 10 minutes, with similar ORs.  

There are a number of important findings arising from this analysis. The EWI for both 

the home and destination environments (excluding the network buffers around destinations) 

was significantly positively associated with short walking trips in neighbourhoods of 400m or 

800m. This indicates that the EWI could be a useful neighbourhood measure for capturing time 

spent walking from the home to any destination environment. In addition, both the BWI and 

EWI were significantly and positively associated with time spent walking along the route, 

indicating the potential importance of the route environment in encouraging active travel 

behaviours.    

Neighbourhood Destination Accessibility Index 

 The results of model 1, (Table 20), show strong and significantly positive associations 

between the density of destinations around home addresses, (Euclidean buffer), and walking 

up to 10 minutes at 800m, 1200m and 1600m. For example, the 1200m shows the strongest 

associations, where a unit increase in destination accessibility around homes was associated 

with an 80% increased odds of walking up to 10 minutes. In contrast, destination accessibility 

at the 1200m and 1600m network buffers around the home was significantly positively 

associated with walking for 10 minutes. Similar to the Euclidean buffer, the 1200m spatial level 

had the highest OR. In relation to the density of destinations around destination addresses, the 

NDAI was significantly positively associated at all neighbourhood levels. In addition, the 800m 

spatial level had the highest ORs, where a unit increase in destination accessibility around 

destinations was associated with a 66% increase in walking up to 10 minutes. However, 

remarkably, there was no association between destination accessibility and the network defined 

neighbourhoods, across all spatial levels, and time spent walking. (Table 20). In relation to 

destination accessibility along the route between home and destination, there was a significant 

positive association with walking up to 10 minutes at both 50m and 100m. The effect sizes 

were strong, with ORs ranging from OR1.62 to OR1.60 (Table 21).  
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 After adjusting for age, sex and ethnicity, model 2, (Table 22), the NDAI did not remain 

associated with walking up to 10 minutes for the Euclidean buffer around the home address at 

400m or 800m, however it did remain significant at 1200m and became significantly associated 

at 1600m, with the highest OR, 1.94. In relation to the network buffers around the home 

address, the NDAI was significantly associated at only the 1600m, but the effect size was 

strong, OR2.23. Destination accessibility remained significantly associated with walking up to 

10 minutes at 800m, 1200m and 1600m Euclidean buffers around destination address. The 

highest OR was at 1200m, where a unit increase in destination accessibility was associated 

with a 93% increased odds in walking up to 10 minutes. Similar to model 1, there was no 

association between the NDAI and network buffers around destinations across any spatial level. 

Regarding destination accessibility along the route, the NDAI remained significantly 

associated with walking up to 10 minutes for the 50m buffer only, with ORs decreasing slightly 

from OR1.62 to OR1.57 (Table 23). 

 In the fully adjusted model, after including employment and area deprivation as 

potential confounders, (Table 24) no association remained between the home environments, 

based on the Euclidean buffer and time spent walking across all spatial levels. In addition, no 

associations were found for the network based buffer around the home addresses, the 1600m 

did not retain any statistical association, indicating potential negative confounding of 

employment and area deprivation. Moreover, in relation to the destination environments, the 

Euclidean based neighbourhoods remained significantly associated with walking up to 10 

minutes at 1200m only. However, the OR was strong, where a unit increase in destination 

accessibility around destination addresses was associated with an estimated 76% increase in 

the odds of walking for up to 10 minutes. In contrast, there was no association between short 

walking trips and the NDAI around destination addresses, based on the network buffer at any 

spatial scale. Additionally, destination accessibility along the route did not remain associated 

with time spent walking, for either the 50m or 100m buffers (Table 25). 

 These results indicate that a number of demographic, socio-economic and area 

deprivation covariates can influence the relationship between the NDAI and short walking 

trips. 
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5.4.4 Associations of individual attributes and composite indices of the built environment and 

total time spent walking 

This section reports the results of associations of the fully adjusted model, (model 3, 

Table 26 and Table 27) between the individual attributes and composite indices, (BWIs, EWIs 

and NDAIs) of the built environment and total time spent walking. GLM regression models 

based on the gamma distribution with log link were used to test associations between the 

continuous outcome, total duration (in minutes) walking to a destination and elements of the 

built environment. In addition, the coefficients were exponentiated in order to report the percent 

change in time spent walking per unit increase in attributes or indices of the built environment. 

The following research questions guide the analyses: 

A) Are individual elements of the built environment and indices of walkability 

(BWIs and EWIs) and neighbourhood destination accessibility (NDAI) 

associated with total time spent walking from home to any destination? 

B) Do results vary depending on 1) buffer delineation around the home, 

destination or along the route and 2) spatial scale? 

 

Individual built environment measures 

 Moderate to strong positive associations were found, in the fully adjusted model, 

(model 3, Table 26), for total time spent walking and land use mix around the home 

environment based on the Euclidean buffer, at 1600m, 2000m and 2400m. Of the three spatial 

levels, land use mix at 2000m had the highest percentage change, where every unit increase in 

land use mix was associated with an estimated 63% increase in time spent walking from home 

to any destination. For the network buffers around the home address, land use mix was 

significantly and positively associated with total time spent walking at 2400m level only, 

(OR1.22). In contrast, density of land use mix around the destination environments based on 

the Euclidean buffers, was significantly positively associated with total time spent walking at 

the 800m and 1200m levels only, OR1.18 and OR1.19 respectively. In relation to the network 

buffers around destinations, similar to the home environment, there was a significant positive 

association only at the 2400m spatial level, OR1.21. However, there was no association 

between total time spent walking and density of land use mix along the route between home 

and destination environments (Table 27).  
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These results indicate there is much variation in associations between land use mix and 

total time spent walking depending on how the neighbourhood is delineated, whether Euclidean 

or network and also spatial scales are important. Strong associations existed between the 

Euclidean based neighbourhoods around home and destination environments and time spent 

walking at a number of spatial levels, indicating the importance of land use mix in predicting 

time spent walking. In comparison, the network based neighbourhoods, around both the home 

and destination addresses reached statistical significance at only one level, 2400m, potentially 

indicating that network buffers are not as useful in predicting associations between time spent 

walking and land use mix.   

   In the fully adjusted model, (Table 26 and Table 27), most of the other individual 

attributes had no associations with total time spent walking. There was no association between 

street connectivity, dwelling density, street lights, footpaths and tracks, and total time spent 

walking to any destination, for all three environments, home, destination and route, Euclidean 

or network, at any spatial scale.  

However, low slope density around the home and destination environments based on 

the Euclidean buffers, was significant and negatively associated with total time spent walking 

at 2000m and 2400m buffers only. In addition, the percentage change was higher for the home 

rather than the destination environments, where low density of slope around the home was 

associated with an estimated 24% and 29% decrease in time spent walking at 2000m and 

2400m, respectively. This result could reflect the topography of Wellington City, which is 

mountainous in residential areas, and slope has little impact on total time spent walking to 

destinations. In contrast, no association was found between low density of slope around 

network defined neighbourhoods for both the home and destination addresses, and along the 

route environment, at any spatial level, and total time spent walking.  

Composite Indices of the built environment 

 After also adjusting for both demographic and socio-economic, model 3 (Table 26 and 

Table 27) was additionally adjusted for employment and area deprivation. There was no 

association between the BWI and total time spent walking around the home environments for 

both the Euclidean and network buffers at any spatial level. However, walkability of the built 

environment (BWI) around the destination addresses was significant and positively associated 

with total time spent walking at both the Euclidean, 400m only, and network defined 
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neighbourhoods, 400m and 2000m only. Furthermore, a unit increase in the walkability of the 

environment around destinations was associated with an estimated 4% increase in time spent 

walking to any destination, for both the Euclidean buffers at 400m, and the network buffers at 

400m and 2000m. However, no association was found between walkability along the route and 

total time spent walking (Table 27).  

 Furthermore, no association was found for either the EWI and NDAI and total time 

spent walking in any of the three neighbourhood environments, home, route and destination, 

both Euclidean and network, at any spatial scale.  

 These results indicate that the walkability, based on the BWI, of the destination 

environment, both Euclidean and network, is important for predicting total time spent walking 

from home to a destination. 
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Table 26. Separate GLM regression models based on the Gamma distribution with log link, fully adjusted for demographic, socio-economic and area deprivation, 

testing associations between individual and composite measures of the built environment and total time spent walking for neighbourhood buffers, Euclidean and 

network, around the home and destination addresses at 400m, 800m, 1200m and 1600m buffers. Odds ratios and confidence intervals (95%) are presented. 

Total time 

spent walking 

Model 3 (fully adjusted for socio-demographic and deprivation) 

400m 800m 1200m 1600m 2000m 2400m 

Home address 

Euclidean 

buffer  

Percent 

change 
CI (95%) 

Percent 

change 
CI (95%) 

Percent 

change 
CI (95%) 

Percent 

change 
CI (95%) 

Percent 

change 
CI (95%) 

Percent 

change 
CI (95%) 

Land use mix 1.02 0.95-1.10 1.04 0.94-1.14 1.11 0.95-1.30 1.38* 1.06-1.79 1.63*** 1.22-2.17 1.47** 1.11-1.93 

Street 

connectivity 
1.03 0.95-1.11 1.04 0.94-1.14 1.05 0.94-1.18 1.07 0.94-1.23 1.07 0.93-1.23 1.06 0.93-1.21 

Dwelling 

density 
1.03 0.95-1.11 1.03 0.94-1.14 1.06 0.94-1.20 1.09 0.95-1.25 1.07 0.94-1.22 1.05 0.93-1.19 

Slope 0.99 0.92-1.06 1.02 0.90-1.15 1.01 0.85-1.20 0.93 0.75-1.14 0.76* 0.59-0.99 0.71* 0.54-0.94 

Street lights 1.03 0.95-1.12 1.03 0.95-1.12 1.04 0.94-1.15 1.05 0.95-1.17 1.05 0.95-1.16 1.04 0.94-1.15 

Footpaths and 

tracks 
1.05 0.88-1.24 1.04 0.88-1.21 1.05 0.89-1.23 1.08 0.91-1.28 1.10 0.92-1.32 1.07 0.91-1.25 

BWI 1.04 0.99-1.08 1.03 0.99-1.08 1.04 0.99-1.08 1.04 0.99-1.09 1.03 0.99-1.08 1.01 0.97-1.05 

EWI 1.00 0.96-1.05 1.02 0.98-1.07 1.03 0.99-1.08 1.03 0.99-1.07 1.01 0.97-1.06 1.02 0.98-1.06 

NDAI 1.03 0.91-1.16 1.06 0.91-1.21 1.06 0.91-1.22 1.06 0.92-1.22 1.05 0.92-1.18 1.04 0.93-1.16 

Values highlighted in bold indicate statistically significant associations, * =p<0.05, ** =p<0.01 and *** =p<0.001. 
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Table 26. continued.           

Total time 

spent walking 

Model 3 (fully adjusted for socio-demographic and deprivation) 

400m 800m 1200m 1600m 2000m 2400m 

Home address 

network buffer  

Percent 

change 
CI (95%) 

Percent 

change 
CI (95%) 

Percent 

change 
CI (95%) 

Percent 

change 
CI (95%) 

Percent 

change 
CI (95%) 

Percent 

change 
CI (95%) 

Land use mix 1.02 0.96-1.09 1.03 0.96-1.11 1.06 0.96-1.17 1.09 0.95-1.25 1.13 0.96-1.33 1.22* 1.01-1.47 

Street 

connectivity 
1.03 0.95-1.11 1.04 0.95-1.14 1.05 0.94-1.18 1.08 0.94-1.25 1.08 0.91-1.27 1.10 0.90-1.34 

Dwelling 

density 
1.02 0.94-1.11 1.02 0.94-1.12 1.05 0.94-1.16 1.08 0.95-1.23 1.08 0.94-1.24 1.10 0.94-1.28 

Slope 0.97 0.91-1.03 0.97 0.89-1.06 0.99 0.91-1.09 1.01 0.91-1.12 0.99 0.88-1.11 0.95 0.83-1.08 

Street lights 1.02 0.95-1.11 1.03 0.95-1.12 1.04 0.95-1.14 1.06 0.95-1.18 1.05 0.93-1.18 1.05 0.93-1.20 

Footpaths and 

tracks 
1.03 0.84-1.24 1.04 0.84-1.27 1.04 0.79-1.36 1.07 0.78-1.44 1.08 0.80-1.45 1.12 0.79-1.60 

BWI 1.04 0.99-1.08 1.02 0.97-1.06 1.03 0.99-1.08 1.04 0.99-1.09 1.03 0.99-1.08 1.03 0.99-1.08 

EWI 1.00 0.96-1.05 1.00 0.96-1.05 1.01 0.97-1.06 1.03 0.99-1.08 1.02 0.97-1.06 1.02 0.98-1.06 

NDAI 1.02 0.91-1.13 1.06 0.93-1.21 1.08 0.91-1.26 1.08 0.90-1.28 1.07 0.89-1.26 1.10 0.91-1.32 

Values highlighted in bold indicate statistically significant associations, * =p<0.05, ** =p<0.01 and *** =p<0.001. 
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Table 26. continued.            

Total time 

spent walking 

Model 3 (fully adjusted for socio-demographic and deprivation) 

400m 800m 1200m 1600m 2000m 2400m 

Any destination 

address 

Euclidean 

buffer  

Percent 

change 
CI (95%) 

Percent 

change 
CI (95%) 

Percent 

change 
CI (95%) 

Percent 

change 
CI (95%) 

Percent 

change 
CI (95%) 

Percent 

change 
CI (95%) 

Land use mix 1.07 0.99-1.16 1.18** 1.05-1.33 1.19* 1.01-1.41 1.10 0.88-1.37 1.08 0.84-1.39 1.07 0.82-1.38 

Street 

connectivity 
0.98 0.91-1.05 0.97 0.89-1.05 0.97 0.88-1.07 1.01 0.90-1.12 1.04 0.92-1.16 1.01 0.90-1.15 

Dwelling 

density 
0.96 0.9-1.02 0.94 0.87-1.01 0.96 0.87-1.05 1.03 0.92-1.15 1.04 0.92-1.18 1.03 0.90-1.17 

Slope 0.98 0.93-1.04 1.02 0.94-1.11 1.07 0.93-1.23 0.98 0.80-1.20 0.80* 0.64-1.00 0.76* 0.59-0.98 

Street lights 0.97 0.90-1.03 0.97 0.90-1.04 0.99 0.91-1.07 1.02 0.94-1.12 1.05 0.95-1.15 1.04 0.94-1.15 

Footpaths and 

tracks 
0.92 0.81-1.04 0.95 0.83-1.07 0.95 0.82-1.09 0.98 0.84-1.14 1.01 0.87-1.18 1.00 0.86-1.16 

BWI 1.04* 1.00-1.08 0.99 0.95-1.03 0.99 0.95-1.03 1.00 0.96-1.05 1.00 0.95-1.04 0.98 0.94-1.03 

EWI 0.98 0.94-1.02 0.99 0.95-1.03 0.98 0.94-1.03 1.00 0.95-1.04 0.99 0.95-1.04 0.99 0.94-1.04 

NDAI 0.99 0.89-1.09 0.99 0.89-1.10 1.00 0.89-1.11 1.01 0.89-1.13 1.00 0.89-1.12 0.99 0.89-1.11 

Values highlighted in bold indicate statistically significant associations, * =p<0.05, ** =p<0.01 and *** =p<0.001. 
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Table 26. continued.            

Total time 

spent walking 
Model 3 (fully adjusted for socio-demographic and deprivation) 

 400m 800m 1200m 1600m 2000m 2400m 

Any 

Destination 

address 

network buffer  

Percent 

change 
CI (95%) 

Percent 

change 
CI (95%) 

Percent 

change 
CI (95%) 

Percent 

change 
CI (95%) 

Percent 

change 
CI (95%) 

Percent 

change 
CI (95%) 

Land use mix 1.06 0.99-1.14 1.08 0.98-1.18 1.08 0.97-1.19 1.07 0.94-1.22 1.12 0.95-1.32 1.21* 1.00-1.47 

Street 

connectivity 
0.99 0.92-1.07 1.01 0.92-1.04 1.04 0.93-1.15 1.06 0.94-1.21 1.09 0.94-1.26 1.11 0.93-1.33 

Dwelling 

density 
0.97 0.91-1.04 0.96 0.89-1.04 0.98 0.89-1.08 1.01 0.90-1.13 1.05 0.91-1.20 1.05 0.90-1.23 

Slope 0.97 0.92-1.01 0.99 0.94-1.05 1.02 0.94-1.10 1.02 0.93-1.12 1.04 0.92-1.17 0.97 0.85-1.11 

Street lights 0.99 0.92-1.06 1.00 0.92-1.08 1.02 0.93-1.12 1.04 0.94-1.15 1.05 0.94-1.17 1.06 0.94-1.20 

Footpaths and 

tracks 
0.93 0.80-1.07 0.95 0.79-1.12 0.94 0.75-1.16 0.98 0.76-1.25 1.01 0.77-1.30 1.01 0.74-1.34 

BWI 1.04* 1.00-1.08 1.00 0.96-1.05 1.01 0.97-1.06 1.03 0.98-1.07 1.04* 1.00-1.09 1.04 1.00-1.08 

EWI 0.98 0.93-1.02 1.00 0.96-1.04 1.03 0.98-1.07 1.02 0.98-1.07 1.02 0.97-1.07 1.02 0.98-1.07 

NDAI 1.01 0.92-1.10 1.01 0.92-1.11 1.06 0.94-1.18 1.08 0.94-1.25 1.09 0.93-1.28 1.11 0.93-1.32 

Values highlighted in bold indicate statistically significant associations, * =p<0.05, ** =p<0.01 and *** =p<0.001. 
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Table 27. Separate, GLM regression models based on the Gamma distribution with log link, adjusted for age, sex and ethnicity, employment and area deprivation, 

of associations between individual and composite measures of the built environment and total time spent walking along the route from home to destination at 50m 

and 100m buffers. Odds ratios and confidence intervals (95%) are presented. 

Total time spent 

walking 

Route buffer Model 3 (fully adjusted for 

socio-demographic and deprivation) 

  50m 100m 

  
Percent 

change 
CI (95%) 

Percent 

change 
CI (95%) 

Land use mix 1.01 0.93-1.09 1.01 0.93-1.09 

Street connectivity 1.01 0.94-1.08 1.01 0.94-1.08 

Dwelling density 1.00 0.93-1.07 1.00 0.93-1.07 

Slope 1.00 0.95-1.05 1.00 0.95-1.05 

Street lights 1.01 0.93-1.09 1.01 0.93-1.09 

Footpaths and tracks 0.96 0.80-1.13 0.97 0.81-1.13 

BWI 1.00 0.96-1.05 1.00 0.95-1.05 

EWI 1.00 0.95-1.04 1.00 0.96-1.04 

NDAI 1.02 0.92-1.12 1.02 0.93-1.12 

Values highlighted in bold indicate statistically significant associations, * 

=p<0.05, ** =p<0.01 and *** =p<0.001. 
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5.5 Summary of findings 

 This chapter has explored associations between individual and composite measures of 

the built environment and time spent walking. The sample size of individual participants that 

walked directly from their home environment to any destination for both outcome variables 

was relatively small, (n=55 for those that walked up to 10 minutes and n=133, total time spent 

walking). Therefore results should be interpreted with some caution. To aid with interpretation, 

summary tables of associations for each individual and composite measure and time spent 

walking are provided (Tables 28 and 29).  

Table 28. Summary of associations of individual and composite measures of the built environment and 

walking up to 10 minutes, based on the fully adjusted model results. 

Built 

environment 

measures 

Home 

Euclidean 

Home 

network 

Destination 

Euclidean 

Destination 

network 

Route 

High land use 

mix density 
✗ ✗ ✓ − 

(800m) 
✗ ✗ 

High street 

connectivity 

density 

✗ ✗ ✗ ✗ ✗ 

High dwelling 

density 
✗ ✓+ 

(800m) 
✓ + 

(400m, 800m, 

1200m) 

✓ + 
(400m,800m) 

✗ 

Low slope 

density 
✓ + 

(1600m) 
✓ + 

(400m) 
✗ ✗ ✗ 

High street lights 

density 
✗ ✗ ✓ + 

(400m, 800m) 
✗ ✗ 

High footpath 

and track density 
✗ ✗ ✓ + 

(400m, 800m, 

1200m) 

✗ ✓ + 
(50m,100m) 

High BWI 

density 
✗ ✗ ✗ ✗ ✓ + 

(50m,100m) 

High EWI 

density 
✓ + 

(400m) 
✓ + 

(400m,800m) 
✓ + 

(400m) 
✗ ✓ + 

(50m,100m) 

High NDAI 

density 
✗ ✗ ✓ + 

(1200m) 
✗ ✗ 

The symbol✓ denotes a statistically significant association, + indicates whether the association is positive and – 

indicates a negative association. The symbol ✗indicates no association was found between the built 

environment measure and up to 10 minutes spent walking. 
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Table 29. Summary of associations of individual and composite measures of the built environment and 

total time spent walking, based on the fully adjusted model results. 

Built 

environment 

measures 

Home 

Euclidean 

Home 

network 

Destination 

Euclidean 

Destination 

network 

Route 

High land use 

mix density 
✓ + 

(1600m, 

2000m, 

1400m) 

✓ + 
(2400m) 

✓ + 
(800m, 

1200m) 

✓ + 
(2400m) 

✗ 

High street 

connectivity 

density 

✗ ✗ ✓ + 
(400m) 

✗ ✗ 

High 

dwelling 

density 

✗ ✗ ✗ ✗ ✗ 

Low slope 

density 
✓ − 

(2000m, 

2400m) 

✗ ✓ − 
(2000m, 

2400m) 

✗ ✗ 

High street 

lights density 
✗ ✗ ✗ ✗ ✗ 

High footpath 

and track 

density 

✗ ✗ ✗ ✗ ✗ 

High BWI 

density 
✗ ✗ ✓ + 

(400m) 
✓ + 

(400m,2000m) 
✗ 

High EWI 

density 
✗ ✗ ✗ ✗ ✗ 

High NDAI 

density 
✗ ✗ ✗ ✗ ✗ 

The symbol ✓ denotes a statistically significant association, + indicates whether the 

association is positive and – indicates a negative association. The symbol ✗ indicates no 

association was found between the built environment measure and total time spent walking. 

 

5.5.1 Relationships between individual attributes of the built environment and time spent 

walking, including up to 10 minutes and total time 

Land use mix 

 Focusing on the results of the fully adjusted models, (model 3, Table 24 - Table 27), 

there was no association between land use mix and Euclidean or network based 

neighbourhoods around the home environment. In contrast, density of land use mix in the 

Euclidean based neighbourhood around destinations (800m) was significantly negatively 

associated with walking up to 10 minutes. Whereas no association was found between the 
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network based buffer around destinations and the environment along the route and walking up 

to 10 minutes. Comparing with the second outcome, total time spent walking to any destination, 

land use mix was significantly positively associated with time spent walking in both the home 

and destination environments at both the Euclidean and network buffers and various spatial 

levels. Similar to walking up to 10 minutes, no association was found between total time spent 

walking and land use mix along the route. These results reveal a number of critical findings. 

Firstly, that there is much variation between land use mix and total time spent walking, 

depending on the neighbourhood delineation and spatial scale utilised. The Euclidean based 

neighbourhoods had strong associations around both the home and destination environments 

at a number of spatial levels, in comparison to the network based neighbourhood with only one 

scale associated (2400m). These results suggest that the Euclidean buffer is better in predicting 

associations between total time walking and land use mix. Secondly, these findings indicate 

that the land use mix measure, in both the home and destination environments, is important in 

predicting longer duration of time spent walking to destinations rather than short trips up to 10 

minutes.  

Street connectivity  

 After adjusting for demographic, socio-economic and area deprivation potential 

confounders, (model 3, Table 24 - Table 27), significant positive associations were found 

between street connectivity and walking for up to 10 minutes in the destination environment at 

400m based on Euclidean buffer. However, no association remained between street 

connectivity and total time spent walking to any destination in either the home, destination or 

route environments, both Euclidean and network, at any spatial scale. This finding is in contrast 

to previous research in New Zealand, which has found associations between self-reported total 

minutes walking for all purposes and street connectivity (Witten et al., 2012). However, not all 

research linking active travel and street connectivity has found significant associations, (Oakes 

et al., 2007). Indeed, similar to Oakes et al., (2007), this study’s sampling design, including the 

size and the covariates controlled for in the analyses could have led to mitigating residual 

confounding.  

Dwelling density  

 In the fully adjusted model, dwelling density was found to be associated with walking 

up to 10 minutes in the home neighbourhood, based on the network buffer only at 800m. In 

addition, dwelling density was significantly positively associated with walking up to 10 
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minutes in neighbourhoods around destinations for both Euclidean buffers at 400m, 800m and 

1200m and network buffers at 400m and 800m only. In contrast, Witten et al., (2012) found 

positive associations between dwelling density (per meshblock) and total minutes spent 

walking, however, Mackenbach et al., (2016) found significant negative associations between 

total time spent walking and dwelling density in the meshblock around the home, (destination 

results not reported). Furthermore, significant positive associations existed between dwelling 

density along the route and walking up to 10 minutes. There was no association between total 

time spent walking and dwelling density in the fully adjusted model. The results of this analysis 

could indicate that dwelling density is an important factor in predicting short walking trips in 

the home and destination environments. 

Slope 

 After adjusting for all covariates in the analyses, the density of low slope around the 

home environment based on the Euclidean buffer at 1600m only, was significantly positively 

associated with walking up to 10 minutes (OR2.26, CI 1.07-5.05). In addition, low slope 

density around the home environment based on the network buffer was significantly associated 

at 400m only. However, no association was found for the environments around the destinations 

and short walking trips, for both the Euclidean and network buffers at any spatial scale. 

Comparing results with the second outcome, total time spent walking, low slope density around 

the home and destination environments, based on the Euclidean buffers at 2000m and 2400m 

only, was significantly negatively associated with overall time spent walking. In addition, no 

association was found for slope around the destinations, based on the network buffers, at any 

spatial scale, and total time spent walking. For both outcomes, no association existed between 

slope along the route and time spent walking. These results indicate that slope (both low and 

high density) around the home and destination environments could be an important predictor 

for both short and overall time spent walking. Previous research in New Zealand by Witten et 

al., (2012) and Mackenbach et al., (2016) did not include slope in their analyses, even though 

neighbourhoods in Wellington City (a mountainous area) were investigated. 

Street lights 

  In the final fully adjusted models (Table 24 - Table 27), there was no association 

between street light density around the home environment, both Euclidean and network, at any 

spatial level and up to 10 minutes spent walking. However, significant positive associations 

were found in the Euclidean based neighbourhoods around destinations at 400m and 800m only 



 

170 

 

and short walking trips. After additionally adjusting for employment and area deprivation, no 

association remained between walking up to 10 minutes and the network buffer around 

destinations and the route environment. In addition, no associations were found between total 

time spent walking and street light density in all three environments, home, destination and 

route, for all buffers and spatial scales. These findings indicate firstly that assessing the 

destination environment rather than or in addition to the commonly assessed residential home 

neighbourhood can add further insight into features of the built environment that can affect 

physical activity behaviours. Secondly, identifying street light density as a measure to predict 

physical activity behaviours in neighbourhoods could be useful, especially if other commonly 

used attributes are unavailable. 

Footpaths and tracks 

 After fully adjusting for demographic, socio-economic and area deprivation covariates 

in this analyses, (model 3, Table 24 - Table 27), there was no association between density of 

footpaths and tracks and walking up to 10 minutes in the home environment, for both the 

Euclidean and network buffers, across any scale. However, strong associations between 

footpath and track density existed in the Euclidean defined neighbourhoods around the 

destinations at 400m, 800m and 1200m. In addition, effect sizes were large, for example, the 

odds of walking up to 10 minutes increased by a factor of 3.91 per unit increase in footpath 

density (400m level). However, there was no association found between footpath density based 

on the network buffer around destinations or along the route and short walking trips. In 

addition, no associations were found between total time spent walking and footpath and track 

density for all three environments, home, destination and route, for all buffers and spatial 

scales. These findings are interesting and similar to those of the street lights measure; they 

indicate the potential utility of measuring footpath density in predicting walking behaviours 

and also the importance of measuring the destination environment for predicting associations 

with physical activity behaviours. 
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5.5.2 Relationships between composite indices of the built environment and time spent 

walking, including up to 10 minutes and total time. 

 

Basic Walk Index (BWI) 

 Focusing on the results of the fully adjusted models, (Table 24 - Table 27), the BWI, 

comprised of measures of land use mix, street connectivity and dwelling density, was not 

associated with walking up to 10 minutes in either the home or destination environments, for 

both the Euclidean and network buffers, across all spatial scales. However, significant positive 

associations were found between the walkability of the route environment and walking up to 

10 minutes. For both the 50m and 100m buffers, a unit increase in walkability of the route was 

associated with an estimated 22% and 24% increase in the odds of walking up to 10 minutes 

from home to any destination. This is a significant finding as little research exists on 

investigating the environment along the route and physical activity behaviours. In addition, this 

finding indicates that the walkability of the route environment is potentially more important 

for predicting short walking trips. 

 Similar to short walking trips, there was no association between the BWI and the home 

environment, both Euclidean and network, at any spatial scale, and longer walking trips, (total 

duration). However, walkability around the destinations was significantly positively associated 

with total time spent walking in both the Euclidean, 400m only, and network, 400m and 2000m, 

environments. In contrast to short walking trips, no association was found between walkability 

along the route and total time spent walking. In summary, only walkability along the route 

environment, as opposed to the home and destination environment, was important in predicting 

short walking trips. However, similar to previous findings on street lights and footpaths, the 

walkability of the environment around the destinations is an important predictor of longer 

walking trips.   

Enhanced Walkability Index (EWI) 

 Results from the fully adjusted model, (Table 24 - Table 27), revealed significant 

positive associations between the EWI around the home environment, both Euclidean at 400m 

and network 400m and 800m buffers, and short walking trips. In addition, the walkability of 

the destination environment for the Euclidean buffer only, was significantly positively 

associated with walking up to 10 minutes at the 400m spatial scale. Furthermore, similar to the 
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BWI, the walkability along the route was positively associated with an increased likelihood in 

walking up to 10 minutes, for both the 50m and 100m buffers. In relation to total time spent 

walking, no association was found with the EWI for all three neighbourhoods, home, 

destination and route environments.  

 Findings arising from the analyses of both the BWI and EWI, reveal the potential utility 

in using these composite indices of walkability to measure associations with physical activity 

behaviours. Hence, these indices and their associations with active transport behaviours and 

health outcomes will be further investigated in Chapters 6 and 7.  

Neighbourhood Destination Accessibility Index (NDAI) 

 After fully adjusting for demographic, socio-economic and area deprivation, (Table 24 

- Table 27), no association remained between destination accessibility around the home 

environment, either Euclidean or network, and up to 10 minutes spent walking at any spatial 

scale. However, destination accessibility around the destination addresses, based on the 

Euclidean buffer at 1200m, was significantly positively associated with short walking trips 

(OR1.76). In contrast, no association was found for either the network defined neighbourhoods 

around destinations or along the route and walking trips up to 10 minutes. In relation to total 

time spent walking, no association was found for all three environments, home, destination and 

route, across any buffer or spatial scale. These results indicate that having a high density of 

destinations in close proximity to other destinations could potentially encourage short walking 

trips. 

5.6 Conclusion 

 The exploratory analyses in this chapter has revealed that associations between multiple 

individual and composite indices of the built environment and time spent walking are sensitive 

to the choice of neighbourhood delineation, Euclidean or network, and spatial scale utilised. 

For example, depending on neighbourhood delineation and spatial scale, both walkability 

indices (BWI and EWI) were associated with short walking trips. Specifically, the walkability 

of the home, destination and route environments, based on the EWI, were associated with 

walking up to 10 minutes, while only the walkability of the destination and route environments, 

based on the BWI, were associated with short walking trips. In addition, associations were 

found between longer walking trips and walkability, based on the BWI only, around destination 

environments. The results indicate that along with the residential home environment, the 

destination and route environments are also important in predicting associations between time 
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spent walking and measures of the built environment. Finally, testing associations separately 

for both the individual and composite indices and time spent walking revealed that results are 

sensitive to demographic, socio-economic and area deprivation variables.  

 The following two chapters (Chapters 6 and 7) provide results on the main methods of 

this thesis described in Chapter 3 and 4. These chapters investigate the relationships between 

the composite indices of the built environment (BWI, EWI, BI and NDAI) and active transport 

behaviours and health outcomes.     
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Chapter 6: Measuring Associations between Indices of the Built 

Environment and Active Transport 
 

6.1 Introduction  

Research investigating the built environment and active transport behaviours such as 

walking and cycling is increasing in quantity. Identifying associations between features of the 

built environment that promote or hinder walking and cycling to work are important for 

increasing active transport, physical activity and health outcomes. Encouraging active transport 

behaviours could help individuals achieve the recommended daily physical activity guidelines, 

while travelling to and from work. Accordingly, the New Zealand Transport Agency (NZTA) 

recognises the important role the built environment plays in encouraging or hindering active 

transport (Genter et al., 2008). There is a multitude of benefits associated with active transport, 

including, health, economic and reduced environmental impacts (Genter et al., 2008).  

This chapter addresses the ninth objective of this thesis, which is to comprehensively 

test the validity and associations of each of the standard and novel indices, described in Chapter 

4, and active transport behaviours using the 2013 New Zealand Census (henceforth referred to 

as the Census). The corresponding research questions are presented at the beginning of each 

section of results. A brief description of the data and variables utilised to test these associations 

between the built environment and active transport variables follows, then an a detailed 

overview of the statistical analyses is provided. The results of associations between the Basic 

Walk Indices (BWIs), the Enhanced Walk Indices (EWIs), the Bike Indices (BIs) and the 

Neighbourhood Destination Accessibility Indices (NDAIs) and walking and cycling to work 

are presented (sections 6.4.2 – 6.4.5) and a discussion of the main findings arising from this 

analyses is offered (section 6.5).  

6.2 Methods  

Study data 

The Census was used to validate and test associations between indices of the built 

environment, and active transport behaviours in Wellington City. The Census is a nationwide 

survey completed every 5 years (except in 2011, due to the Christchurch earthquakes) and 

records the official counts of population and dwellings as well as demographic, employment, 

housing, ethnic, religious, and living conditions (Statistics New Zealand, 2014). The latest data 

available and utilised in this research is from the 2013 Census. Census data is publicly available 
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at a number of geographic spatial levels, including meshblock, area unit, ward, territorial 

authority area, and regional council. This thesis research is interested in measuring 

neighbourhood level exposures and the meshblock area level is the most appropriate. It is the 

smallest geographic unit representing approximately 110 people (Statistics New Zealand, 

2002). Meshblock data for Wellington city was sourced from the Statistics New Zealand 

website (Statistics New Zealand, 2014). The following sections describe the outcome variables 

of interest, the potential confounders and briefly the exposure variables (built environment 

indices) used in these analyses.  

6.2.1. Main means of travelling to work  

The meshblock counts of two outcome variables (walking and cycling to work) were 

used to test associations between active transport behaviours and indices of the built 

environment. The variables obtained from the Census were defined as: the main means of travel 

to work for the for the usually resident, employed, population aged 15 years and over, who 

either (1) walked or jogged or (2) cycled. These variables represent the individuals that decided 

to use active transport modes to get to work on Census day. Other commuters such as public 

transport users or drivers of private vehicles were not included as this analysis was primarily 

concerned with testing relationships between the built environment and active transport.  

6.2.2. Area level covariates 

Demographic and Socio-economic covariates 

It is common practice to account for demographic covariates in analyses on the built 

environment and active transport, as they represent potential confounders. As the Census data 

is aggregated to meshblock level, it is not possible to obtain individual level data. Even though 

individual level data is preferred, however, using proportions as a proxy for individuals is the 

next best option available. Therefore, each of the demographic and socio-economic variables 

have been calculated as proportions of the total population at the meshblock level. 

Age and Sex 

The Census provides the count of the usually resident population by age groups in five 

categories. In order to reduce the number of age groups for meaningful interpretation, four age 

groups were created to represent individuals at different stages of their working life (Witten et 

al., 2012). The selected age groups consisted of 15-29, 30-44, 45-54 and 55-64 year olds in 

order to represent the working age population. In order to get the proportion of these age groups 
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at the meshblock level, the total of each age group was divided by the total usually resident 

population. Similarly, the proportion of females to males was also calculated. 

Ethnicity 

The Census classifies six ethnic groups for the usually resident population, which 

includes, European, Māori, Pacific Peoples, Asian, MELAA (Middle Eastern, Latin American, 

and African) and Other (small ethnic groups). To simplify interpretation, the proportions of 

four ethnic groups were calculated, including the proportion of Māori, Pacific, Asian and 

European/Other.  

Socio-economic covariates 

Education 

The Census collects information on the highest qualification obtained for the usually 

resident population aged 15 and over and in order to control for education as a potential 

confounder, the proxy, proportion of qualifications was also included in the analyses. 

Following Witten et al.,’s (2012) classification of qualification groups, five groups were 

created from the eleven groups classified in the Census. The proportion of each of these groups 

was calculated by dividing the total count for each qualification group by the total people that 

stated their qualification level. The groups derived, were the proportion of the meshblocks with: 

no high-school qualification, a high-school qualification, a post-high Scholl 

diploma/certificate, an undergraduate degree and a postgraduate degree. 

Household Income 

Household income can influence whether an individual can afford to buy a bicycle or 

car, which can be used to commute to work. Similarly if the household income cannot afford a 

vehicle to get to work, walking would be an alternative option. Therefore, the proportion of 

household income in each meshblock was calculated as a proxy for individual household 

income and potential confounder.  The Census provides the total household income in groups 

for households in occupied private dwellings, these groups include: NZ$20,000 or less, 

NZ$20,000-30,000, NZ$30,000-50,000, NZ$50,000-70,000, NZ$70,000-100,000, greater than 

NZ$100,000. All but one group was included in the analyses, households with an income of 

NZ$20,000 or less as this was deemed less than a working income in a year and less likely to 

be working, when the focus of this research is on individuals that commute to work. The 

proportions of each household income group were calculated by dividing them by the total 

households that stated their income.  
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Number of vehicles per household 

The number of vehicles a household has access to can influence whether or not 

individuals walk or cycle to work. The Census classifies four groups containing the number of 

vehicles for households in occupied private dwellings, they are: no vehicles, one vehicle, two 

vehicles and three or more vehicles. The proportion of each of these groups of vehicles per 

household was calculated as a proxy for individual car ownership and included as potential 

confounders in the analyses.  

Deprivation 

The New Zealand Deprivation Index (NZDep13) is an area level measure of deprivation 

and was utilised to control for potential confounding in the analyses. It is comprised of nine 

variables from the 2013 Census and includes the variables: access to the internet, equivalised 

household income, means tested benefits, employment, single parent families, qualifications, 

home ownership, access to a car and household overcrowding (Atkinson et al. 2014).  The 

NZDep13 was classified into quintiles and was included as a measure of deprivation at the 

meshblock area unit.  

It is important to note that even though qualifications and access to a car are included 

in the NZDep13 index, it was considered conceptually important to include the variables, 

qualifications and number of vehicles per household as separate variables in the models as 

confounding could occur due to the outcome variables used and the effects could be masked in 

the index.  

6.2.3. Built environment exposure measures 

The exposure measures in the analyses described in this chapter include indices of the 

built environment measuring walkability, bikeability and neighbourhood destination 

accessibility. The methods used to create these indices are described in depth in Chapter 3. 

Briefly, the Basic Walk Index (BWI) is made up of three components, measures of land use 

mix, dwelling density and street connectivity. Three methods were used to create the BWIs at 

three spatial levels, 800m, 1600m and 2400m representing neighbourhood areas within a 

walking distance of 10, 20 and 30 minutes, respectively. Method 1 consisted of the standard 

method with network buffers of 800m, 1600m and 2400m around population weighted 

centroids (PWCs) and is frequently used in the literature (Frank et al., 2005; Leslie et al., 2007; 

Mavoa et al., 2009). Method 2 consisted of a kernel density estimation (KDE) based method 

(with a vector component), where values were averaged to Euclidean buffers of 800m, 1600m 
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and 2400m around PWCs. Finally, method 3 consisted of a KDE based method (with a vector 

component), where values were averaged to network buffers of 800m, 1600m and 2400m 

around PWCs. The Enhanced Walk Index (EWI) was created using six built environment 

components, including the same three measures that comprise the BWI, measures of land use 

mix, dwelling density, street connectivity and additionally measures of street lights, footpaths 

and tracks and slope (steepness) were included in the index. As the EWI is unique to this thesis, 

it was only possible to apply methods 2 and 3 and at the same spatial levels (800m, 1600m and 

2400m).  

Methods 2 and 3 were also used to create two Bike Indices (BIs) at three spatial levels; 

800m, 1600m and 2400m. The BIs were created using six components, measures of land use 

mix, street connectivity, slope, street lights, bike racks and cycle lanes. A detailed description 

of data sources, methods and maps can be found in Chapter 3, section 3.6.2.  

Additionally, two Neighbourhood Destination Accessibility Indices (NDAIs) were 

created using methods 2 and 3 at three spatial levels; 800m, 1600m and 2400m. The NDAIs 

were composed of measures from eight destination domains, health, transport, education, retail, 

other retail, greenspace, financial, and social cultural (Mavoa et al., 2008).  

6.3 Statistical analyses 

Descriptive statistics, including the mean and median, were calculated for the 

dependant variables, walking and cycling and for each of the indices of the built environment 

(BWIs, EWIs and the NDAIs). The following paragraphs describe the statistical methods 

applied to the active transport variables of interest. 

An initial analysis of the active transport dependant variables, counts of individuals 

walking to work and cycling to work, revealed over-dispersion, and an excessive number of 

zeros (23% and 44% respectively).  It is not uncommon for count variables to be positively 

skewed and have many zeros (Atkins et al., 2013). In addition, count models rarely meet 

distribution assumptions which are required for ordinary least squares regression. A method 

commonly used to address skewed data is to transform the data in order to achieve a normal 

distribution, however, an excess of zeros will not be smoothed out by a transformation (Atkins 

et al., 2013). Therefore, zero-inflated negative binomial regression (ZINB) models with robust 

standard errors were used to determine associations between indices of the built environment 

and active transport modes. These are appropriate regression models that can account for 

excess zeros and over-dispersion (Beaujean and Morgan, 2016). Further, ZINB regression 
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models, while not common in the environment and health literature, have been applied in a 

number of relevant examples. Research focusing on the personal, social and environmental 

attributes of physical activity (Cerin et al., 2010), and on the built environment and walking for 

transport (Kamruzzaman et al., 2016) applied ZINB models. Additional research on physical 

activity and cycling behaviour has also applied this type of model (Downward and Rasciute, 

2015).  

Furthermore, it is important to note, that the dependant variables of interest obtained 

from the Census, contain excess zeros which do not necessarily represent zero participants. 

This is due to random rounding. Counts of individuals are randomly rounded to a base of three 

to ensure individual characteristics are not identifiable in meshblocks with small numbers. The 

excessive zeros could represent zero, one or two individuals that walked or cycled to work 

(Statistics New Zealand, (2015d). For this reason, zeros cannot be removed or ignored from 

the analyses as they potentially represent real walkers or cyclists, who walked or cycled to 

work on Census day.  

The ZINB regression model generates two separate models to distinguish behaviours 

of individuals, who did or did not walk or cycle to work. First, a negative binomial (NB) model 

is estimated, to predict how frequently the behaviour (walking or cycling) occurred. Second, a 

logit model is estimated for the “zeros, not zeros” and predicts the non-occurrence of the 

behaviour (walking or cycling to work) (Beaujean and Morgan, 2016; Aitkins and Gallop, 

2007). To help with clarification, the zeros in the data can potentially have two meanings, they 

can represent participants or people who generally do walk to work but, for some reason did 

not walk on census day; and secondly, the zeros can also represent people who generally never 

walk to work, referred to here as non-participants. Both models produce two groups of 

coefficients, the NB regression coefficients predict how frequently the behaviour (walking or 

cycling) occurred, and the logistic regression coefficients predict if the behaviour (non-walking 

or non-cycling) never occurred (Beaujean and Morgan, 2016; UCLA: Statistical Consulting 

Group, 2016).  

Bivariate and multivariate ZINB regression models were estimated for each method of 

the BWIs, the EWIs, the BIs and the NDAIs at each neighbourhood level (800m, 1600m and 

2400m), and their associations with active transport modes. Table 30 presents an overview of 

the models applied and the potential confounder variables additionally included in models 2 

and 3. Vuong tests were used to test whether a traditional NB model or a ZINB model was a 



 

180 

 

better fit for the data (Cerin et al., 2010). The results for each of the multiple regressions showed 

that the ZINB models fitted the data significantly better than NB models.  

The results of ZINB models are commonly interpreted by exponentiating the regression 

coefficients of both the NB and logit models (Beaujean and Morgan, 2016). Therefore, the 

coefficients were exponentiated and the 95% confidence intervals were also computed. 

Exponentiating the coefficients of the NB models (with log link) allows the percentage change 

in walking or cycling frequency per one unit increase in the exposure variables (indices of the 

built environment) to be estimated (Beaujean and Morgan, 2016; Foster et al., 2014). The 

exponentiated coefficients of the NB model can also be interpreted as factors, where a unit 

increase in the exposure variables is associated with an X times increase in the expected 

frequency of walking or cycling (when X is the value of the exponentiated coefficient). 

Exponentiating the coefficients of the logit model places the coefficients in an odds-ratio (OR) 

scale (Beaujean and Morgan, 2016). An example interpretation of the exponentiated 

coefficients for the ZINB model for walking to work is as follows: in the NB model, for every 

unit increase in the walkability of the built environment, walking frequency increases by 52% 

(percent change, exp(b)= 1.52). Another way of interpreting the same result is, a unit change 

in the walk index was associated with an estimated 1.52 times increase in the expected 

frequency of individuals walking to work. In the logit model, an OR of 0.80 can be interpreted 

as: a one unit increase in the walk index is associated with an estimated 20% decrease in the 

odds of being a non-participant in walking. In other words, individuals were less likely to be 

non-participants in walking to work as walkability of the built environment increased.  

Given the diversity of methods applied in this research it is useful to determine which 

methods are more suitable than others for research on the built environment and active transport 

behaviours. Therefore, in order to determine superiority for each of the methods used to create 

the indices of the built environment, Akaike’s information criterion (AIC) was applied. The 

AIC is a goodness-of-fit measure of the data which also penalises model complexity (Beaujean 

and Morgan, 2016). AIC values on their own are difficult to interpret, they are primarily used 

to develop comparisons between models. Models with the smallest AIC value are considered 

the best fit for a given dataset (Beaujean and Morgan, 2016). Finally, all analyses were 

completed in R (R Development Core Team, 2014), an open source software environment for 

statistical and graphical computing. 
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Table 30. Example table of multiple models applied to test for associations between outcome and exposure 

variables using Zero Inflated Negative Binomial regression models. 

 Model 1 a: 

Unadjusted 

bivariate model  

Model 2 b: 

Adjusted for demographics 

Model 3 b: 

Adjusted for socio-economic 

and area deprivation 

Outcome 

variables a 

Exposure variables 

 
Exposure variables 

 
Exposure variables 

 
Walking to 

work  

 

 

- BWIs  

- EWIs  

- NDAIs  (methods  

  3 & 4) 

- BWIs  

- EWIs  

- NDAIs  (methods  

  3 & 4) 

- BWIs  

- EWIs  

- NDAIs  (methods  

  3 & 4) 

  Proportion of working age 

groups: 

Proportion of working age 

groups: 

  -15-29 

-30-44 

-45-54 

-55-64 

-15-29 

-30-44 

-45-54 

-55-64 

  Proportion of ethnic 

groups: 

- Māori 

- Pacific 

- Asian 

- European/Other 

Proportion of ethnic groups: 

- Māori 

- Pacific 

- Asian 

- European/Other 

  Proportion of  

Females to Males 

Proportion of  

Females to Males 

   Proportion of Qualifications: 

- No high-school qualification 

- High-school qualification 

- Post-high school  

  diploma/certificate 

- Undergraduate degree 

- Postgraduate degree 

   Proportion of Household 

income: 

-NZ$20-30K 

-NZ$30-50K 

-NZ$50-70K 

-NZ$70-100K 

- > NZ$100K 

   Proportion of 

vehicles/household: 

- No vehicles 

- One vehicle 

- Two vehicles 

- Three or more vehicles 

   NZ Deprivation: 

- Quintile 1 

- Quintile 2 

- Quintile 3 

- Quintile 4 

- Quintile 5 
a The second outcome variable, cycling to work was also tested for associations with the Bike Indices 

(BIs) and Neighbourhood Destination Accessibility Indices (NDAIs), based on methods 2 and 3 at 

800m, 1600m and 2400m spatial scales. 
b Cycling to work was additionally controlled for potential confounders in models 2 and 3. 
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6.4 Results  

 The following section describes the summary statistics and then reports each of the unadjusted 

and adjusted results for each of the active transport modes and how they are associated with indices of 

the built environment for walking, cycling and neighbourhood destination accessibility. 

6.4.1 Descriptive characteristics of covariates and associations with active transport modes 

Summary statistics of the mean and standard deviations for each of the covariates are 

presented in Table 31. In addition, each of the covariates were tested for associations with the 

dependant variables of interest using the ZINB regression models. The age groups of 15-29 

years old, and 45-54 years old were positively associated with walking to work, while the group 

of 30-44 years old was positively associated with cycling to work on census day. Regarding 

ethnicity, there was no significant association with walking to work. However, both Asian and 

European/Other ethnic groups were significantly associated with cycling to work.  

Regarding education, the proportion of people with a high-school qualification, 

undergraduate degree and postgraduate degree, per meshblock, were significantly associated 

with walking to work. Similarly, high-school and post-high school qualifications were also 

significantly associated with cycling to work. The proportion of individuals having a household 

income between NZ$70-100K, per meshblock, is also significantly associated with walking to 

work. However, there are no similar associations between cycling to work and household 

income.  

Regarding the number of vehicles per household, the meshblocks proportion of 

individuals with various numbers of vehicles per household was significantly associated with 

walking to work across all categories. In contrast, the meshblocks’ proportion of individuals 

with access to only one vehicle per household was significantly associated with cycling to 

work. Amongst the deprivation quintiles, the largest proportion of participants (33.33%) 

belongs to Quintile 1 (least deprived), whereas the proportion of most deprived participants 

corresponds to 14.51% in Quintile 4, and 4.82% in Quintile 5, indicating that the sample has a 

relatively high percentage of least deprived groups per meshblock.  
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Table 31. Mean and standard deviations of meshblock proportions of sample characteristics and their 

associations with active and non-active transport modes commuting to work on census day in 2013. 

Sample Characteristics 

 of Census Meshblocks 

Census            

(n= 1,988) 

Walkers 

(n= 1,578)a 

Cyclists 

(n=1,522)b 

 Mean  (Std) P-value P-value 

Age (years) e         

15-29 0.26 0.17 <0.001 0.11 

30-44  0.24 0.08 0.39 <0.001 

45-54 0.14 0.06 <0.01 0.41 

55-64 0.10 0.05 0.41 0.11 

Ethnicity         

Māori (missing n= 169) 0.08 0.07 0.07 0.06 

Pacific (missing n= 170) 0.05 0.07 0.59 0.95 

Asian (missing n= 171) 0.14 0.12 0.16 <0.001 

European/Other (missing n= 

171) 
0.82 0.15 0.46 <0.01 

Sex f         

Proportion of Females to 

Males  
0.51 0.07 0.07 0.10 

Qualification         

Proportions:     

No high school qualification 

(missing n= 312) 
0.09 0.09 0.08 0.31 

High school qualification 

(missing n= 318)  
0.41 0.12 <0.001 <0.001 

Post-high school diploma or 

trade certificate (missing n= 

316)  

0.09 0.05 0.80 <0.001 

Undergraduate University 

degrees (missing n=260) 
0.25 0.09 <0.001 0.06 

Postgraduate University 

degree (missing n=318) 
0.16 0.09 <0.001 0.14 

Household Income (NZ$)         

Proportions:  

20,000-30,000  

(missing n=391) 

0.07 0.07 0.33 0.73 

30,001-50,000 

 (missing n=391) 
0.12 0.08 0.16 0.83 

50,001-70,000 

 (missing n=391) 
0.12 0.08 0.79 0.60 

70,001-100,000  

(missing n=389) 
0.17 0.09 <0.05 0.66 

>100,000 (missing n=334) 0.46 0.19 0.15 0.18 
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Table 31. continued.     

 
Census            

(n= 1,988) 

Walkers 

(n= 1,578)a 

Cyclists 

(n=1,522)b 

 Mean (Std) P-value P-value 

Number of Household 

Vehicles 
        

Proportion: 

 

No vehicles (missing n=292) 

 

 

0.14 

 

 

0.16 

 

 

<0.001 

 

 

0.46 

One vehicle (missing n=281) 0.48 0.14 <0.001 <0.01 

Two vehicles (missing 

n=293) 
0.30 0.15 <0.001 0.06 

Three or more vehicles 

(missing n=296) 
0.09 0.08 <0.001 0.16 

New Zealand Deprivation 

Index 2013 g 
        

Quintile 1 (Less deprived) 

(%) 
33.33 - Ref. Ref. 

Quintile 2 (%) 25.98 - <0.001 0.13 

Quintile 3 (%) 21.36 - <0.001 0.87 

Quintile 4 (%) 14.51 - <0.001 0.31 

Quintile 5 (Most deprived) 

(%) 
4.82 - <0.001 0.28 

Bold p-values indicate statistically significant associations (p<0.05). 

a Missing data (n= 410) not included in the zero-inflated negative binomial 

models 
b Missing data (n= 466) not included in zero-inflated negative binomial models 
c Missing data (n= 446) not included in the negative binomial regression models 
d Missing data (n= 467) not included in the negative binomial regression models 
e Missing data in each age group, (n=288) 
f Missing data in proportion of Females to males, (n=109) 

g Missing data in New Zealand Deprivation Index (n= 81) 

 

6.4.2 Walkability and walking to work 

This section addresses the relations between walkability and walking to work, with specific 

research questions in mind to guide interpretation of the results, such as: 

A) How are walkability and walking to work related to each other? Does the frequency 

of walking to work increase as the walkability of the built environment increases?  

B) Does the probability of being a non-participant in walking to work decrease as the 

walkability of the built environment increases? And how do these associations vary 

depending on neighbourhood definition and scale, after controlling for potential 

confounding covariates? 
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The results from the ZINB models which test the associations between indices of 

walkability (BWIs and EWIs) are presented in the following section. The percent change in 

walking to work of the NB model is expected to be greater than 1, indicating an association 

with walkability. Also, the ORs of a non-participant walking to work are hypothesised to be 

less than 1, per unit increase in walkability, in the logit model.  

Results for Model 1 

Descriptive statistics of each of the BWIs and EWIs are presented in Table 32 and indicate 

a dissimilarity between the means and standard deviations of each of the methods. The results 

of the unadjusted bivariate model are also presented in Table 32 and show that both the BWIs 

and the EWIs are positively associated with walking to work (NB model) and reached statistical 

significance (p<0.001) with all methods. Furthermore, the odds of being a non-participant in 

walking to work were significantly (p<0.001) associated with decreases in all BWIs and EWIs 

across all spatial levels (logit model). After comparing the AIC values, (measure of goodness-

of-fit), between each of the methods at the three neighbourhood levels, the BWI based on 

method 3, (network buffer), which had the lowest AIC values at 800m and 1600m, whereas the 

BWI based on the standard method 1, (network buffer) had the lowest AIC value at the 2400m 

spatial level.  

When comparing each of the EWI methods, method 3 had the lowest AICs at all three 

neighbourhood levels, (800m, 1600m and 2400m), indicating model superiority. Comparing 

AICs between the BWIs and EWIs, the EWI based on method 3 was the only index to 

consistently achieve lower AIC values for the three spatial levels, indicating that the EWI based 

on method 3 is the best fit model to predict associations between walking to work and the odds 

of non-participants walking to work, at each neighbourhood level (800m, 1600m and 2400m). 
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Table 32. Unadjusted bivariate zero-inflated negative binomial model of associations between walking to 

work and the Basic Walk and Enhanced Walk Indices. 

Walking to 

work 

    

Percent change a in 

walking to work 

(95% CI) (negative 

binomial model) 

 Odds ratio b for being 

a non-participant in 

walking to work 

(95% CI) (logit 

model) 

 

      Model 1  

  
Mean  Std 

Percent 

change  

CI 

(95%)  OR  CI (95%) AIC 

BWI Method 1            
800m 5.86 1.92 1.36 1.32-1.39   0.68 0.62-0.75 10033.04 

1600m 5.94 1.94 1.36 1.33-1.40   0.67 0.61-0.73 9989.55 

2400m 5.99 1.99 1.39 1.36-1.42   0.64 0.59-0.70 9817.78 

BWI Method 2             
800m 7.45 1.53 1.54 1.49-1.59   0.69 0.63-0.76 9967.82 

1600m 6.66 2.01 1.44 1.41-1.48   0.78 0.73-0.84 9862.90 

2400m 6.04 2.17 1.39 1.36-1.42   0.82 0.76-0.87 9916.16 

BWI Method 3             
800m 8.05 1.15 1.88 1.79-1.97   0.48 0.41-0.57 9812.76 

1600m 7.83 1.22 1.89 1.80-1.98   0.58 0.50-0.66 9800.28 

2400m 7.50 1.50 1.64 1.58-1.69   0.72 0.65-0.79 9845.36 

                  EWI Method 2            
800m 7.04 1.26 1.68 1.61-1.75   0.65 0.58-0.73 9973.77 

1600m 6.30 1.74 1.54 1.49-1.59   0.76 0.70-0.83 9881.75 

2400m 5.71 1.98 1.46 1.42-1.50   0.80 0.74-0.86 9886.73 

EWI Method 3            
800m 7.52 0.99 2.16 2.05-2.28   0.42 0.34-0.50 9718.13 

1600m 7.37 0.95 2.26 2.13-2.39   0.46 0.38-0.55 9769.97 

2400m 7.12 1.08 2.06 1.95-2.16   0.57 0.50-0.66 9791.90 

Values highlighted in bold indicate statistically significant associations (p<0.001) and shaded cells indicate the 

best fitting model based on the AIC values. a Negative binomial model represents the percent change in walking 

to work per unit increase in neighbourhood walkability.  

b Logit model represents the proportional increase or decrease in the odds of being a non-participant in walking to 

work associated with a unit increase in neighbourhood walkability. 

 

Results for Model 2 

Model 2 was adjusted for proxy measures of age, sex and ethnicity, which included, the 

proportion of working age groups (15-29, 30-44, 45-54 and 55-64 year olds), the proportion of 

females to males and the proportion of ethnic groups (Māori, Pacific, Asian and 

European/Other) in each meshblock in Wellington City.  

Table 33 shows significant (p. <0.001) positive associations between the BWIs, the 

EWIs, and walking to work after adjusting for potential confounders. Overall, the effect sizes 

decreased after adjusting for age, sex and ethnicity, indicating possible confounding. Similar 

to results from model 1, the percent change in walking to work was positive and significant 

across all spatial levels and proportional to a unit increase in the walkability of the built 

environment, irrespective of method used. The odds of being a non-participant in walking to 
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work (logit model) decreased as the walkability of the built environment increased, for all 

methods and was statistically significant across all three spatial levels. Also, the AIC values 

across all methods showed improved performance and decreased after adjusting for age, sex 

and ethnicity. 

Comparing the various the BWI methods, the BWI method 3 achieved the lowest AIC 

values at each neighbourhood level. At the 800m level, walking frequency  (NB model) 

increased by 58% in comparison to 53% at 1600m, and 41% at 2400m for every unit increase 

in walkability (based on BWI method 3). In the logit model, at the 800m level, a one unit 

increase in walkability was associated with an estimated 49% decrease in the odds of being a 

non-participant in walking, and this was further reduced at 1600m, (38%), and 2400m (24%). 

These results indicate that the BWI based on method 3 at 800m neighbourhood level has the 

strongest associations with the outcome walking to work after adjusting for age, sex, and 

ethnicity. This suggests that providing walkable environments, (based on the network buffer), 

within a 10 minute walk could encourage active transport behaviours. 

Comparing between the EWI methods, the EWI based on method 3 had much lower 

AIC values. In order to determine which type of index and method were most appropriate for 

measuring associations between walking to work and walkability, the AIC values across all 

BWIs and EWIs were compared. The EWI based on method 3 in comparison to all other 

methods was the best fit model, with lower AIC values across each neighbourhood level. This 

finding indicates that measuring additional features of the built environment such as density of 

street lights, slope, footpaths and tracks, and including them in the EWI have stronger statistical 

associations with walking to work.  
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Table 33. Zero-inflated negative binomial model of associations between walking to work and the Basic 

Walk Indices and Enhanced Walk Indices, adjusted for proxies of age, ethnicity and sex. 

Walking to 

work 

Percent changea of 

walking to work (95% 

CI) (negative binomial 

model)   

Odds ratio b for being 

a non-participant in 

walking to work 

(95% CI) (logit 

model) 

 

 Model 2 

 
Percent 

change  CI (95%)  OR CI (95%) AIC 

BWI Method 1       

800m 1.21 1.18-1.24   0.69 0.63-0.77 9097.60 

1600m 1.22 1.19-1.25   0.70 0.63-0.77 9077.14 

2400m 1.23 1.20-1.26   0.67 0.61-0.73 9010.88 

BWI Method 2        

800m 1.31 1.27-1.36   0.70 0.63-0.77 9055.35 

1600m 1.25 1.22-1.28   0.84 0.78-0.91 9059.53 

2400m 1.21 1.18-1.23   0.87 0.81-0.94 9093.78 

BWI Method 3        

800m 1.58 1.51-1.65   0.51 0.43-0.61 8896.87 

1600m 1.53 1.46-1.60   0.62 0.54-0.71 8960.73 

2400m 1.41 1.36-1.45   0.76 0.68-0.84 8957.14 

              EWI Method 2        

800m 1.40 1.35-1.46   0.64 0.57-0.72 9041.35 

1600m 1.31 1.27-1.35   0.81 0.74-0.88 9036.77 

2400m 1.26 1.23-1.29   0.84 0.78-0.91 9034.65 

EWI Method 3        

800m 1.73 1.65-1.81   0.40 0.32-0.49 8810.10 

1600m 1.77 1.68-1.87   0.47 0.39-0.57 8872.20 

2400m 1.65 1.57-1.73   0.61 0.52-0.70 8891.16 
Values highlighted in bold indicate statistically significant associations (p<0.001) and shaded 

cells indicate the best fitting model based on the AIC values.  a Negative binomial model 

represents the percent change in walking to work per unit increase in neighbourhood walkability. 

b Logit model represents the proportional increase or decrease in the odds of being a non-

participant in walking to work associated with a unit increase in neighbourhood walkability. 

 

Results for Model 3 

Model 3 was additionally adjusted for proxy measures of education, household income, 

household access to a car and a measure of neighbourhood deprivation. These variables were, 

the proportion of individuals with or without qualifications (no high school qualification, high 

school qualification, post-high school diploma or certificate, undergraduate degree and 

postgraduate degree); the proportion of household income (NZ$20-30K, NZ$30-50K, NZ$50-

70K, NZ$70-100K and greater than NZ$100K); the proportion of household vehicles (no 

vehicles, one vehicle, two vehicles, and three or more vehicles), and deprivation (classified into 

quintiles).  
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In the fully adjusted model, similar to results for model 1 and 2, each of the BWIs and 

EWIs at each neighbourhood level was significantly (p<0.001) positively associated with 

walking to work (the NB model, Table 34). After adjusting for the covariates, the effect sizes 

of the percent change decreased for all methods indicating potential mediating effects of the 

covariates. In addition, similar to models 1 and 2, the results were in the expected direction. In 

the logit model, a unit increase in walkability was associated with significant decrease in the 

odds of being a non-participant in walking with all methods and spatial levels, with the 

exception of BWI and EWI based on method 2 at 1600m and 2400m, where no association was 

found. In the examination of the combined results of the ZINB model, it is interesting to note 

that method 3, (network buffer) for both BWIs and EWI, maintained significant associations 

with walking to work after adjusting for demographic, socio-economic and deprivation. In 

contrast, the BWI and EWI based on method 2 (Euclidean buffer) was not associated with the 

odds of being a non-participant walking to work at 1600m and 2400m. Furthermore, AIC 

values, similar to model 2 results, were lowest for BWI and EWI based on method 3, 

(represented in shaded cells in Table 34). These findings indicate that the network buffer is 

potentially a more appropriate method to use when measuring associations between walkability 

and walking for transport. 

Comparing the BWI with the EWI methods, the EWI based on method 3 had the lowest 

AIC values across each neighbourhood level, indicating it is the best fit model to test 

associations between walkability and walking to work. Contrasting the results of each 

neighbourhood level within the EWI, based on method 3, the 800m neighbourhood was 

associated with a 40% increase (NB model) in walking frequency for every unit change in this 

walk index, and a unit increase was associated with an estimated 39% decreased odds of being 

a non-participant in walking. In addition, the AIC values were lowest for the 800m 

neighbourhood level. These results indicate, first, that overall the EWI based on method 3 at 

each neighbourhood level is the best fit for predicting associations with walking to work, and 

second that the 800m neighbourhood level, while effect sizes are marginal, is more appropriate 

than the 1600m and 2400m levels. 
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Table 34. Zero-inflated negative binomial model of associations between walking to work and the Basic 

Walk (BWI) and Enhanced Walk Indices (EWI), additionally adjusted for proxies of education, 

household income, access to a car and area deprivation. 

 

Walking to work 

Percent changea in 

walking to work 

(95% CI) (negative 

binomial model) 

 Odds ratio b for being a 

non-participant in 

walking to work (95% 

CI) (logit model) 

 

 Model 3 

 

Percent 

change  CI (95%)   OR CI (95%) AIC 

BWI Method 1       

800m 1.11 1.09-1.14  0.86* 0.76-0.97 8055.43 

1600m 1.13 1.10-1.15  0.85** 0.76-0.96 8025.63 

2400m 1.13 1.10-1.15  0.77 0.69-0.86 7998.93 

BWI Method 2        

800m 1.16 1.13-1.20   0.86* 0.76-0.97 8052.56 

1600m 1.12 1.09-1.15   0.97 0.89-1.06 8066.23 

2400m 1.10 1.08-1.12   0.96 0.89-1.04 8058.37 

BWI Method 3        

800m 1.34 1.28-1.40   0.70 0.58-0.85 7952.17 

1600m 1.27 1.21-1.33   0.76 0.65-0.89 8012.45 

2400m 1.22 1.18-1.26   0.86* 0.76-0.97 7997.30 

              EWI Method 2        

800m 1.20 1.15-1.25   0.82** 0.71-0.94 8055.22 

1600m 1.15 1.12-1.18   0.92 0.83-1.02 8051.59 

2400m 1.14 1.11-1.16   0.92 0.85-1.01 8018.15 

EWI Method 3        

800m 1.40 1.34-1.48   0.61 0.48-0.77 7948.42 

1600m 1.40 1.33-1.48   0.66 0.53-0.81 7973.32 

2400m 1.36 1.30-1.42   0.75** 0.63-0.90 7956.73 
Values highlighted in bold indicate statistically significant associations at p<0.001; * = significance 

associations at p<0.05 and **= significance at p<0.01. Shaded cells indicate the best fitting model 

based on the AIC values.  a Negative binomial model represents the percent change in walking to 

work per unit increase in neighbourhood walkability. b Logit model represents the proportional 

increase or decrease in the odds of being a non-participant in walking to work associated with a unit 

increase in neighbourhood walkability. 

 

6.4.3 Neighbourhood destination accessibility and walking to work 

Having destinations that are accessible in the neighbourhood could potentially 

encourage all types of walking, not just walking for transport. However, it could be argued that 

having a nice environment to walk through, such as stopping off at a café or walking through 

a park while on route to work could encourage rather than hinder walking to work. This section 

examines whether there is a relationship between neighbourhood destinations and walking to 

work, using the following research questions to guide the investigation: 

A) Does the frequency of walking to work increase as the accessibility of 

neighbourhood destinations increases?  
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B) Are the odds of being a non-participant in walking to work inversely proportional to 

the accessibility of neighbourhood destinations? And how does this vary, depending on 

neighbourhood definition and scale after controlling for potential confounding 

covariates? 

 

Results for Model 1  

Descriptive statistics of the NDAI methods and the results for the unadjusted bivariate 

ZINB model are presented in Table 35. Both methods of measuring the NDAIs were 

significantly (p<0.001) positively associated with walking to work across all neighbourhood 

levels. Effect sizes were small but still in the expected direction (greater than 1), indicating that 

for every unit increase in accessibility to neighbourhood destinations, the frequency of walking 

to work also increases, ranging from 6%-8% across all NB models.  Additionally, both methods 

at all spatial levels in the logit model, were significantly negatively associated with being a 

non-participant in walking to work, although the effect sizes were small. The NDAI based on 

method 2 had the lowest AIC value at the 800m level, whereas the NDAI based on method 3 

had the lowest AIC values at 1600m and 2400m, indicating the best model fit.  

Table 35. Unadjusted bivariate, zero-inflated negative binomial model of associations between walking to 

work and the Neighbourhood Destination Accessibility Indices. 

Walking to 

work 

  

Percent changea in 

walking to work 

(95% CI) (negative 

binomial model)   

Odds ratio b for being 

a non-participant in 

walking to work 

(95% CI) (logit 

model) 

 

     Model 1 

  
Mean   Std  

Percent 

change  CI (95%)   OR CI (95%) AIC 

NDAI Method 2         

800m 30.32   12.12 1.06 1.06-1.07   0.91 0.89-0.92 9482.40 

1600m 27.60   12.12 1.07 1.07-1.07   0.92 0.91-0.93 9374.03 

2400m 25.48   12.01 1.06 1.06-1.07   0.93 0.92-0.94 9787.52 

NDAI Method 3         

800m 33.98   14.64 1.05 1.05-1.05   0.93 0.91-0.94 9619.25 

1600m 33.74   11.45  1.07 1.07-1.08   0.89 0.87-0.91 9311.56 

2400m 32.82   10.64 1.08 1.08-1.09   0.89 0.87-0.91 9197.82 

Values highlighted in bold indicate statistically significant associations (p<0.001) and shaded cells 

indicate the best fitting model based on the AIC values. a Negative binomial model represents the percent 

change in walking to work per unit increase in neighbourhood destination accessibility.  b Logit model 

represents the proportional increase or decrease in the odds of being a non-participant in walking to 

work associated with a unit increase in neighbourhood destination accessibility. 
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Results for Model 2 and 3 

After adjusting for proxies of age, ethnicity and sex, each of the NDAI methods 

remained statistically significant across all spatial levels (p<0.001) and were associated with 

walking to work (NB model, Table 36). The addition of covariates reduced the effect sizes but 

the association remained statistically significant. In the logit model, both methods at each 

neighbourhood level remained significantly associated with the odds of being a non-participant 

in walking to work in the expected direction (less than 1). The effect sizes of the results of 

model 1 were small and were further decreased in model 2 after including covariates, indicating 

possible confounding. Similar to the results for model 1, the NDAI based on method 2 had the 

lowest AIC values at 800m, and the NDAI based on method 3 had the lowest AIC values at 

1600m and 2400m. This suggests that the Euclidean buffer (method 2) is potentially a useful 

method for measuring associations between short distances and destinations. Further, the 

network buffer (method 3) could be more suitable for measuring the relationship between 

longer commutes by foot and destination accessibility. 

Finally, in the fully adjusted model, (model 3), which was adjusted for proxies of 

education, household income, car access, and neighbourhood deprivation, both methods of 

measuring the NDAI remained significantly associated (p<0.001) with walking to work (NB 

model), even though effect sizes were marginal. The odds of being a non-participant in walking 

to work significantly decreased as the accessibility to neighbourhood destinations increased 

(logit model). Effect sizes continued to decrease in model 3, indicating a potential mediating 

effect of the covariates. In contrast to results for model 2, the AIC values in model 3 were 

lowest for the NDAI based on method 2, not only at 800m but also at 1600m. However, the 

NDAI based on method 3 retained the lowest AIC value at 2400m indicating model superiority 

at this neighbourhood level. In addition, when comparing which NDAI method and spatial 

level is the best at predicting associations with walking to work, the NDAI based on method 3 

at 2400m, has the lowest AIC value in comparison to all other models (AIC=7714.70) and is 

markedly lower than the next nearest AIC value (7835.47). 
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Table 36. Zero-inflated negative binomial model of associations between walking to work and the NDAIs, 

adjusted for proxies of age, ethnicity and sex, (model 2), and additionally adjusted for proxies of 

education, household income, access to a car and area deprivation (model 3). 

Walking to work Percent changea in 

walking to work (95% 

CI) (negative binomial 

model) 

   

Odds ratio b for being a 

non-participant in 

walking to work (95% 

CI) (logit model) 

 

 Model 2 (adjusted for age, ethnicity and sex) 

  
Percent 

change  CI (95%)   OR CI (95%) AIC 

NDAI Method 2        

800m 1.05 1.04-1.05   0.90 0.88-0.92 8723.56 

1600m 1.05 1.05-1.06   0.92 0.90-0.93 8534.83 

2400m 1.04 1.04-1.04   0.94 0.92-0.95 8848.05 

NDAI Method 3        

800m 1.03 1.03-1.04   0.92 0.91-0.93 8765.16 

1600m 1.05 1.05-1.06   0.88 0.86-0.90 8517.83 

2400m 1.06 1.06-1.07   0.88 0.86-0.90 8346.81 

Model 3 (additionally adjusted for education, household 

income, access to a car and area deprivation) 

NDAI Method 2        

800m 1.03 1.02-1.03   0.93 0.91-0.95 7968.20 

1600m 1.03 1.03-1.04   0.95 0.93-0.97 7835.47 

2400m 1.02 1.02-1.03   0.96 0.95-0.98 7963.07 

NDAI Method 3        

800m 1.02 1.01-1.02   0.95 0.93-0.96 7979.29 

1600m 1.04 1.03-1.04   0.92 0.89-0.94 7840.64 

2400m 1.05 1.04-1.05   0.92 0.90-0.95 7714.70 

Values highlighted in bold indicate statistically significant associations (p<0.001) and shaded cells 

indicate the best fitting model based on the AIC values. a Negative binomial model represents the 

percent change in walking to work per unit increase in neighbourhood destination accessibility.  b 

Logit model represents the proportional increase or decrease in the odds of being a non-participant 

in walking to work associated with a unit increase in neighbourhood destination accessibility. 

6.4.4 Bikeability and cycling to work  

Cycling as an active transport mode is quite different to walking, longer distances can be travelled 

and it requires a piece of human powered equipment, the bike, in order to get from one destination to 

another. Consequently, it is important to measure associations between cycling and specific features of 

the built environment which are theorised to encourage or hinder the behaviour, which can be different 

to features that influence walking. This section attempts to address the gap in existing research on the 

built environment which is primarily concerned with measuring walkability, with only a few studies 

objectively measuring bikeability (Winters et al., 2010; Winters et al., 2013). Associations between the 

objectively derived Bike Indices (methods 2 and 3) and cycling to work are investigated using the 

following research questions:  
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A) Does the frequency of cycling to work increase as the bikeability of the built 

environment increases?  

B) Do the probabilities of being a non-participant in cycling to work decrease as the 

bikeability of the built environment increases? And how does this relationship vary 

depending on neighbourhood definition and scale after controlling for potential 

confounding covariates? 

 

Results for Model 1 

Descriptive statistics and the results for the unadjusted bivariate ZINB model are 

presented (Table 37). As expected, there are differences in the mean values and standard 

deviations for both methods across the three spatial scales. Even though the effect sizes were 

negligible, there was a significant positive association between the bikeability of the built 

environment and cycling to work at 1600m and 2400m for the BI based on method 2 (NB 

model). The BI based on method 3 was also significantly associated with cycling to work, but 

only at the 2400m neighbourhood scale (NB model). Unsurprisingly, there was no association 

between cycling and bikeability at the 800m level, possibly because it is too short a distance to 

capture cycling behaviour. In the logit model, a unit increase in the bikeability of the built 

environment was significantly associated with decreased odds of being a non-participant in 

cycling for both methods of BIs at each neighbourhood level. Effect sizes were marginal, but 

significant across all spatial levels.  

Based on the AIC model fit scores, the BI based on method 2 at 1600m and 2400m and 

the BI based on method 3 at 800m were the best models for predicting bivariate associations. 

However, the percent change is equal to 1 for the BI based on method 3 at 800m, indicating no 

relationship. Comparing AIC values between both methods and at all scales, the BI based on 

method 2 at 2400m has the lowest AIC value in comparison to all other models, indicating that 

it is the best fit to predict the relationship between cycling to work and the bikeability of the 

built environment. 
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Table 37. Unadjusted bivariate, zero-inflated negative binomial model of associations between cycling to 

work and indices of Bikeability. 

Cycling to work 

    

Percent changea in 

walking to work 

(95% CI) (negative 

binomial model) 

   

Odds ratio b for 

being a non-

participant in 

cycling to work 

(95% CI) (logit 

model) 

 

      Model 1 

  
Mean  (Std) 

Percent 

change  CI (95%)  OR CI (95%) AIC 

BI Method 2            

800m 29.76 5.91    1.00 0.99-1.01    0.98* 0.96-0.99 5549.04 

1600m 27.97 5.26 1.01 1.01-1.02   0.95*** 0.93-0.97 5511.93 

2400m 26.50 5.48 1.02 1.01-1.02   0.93*** 0.91-0.95 5475.90 

BI Method 3            

800m 31.30 6.86    1.00 0.99-1.01   0.98* 0.97-0.99 5547.68 

1600m 31.19 5.64    1.01 1.00-1.01   0.98** 0.96-0.99 5542.52 

2400m 30.82 4.63    1.01 1.00-1.02   0.96*** 0.94-0.98 5532.64 

Values in highlighted bold indicate statistically significant associations at p<0.001; *=significance 

associations at p<0.05 and **= significance at p<0.01. Shaded cells indicate the best fitting model based on 

the AIC values.  a Negative binomial model represents the percent change in cycling to work per unit 

increase in neighbourhood bikeability. b Logit model represents the proportional increase or decrease in the 

odds of being a non-participant in cycling to work associated with a unit increase in neighbourhood 

bikeability. 

Results for Models 2 and 3 

The results of model 2, (adjusted for proxies of age, ethnicity and sex) and model 3, 

(additionally adjusted for proxies of education, household income, access to a car and area 

deprivation) are presented (Table 38). There was a statistically significant positive association 

between cycling to work and the bikeability of the built environment in model 2 for all spatial 

levels. However, with the model 3, the BIs based on methods 2 and 3 at 800m had no 

association, while the both methods at 1600m and 2400m were associated with cycling to work. 

The results for both models were remarkably similar, with effect sizes remaining small, ranging 

from 1%-2% (NB model). For the logit model, both model 2 and 3 had very similar results, 

with statistically significant negative associations with the bikeability of the built environment. 

Furthermore, while the results for the NB model in model 1 remained much the same; the 

results for the logit model had lower ORs and AIC values across both methods and spatial 

levels in models 2 and 3. This indicates that the models improve after controlling for the 

covariates.  

Finally, when comparing each method the results are similar to model 1, in which the 

BI based on method 2 had the lowest AIC values with models 2 and 3 at 1600m and 2400m, 
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indicating that this method was the best fit for the data. Also, the BI based on method 3 had the 

lowest AIC value at the 800m spatial level. When comparing all AIC values, the BI based on 

method 3 had the lowest AIC values at 2400m neighbourhood level, indicating it was the best 

fit model to predict associations with the outcome cycling to work.  

Table 38. Zero-inflated negative binomial model of associations between cycling to work and the Bike 

Indices, adjusted for proxies of age, ethnicity and sex, (model 2), and additionally adjusted for proxies of 

education, household income, access to a car and area deprivation (model 3). 

Cycling to 

work 

Percent changea in 

cycling to work (95% 

CI) (negative 

binomial model) 

   

Odds ratio b for being 

a non-participant in 

cycling to work (95% 

CI) (logit model) 

 

 Model 2 (adjusted for age, ethnicity and sex) 

 
Percent 

change  CI (95%)   OR CI (95%) AIC 

BI Method 2        

800m   1.01* 1.00-1.02   0.95 0.92-0.97 5237.80 

1600m 1.02 1.01-1.03   0.92 0.90-0.94 5195.92 

2400m 1.02 1.01-1.03   0.91 0.89-0.94 5174.76 

BI Method 3        

800m   1.01* 1.00-1.01   0.95 0.93-0.97 5231.57 

1600m     1.01** 1.01-1.02   0.95 0.92-0.97 5230.87 

2400m 1.02 1.01-1.03   0.93 0.90-0.96 5221.90 

 
Model 3 (additionally adjusted for education, household 

income, access to a car and area deprivation) 

BI Method 2        

             800m 1.01 0.99-1.02  0.95 0.92-0.98 5187.00 

1600m 1.02 1.01-1.03   0.92 0.89-0.95 5154.47 

2400m 1.02 1.01-1.03    0.92 0.89-0.94 5139.38 

BI Method 3        

800m 1.01 0.99-1.01   0.95 0.93-0.98 5183.01 

1600m     1.01** 1.00-1.02   0.95 0.92-0.98 5184.03 

2400m 1.02 1.01-1.03   0.93 0.90-0.97 5176.90 
Values highlighted in bold indicate statistically significant associations at p<0.001; *=significance 

associations at p<0.05 and **= significance at p<0.01. Shaded cells indicate the best fitting model based 

on the AIC values.  a Negative binomial model represents the percent change in cycling to work per unit 

increase in neighbourhood bikeability. b Logit model represents the proportional increase or decrease 

in the odds of being a non-participant in cycling to work associated with a unit increase in 

neighbourhood bikeability. 

 

6.4.5 Neighbourhood destination accessibility and cycling to work 

Identifying the components of the built environment that could promote or hinder all types 

of cycling, such as leisure, utilitarian and transport are necessary to improve health outcomes. 

Having attractive destinations to cycle to such as cafés and shops or pass through such as the 
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park, while on the way to work, could potentially encourage this type of cycling behaviour. 

The next section investigates if there is a relationship between cycling to work and 

neighbourhood destination accessibility by applying the following research questions: 

A) Does the frequency of cycling to work increase as the accessibility of neighbourhood 

destinations increases?  

B) Are the odds of being a non-participant in cycling to work inversely proportional to the 

accessibility of neighbourhood destinations? And how does this vary depending on 

neighbourhood definition and scale after controlling for potential confounding covariates? 

The results for models 1, 2 and 3 are presented in Table 39 and show that the 

associations between neighbourhood destination accessibility and cycling to work range from 

no association (1.00) to a marginal association (1.01), and even a negative association (0.99) 

in the NB models. In the logit models, however, associations across all three models were 

consistently, statistically significant in the expected direction (less than 1), and generally had 

improved ORs as each subsequent model was additionally controlled for. This suggests that as 

neighbourhood destination accessibility increases, (for both NDAI methods 2 and 3), the odds 

of being a non-participant in cycling to work decrease for models 1, 2 and 3.  

Focusing on the fully adjusted model, (model 3), the NDAI based on method 2 at 1600m 

neighbourhood level, while marginal, was the only method significantly positively associated 

with cycling to work, all other spatial levels had either no association or a negative association 

with the NDAI based on method 3. In other words, for every unit increase in neighbourhood 

destination accessibility (as defined by the NDAI based on method 2 at 1600m) cycling 

frequency increased by 1%. In contrast, both methods at all spatial levels were significantly 

associated with the odds of being a non-participant in cycling to work. Taking the example of 

NDAI based on method 3, a unit increase in the neighbourhood destination accessibility was 

associated with an estimated 3% decrease in the odds of being a non-participant in cycling to 

work. Finally, the AIC values continued to decrease as each model was adjusted for potential 

confounders. In model 3, when comparing between methods 2 and 3, the NDAI based on 

method 2 had the lowest AIC values at 800m and 1600m neighbourhood levels, and the NDAI 

based on method 3 had the lowest AIC values at the 2400m scale, indicating best model fit for 

the data. If all AIC values are compared across methods and scales, the NDAI based on method 

2 (Euclidean buffer) at 1600m has the lowest overall AIC value (5185.26), suggesting it is the 

best fit model when measuring associations between neighbourhood destination accessibility 

and cycling to work. 
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Table 39. Model 1 results of unadjusted bivariate, zero-inflated negative binomial model of associations 

between cycling to work and indices of Neighbourhood Destination Accessibility; model 2 is additionally 

adjusted for proxies of age, ethnicity and sex; and model 3, is additionally adjusted for proxies of education, 

household income, access to a car and area deprivation. 

Cycling to 

work 

Percent changea in 

cycling to work 

(95% CI) (negative 

binomial model)   

Odds ratio b for 

being a non-

participant in 

cycling to work 

(95% CI) (logit 

model) 

 

  Model 1 

  
Percent 

change  CI (95%)  OR CI (95%) AIC 

NDAI Method 2        

800m    1.00 0.99-1.00   0.99 0.98-0.99 5544.39 

1600m 1.00* 1.00-1.01   0.98 0.97-0.99 5524.54 

2400m 1.00* 1.00-1.01   0.97 0.96-0.98 5511.70 

NDAI Method 3        

800m 0.99 0.99-1.00     0.99** 0.98-0.99 5545.27 

1600m 1.00 0.99-1.00   0.98 0.97-0.99 5537.74 

2400m 1.00 0.99-1.01   0.97 0.96-0.98 5523.92 

 Model 2 (adjusted for age, ethnicity and sex) 

NDAI Method 2        

800m     1.00 0.99-1.01   0.97 0.96-0.98 5239.78 

1600m    1.01** 1.00-1.01   0.97 0.960.98 5225.39 

2400m 1.00* 1.00-1.01   0.97 0.96-0.98 5237.80 

NDAI Method 3        

800m 1.00 0.99-1.00   0.98 0.97-0.99 5242.26 

1600m 1.00 0.99-1.01   0.97 0.96-0.98 5238.16 

2400m 1.00 0.99-1.01     0.98** 0.97-0.99 5192.29 

 

Model 3 (additionally adjusted for education, 

household income, access to a car and area 

deprivation)   

NDAI Method 2        

800m 1.00 0.99-1.01      0.97** 0.96-0.99 5193.05 

1600m   1.01* 1.00-1.01   0.97 0.96-0.99 5185.26 

2400m 1.00 0.99-1.01      0.98** 0.97-0.99 5192.29 

NDAI Method 3        

800m 0.99 0.99-1.01      0.98** 0.97-0.99 5195.14 

1600m 1.00 0.99-1.01   0.98* 0.96-0.99 5195.25 

2400m 1.00 0.99-1.01   0.97 0.95-0.99 5189.01 

Values highlighted in bold indicate statistically significant associations at p<0.001; 

*=significance associations at p<0.05 and **= significance at p<0.01. Shaded cells 

indicate the best fitting model based on the AIC values.  a Negative binomial model 

represents the percent change in cycling to work per unit increase in neighbourhood 

destination accessibility. b Logit model represents the proportional increase or decrease in 

the odds of being a non-participant in cycling to work associated with a unit increase in 

neighbourhood destination accessibility. 
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6.5 Summary of findings 

6.5.1 Built environment influences on walking to work 

Walkability and walking to work 

The results of the bivariate analysis indicated strong, statistically significant positive 

associations between walkability, as defined by both the BWIs and the EWIs, and walking to 

work for all three neighbourhood levels (800m, 1600m and 2400m). In addition, the odds of 

being a non-participant in walking to work are significantly negatively associated with a unit 

increase in all walk indices (BWIs and EWIs), for all spatial levels.  

Comparing between the standard BWI (method 1), and the novel BWIs (method 2 and 

3), the BWI based on method 3, (network buffers) had the strongest associations, for predicting 

both walking to work, and significant decreased odds of being a non-participant in walking to 

work as the walkability of the built environment increased. The 800m and 1600m 

neighbourhood areas based on network buffers had the strongest associations and the lowest 

AIC values in comparison to all other models, indicating model superiority. In contrast, the 

BWI based on the standard method (network buffer) had the lowest AIC value, in comparison 

to all other BWI methods at the 2400m neighbourhood level. Both methods 1 and 3, while 

created using simple intensity and kernel density methods, are comparable as they both used 

network buffers.  

Comparing the EWI methods 2 and 3, the novel method based on network buffers 

(method 3), had the strongest positive associations with walking to work at all three spatial 

levels. When comparing between the BWIs and the EWIs, both EWIs were better models at 

predicting associations (based on the AIC values), and the EWI based on method 3 had the 

lowest AIC values across all three spatial levels. Within the EWI based on method 3, the 800m 

neighbourhood level had the strongest positive associations with walking to work, and 

decreased odds in being a non-participant in walking to work for a one unit increase in the walk 

index, indicating that the novel EWI, network buffer at 800m, is the best model at predicting 

associations with walking.    

After adjusting for proxies of demographic covariates, age, sex, and ethnicity, 

significant positive associations between the walkability of the built environment based on all 

indices methods, and frequency of walking to work remained. However in comparison to the 

unadjusted model 1, within the BWIs, the BWI based on method 3 was a better model fit for 
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all three neighbourhood levels (800m, 1600m and 2400m), rather than BWI based on the 

standard method. The EWIs were, again, the strongest indices in predicating associations with 

walking to work. In particular the EWI based on the novel method 3, network buffer, had 

significant positive associations at all three spatial levels, with the 800m level being the best 

predictor.  

Finally, in the fully adjusted model, (model 3), significant positive associations 

remained between all the walkability indices and walking to work. While the effect sizes 

decreased in comparison to the bivariate and demographically adjusted models, the BWI based 

on method 3, remained the best predicted model in comparison to all the BWIs. For example, 

the BWI based on method 3 at 800m, predicted an estimated 34% increase in walking frequency 

to work for every unit increase in the walk index, in comparison to 11% and 16% for BWI 

methods 1 and 3. In addition, for this specific index (BWI method 3), a unit increase in 

walkability was associated with a 30% decreased odds of being a non-participant in walking to 

work, in comparison to 14% decreased odds for both BWI, method 1 and 2. Based on the AIC 

values of the BWIs based on method 3, the 800m network buffer, followed by the 2400m 

network buffer and lastly the 1600m network buffer were the best fit models.  

Comparing between the EWIs in the fully adjusted model, again, the EWI based on 

method 3, at all three neighbourhood levels was the superior method at predicting positive 

associations between walking to work and the walk index. In addition, EWI, based on method 

3, in comparison with the BWIs was, overall, the best index and method in predicting 

associations. Effect sizes were larger than the other BWIs and the AIC values were lowest for 

this index and method. For example, the EWI based on method 3 was associated with an 

estimated 40% increase in walking frequency for both the 800m and 1600m neighbourhood 

areas, and a 36% increase in walking frequency for the 2400m for every unit increase in the 

walk index. In addition, every unit increase in the walk index was associated with a 39% 

decreased odds at 800m, a 34% at 1600m and a 25% at 2400m of being a non-participant in 

walking to work.  

These results reveal a number of important findings. Firstly, that the BWI based on 

method 1, (standard approach, network buffer), is associated with walking to work and 

predicting decreased odds of non-participants walking to work for a unit increase in the walk 

index. This finding lends further validity to previous research which has found associations 

between this type of walk index and walking for transport (Mayne et al., 2013). Secondly, the 
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newly created methods in this thesis, the kernel density based methods with Euclidean and 

network buffers, (methods 2 and 3 respectively), are also significantly positively associated 

with walking to work, and predicting the odds of being a non-participant in walking to work 

for both the BWIs and the EWIs. These results indicate that the novel methods are also valid 

and are more strongly, in terms of effect sizes, associated with the predicting walking for 

transport. These results could signify previous research has underestimated or downplayed the 

significant impact the built environment can have on encouraging walking to work. The more 

nuanced novel indices present stronger evidence linking the built environment and walking 

which can be used to inform and strengthen arguments for policies and planning decisions to 

encourage walkability. Thirdly, when comparing between the BWIs and the EWIs, method to 

method, overall the EWIs, which are composed of measures of land use mix, street 

connectivity, dwelling density, footpaths and tracks, street lights and slope, performed better, 

lending credibility that these indices capture or explain more of the contextual built 

environment than the BWIs which only contain three components, measures of land use mix, 

street connectivity and dwelling density. Fourthly, comparing between the type of buffer used, 

while both buffers were consistently significantly positively associated with walking to work, 

the network buffer, (method 3) had the largest effect sizes and the lowest AIC values, in 

comparison to the Euclidean buffer (method 2). Finally, these results in the fully adjusted 

model, suggest that the 800m network based buffer created using the kernel density method 

(method 3), is the best predictor of walking to work, followed by the 2400m and then the 1600m 

based on AIC values. This finding suggests that living in a walkable area within a 10 minute 

walk (800m) could potentially encourage active transport behaviours such as walking to work. 

Neighbourhood destination accessibility and walking to work 

In the unadjusted models, both NDAI methods were significant and positively 

associated with walking to work across all neighbourhood levels, although effect sizes were 

small, ranging from 6-8% (the NB models). In the logit models, both NDAIs were significant 

(p<0.001) and negatively associated with decreased odds of being a non-participant in walking 

to work, with effect sizes small, ranging from OR 0.89, to OR 0.93. Comparing between both 

methods, the AIC values were lowest at the 800m scale for the novel method 2 (Euclidean 

buffer), while the AIC values were lowest at the 1600m and 2400m scales for the KDE network 

buffers (method 3). The NDAI based on method 3 at 2400m neighbourhood level had, overall, 

a markedly lower AIC value (9197.82) in comparison to all other models, indicating model 

superiority. 
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For both the NB model and the logit model, the NDAIs based on method 2 and 3, results 

remained largely the same after adjusting for proxies of age, sex, and ethnicity. Effect sizes 

reduced further, indicating potential confounding. In addition, the AIC values, which penalises 

model complexity (Beaujean and Morgan, 2016), continued to decrease after adding covariates. 

Comparing between the methods, again, the NDAI based on method 2, at 800m had the lowest 

values and the NDAI based on method 3 had the lowest AIC values at 1600m and 2400m 

neighbourhood levels. Comparing both methods and all spatial levels, the 2400m 

neighbourhood level based on method 3 performed the best, based on the AIC values. 

Finally, in the fully adjusted model, the results were very similar to models 1 and 2, 

although the inclusion of potential confounders continued to decrease the effect sizes, which 

ranged from 2%-5% in the NB model and the ORs ranged from 0.92-0.96 in the logit models. 

Importantly, the associations between walking to work and neighbourhood destination 

accessibility remained statistically significant (p<0.001), even after additionally adjusting for 

proxies of education, household income, access to a car and area deprivation. Comparing AIC 

values between the methods, to determine which method performed the best, the NDAI based 

on the Euclidean buffers (method 2) had the lowest AIC values at both 800m and 1600m, 

whereas the NDAI based on the network buffer (method 3) was only significant at the 2400m 

neighbourhood level. However, comparing all models and neighbourhood levels, the NDAI 

based on method 3 at 2400m, similar to the unadjusted and demographically adjusted models, 

remained the best fit model for the data with a markedly lower AIC value (7714.70) in 

comparison to all other models (7968.20;  7835.47; 7963.07; 7979.29 and 7840.64).  

The results of this analyses indicate there are significant associations between the 

NDAIs and walking to work, however, the effect sizes are small and should therefore be 

interpreted with caution. This finding is unsurprising as the outcome variable, walking to work, 

is a specific physical activity with a direct purpose i.e. to get to work, whereas neighbourhood 

destination accessibility is potentially less relevant to walkers for transport. In addition, due to 

the limitation of the outcome data available, it was not possible to test the relationship between 

the NDAIs and all types of walking both separately and together, such as walking for leisure 

and walking for transport. However, it was still important to test the hypothesis that 

neighbourhood destination accessibility could influence walking to work. Creating attractive 

built environments to walk through by having destinations such as shops, restaurants and cafés 

could encourage walking to and from work.    
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6.5.2 Built environment influences on cycling to work 

Bikeability and cycling to work 

Similar results were reported in all three models. Measures of bikeability were 

associated with cycling to work, however effect sizes were small, where both methods in the 

NB model predicted only 1%-2% of the variance. In the unadjusted bivariate model, there was 

no association between cycling to work and bikeability for either method at 800m. However, 

in the logit model, the odds of being a non-participant in cycling decreased as the bikeability 

of the built environment increased and this was significant across all neighbourhood scales, 

ORs ranging from 0.93-0.98.  

 After adjusting for proxies of age, sex, and ethnicity, the BIs based on methods 2 and 3 

at 800m became statistically significant predicting a 1% change. However, such small effect 

sizes need to be interpreted with caution. There was a marginal increase of 1% between model 

1 and model 2 for both methods at 1600m and 2400m, such a negligible increase indicates that 

demographic factors have a minimal to zero effect on whether people cycle to work. Similarly, 

in the logit model, the ORs decrease further and range between 0.91 and 0.95 across all 

neighbourhood levels. When comparing AIC values between methods, the BI based on method 

2 (Euclidean buffer) at 1600m and 2400m, and the BI based on method 3 (network buffer) at 

800m had the lowest values. 

 In the fully adjusted model, the results were almost identical to model 2, with a couple 

of exceptions, the BI methods 2 and 3 at 800m were not associated with cycling to work. 

However, both methods at all neighbourhood levels were significantly negatively associated 

with being a non-participant in cycling to work for a unit increase in either bikeability index. 

Again, the results of models 2 and 3 are similar, indicating there is little to no confounding 

influence of the additional covariates, proxies of education, household income, vehicle 

ownership, and area deprivation. However, the AIC values continued to decrease, and as 

mentioned previously, AICs penalise model complexity. Comparing between both models, the 

BI based on method 2 at 1600m and 2400m had again the lowest AIC values, whereas the BI 

based on method 3 at 800m had the lowest value. Finally, if all AIC values are to be compared 

in order to determine the best fit model, the BI based on the Euclidean buffer at 2400m had the 

lowest value.  

These results are somewhat interesting for a number of reasons. Firstly, there were 

limitations to the bike index, both the components included and those unable to include. The 
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measures included, such as, the density of cycle tracks in Wellington, was very limited in its 

coverage of the city. Other bicycle infrastructure such as separated bike paths and bike storage 

were not included due to the data being publicly unavailable. Secondly, the bike index contains 

components of the walk index which are potentially not relevant for cycling such as dwelling 

density. Thirdly, while there still was an association found between the bike indices and 

bikeability, contrary to expected results, the Euclidean based bike index performed the best for 

both the 1600m and 2400m neighbourhood level. This is unexpected as cycling is presumed to 

follow the street network. Finally, no association was found at 800m between cycling to work 

and the bikeability of the built environment. This is unsurprising as it could be argued that in 

order to cycle to work the distance has to be greater than a 10 minute walk. Distances greater 

than 2400m should be examined in future research, as cycling often takes place over longer 

distances than walking (Winters et al., 2010). 

NDAI and cycling to work 

 Overall, in each of the models, even after adjusting for potential confounders, there was 

little to no association between the NDAIs, both methods, and estimating cycling to work. 

However, in the logit models, there was a consistent pattern of significant associations across 

all three models. The ORs were small and ranged from 0.97-0.99. Because the models changed 

only slightly, even after adjusting for demographic, socio-economic and deprivation covariates, 

indicates these have no confounding relationship with cycling to work and the neighbourhood 

destination accessibility indices. Due to the overall small effect sizes across all models, the 

analyses reveal that neighbourhood destination accessibility does not influence cycling to 

work.  

6.6 Conclusion 

This chapter investigated associations between indices of the built environment, for 

walkability, bikeability and neighbourhood destination accessibility and active modes of 

transport. Findings related to the BWI based on the standard method, (network buffer), were 

consistent with previous research. New findings, in relation to the more nuanced methods of 

using kernel density to measure the built environment, also found significant associations with 

walking and cycling to work. Results for walking to work had the strongest associations with 

the novel method based on the network buffer (method 3), with AIC values indicating best fit 

model.  
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Results for the NDAI methods and walking and cycling to work were, in general, 

significantly associated, although with small effect sizes. In the case of walking, including 

other types of walking such as walking for leisure in the analysis could potentially yield 

stronger associations. The results of the bikeability indices and cycling to work, while 

associated in the expected direction, the effect sizes were also small and need to be interpreted 

with caution.  

While the newly created novel indices (BIs and NDAIs) presented in this thesis did not 

predict cycling to work as strongly as expected, the novel indices of walkability predicted 

moderate to strong associations with walking to work. In addition, the neighbourhood 

destination accessibility indices too, predicted associations with walking to work, despite 

having small effect sizes. Importantly, the methods used to create the indices and in particular 

the novel method 3, (network buffer), present an opportunity for more nuanced approach to 

measuring the built environment for active transport. The results presented in this chapter 

support further application and replication of this new approach, potentially lending validity to 

these findings.  

The following chapter, Chapter 7, describes and analyses the associations between these 

indices of the built environment, physical activity and overweight/obesity, utilising data from 

the New Zealand Health Survey.  
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Chapter 7. Measuring Associations between Indices of the Built 

Environment, Physical Activity and Health Outcomes 

 7.1 Introduction 

Physical activity is important for protecting against heart disease, stroke, type 2 

diabetes, certain types of cancers and also counteracting diseases such as obesity (Ministry of 

Health, 2015a). Over the last two decades, the built environment has been increasingly 

investigated for influencing physical activity behaviours and related health outcomes such as 

overweight and obesity. Identifying characteristics of the neighbourhood built environment 

that deter or encourage physical activity, and how these may be associated with overweight 

and obesity, is a necessary step in order to make improvements to existing built environments, 

and review current urban planning policy.  

This chapter addresses the tenth objective, which is to investigate the associations of 

indices of the built environment (described in Chapters 3 and 4), physical activity and health-

related outcomes using data from the New Zealand Health Survey (NZHS). A description of 

the study data, independent variables and covariates used in the analyses follows (section 7.2), 

then a description of the statistical analyses procedure is presented (section 7.3). The results of 

associations between the Basic Walk Indices (BWIs), Enhanced Walk Indices (EWIs), Bike 

Indices (BIs) and Neighbourhood Destination Accessibility Indices (NDAIs) and physical 

activity and overweight/obesity are presented with relevant research questions at the beginning 

of each results section to guide the analysis (section 7.4). The chapter concludes with a 

summary of the main findings arising from the analyses (section 7.5).   

7.2 Methods 

Study data 

The NZHS was used to validate and test associations between the built environment, 

physical activity and overweight/obesity. The survey is a nationally representative sample of 

New Zealand residents and has a multi-stage, stratified, probability-proportional-to-size 

sampling design (Ministry of Health, 2015c). Households are systematically selected within 

meshblocks, using a skip algorithm (Ministry of Health, 2015c). The interviewer-administered 

survey collects information on health status, long-term health conditions, health behaviours 

and risk factors, (e.g. physical activity, tobacco use and alcohol consumption), nutrition, mental 

health, oral health, health service utilisation, patient experience and socio-demographic data 

(Ministry of Health, 2015d). Objective measurements of participants’ height, weight and waist 
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are taken at the end of the interview using a professional laser meter, electronic weighing scales 

and an anthropometric measuring tape (Ministry of Health, 2015c). The sample is collated at 

the meshblock area unit, and areas with ethnic minority groups are over-sampled to provide 

sufficient sample sizes for analyses (Ministry of Health, 2015c). Initially, the survey was 

completed every 6 years; however, it has been completed yearly since 2011/12 up to year 

2014/15. As an example of the general sample size of the survey conducted each year, the 

2014/15 survey collected information from 4,754 children (aged 0-14) and 13,497 adults (aged 

over 15 years) (Ministry of Health, 2015a). Sample sizes for Wellington City were relatively 

small, n=460 in the 2011/12 survey, n=479 in 2012/13, n=650 in 2013/14, and n=508 in the 

2014/15 survey. In order to increase the statistical power for analyses, data from each year 

between 2011 to 2015 was combined to create a total sample size of 2,097 individuals. 

7.2.1 Individual level health outcome data 

Two health outcomes from the NZHS were used to validate and investigate associations 

with indices of the built environment for walking, cycling and neighbourhood destination 

accessibility.  

Physical activity  

Survey participants were asked about their physical activity behaviours in the preceding 

seven days. The Ministry of Health defined physical activity as adults aged 15 or older doing 

at least 30 minutes of brisk walking2 or moderate-intensity physical activity (or equivalent 

vigorous activity), lasting at least 10 minutes at a time, on five days of the previous week 

(Ministry of Health, 2015e). Examples of moderate-intensity physical activity include heavy 

housework, (cleaning windows) or gardening (manual lawn-mowing), cycling at a regular 

pace; vigorous activity examples include heavy lifting, running, fast cycling, touch rugby or 

chopping wood (Ministry of Health 2015e). Based on a range of answers regarding time spent 

on physical activity, the Ministry of Health (2015e), created a combined measure of physical 

activity.  

 

 

                                                 
2Brisk walking is defined as a walking pace at which you are breathing harder than normal (Ministry of Health, 

2015d). 
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The formula used to calculate the combined measure is: 

Time spent doing brisk walking in the past 7 days  

+ time spent doing moderate exercise in the past 7 days 

+ 2 x (time spent doing vigorous activity in the past 7 days) 

(Ministry of Health, 2015e). 

 

 This measure was used to create a binary variable, where (1) represented individuals 

that met the physical activity guidelines and (0) represented individuals who did not. This 

measure was one of the dependent variables used to test associations with indices of the built 

environment developed in this research. 

Body Mass Index (BMI) 

Each respondents BMI was calculated by obtaining objective measurements of their 

height, weight and waist diameter. According to the World Health Organisation, (WHO, 2016), 

individuals with a BMI of greater than or equal to 25 are considered overweight and individuals 

with a BMI greater than 30 are considered obese. Due to the small number of obese individuals 

in the sample, a binary measure of (1) representing overweight/obese individuals (BMI ≥ 25) 

and (0) representing ‘healthy’ weight individuals was created (BMI < 25). The BMI measure 

was included as the second dependent variable to test associations with indices of the built 

environment.    

7.2.2 Individual level covariates 

Age 

Age data was provided in a number of age groups ranging from 15-75+ years old. To 

simplify the interpretation of results and ensure consistency with related research (Witten et 

al., 2012), five age groups were created to represent more broadly individuals at different stages 

in their lives. These groups were 15-29 years, 30-44 years, 45-54 years, 55-64 years and 65 

years and over. Witten et al., (2012) did not include the final age group of 65 and over; however, 

this research is interested in the influence of walkability and bikeability across all age groups. 

Furthermore, previous research into the built environment and walkability for older adults is 

an emerging field and associations vary by age groups (Grant et al., 2010; Procter-Gray et al., 

2015; Van Cauwenberg et al., 2016; Van Holle et al., 2014). 
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Sex 

The proportion of males to females was included as a covariate and potential 

confounder. Research focusing on links between the built environment, physical activity and 

overweight/obesity, regularly control for the potential influence of sex (Frank et al., 2007; 

Witten et al., 2012; Pearson et al., 2014; Oliver et al., 2015). 

Ethnicity 

The sample for Wellington City included four ethnic groups, Māori, Pacific, Asian and 

European/Other. In New Zealand, ethnic minorities, especially Māori and Pacific Islanders 

have higher rates of health risks such as being physically inactive, smoking, obesity, hazardous 

drinking and psychological distress than non-Māori and non-Pacific adults (Ministry of Health, 

2015a). Research measuring associations between the built environment, physical activity and 

overweight/obesity regularly includes ethnicity as a potential confounder (Witten et al., 2012; 

Pearson et al., 2014). Ethnicity was included as a categorical variable in the analysis. 

Socio-economic covariates 

Information regarding individuals’ education, employment status, and household 

income, were obtained from the self-reported NZHS. Each of these was included as covariates 

as used in previous research (Witten et al., 2012) in order to control for potential confounders. 

Similar to Witten et al., (2012), education was grouped into five categories, 1= no 

qualifications, 2= high school qualifications, 3= post-school qualifications, 4= undergraduate 

university degree, and 5= postgraduate university degree; employment was reduced to three 

categories, 1= employed, 2= unemployed, and 3= unemployed and not looking for work (for 

example, caregiver/student); household income was grouped into five categories, 1= less than 

NZ$40,000, 2= NZ$40,001-60,000, 3=NZ$60,001-70,000, 4= NZ$70,001-100,000 and 5= 

greater than NZ$100,000.  

7.2.3 Area level covariate 

Deprivation 

Measures of deprivation are regularly included in health research to account for 

confounding (Van Lenthe and Mackenbach, 2002; Witten et al, 2012; Pearson et al., 2014). 

The New Zealand Index of Deprivation (NZDep13; Atkinson et al., 2014) is an area level 

measure of deprivation. It is made up of nine variables from 2013 New Zealand Census and 

includes: access to the internet, equivalised household income, means tested benefits, 
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employment, single parent families, qualifications, home ownership, access to a car and 

household overcrowding (Atkinson et al., 2014), previously described in Chapter 5, section 

5.2.3). Similar to previous research in New Zealand, (Witten et al., 2012; Pearson et al., 2014) 

the NZDep13 was classified into quintiles and included as a potential confounding measure of 

area level deprivation.  

7.2.4 Built environment exposure measures  

The Basic Walk Indices (BWIs), Enhanced Walk Indices (EWIs), Bike Indices (BIs) 

and Neighbourhood Destination Accessibility Indices (NDAIs) based on methods 1, 2 and 3 

(described in Chapter 3, sections 3.7.1 and 3.7.2) will be analysed in this chapter to test for 

associations with physical activity behaviours and overweight or obesity health outcomes. The 

composite indices of the built environment created as part of this research, were sent to the 

Ministry of Health in order to be linked with individual level health data. The meshblock 

identifier was removed after joining the datasets to maintain confidentiality of the individuals’ 

health data. This is required in health-related research, in order to meet ethical standards.  

7.3 Statistical analyses 

Descriptive statistics were calculated for each of the health outcomes of interest and 

each of the built environment indices. The minimum, maximum, mean, median and standard 

deviations were then compared. The strength of associations between the indices of the built 

environment and health-related variables were examined using logistic regressions. Logistic 

regression models are commonly used when the outcome variable is dichotomous and the 

exposure variables are continuous or categorical data (Gattrell, 2002). Negative binomial 

logistic models using the generalised linear model (glm) function in R (R Development Core 

Team, 2014), with the response variable generated from the binomial exponential family of 

distribution, (UCLA, 2016), was used to estimate associations. Due to the restriction of using 

unidentifiable individual data from the NZHS, it was not possible to complete multilevel 

analyses of participants nested within neighbourhoods.  

A number of bivariate and multivariate negative binomial regression models were used 

to determine associations between the BWIs, EWIs, BIs and NDAIs, physical activity and 

overweight/obesity. For each index at each spatial level, (800m, 1600m and 2400m), four 

models were completed. Table 40 presents an overview of the models applied and the potential 

confounder variables additionally included in models 2, 3 and 4. 
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Table 40. Example table of multiple models applied to test for associations between outcome and exposure 

variables using binomial logistic regression models. 

 Model 1 a: 

Unadjusted 

bivariate 

models 

Model 2 b: 

Adjusted for 

demographics 

Model 3 b: 

Adjusted for socio-

economic 

Model 4 b: 

Adjusted for area 

deprivation 

Outcome 

variables a 

Exposure 

variables 

Exposure variables Exposure variables 

 

Exposure variables 

 

Physical 

activity 

- BWIs 

(methods 

 1, 2 & 3) 

- EWIs  

- BIs 

- NDAIs  

(methods  

2 & 3) 

BWIs (methods 

 1, 2 & 3) 

 

- EWIs  

- BIs 

- NDAIs  (methods  

2 & 3) 

BWIs (methods 

 1, 2 & 3) 

 

- EWIs  

- BIs 

- NDAIs  (methods  

2 & 3) 

BWIs (methods 

 1, 2 & 3) 

 

- EWIs  

- BIs 

- NDAIs  (methods  

2 & 3) 

   Age: 
- 15-29 

- 30-44 

- 45-54 

 

- 55-64 

- ≥65 

Age: 
- 15-29 

- 30-44 

- 45-54 

 

- 55-64 

- ≥65 

Age: 
- 15-29 

- 30-44 

- 45-54 

 

- 55-64 

- ≥65 

  Ethnicity: 

- Māori 

- Pacific 

- Asian 

- European/Other 

Ethnicity: 

- Māori 

- Pacific 

- Asian 

- European/Other 

Ethnicity: 

- Māori 

- Pacific 

- Asian 

- European/Other 

  Sex:  

- Female 

- Male 

Sex:  

- Female 

- Male 

Sex:  

- Female 

- Male 

   Education: 

- No qualifications 

- High-school    

  qualifications 

- Post-school   

diploma/certificate 

- Undergraduate   

 degree 

- Postgraduate  

 degree 

Education: 

- No qualifications 

- High-school    

  qualifications 

- Post-school   

diploma/certificate 

- Undergraduate   

 degree 

- Postgraduate  

 degree 

   Employment: 

- Employed 

- Unemployed 

- Unemployed, not 

looking for work  

Employment: 

- Employed 

- Unemployed 

- Unemployed, not 

looking for work 

   Household income:  
- ≤NZ$40,000 

- NZ$40-60K 

- NZ$60-70K 

- NZ$70-100K 

- > NZ$100K 

Household income:  
- ≤NZ$40,000 

- NZ$40-60K 

- NZ$60-70K 

- NZ$70-100K 

- > NZ$100K 

    NZ Deprivation: 

-Quintile 1 

-Quintile 2 

-Quintile 3 

-Quintile 4 

-Quintile 5 
a The second outcome variable, overweight/obesity was also tested for associations with the Basic Walk 

Indices (BWIs), Enhanced Walk Indices (EWIs), Bike Indices (BIs) and Neighbourhood Destination 

Accessibility Indices (NDAIs) based on methods 2 and 3 at 800m, 1600m and 2400m spatial scales.  
b Overweight/obesity was additionally controlled for potential confounders in models 2, 3 and 4. 
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As recommended by leading researchers in the field of environmental determinants 

(Leal & Chaix, 2011), a directed acyclic graph was used (Figure 60) to illustrate the 

hypothetical relationships and potential individual and neighbourhood confounders. Figure 60 

is an example of the fully adjusted model for walkability and physical activity. The same model 

was repeated for the EWI, BI and NDAI built environment measures and models with the same 

confounders were used for overweight/obesity.  

 

Figure 60. An example of a directed acyclic graph for a fully adjusted model (4), showing the theoretical 

relationships between exposure, outcome and potential confounder variables. 

The results of logistic regression models are regularly interpreted by exponentiating the 

regression coefficients, placing the coefficients in an odds ratio (OR) scale. ORs with 95% 

confidence intervals (CIs) and bolded values in the tables indicate a statistically significant 

relationship based on p-values. In the physical activity regression models, values greater than 

one indicate a greater likelihood of meeting physical activity guidelines of 30 minutes on 5 or 

more days in a week. For example, an OR of 1.12 can be interpreted as: a unit increase in the 

walk (bike or neighbourhood destination) index is associated with an estimated 12% increase 

in the odds of meeting physical activity guidelines. In the overweight/obesity regression 

models, the hypothesised and expected relationships are: values less than one indicate 

decreased likelihood of being overweight or obese. For example, an OR of 0.75 can be 

understood as: a unit increase in the walk (bike or neighbourhood destination) index is 

associated with an estimated 25% decrease in the odds of being overweight/obese. Finally, all 

4 
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analyses were completed in R (R Development Core Team, 2014), a free software environment 

for statistical computing and graphics. 

7.4 Results  

7.4.1 Descriptive characteristics  

The socio-demographic characteristics of the Wellington sample from the NZHS are 

presented (Table 41). The sample was composed of 57.1% females and 42.9% males. The 

highest ethnic group was European/Other, 71.5% followed by Asian (14%), Māori (10.5%) 

and Pacific (4%). The sample had a mix of qualifications, with the highest percentage (25.3%) 

obtaining an undergraduate university qualification. The lowest percentage age group was 

between the ages of 55 and 64, (12.5%), with the highest percentage age group between the 

ages 30 and 44, (31.9%). The highest percentage personal income was less than or equal to 

NZ$40,000 (32.9%), similar to the 2013 median personal income for Wellington city aged 15 

or older, NZ$37,900 (Statistics New Zealand, 2015c). 66.8% of the sample were employed, 

while only 4.5% were unemployed and looking for work. The percentage of people living in 

the least deprived areas was much higher than the percentage of people living in the most 

deprived areas in this sample (28.5% vs. 7.2%). 
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Table 41. Socio-demographic characteristics of NZHS sample participants in Wellington City, including 

NZ deprivation index 2013 categories. 

Variable n (%) 

Total n= 2097  

Age (years)   

15-29 471(22.5) 

30-44 669(31.9) 

45-54 384(18.3) 

55-64 262(12.5) 

>65 311(14.8) 

Ethnicity   

Māori 220(10.5) 

Pacific 83(4.0) 

Asian 294(14.0) 

European/Other 1500(71.5) 

Sex   

Female 1198(57.1) 

Male 899(42.9) 

Qualification   

No high school qualification 495(23.7) 

High school qualification 208(9.9) 

Post-high school diploma or trade certificate 396(18.9) 

University degree (Undergraduate) 531(25.3) 

University degree (Postgraduate) 305(14.5) 

Don't know/Refused/Other 162(7.7) 

Personal Income (NZ$)   

Zero Income 110(5.2) 

≤40,000 690(32.9) 

40,001-60,000 343(16.4) 

60,001-70,000 139(6.6) 

70,001-100,000 221(10.5) 

>100,000 213(10.2) 

Don't know/Refused 381(18.2) 

Household Income (NZ$)   

Zero Income 7(0.3) 

≤40,000 341 (16.3) 

40,001-60,000 194 (9.2) 

60,001-70,000 102 (4.9) 

70,001-100,000 263(12.5) 

>100,000 593(28.3) 

Don't know/Refused 599 (28.5) 

Employment   

Employed 1402(66.8) 

Unemployed, looking for work 94(4.5) 

Unemployed, not looking for work 

(retired/caregiver/student etc.) 
549(26.2) 

Don't know/Other 52(2.5) 

New Zealand Deprivation Index 2013   

Q1 (Less deprived) 520(24.8) 

Q2 597(28.5) 

Q3 474(22.6) 

Q4 355(16.9) 

Q5 (Most deprived) 151(7.2) 
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7.4.2 Descriptive characteristics of health-related variables by population socio-demographic 

elements 

Over half of the study population was physically active on 5 or more days in the 

previous week (51.5%), and 55.4% were in the overweight/obese category (Table 42). Physical 

activity declined with increasing age, with the youngest age group being most active (54.1 %), 

while only 40.2% of the over 65 age group met the recommended daily activity guidelines. The 

youngest age group also had the lowest percentage of overweight/obesity levels (37.6%), which 

were over 20% higher for all other age groups. Males were more physically active than females 

(55.2% vs. 48.7%), but also had a higher percentage of overweight/obesity (62.2% in 

comparison to 50.3%). The Māori ethnic group had the highest percentage of individuals meet 

the physical activity guidelines (61.8%) in comparison to all other ethnicities, but also had a 

higher percentage of overweight and obese individuals (65.9%)  than both Asian (46.6 %) and 

European/Other (54.5%) groups, but not for the Pacific ethnic group where overweight and 

obesity was higher (73.5%). There was little difference between the percentages of physically 

active and overweight/obese individuals who had few or many qualifications, one exception 

being those with a post high school diploma or trade certificate were less physically active 

(46.5%), with higher percentages of overweight/obesity (61.9%) than the rest of the study 

sample.   

Interestingly, individuals with the highest household income had the highest percentage 

of overweight/obesity (60.4%) in comparison to all other income bands including the zero 

group with only 7 participants, where 28.6 % were overweight/obese. Those earning between 

NZ$40-60K were the most physically active (58.2%) and were also less overweight/obese in 

comparison to all other earners in the study population (56.7%). Over half of those employed 

were physically active (53.7%) but were also overweight/obese (58%). Individuals living in 

the least deprived areas were less physically active (43.5%) than those living in all other areas. 

Even though the percentages of individuals overweight or obese were over 50% across all 

deprivation quintiles, individuals living in  quintile 4 and quintile 5 (the most deprived) were 

comparatively the most overweight/obese (59.4% and 57.6%, respectively). Whether or not 

individuals met the guidelines of 30 minutes of physical activity on 5 or more days did not have 

much influence on whether they were overweight/obese with only a 0.5% of a difference 

between the two groups (Table 42). Just over half of individuals (54.7%) with a BMI of less 
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than 25 (normal weight) were physically active and similarly those with a BMI greater or equal 

to 25 (overweight/obese) only 51.3% were physically active (Table 42). 

Table 42. Socio-demographic characteristics of NZHS study sample by health-related variables. 

Variable 

n  

Physically Active 

%, (n missing) 

Overweight/Obese 

%, (n missing) 

Total population 2097 51.5 (9) 55.4 (175) 

Age       

15-29 471 54.1 (5) 37.6 (31) 

30-44 669 53.7 (1) 59.2 (60) 

45-54 384 53.9 (2) 62.2 (24) 

55-64 262 50.8 (0) 62.6 (22) 

≥65 311 40.2 (0) 59.5 (38) 

Sex       

Female 1198 48.7 (4) 50.3 (132) 

Male 899 55.2 (4) 62.2 (43) 

Ethnicity       

Māori 220 61.8 (1) 65.9 (14) 

Pacific 83 55.4 (0) 73.5 (12) 

Asian 294 43.9 (4) 46.6 (25) 

European/Other 1500 51.2 (3) 54.5(124) 

Qualification       

No high school qualification 495 50.7 (3) 53.5 (54)  

High school qualification 208 51.4 (1) 56.3 (12) 

Post-high school diploma or trade certificate 396 46.5 (0) 61.9 (31) 

University degree (Undergraduate) 531 56.3 (4) 53.7 (37) 

University degree (Postgraduate) 305 54.1 (0) 54.1 (21) 

Don't know/Refused/Other 162 - - 

Household Income (NZ$)       

Zero 7 28.6 (0) 28.6 (2) 

≤40,000 341 47.8 (1) 58.7(23) 

40,001-60,000 194 58.2(0) 56.7 (12) 

60,001-70,000 102 46.1 (0) 56.9 (5) 

70,001-100,000 263 52.9 (0) 58.2 (21) 

>100,000 593 55.8 (0) 60.4 (39) 

Don't know/Refused 599 - - 

Employment       

Employed 1402 53.7 (5) 58.0 (107) 

Unemployed, looking for work 94 46.8 (1) 57.4 (7) 

Unemployed, not looking for work 

(retired/caregiver/student etc.) 
549 46.1 (2) 49.5 (60) 

Don't know/Other 52 - - 

New Zealand Deprivation Index 2013       

Q1 (Least deprived) 520 43.5 (1) 56.2 (46) 

Q2 597 51.1 (5) 52.3 (59) 

Q3 474 60.3 (1) 54.6 (32) 

Q4 355 50.4 (0) 59.4 (22) 

Q5 (Most deprived) 151 55.0 (1) 57.6 (16) 
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Table 42. Continued, percentage of physically active and overweight/obese individuals in the NZHS 

sample. 

Variable 

n  

Physically Active 

%, (n missing) 

Overweight/Obese 

%, (n missing) 

Physically Active       

5 or more days of 30 minutes PA  

over a week 1079 100 (8) 55.2 (67) 

Less than 5 days of 30 minutes of PA  

over a week 1010 0 (8) 55.7 (106) 

Overweight/ Obese       

BMI<25 (Normal weight) 761 54.7(4) 0 (175) 

BMI ≥25 (Overweight/Obese) 1161 51.3 (2) 100 (175) 

 

7.4.3 Associations between walkability and physical activity  

This section investigates associations between indices of walkability and physical 

activity using specific research questions to guide the analyses: 

A) Do the odds of meeting the recommended physical activity guidelines increase as 

walkability of the built environment increases? 

B) How do results vary depending on 1) buffer delineation and 2) spatial scale, after 

controlling for potential confounders? 

Results for Model 1 

 Results of the binomial generalised logistic regression analyses are presented through 

ORs and confidence intervals (Table 43). Overall, both the Basic Walk Indices (BWIs) and 

Enhanced Walk Indices (EWIs), (model 1, the bivariate analysis) across each of the methods 

for each spatial level had at least one- if not three- statistically significant relationships with 

physical activity behaviours. Specifically, the BWI method 1 (standard method, network 

buffer) and BWI method 3 (novel method, network buffer) were consistently statistically 

significant across all three spatial levels (800m, 1600m and 2400m). The significance level and 

ORs were higher for BWI method 3 in comparison to BWI method 1. This result indicates that 

an increase of one unit in the walkability of the built environment (based on BWI method 3) 

was related to an increased likelihood of meeting the physical activity guidelines by 16% 

(p<0.001). In comparison, the standard method of walkability (BWI method 1), reported a one 

unit increase in walkability was related to a 7% increase in the likelihood of meeting physical 

activity guidelines. In contrast to the BWIs, each of the EWIs were significantly related to 

physical activity for two out of the three spatial levels (800m and 1600m). ORs were slightly 

higher in comparison to the BWI methods. For example, a one unit increase in walkability 
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based on the EWI method 3, (800m network defined neighbourhood) was associated with a 

12% increased odds of meeting physical activity guidelines. These findings indicate that both 

the BWI and EWI, based on method 3, at the 800m spatial level are strong predictors of 

physical activity. 

Examining the performance of the indices at the 1600m spatial level, all indices were 

statistically significant with p-values ranging in significance from p<0.05 to p<0.001, 

potentially indicating that 1600m is a useful distance, regardless the method or buffer type, for 

measuring associations between the walkability and physical activity. The results for method 

2 (Euclidean buffer around PWCs) were significant at 1600m for BWI, and significant at 800m 

and 1600m for EWI. ORs were relatively similar to those for the BWI based on method 1 and 

comparatively lower than the other indices. 

Results for Model 2 

Results for model 2 (where all indices were adjusted for age, sex and ethnicity) were 

varied; however trends began to emerge for certain indices. The BWI based on method 1 only 

remained significant at 2400m spatial level and the odds ratio decreased by 2% after adjusting 

for covariates. Results for the semi-adjusted BWI based on method 2 reached significance at 

the 800m level, but failed to attain significance at 1600m and 2400m; whereas no significant 

association was found for EWI method 2 after adjusting for individual demographic covariates. 

The BWI based on method 3 retained significance at 800m and 1600m but not at the 2400m 

level. Similar to results from the unadjusted model, both the BWI and EWI, based on method 

3, had the highest odds ratios at the 800m level. For example, after adjusting for age, sex and 

ethnicity, both the BWI and EWI (method 3) were associated with an increased likelihood of 

meeting physical activity guidelines (13% and 10% respectively). 

Results for Model 3 

The results for model 3, (where models were also adjusted for education, employment 

and household income), were relatively similar to model 2, with a few exceptions. The odds 

ratios for the BWI based on method 2, improved for the 800m level and reached significance 

at 1600m spatial level. Also, the results of the EWI based on method 2, did not reach 

significance at any level for model 2 but did become significant after additionally adjusting for 

education, employment and household income (model 3) at the 800m level.  
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Results for Model 4 

Finally, there were no statistically significant associations evident in the fully adjusted 

model 4, after adding a measure for area deprivation. However, even though the indices did 

not reach statistical significance the trend across each of the indices at all spatial levels was in 

the expected direction, (i.e. greater than 1). This results suggests neighbourhood deprivation 

could be a potential mediator in the relationship between the built environment and physical 

activity behaviours.
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Table 43. Unadjusted and covariate adjusted associations between the Basic Walk Indices and the Enhanced Walk Indices and physical activity behaviours (odds 

ratios, 95% confidence intervals and p-values reported). 

Physical Activity 

Variables  Model 1 Model 2  Model 3 Model 4 

 

 

OR CI (95%) P-value   OR CI (95%) P-value   OR CI (95%) P-value   OR CI (95%) P-value 

BWI Method 1      

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

             

800m 1.06 1.01-1.11 <0.05 1.04 0.99-1.09 0.08   1.05 0.99-1.10 0.07   1.01 0.96-1.07 0.70 

1600m 1.05 1.01-1.10 <0.05 1.04 0.99-1.09 0.11   1.04 0.99-1.09 0.09   1.01 0.95-1.06 0.83 

2400m 1.07 1.02-1.11 <0.01 1.05 1.00-1.10 <0.05   1.05 1.00-1.10 <0.05   1.03 0.98-1.08 0.31 

BWI Method 2                 

800m 1.09 1.03-1.16 1.16 1.07 1.01-1.14 <0.05   1.08 1.01-1.14 <0.05   1.05 0.98-1.12 0.19 

1600m 1.05 1.01-1.10 <0.05 1.04 0.99-1.09 0.05   1.04 1.00-1.09 <0.05   1.02 0.98-1.07 0.35 

2400m 1.03 0.99-1.06 0.19 1.02 0.98-1.06 0.34   1.02 0.98-1.06 0.30   1.00 0.96-1.04 0.98 

BWI Method 3                 

800m 1.16 1.07-1.26 <0.001 1.13 1.04-1.23 <0.01   1.13 1.04-1.24 <0.01   1.09 0.99-1.20 0.09 

1600m 1.10 1.03-1.17 <0.01 1.08 1.01-1.15 <0.05   1.09 1.02-1.16 <0.05   1.06 0.99-1.14 0.10 

2400m 1.06 1.00-1.11 <0.05 1.04 0.99-1.10 0.12   1.04 0.99-1.10 0.11   1.02 0.97-1.08 0.39 

                              

EWI Method 2                 

800m 1.09 1.02-1.17 <0.05 1.07 0.99-1.15 0.05   1.08 1.00-1.16 <0.05   1.04 0.96-1.12 0.35 

1600m 1.06 1.01-1.11 <0.05 1.05 0.99-1.10 0.08   1.05 0.99-1.10 0.07   1.02 0.97-1.08 0.39 

2400m 1.03 0.99-1.08 0.16 1.02 0.98-1.07 0.31   1.02 0.98-1.07 0.27   1.00 0.96-1.05 0.86 

EWI Method 3                 

800m 1.12 1.03-1.23 <0.05 1.10 1.00-1.20 <0.05   1.10 1.01-1.21 <0.05   1.04 0.93-1.16 0.52 

1600m 1.08 1.00-1.17 <0.05 1.07 0.99-1.15 0.10   1.07 0.99-1.16 0.08   1.03 0.95-1.12 0.46 

2400m 1.07 0.99-1.16 0.08 1.05 0.97-1.14 0.20  1.06 0.97-1.14 0.19  1.02 0.94-1.11 0.68 

Model 1, unadjusted bivariate regression; Model 2, adjusted for age, sex and ethnicity (individual level covariates); Model 3, additionally adjusted for education, 

employment, household income (individual level covariates); Model 4, additionally adjusted for NZ Deprivation (area level covariate). 
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7.4.4 Associations between walkability and overweight/obesity  

This section investigates associations between indices of walkability and 

overweight/obesity using specific research questions to guide the analyses: 

C) Do the odds of being overweight/obese decrease as walkability of the built 

environment increases? 

D) How do results vary depending on 1) buffer delineation and 2) spatial scale, after 

controlling for potential confounders? 

Results for Model 1 

Results of the negative binomial regression analyses are presented through ORs and 

confidence intervals and presented in Table 44. Overall, the results of the unadjusted model 1, 

reported significant associations between walkability and overweight/obesity, in the expected 

direction (i.e. less than 1.00), this was true for all indices, in at least one of the spatial levels 

(800m, 1600m or 2400m).  

 In comparison to all walk indices (BWI, EWI based on methods 2 and 3), the BWI 

based on method 1, (standard method) was only significant at 2400m (OR 0.94). Additionally, 

the BWI based on method 2 was the only BWI to attain significance across all three spatial 

levels (800m, 1600m and 2400m), and was significantly negatively associated with 

overweight/obesity. However, the effect sizes were smaller than the other methods. The BWI 

based on method 3 had higher ORs for both 1600m and 2400m, than the other BWI methods 

(OR0.90 and OR0.91, respectively). This suggests that for every unit increase in the walkability 

(BWI, method 3, 1600m) of the built environment, the likelihood of being overweight or obese 

was associated with a decrease of 10% (p<0.01).  

In comparison to the BWIs, each of the EWIs (methods 2 and 3) achieved statistically 

significant lower ORs for the 1600m and 2400m spatial levels. Method 3, again, had similar 

ORs for the EWIs, where a unit increase in the walkability of the built environment was 

associated with a 12% decreased odds of being overweight or obese. 

Results for Models 2 and 3 

After adjusting for socio-demographic covariates in models 2 and 3, all indices, except 

the BWI and EWI, based on method 3, failed to reach significant associations. However, all 

other indices at all spatial levels continued to show the trend that as walkability increased the 

likelihood of being overweight/ obese decreased. In the cases of the BWI and EWI based on 
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method 3, both indices retained significance at p<0.05 and the ORs marginally worsened from 

model 1 (OR 0.92, 1600m and OR 0.93, 2400m).  

Results for Model 4 

Finally, after adjusting for area deprivation, all indices with significant results for model 

1 were significant again for model 4. Importantly, in comparison to all other indices, both the 

BWI and the EWI based on method 3 remained consistently significant at 1600m and 2400m 

after adjusting for each group of covariates (models 1-4). Furthermore, the ORs continued to 

improve across each of the models with the fully adjusted models having the lowest values. 

Comparing between the BWIs and EWIs, the EWIs overall, performed better. The EWI based 

on method 3 achieved an OR of 0.87, (p<0.01) at 1600m and an OR of 0.88, (p<0.01) at 2400m. 
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Table 44. Unadjusted and covariate adjusted associations between the Basic Walk Indices and the Enhanced Walk Indices and overweight/obesity (BMI≥25, odds 

ratios, 95% confidence intervals and p-values reported). 

Overweight/Obese (BMI ≥25) 

Variables Model 1  Model 2  Model 3  Model 4 

 OR CI (95%) P-value   OR CI (95%) P-value   OR CI (95%) P-value   OR CI (95%) P-value 

BWI Method 1                   

800m 0.97 0.93-1.02 0.31   0.99 0.94-1.04 0.73   0.99 0.94-1.05 0.85   0.96 0.91-1.02 0.22 

1600m 0.97 0.92-1.02 0.18   0.98 0.93-1.03 0.41   0.98 0.93-1.03 0.49   0.95 0.89-1.00 0.07 

2400m 0.94 0.90-0.99 <0.05   0.96 0.91-1.00 0.07   0.96 0.91-1.01 0.08   0.93 0.88-0.98 <0.01 

BWI Method 2                   

800m 0.94 0.88-0.99 <0.05   0.96 0.89-1.02 0.18   0.97 0.91-1.03 0.33   0.93 0.86-1.00 0.06 

1600m 0.95 0.91-0.99 <0.05   0.96 0.92-1.01 0.12   0.97 0.92-1.01 0.17   0.94 0.90-0.99 <0.05 

2400m 0.95 0.92-0.99 <0.05   0.97 0.93-1.01 0.12   0.97 0.93-1.01 0.20   0.95 0.91-0.99 <0.05 

BWI Method 3                   

800m 0.92 0.84-1.00 0.06   0.95 0.87-1.04 0.29   0.97 0.88-1.06 0.45   0.90 0.81-1.01 0.07 

1600m 0.90 0.83-0.96 <0.01   0.92 0.85-0.98 <0.05   0.93 0.86-0.99 <0.05   0.90 0.83-0.97 <0.01 

2400m 0.91 0.86-0.97 <0.01   0.93 0.88-0.99 <0.05   0.94 0.88-0.99 <0.05   0.92 0.86-0.98 <0.01 

                                

EWI Method 2                   

800m 0.94 0.87-1.01 0.09   0.96 0.89-1.03 0.26   0.97 0.90-1.05 0.42   0.93 0.85-1.01 0.09 

1600m 0.93 0.89-0.99 <0.05   0.95 0.90-1.00 0.05   0.95 0.90-1.01 0.09   0.93 0.87-0.98 <0.05 

2400m 0.94 0.90-0.99 <0.05   0.96 0.91-1.00 0.08   0.96 0.92-1.01 0.14   0.95 0.90-0.99 <0.05 

EWI Method 3                   

800m 0.91 0.83-1.00 0.06   0.94 0.85-1.04 0.24   0.96 0.86-1.06 0.37   0.88 0.77-0.99 <0.05 

1600m 0.88 0.81-0.96 <0.01   0.90 0.83-0.99 <0.05   0.91 0.84-0.99 <0.05   0.87 0.78-0.96 <0.01 

2400m 0.88 0.81-0.96 <0.05   0.91 0.83-0.99 <0.05   0.91 0.83-0.99 <0.05   0.88 0.80-0.96 <0.01 

Model 1, unadjusted bivariate regression; Model 2, adjusted for age, sex and ethnicity (individual level covariates); Model 3, additionally adjusted for education, 

employment, household income (individual level covariates); Model 4, additionally adjusted for NZ Deprivation (area level covariate). 
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7.4.5 Associations between bikeability and physical activity  

This section investigates associations between indices of bikeability and physical 

activity using specific research questions to guide the analyses: 

E) Do the odds of meeting the recommended physical activity guidelines increase as 

bikeability of the built environment increases? 

F) How do results vary depending on 1) buffer delineation and 2) spatial scale, after 

controlling for potential confounders? 

Results for Model 1 

Results based on ORs and confidence intervals and presented in Table 45. Results of 

the bivariate analyses for both methods (Bike Index, based on methods 2 and 3) were similar 

for 800m and 1600m, ORs were close to 1.00 but did have a statistically significant association. 

The BI based on method 3 was the only method to have a significant association with physical 

activity behaviours for the three spatial levels (800m, 1600m and 2400m), however the small 

effect sizes were relatively small. 

Results for Models 2 and 3 

After adjusting for sex, ethnicity and age in model 2, BI method 2 failed to reach 

significance across any of the spatial levels. The BI based on method 3, however, remained 

significant for 800m and 1600m, again the ORs were low, as bikeability increased, the 

likelihood of meeting physical activity guidelines increased by 2% at 1600m scale. The results 

for model 3, were largely unchanged after also adjusting for education, employment status and 

household income, indicating that these covariates do not have a significant influence on the 

overall relationship between bikeability and physical activity. 

Results for Model 4 

 In the fully adjusted model, 4, there were no significant associations found between 

physical activity and the indices for bikeability across any spatial level. The attenuation of a 

relationship for all methods, especially method 3, indicate that neighbourhood deprivation has 

a strong influence on physical activity behaviours. 
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Table 45. Unadjusted and covariate adjusted associations between Bike Indices and physical activity behaviours (odds ratios, 95% confidence intervals and p-

values reported). 

Physical activity 

Variables Model 1   Model 2   Model 3   Model 4 

 OR CI (95%) P-value   OR CI (95%) P-value   OR CI (95%) P-value   OR CI (95%) P-value 

Bike Index Method 2                   

800m 1.00 1.00-1.01 <0.05   1.01 1.00-1.03 0.14   1.01 0.99-1.03 0.14   1.00 0.98-1.02 0.71 

1600m 1.00 1.00-1.01 <0.05   1.01 0.99-1.03 0.13   1.01 0.99-1.03 0.14   1.01 0.99-1.03 0.57 

2400m 1.00 0.99-1.00 0.68   1.00 0.98-1.01 0.87   0.99 0.98-1.01 0.83   0.99 0.98-1.01 0.34 

Bike Index Method 3                   

800m 1.00 1.00-1.01 <0.05   1.01 1.00-1.03 <0.05   1.02 1.00-1.03 <0.05   1.01 0.99-1.03 0.28 

1600m 1.01 1.00-1.01 <0.01   1.02 1.00-1.04 <0.05   1.02 1.00-1.04 <0.05   1.02 0.99-1.04 0.11 

2400m 1.01 1.00-1.01 <0.05   1.02 0.99-1.04 0.05   1.02 0.99-1.04 0.06   1.01 0.98-1.04 0.45 

Model 1, unadjusted bivariate regression 

Model 2, adjusted for age, sex and ethnicity (individual level covariates) 

Model 3, additionally adjusted for education, employment, household income (individual level covariates) 

Model 4, additionally adjusted for NZ Deprivation (area level covariate).
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7.4.6 Associations between bikeability and overweight/obesity  

This section investigates associations between indices of bikeability and 

overweight/obesity health outcomes using specific research questions to guide the analyses: 

G) Do the odds of being overweight/obese decrease as bikeability of the built 

environment increases? 

H) How do results vary depending on 1) buffer delineation and 2) spatial scale, after 

controlling for potential confounders? 

Results of the negative binomial regression analyses are presented through ORs and confidence 

intervals and presented in Table 46. Associations trend in the expected direction, (i.e. less than 

1.00).  

Results for Model 1 

 In the unadjusted bivariate analysis (model 1), the BI based on method 2 for 1600m and 

2400m had the same ORs (0.98) and significance level (p<0.05). The BI based on method 3 

found for every unit increase in bikeability at the 2400m spatial level, there was a 3% decrease 

in the likelihood of being overweight or obese (p<0.05).     

Results for Models 2 and 3 

 However, in models 2 and 3 after adjusting for covariates, no association was found 

across each of the methods and spatial levels. The general trend of odds ratios being less than 

1.00 remained. The attenuation of association after adding socio-demographic variables 

indicates the presence of confounding.    

Results for Model 4 

 The results across all indices and spatial levels after adjusting for neighbourhood 

deprivation were extraordinarily improved, with significance of p<0.01 reached for all methods 

except in method 3 at 2400m achieving p<0.001. This meant that as the bikeability of the 

neighbourhood at 2400m increased, the likelihood of being overweight or obese decreased by 

5 %.
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Table 46. Unadjusted and covariate adjusted associations between Bike Indices and overweight/obesity (BMI ≥25, odds ratios, 95% confidence intervals and p-

values reported).  

Overweight/Obese (BMI ≥25) 

Variables Model 1   Model 2   Model 3   Model 4 

 OR CI (95%) P-value   OR CI (95%) P-value   OR CI (95%) P-value   OR CI (95%) P-value 

Bike Index Method 2                   

800m 0.98 0.97-1.00 0.06   0.99 0.98-1.01 0.41   0.99 0.98-1.01 0.41   0.97 0.95-0.99 <0.01 

1600m 0.98 0.96-0.99 <0.05   0.99 0.97-1.01 0.16   0.99 0.97-1.00 0.14   0.97 0.95-0.99 <0.01 

2400m 0.98 0.97-0.99 <0.05   0.99 0.97-1.00 0.10   0.99 0.97-1.00 0.08   0.97 0.96-0.99 <0.01 

Bike Index Method 3                   

800m 0.99 0.97-1.00 0.09   0.99 0.98-1.01 0.47   0.99 0.98-1.01 0.50   0.97 0.96-0.99 <0.01 

1600m 0.98 0.96-0.99 <0.05   0.99 0.97-1.01 0.35   0.99 0.97-1.01 0.35   0.97 0.95-0.99 <0.01 

2400m 0.97 0.95-0.99 <0.05   0.98 0.96-1.01 0.16   0.98 0.96-1.01 0.14   0.95 0.93-0.98 <0.001 

Model 1, unadjusted bivariate regression 

Model 2, adjusted for age, sex and ethnicity (individual level covariates) 

Model 3, additionally adjusted for education, employment, household income (individual level covariates) 

Model 4, additionally adjusted for NZ Deprivation (area level covariate).
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7.4.7 Associations between neighbourhood destination accessibility and physical activity  

This section investigates associations between indices of neighbourhood destination 

accessibility and physical activity using specific research questions to guide the analyses: 

I) Do the odds of meeting the recommended physical activity guidelines increase as 

neighbourhood destination accessibility of the built environment increases? 

J) How do results vary depending on 1) buffer delineation and 2) spatial scale, after 

controlling for potential confounders? 

Results for Model 1 

Similar to previous sections, results of the negative binomial regression are presented 

through ORs and confidence intervals and shown in Table 47. Accessibility to neighbourhood 

destinations was significantly associated with physical activity in all methods and spatial levels. 

However, effect sizes, reported in ORs, were small (~1-2%). 

Results for Models 2 and 3 

 After adjusting for socio-demographic covariates, the NDAI based on method 2 were 

significantly associated with physical activity at both 800m and 1600m. The relationship 

between the NDAI based on method 3 and physical activity behaviours was significant across 

all three spatial levels, 800m, 1600m and 2400m. Again, the effect sizes were small, (~1-2%). 

 Results for Model 4 

 In the fully adjusted model, the NDAI based on method 2 remained significant for 800m 

and 1600m spatial levels only. Even though statistical significance was found between both 

methods 2 and 3 and physical activity, the effect sizes were small, (OR 1.01, CI, 1.00-1.02).  
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Table 47. Unadjusted and covariate adjusted associations between Neighbourhood Destination Accessibility Indices and physical activity behaviours (odds ratios, 

95% confidence intervals and p-values reported).  

Physical activity 

Variables Model 1   Model 2   Model 3   Model 4 

 OR CI (95%) P-value   OR CI (95%) P-value   OR CI (95%) P-value   OR CI (95%) P-value 

NDAI Method 2                   

800m 1.01 1.01-1.02 <0.001   1.01 1.00-1.02 <0.01   1.01 1.00-1.02 <0.01   1.01 1.00-1.02 <0.05 

1600m 1.01 1.01-1.02 <0.001   1.01 1.01-1.02 <0.001   1.01 1.01-1.02 <0.001   1.01 1.00-1.02 <0.01 

2400m 1.01 0.99-1.01 0.09   1.00 1.00-1.01 0.27   1.00 0.99-1.01 0.29   1.00 0.99-1.01 0.65 

NDAI Method 3                   

800m 1.01 1.00-1.02 <0.01   1.01 1.00-1.02 <0.01   1.01 1.00-1.02 <0.01   1.01 0.99-1.01 0.07 

1600m 1.02 1.01-1.02 <0.001   1.01 1.01-1.02 <0.01   1.01 1.01-1.02 <0.01   1.01 1.00-1.02 <0.05 

2400m 1.02 1.01-1.03 <0.001   1.02 1.01-1.03 <0.001   1.02 1.01-1.03 <0.001   1.01 1.00-1.02 <0.05 

Model 1, unadjusted bivariate regression 

Model 2, adjusted for age, sex and ethnicity (individual level covariates) 

Model 3, additionally adjusted for education, employment, household income (individual level covariates) 

Model 4, additionally adjusted for NZ Deprivation (area level covariates).
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7.4.8 Associations between neighbourhood destination accessibility and overweight/obesity  

This section investigates associations between indices of neighbourhood destination 

accessibility and overweight/obesity using specific research questions to guide the analyses: 

A) Do the odds of being overweight/obese decrease as neighbourhood destination 

accessibility of the built environment increases? 

B) How do results vary depending on 1) buffer delineation and 2) spatial scale, after 

controlling for potential confounders? 

Results for Model 1 

The results of the negative binomial regression analyses are presented through ORs and 

confidence intervals and shown in Table 48. In general, significant associations were found 

between the exposures of interest (the NDAIs) and overweight/obesity for all methods and 

spatial scales. Even though significance was evident for both methods 2 and 3, the effect sizes 

were small, (OR 0.98 and OR 0.99).  

Results for Models 2 and 3 

 After adjusting for socio-demographic covariates in model 2 and 3, NDAIs based on 

methods 2 and 3 remained significantly associated with a decreased odds of being overweight 

or obese at 2400m spatial level only. The addition of covariates reduced the significance of 

results, however there was still a consistent trend with all ORs below 1.00.  

Results for Model 4 

 In the final set of analyses, after adjusting for neighbourhood deprivation, associations 

between the NDAIs based on methods 2 and 3, remained at the 2400m level but also reached 

statistical significance at p<0.01 for the 800m and 1600m spatial levels. These results suggest 

that neighbourhood deprivation is significant confounder and has potentially a strong mediating 

effect on the relationship between the neighbourhood destination accessibility and 

overweight/obesity.     
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Table 48. Unadjusted and covariate adjusted associations between Neighbourhood Destination Accessibility Indices and overweight/obesity (BMI ≥25, odds ratios, 

95% confidence intervals and p-values reported).  

 

Overweight/Obese (BMI ≥25) 

Variables Model 1   Model 2   Model 3   Model 4 

 OR CI (95%) P-value   OR CI (95%) P-value   OR CI (95%) P-value   OR CI (95%) P-value 

NDAI Method 2                   

800m 0.99 0.98-0.99 <0.05   0.99 0.99-1.00 0.23   0.99 0.99-1.00 0.25   0.99 0.98-0.99 <0.01 

1600m 0.99 0.98-0.99 <0.05   0.99 0.99-1.00 0.09   0.99 0.99-1.00 0.09   0.99 0.98-0.99 <0.01 

2400m 0.99 0.98-0.99 <0.001   0.99 0.98-0.99 <0.01   0.99 0.98-0.99 <0.01   0.98 0.98-0.99 <0.001 

NDAI Method 3                   

800m 0.99 0.98-0.99 <0.01   0.99 0.99-1.00 0.12   0.99 0.99-1.00 0.13   0.99 0.98-0.99 <0.01 

1600m 0.99 0.98-0.99 <0.01   0.99 0.98-1.00 0.20   0.99 0.98-1.00 0.22   0.98 0.97-0.99 <0.01 

2400m 0.98 0.97-0.99 <0.001   0.99 0.98-1.00 <0.05   0.99 0.98-1.00 <0.05   0.98 0.96-0.99 <0.001 

Model 1, unadjusted bivariate regression 

Model 2, adjusted for age, sex and ethnicity (individual level covariates) 

Model 3, additionally adjusted for education, employment, household income (individual level covariates) 

Model 4, additionally adjusted for NZ Deprivation (area level covariates). 
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7.5 Summary of findings  

Walk Indices 

 The walkability of the built environment was associated with an increased likelihood 

of physical activity for the BWIs based on methods 1 and 3 across all spatial scales and 1600m 

only for the BWI based on method 2. Small but statistically significant bivariate associations 

were found for most of the BWI and EWI based methods. When comparing the results of the 

novel methods (2 and 3) against the standard method (BWI method 1), BWI (method 3) was 

significantly positively associated with physical activity across all spatial levels and had higher 

ORs and significance levels than the standard BWI based on method 1. Furthermore, both 

methods 1 and 3 are based on network buffers, making their results comparable. Significant 

associations were also found for two out of the three (800m and 1600m) spatial scales for each 

of the EWIs. In general, the strength of effect was similar to the BWIs. The 1600m spatial level 

emerged as the only scale, regardless of method and buffer choice, to show a consistent pattern 

of association between walkability and physical activity behaviours.  

On the whole, independent of demographic and socio-economic covariates, the BWI 

based methods, for at least one scale, retained higher ORs of associations with physical activity, 

than the EWIs, (methods 2 and 3). In the fully adjusted model, all indices failed to reach 

statistical significance. The addition of neighbourhood deprivation attenuated the strength of 

association, indicating a strong negative confounding with physical activity.  

The likelihood of being overweight or obese was significantly lower in walkable 

neighbourhoods, this was true for all methods and at least one spatial scale (2400m) in the 

unadjusted analyses. The network based buffer, (method 3), for both the BWI and EWI, were 

the only indices to remain statistically significant after adjusting for all socio-demographic 

covariates. Furthermore, after adjusting for neighbourhood deprivation the odds ORs 

improved, with EWI based on method 3 reporting a 13% decreased likelihood of individuals 

being overweight or obese in walkable neighbourhoods at the 1600m scale. This finding lends 

further evidence that 1600m is an appropriate scale for investigating relationships between 

walkability and overweight/obese.  
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Bike Indices 

 Bikeability was significantly associated with meeting physical activity guidelines in the 

unadjusted bivariate model for the BI based on method 2 (800m, 1600m) and BI based on 

method 3 (800m, 1600m and 2400m). Significant positive associations remained for method 3 

(network buffer) after adjusting for both demographic and socio-economic covariates. Effect 

sizes were small, where a unit increase in the bikeability of the built environment was 

associated with a 1-2% increased odds of meeting physical activity guidelines. Similar to the 

walkability indices, no significant relationship existed after adjusting for neighbourhood 

deprivation, indicating a strong confounding relationship with physical activity. 

The bikeability of the built environment was significantly positively associated with 

reduced odds of being overweight or obese. This was true for each method at 1600m and 2400m 

scales in the unadjusted model. No significant relationship was found between bikeability and 

overweight/obesity after adjusting for potential demographic and socio-economic confounders.  

However, after including neighbourhood deprivation in the fully adjusted model, all methods, 

across all spatial scales were significantly associated with overweight/ obesity health outcomes. 

This result suggests neighbourhood deprivation potentially influences the relationship between 

bikeability of the built environment and overweight/obesity. The BI based on method 3, 

(network buffer) at 2400m, reported the lowest ORs in comparison to all other methods and 

scales. The likelihood of being overweight or obese was 5% lower in more bikeable 

neighbourhoods, based on the method 3 definition.     

Neighbourhood Destination Accessibility Indices 

Neighbourhood destination accessibility was significantly positively associated with 

physical activity for method 2 at 800m and 1600m and method 3 across all three spatial levels. 

Effect sizes remained small after adjusting for demographic and socio-economic covariates, 

where a unit increase in neighbourhood destination accessibility was associated with a 1-2% 

increase in physical activity, (method 2, 800m and 1600m; method 3, all three levels). The 

NDAIs based on methods 2 and 3, (Euclidean and network buffers) remained significantly 

associated with physical activity even after adjusting for neighbourhood deprivation. Due to 

the marginal effect sizes between the methods, it is difficult to determine or recommend which 

method is better at predicting associations with physical activity. Further research is required. 
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 An increase in destination accessibility was significantly associated with a lower 

likelihood of being overweight/obese for all methods and spatial scales in the unadjusted 

model. This finding remained at the 2400m scale after adjusting for potential demographic and 

socio-economic confounders. In the fully adjusted model, including neighbourhood 

deprivation, all methods at all spatial scales were statistically significant, even though the effect 

sizes were small. Importantly, effect sizes were in the expected direction, this finding suggests 

that increasing accessibility of destinations in the neighbourhood environment within a 10-30 

minute walk could improve health-related outcomes. 

Chapter Conclusion 

This chapter examined the results of associations between indices of the built 

environment, physical activity behaviours and health outcomes. Results indicate that the novel 

EWI based on method 3 (KDE values averaged to the network buffer) is a better measure of 

walkability than the novel BWI method 3. In addition, the novel BWI method 3 was a better 

measure than the BWI based on the standard method 1 (network buffer) especially for 

overweight/obesity. This indicates that both the novel method and the additional features added 

to the EWI are a strong improvement on the standard method and BWI (method 1). Further, 

significant negative associations existed between the indices of bikeability (methods 2 and 3) 

and overweight/obesity, where an increase in bikeability of the built environment was inversely 

associated with BMI. Indices of neighbourhood destination accessibility was also significantly 

positively associated with meeting physical guidelines and reduced odds of being 

overweight/obese. Choice of scale and method influenced whether associations achieved 

significance. In addition, area deprivation had a strong confounding effect on the relationship 

between physical activity and the walkability and bikeability of the built environment. Further 

investigation and discussion of the main findings arising from these analyses are presented in 

the following chapter, (Chapter 8).  
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Chapter 8. Discussion and conclusions 

This thesis research has made a number of important methodological contributions and 

advancements to the field of research on the built environment, active transport, physical 

activity and health outcomes. The overall aims of this research were 1) to develop novel 

objective measures of the built environment for walking, cycling and neighbourhood 

destination accessibility; and 2) to comprehensively test associations between the novel indices 

and active transport, physical activity behaviours and health outcomes, using available 

secondary data. These aims were achieved by meeting a series of research objectives (presented 

in Chapters 3-7) and addressing specific research questions (Chapters 5-7). The next paragraph 

gives a brief reminder of the context of the study area. The remainder of the chapter will: 

discuss the main research findings, referring to different chapters in this thesis (Section 8.1); 

give an overview of the challenges and opportunities in measuring the built environment for 

active transport and physical activity (Section 8.2); discuss the methodological contributions 

(Section 8.3), limitations and strengths of this research (Section 8.4); discuss implications of 

this research (Section 8.5) and future research directions into the built environment, active 

transport and physical activity behaviours (Section 8.6). Finally, a brief conclusion of this 

thesis research is provided (Section 8.7). 

Wellington City was selected to test the standard and novel objective measures of the 

built environment for a number of reasons. Firstly, the terrain is mountainous around the fringe 

and relatively flat in the city centre, which is different to other larger New Zealand cities, and 

of interest to study because the presence of hills can affect active transport and physical activity 

behaviours. Second, the city has the highest employment density and the highest proportion of 

active transport commuters in New Zealand (Statistics New Zealand, 2015b). Third, previous 

research by Mavoa et al., (2009) has found Wellington City to have higher walkability scores, 

partially due to its more compact urban design, than three other cities in New Zealand; 

Christchurch, North Shore and Waitakere (the latter two were incorporated into Auckland City 

in 2010, New Zealand’s largest city). Replicating methodologies and comparing findings with 

previous research in New Zealand is important for assessing the reliability and validity of 

previous research (Brownson et al., 2009) and contributing to the research field.  

8.1 Discussion of findings 

This section briefly discusses the gaps and motivations underpinning this thesis 

research. A discussion follows, describing the main research findings along with the outcomes 



 

236 

 

and their implications, while addressing the main research objectives. Following the structure 

of the thesis, the findings are presented per chapter.  

Chapter 2 provided an overview of the evidence linking the built environment, active 

transport, physical activity and overweight/obesity, addressing the first research objective. The 

socio-ecological model (Sallis et al., 2012) is regularly used to understand the multiple factors 

influencing physical activity behaviours. This study supports this thesis research in providing 

a model for the analysis of confounding factors influencing the relationships between the built 

environment, active transport and physical activity behaviours. The frameworks developed by 

Handy et al., (2002) and Pikora et al., (2003), formed a basis from which to work by identifying 

particular features of the built environment that can influence active transport, physical activity 

behaviours and health outcomes.  

In order to meet the second research objective, Chapter 2 also provided a review of the 

literature used to objectively define the neighbourhood environment for walking and cycling. 

Specifically, the standard walk index, based on methods developed by Frank et al., (2005) and 

replicated by Leslie et al., (2007) and Mavoa et al., (2009), were reviewed. Limitations of this 

standard method were identified, including the use of vector based polygons to represent 

administratively defined ‘neighbourhoods’ based on the meshblock, which can be ambiguous 

and arbitrarily defined (Brownson et al., 2009; King et al., 2015). These limitations led to the 

exploration of an alternative, novel method, kernel density estimation (KDE), to measure the 

built environment for active transport, physical activity and health outcomes. KDE measures 

urban design features at a much finer resolution. For example, this research created a 

continuous surface of urban features using 10m x 10m raster cells. While previous studies have 

used KDE to measure crime hotspots (Chainey, 2013; Hart and Zandbergen, 2014), food outlets 

(Thornton et al., 2012; Rundle et al., 2009; Bader et al., 2010), and less commonly greenspace 

and recreation (Maroko, 2009), recreational resources (Diez-Roux et al., 2007) and 

neighbourhood destinations (King et al., 2015), only recent research by Buck et al., (2015a; 

2015b) in Germany has used KDE to measure associations between the built environment and 

physical activity in children. To the author’s knowledge, this is the first published study to 

create features of the built environment using a novel (KDE) approach and investigate 

associations between these features and active transport, physical activity and 

overweight/obesity in adults.  

The literature review also highlighted that objectively measuring the built environment 

for cycling was a relatively new concept, arising since 2010, in the literature. It is important to 

investigate features of the built environment that can influence cyclists separately, as factors 
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that influence cycling behaviours can differ to walking behaviours (Wahlgren and Schantz, 

2011; Winters et al., 2011). For example, cyclists potentially navigate the built environment 

differently to walkers due to topography and street connectivity (Berrigan et al., 2015). 

However, indices of bikeability are limited. Previous work by Winters et al., (2010) was the 

first to objectively measure the built environment for cycling in Toronto, Canada. To the 

author’s knowledge, the built environment in New Zealand had not, prior to this thesis, been 

objectively measured for cycling and associations tested with active transport, physical activity 

and health outcomes. Furthermore, in relation to measures of destination accessibility, previous 

research in New Zealand (Witten et al., 2011) created a neighbourhood destination accessibility 

index (NDAI). Similar to the standard walk index, the standard NDAI was based on a simple 

intensity method. This approach has the same limitations as the standard walk index, whereby 

the proximity and density of destinations in relation to each other are not accounted for and 

equal exposure and accessibility to destinations is assumed across the areal unit or buffer. 

Similar to the bike index, the NDAI based on the novel approach has not, previous to this 

research, been tested in a New Zealand context. 

These limitations and gaps in the literature motivated developing and testing standard 

and novel methods in this thesis in order to contribute to and progress methods used to measure 

the built environment in relation to active transport and health-related behaviours. 

Further, relevant literature on objectively measured attributes and indices of the built 

environment for active transport and health were examined. Attributes such as land use mix, 

street connectivity, dwelling density and retail floor area are regularly associated with walking 

and physical activity (Brownson et al., 2009; Frank et al., 2010; Witten et al., 2012). In addition, 

these attributes are regularly combined into a composite index of walkability, using the 

standard method previously described, to predict walking behaviours (Frank et al., 2005; Frank 

et al., 2010; Brownson et al., 2009; Mavoa et al., 2009; Mayne et al., 2013). Moreover, other 

features such as slope, street lights, footpaths and tracks, bike rack density and length of cycle 

lanes are less commonly included in objective measures of the built environment even though 

they could potentially influence physical activity behaviours (Brownson et al., 2009; Winters 

et al., 2010). These features were included in the indices developed as part of this thesis 

research.  

To address the third research objective, issues of scale and delineation in current 

literature were also investigated (Chapter 2). Buffers around individuals’ home neighbourhood 

have previously been used as a way to manage the ‘modifiable area unit problem’ (Brownson 

et al., 2009). However, the type of buffer (Euclidean or network) used to ‘capture’ the exposure 
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to features of the built environment and the appropriate scale in which to do so is still an area 

of debate (Oliver et al., 2007; Brownson et al., 2009). This research addressed these issues by 

analysing both Euclidean and network buffers at a range of scales, 800m, 1600m and 2400m. 

The findings from this literature review formed the theoretical justification for 

investigating the commonly utilised walk index and developing an alternative method for 

measuring the built environment (KDE), including concepts of neighbourhood based on 

different delineations and spatial scales. In addition, the review helped identify the limited 

amount of research on measuring the bikeability of the built environment. 

In order to address the fourth and fifth research objectives, standard (simple intensity) 

and novel (KDE) methods were used to create objective measures of the built environment, 

both individual (land use mix, dwelling density, street connectivity, slope, street lights, 

footpaths and tracks) and composite indices (Basic Walk Indices, Enhanced Walk Indices, Bike 

Indices, Neighbourhood Destination Accessibility Indices) (Chapter 3). In order to test the 

validity of the standard walkability index and to compare results with an alternate and novel 

method for measuring the built environment, two versions of the basic walk index (BWI) were 

created using measures of land use mix, street connectivity and dwelling density. The first BWI 

was based on the standard method (simple intensity) and the second BWI was based on the 

novel method (KDE with a vector component-buffers), an under-researched method in 

measuring the built environment for active transport and physical activity. Both BWIs 

comprised measures of land use mix, street connectivity and dwelling density. In addition, an 

enhanced walk index (EWI), based on the novel method was created in order to advance and 

address some of the limitations of the standard BWI. The EWI had three additional built 

environmental components including, slope, street lights and footpaths and tracks. Creating an 

alternative and novel BWI and EWI to the standard BWI was important in order to identify the 

similarities and differences between these methods and to investigate associations with active 

transport behaviours and health outcomes using available secondary data.  

To address the sixth research objective, composite indices of bikeability (BI) using the 

novel method were created to test associations between active transport behaviours, physical 

activity behaviours and health outcomes, not previously completed in a New Zealand context 

(Chapter 3). Furthermore, an alternate version of Witten et al.,’s (2011) NDAI was developed 

using the novel method. Each of the EWIs, BIs and NDAIs were created using the novel method 

together with two methods of neighbourhood delineation, Euclidean and network buffer, and 

at a range of spatial scales.  
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In order to meet the seventh research objective, the spatial variations and data 

distributions of each of the indices and methods, based on both the Euclidean and network 

buffers at multiple spatial scales (800m, 1600m and 2400m), were investigated (Chapter 4). A 

combination of maps and histograms of the underlying data distribution of each of the indices 

was provided in order to identify the differences and similarities between the indices. Spatial 

distribution maps of methods 1, 2 and 3 used to create the BWIs and maps of methods 2 and 3 

used to create the EWI, BI and NDAIs were compared and contrasted at three scales, 800m, 

1600m and 2400m. The results of this investigation revealed variations in the underlying data 

between all four methods and across each spatial scale. Similar to previous research by Mavoa 

et al., (2009), high walkability for both the BWI and EWI were concentrated in the city centre. 

Furthermore, the addition of extra features in the EWI had similar patterns of high walkability 

to the BWI, however a greater area to the west of Wellington City was identified as having low 

walkability in the EWI. Similar to the walk indices, high bikeability and high destination 

accessibility were concentrated in the city centre. Chapter 4 served as a useful foundation to 

help visualise differences in each method, buffer type and spatial scale for the walk, bike and 

destination accessibility indices. In addition, using maps to identify areas of high/low 

walkability, bikeability and neighbourhood destination accessibility can help in 

communicating findings to health policy makers and urban planners.  

To address the eighth research objective, the sensitivity of individual attributes and 

composite indices (BWI, EWI based on the novel methods) of the built environment were 

analysed with respect to individual travel data from the Household Travel Survey (Chapter 5). 

This chapter served as an exploratory pilot analysis of both the individual measures and 

composite indices of the built environment with self-reported individual level data on time 

spent walking. The chapter presented associations between time spent walking and individual 

and composite indices of the built environment in the home and destination environments at a 

range of spatial levels, 400m, 800m, 1200m, 1600m, 2000m and 2400m, and additionally along 

the route between home and destination using 50m and 100m buffers. Two outcome variables 

were utilised, walking up to 10 minutes and total time spent walking (up to 60 minutes). 

Findings for the individual and composite measures revealed a variation in associations with 

time spent walking, depending on the type of neighbourhood delineation and spatial scale used 

for the home, destination and route environments. Similar to previous research, (Badland et al., 

2014; Mackenbach et al., 2016), the environments at the start (home) and end (destination) of 

a trip were important for predicting active transport behaviours. The main findings are briefly 
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discussed below; both outcomes are discussed starting with the home environment, followed 

by the destination and route environments. 

In the home environment based on the Euclidean buffer, independent of demographic, 

socio-economic and area deprivation, low density of slope within 1600m and high walkability 

(EWI) within 400m of the neighbourhood were significantly associated with walking up to 10 

minutes. Comparing with the network buffer around the home, high dwelling density within 

800m, low slope within 400m and high walkability within 400m and 800m of the home, were 

associated with higher likelihood of walking up to 10 minutes. These results show differences 

between both delineations and spatial scales around the home environment for slope and also 

that high walkability based on the EWI was a strong predictor of walking up to 10 minutes, 

with similar results for both delineations.  

In contrast to short walking trips, low slope density around the home based on the 

Euclidean buffer at 2000m and 2400m, was negatively associated with longer time spent 

walking (Chapter 5). This finding could indicate that the low slope around the home is an 

important predictor of short walking trips but not necessarily for trips longer than 10 minutes. 

This finding is interesting and adds to the evidence base on slope and the relationship with 

walking, because few studies include this measure with active transport behaviours and health 

outcomes. It is especially important to test the influence of slope in environments that are 

mountainous such as Wellington City. Future research is necessary to assess the effects of slope 

in both flat and mountainous urban environments.  

In addition, high land use mix around the home environment, both Euclidean (1600m, 

2000m and 2400m) and network (2400m) buffers, was associated with longer time spent 

walking to any destination. These findings are in line with previous research in New Zealand, 

which found land use mix was associated with walking for all purposes, transport and leisure 

(Witten et al., 2012). Furthermore, this thesis research had similar findings to Mackenbach et 

al., (2016) who also found high land use mix around the home environment was associated 

with longer walking trips, based on self-report data from the same survey utilised in this 

research (New Zealand Household Travel Survey). Taken together, these findings lend validity 

to using land use mix as a measure to predict walking in the home environment. Living in 

neighbourhoods with a high mix of land uses within a 10-20 minute walk can encourage more 

time spent walking. 

Of note, independent of demographic, socio-economic and area deprivation parameters, 

many of the individual and composite measures around the destination environments, based on 

the Euclidean buffer were associated with short walking trips. Specifically, dwelling density, 
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street lights, footpaths and tracks, walkability based on the EWI and destination accessibility 

(NDAI) was all positively associated with short walking trips at various scales ranging from 

400m to 1200m. In contrast, land use mix was negatively associated with short walking trips 

at the 800m neighbourhood level. Further research is needed to clarify associations between 

features of the destination environment and direct or multi walking trips to work and any 

destination.  

 In relation to longer walking trips, land use mix and walkability, (BWI), around the 

destination environment, based on the Euclidean buffer, were positively associated with total 

time spent walking. However, low slope density around the destination environment at 2000m 

and 24000m was negatively associated with longer walking trips. Based on the network buffer 

around the destination environment, only dwelling density was positively associated with short 

walking trips. In addition, only land use mix and walkability based on the BWI, were positively 

associated longer walking trips. Previous research by Mackenbach et al., (2016) did not report 

findings on longer walking trips and the environment around destinations, therefore no 

comparisons with existing research can be completed.  

 Independent of demographic, socio-economic and area deprivation elements, no 

relationship was found between any of the individual measures and destination accessibility 

(NDAI) of the built environment along the route and short walking trips. However, high 

walkability, based on both the BWI and EWI, was positively associated with short walking 

trips. In contrast, longer walking trips were not associated with either the individual or 

composite indices of built environment. Previous research by Mackenbach et al., (2016) did 

not measure associations between time spent walking and the environment along the route, 

therefore no comparisons can be made. Future research should aim to include the route 

environment when examining associations between the built environment and active transport, 

as it is potentially important for predicting walking behaviours. 

 The findings from these exploratory analyses indicate that associations between 

individual and composite indices of the built environment and time spent walking are sensitive 

to the type of neighbourhood delineation and spatial scale utilised. In addition, together with 

the home environment, other environments such as areas around destinations and along the 

route can be important in predicting time spent walking. Different ‘push’ and ‘pull’ factors of 

the built environment (Mackenbach et al., 2016) around the home, destination and route could 

potentially influence time spent walking. For example, areas around the home with high 

walkability and low slope could ‘push’ or encourage walking, and areas with high land use mix 

at the destination environment could ‘pull’ or attract walkers (Mackenbach et al., 2016). In 
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addition, as shown in this research, the walkability of the environment along the route could 

facilitate short trips spent walking. Furthermore, previous research by Winters et al., (2010) 

also investigated the influence of the built environment around the origin, route and destination 

with cycling behaviour and found that characteristics of the route environment were more 

influential on healthy travel behaviours. Future research should investigate all three 

environments and associations with active transport behaviours and physical activity.  

 To achieve the ninth objective, the composite indices of walkability, (BWI and EWI) 

bikeability (BI) and neighbourhood destination accessibility (NDAI) were investigated in 

relation to active transport behaviours commuting to work, utilising data from the New Zealand 

Census (Chapter 6). In relation to the standard method (Frank et al., 2005) commonly employed 

in research with active transport behaviours, findings were consistent with previous research 

(Mayne et al., 2013), which found high walkability (based on three simple intensity based 

components, land use mix, street connectivity and dwelling density) was associated with 

increased likelihood of walking to work. In addition, the newly created kernel density measures 

of walkability, both the BWI and EWI, were positively associated with walking for transport. 

Furthermore, associations were stronger for the novel BWI indices (method 2 and 3) in 

comparison to the standard method (simple intensity, method 1), suggesting previous research 

could have underestimated the effect of the built environment in encouraging walking to work. 

Moreover, comparing the BWI and EWI methods, the EWI (comprising of novel land use mix, 

dwelling density, street connectivity, slope, street lights and footpaths and tracks measures) 

performed better than the BWI, lending credibility that the additional features included in the 

EWI capture or elucidate more of the context in which active transport takes place. While 

higher walkability, for both the BWI and EWI, was associated with walking to work, 

differences remained between the type of buffer (Euclidean or network) and neighbourhood 

scale utilised. Independent of demographic, socio-economic and neighbourhood deprivation 

factors, the EWI based on method 3, network buffer, at 800m was the best predictor of walking 

to work in comparison to all other methods and spatial scales.  

 Significant associations between neighbourhood destination accessibility and walking 

to work existed even after controlling for potential confounders. However, the effect sizes were 

small and therefore further analysis is recommended. Future research should consider the novel 

approach presented here when creating indices of walkability and for other types of walking 

such as walking for leisure or utilitarian purposes such as running errands, shopping etc. 

 The novel BI was significantly associated with cycling to work, however the effect sizes 

were small. This could be due to limitations in the underlying data on bike infrastructure in 
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Wellington City, which was restricted to density of bike racks and a small number of cycle 

lanes. Comparing between methods, Euclidean and network, and neighbourhood scale, the BI 

based on method 2 (Euclidean buffer), was best at predicting associations with cycling to work 

at both 1600m and 2400m. This finding requires further research as it was hypothesised that 

the BI based on the network buffer would predict stronger associations than the Euclidean 

buffer. In addition, there was no association between the BI at 800m, for either Euclidean or 

network buffer and cycling to work. This is unsurprising as it could be hypothesised that 

cycling as a transport mode usually takes place over distances greater than 800m.  

 Little to no association was found between neighbourhood destination accessibility 

(NDAI) and cycling to work, independent of demographic, socio-economic and area 

deprivation factors. Variables included as potential confounders had very little effect on the 

models. Similar to results for walking to work and destination accessibility, this finding is 

somewhat expected as destination accessibility is potentially unimportant to individuals 

cycling directly to work. Future research measuring the bikeability of the environment should 

include cycling for specific purposes such as leisure, work or utilitarian purposes (shopping, 

running errands, visiting health centres, etc.). 

 The findings from Chapter 6 confirm existing research findings in relation to the 

standard walkability index and walking to work (Mayne et al., 2013), and also add new findings 

in relation to the more nuanced methods of KDE with a vector component (buffers). In addition, 

high walkability, based on the EWI method 3, measured as an 800m network defined 

neighbourhood, had the strongest associations with walking to work. 

 In relation to the tenth objective, standard and novel indices of the built environment 

were tested with health outcomes, derived from the New Zealand Health Survey (NZHS) 

(Chapter 7). High walkability, for both the BWIs and EWIs based on methods 1, 3 and 4 were 

significantly associated with increased likelihood of meeting physical activity guidelines in the 

unadjusted models. However, no association was found after adjusting for neighbourhood 

deprivation, which attenuated the relationship between walkability of the built environment 

and physical activity. A possible explanation for this finding could be the use of a general 

measure of physical activity. Physical activity could include any form of activity such as 

walking, cycling, running, or sports activities, for transport, utilitarian or leisure purposes. 

Furthermore, previous research in New Zealand found positive associations between leisure-

related physical activity and walking for all purposes but negative confounding by 

neighbourhood deprivation with transport related physical activity (Witten et al., 2012). It is 

possible that participants, from the NZHS used in this analysis mainly reported transport-
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related physical activity. However, the influence of neighbourhood deprivation cannot be 

determined as questions relating to the specific type of physical activity were not included in 

the NZHS. Further research into how neighbourhood deprivation can affect the relationship 

between walkability of the built environment and specific types of physical activity is 

necessary. 

 Regarding the second outcome variable tested, the likelihood of being 

overweight/obese (BMI ≥25) decreased as walkability of the built environment increased, 

however results varied by the type of method, neighbourhood delineation and scale used. Of 

note and independent of demographic, socio-economic and neighbourhood deprivation factors, 

high walkability, based on the standard BWI, (method 1, network buffer), was associated with 

7% decreased likelihood of being overweight/obese at only one neighbourhood level, 2400m. 

In comparison, high walkability based on the novel EWI (method 3, network buffer) was 

associated with greater decreased likelihood of being overweight/obese at all three 

neighbourhood levels, 12% at 800m, 13% at 1600m and 12% at 2400m. In general, even after 

adjusting for neighbourhood deprivation, as walkability increased, the odds of being 

overweight/obese decreased for most methods and spatial scales. This finding is similar to 

some international research. For example, Pouliou and Elliott (2010) used a similar standard 

walkability index (based on housing unit density, an entropy index of land use mix and 

intersection density), and found a negative association with BMI in Vancouver, but not in 

Toronto, Canada (Grasser et al., 2013). In addition, Frank et al., (2009) reported a significant 

negative association between walkability (based on the standard method including housing unit 

density, entropy based land use mix, intersection density and retail floor area ratio) and BMI 

in men but not women (Grasser et al., 2013). However, results have been inconsistent in the 

international literature and further investigation into the relationship between walkability and 

overweight/obesity is required (Grasser et al., 2013). Importantly, the novel indices developed 

in this thesis, in particular the EWI based on method 3, the network buffer, proved to be the 

best predictor of associations between walkability and overweight/obesity across three 

neighbourhood levels, 800m, 1600m and 2400m. It is possible that previous research that has 

used the standard method of measuring walkability has underestimated the effects of the built 

environment on overweight/obesity health outcomes. Further research is required to investigate 

associations between different methods of measuring walkability and overweight/obesity 

health outcomes. 

 In relation to bikeability of the built environment and physical activity, high bikeability 

was associated with meeting physical activity guidelines, independent of demographic and 
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socio-economic covariates. However, effect sizes were small ranging from 1%-2%. In addition, 

after controlling for neighbourhood deprivation, there was no relationship between bikeability 

and physical activity behaviours. It is possible that, similar to the walkability indices, 

neighbourhood deprivation has a mediating effect on the relationship between bikeability and 

physical activity. Further research into the mediating and moderating effects of neighbourhood 

deprivation on physical activity behaviours in bikeable environments is required. 

 High bikeability was significantly associated with reduced odds of being overweight or 

obese, at 1600m and 2400m in the unadjusted model. However after adjusting for demographic 

and socio-economic covariates, no association remained. In contrast, after additionally 

adjusting for neighbourhood deprivation, similar to the walkability indices, high bikeability 

was significantly associated with a decreased likelihood of being overweight or obese for both 

the Euclidean and network defined neighbourhoods and across all scales. In addition, similar 

to walkability, the BI based on method 3 (network buffer) at 2400m, had the lowest odds ratios, 

where the likelihood of being overweight or obese was 5% lower in high bikeable 

neighbourhoods. Creating areas that are conducive to cycling within 2400m of an individual’s 

residence could potentially improve health outcomes such as prevalence of overweight and 

obesity. Previous research has not tested associations between bikeability and 

overweight/obesity, therefore no comparisons can be made. These findings need to be 

investigated further with future research creating indices specific to cycling and testing 

associations with health outcomes, as previous research has noted that elements of the built 

environment that influence walking are not necessarily the same for cycling (Wahlgren and 

Schantz, 2011, Winters, et al., 2011). Increasing physical activity through either walking or 

cycling can lead to increased energy expenditure and less likelihood of being overweight or 

obese. Altering the built environment to be more conducive to walking and cycling, by creating 

designated walk paths, separated bike lanes and bike parking, to name a few examples, could 

potentially yield important population health gains.   

 Associations between neighbourhood destination accessibility (NDAI) and physical 

activity were also investigated using the novel methods, 2 and 3, (Euclidean and network 

buffers), and for three neighbourhood scales, 800m, 1600m and 2400m. High destination 

accessibility was associated with meeting physical activity guidelines, independent of 

demographic, socio-economic and neighbourhood deprivation covariates. However, effect 

sizes were small, ranging from 1% to 2%, which could be due to the generality of the outcome 

measure used. Physical activity could encompass activity for a range of purposes such as 

leisure, transport or utilitarian. The physical activity outcome used in this research could 
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potentially mask associations between leisure or utilitarian related physical activity and 

neighbourhood destination accessibility of the built environment. Further research is needed to 

test associations between the novel indices of neighbourhood destination accessibility and 

specific physical activity behaviours.  

 In relation to overweight/obesity, high neighbourhood destination accessibility was 

significantly associated with decreased likelihood of being overweight/obese for methods, 2 

and 3 and across all spatial levels, after adjusting for demographic, socio-economic and 

neighbourhood deprivation covariates. This indicates that creating neighbourhoods that have 

accessible destinations within a 10-30 minute walk from residences could lead to important 

improvements in overweight/obesity health outcomes. It should be noted that, similar to 

physical activity outcome, the effect sizes were small, though previous research investigating 

the built environment and health outcomes has also reported small effect sizes (Witten et al., 

2008). Further research is required to assess the associations between high neighbourhood 

destination accessibility and health outcomes. 

8.2 Challenges and opportunities in measuring the built environment  

For more than a decade, the use of GIS to objectively measure the built environment 

has gained considerable momentum. It is recognised as a useful tool to analyse spatially 

particular features such as measures of proximity, connectivity and density of the built 

environment with individual and household travel and physical activity behaviours (Saelens et 

al., 2003). In addition, objective measures can reduce measurement errors, allow for easy 

quantification and standardization and translation into transport and health policy changes (Lee 

and Moudon, 2004). In contrast, subjective measures such as environmental audits and surveys 

on the perceived environment around an individual’s home can be time consuming and costly 

due to in person observations of features of the built environment, as well as being subject to 

low response rates from participants (Brownson et al., 2009). GIS presents an opportunity to 

measure the built environment ‘remotely’, which can be less time consuming, and labour 

intensive, but time delays can arise in gaining access to data (Brownson et al., 2009). In 

addition, city councils and government departments are recognising the utility of analysing 

information spatially and are integrating GIS into their work processes. However, issues can 

arise for GIS technicians when trying to sort, clean and understand different data definitions 

from multiple jurisdictions without any common protocols (Brownson et al., 2009). The 

challenge remains for city councils and government departments to create a common 
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standardisation of raw data and develop protocols to guide GIS technicians so that reliable 

comparisons between different jurisdictions can be made (Brownson et al., 2009). 

 Challenges remain in the many ways ‘neighbourhood’ is conceptually defined in the 

literature. Studies commonly use either territorial or administrative neighbourhood definitions, 

based on collective historical, social or population characteristics, or ego-centric definitions of 

neighbourhoods based on environments around the individuals’ residences (Chaix et al., 2009). 

These two approaches represent ‘fixed’ (administrative) versus ‘sliding’ (buffers for exact 

individual residences) neighbourhood boundaries (Chaix et al., 2009). However, due to 

limitations of arbitrarily defined administrative neighbourhoods, which do not necessarily 

represent individual exposures, ego-centric neighbourhoods are used as a way to capture the 

local exposure area (Chaix et al., 2009). In addition, ego-centric buffers can also exclude space 

beyond the boundary, which could influence physical activity behaviours. Generating ‘fuzzy’ 

neighbourhood delineations present a smoother transition between inner and outer 

neighbourhood boundaries (Chaix et al., 2009). Creating kernel densities of built environment 

features around an individual’s residence can provide a continuous surface of neighbourhood 

exposure, representing a ‘fuzzy’ neighbourhood delineation. This thesis research used a 

combination of both approaches in two different ways; first, KDE measures of the built 

environment were created and then averaged to Euclidean and network buffers, (vector 

component), around individual residences and destinations from the New Zealand Household 

Travel Survey; second, KDE measures were averaged to the network and Euclidean buffers, 

(vector component), around meshblock population weighted centroids (PWC) in order to test 

associations with secondary data collected at the meshblock level (Census and New Zealand 

Health Survey). The second approach was necessary as access to individual addresses was not 

possible, whereas in an ideal scenario geographic locations would be provided in order to create 

individual local environmental exposures.   

 In addition, the issue of scale is interlinked with the concept of ‘neighbourhood’. 

Creating multiple buffers based on a straight line (Euclidean) or along the road network 

(network) from the individual’s residence or PWC at various scales has been used as a way to 

‘capture’ built environment exposures theorised to influence active transport and physical 

activity behaviours (Chaix et al., 2009). This thesis research identified the network buffer, 

based on statistical models, as the best neighbourhood walkability buffer (EWI) to predict 

walking to work and its relationship with overweight/obesity. However, the challenge remains 

when trying to determine the most appropriate neighbourhood scale to measure associations 

between the built environment and active transport and physical activity. Emerging 
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technologies, such as global positioning systems (GPS), accelerometers, smart phone 

applications and life-logging (Hurvitz et al., 2014) present opportunities for increased 

measurement precision of physical activity behaviours, enabling more targeted interventions 

in built environment settings (Graham and Hipp, 2014). For example, recent work by Hwang 

et al., (2016) quantified walking bouts as they occurred in space and time using accelerometers 

and GPS to objectively measure walking behaviours. They found that these methods allowed 

increased precision of the locations where actual walking takes place and confirmed previous 

findings where walkability of the built environment was positively associated with high 

walking counts. Further, developing activity-space exposure models (Chaix et al., 2009) that 

capture actual and potential activity spaces based on individual travel behaviours (Madsen et 

al., 2014) could help identify features of the built environment that encourage or hinder 

physical activity behaviours.  

Measuring multiple features of the built environment, combining them into indices, and 

creating maps, can present an opportunity to communicate results to policy makers and address 

issues of multicollinearity in statistical models (Saelens and Handy, 2008; Brownson et al., 

2009). Additionally, creating indices for specific transport modes, not just walking can be 

useful in identifying features of the built environment that facilitate or hinder physical activity 

behaviours. The ways in which walkers and cyclists navigate the built environment can be 

different depending on topography and street connectivity (Berrigan et al., 2015). It is also 

possible that access to public transport can influence physical activity behaviours. For example, 

previous research by Mavoa et al., (2012) objectively measured public transit accessibility in 

conjunction with walking accessibility and a measure of transit frequency. They argued these 

objective measures could be used to identify areas where people could substitute to non-car 

modes such as walking and public transit use, and also identify areas where public transit 

frequency and access could be improved. Similar to Mavoa et al., (2012), creating specific 

indices for walking, cycling and destination accessibility in this thesis can help in identifying 

areas in need of modifications to encourage physical activity behaviours and destinations that 

attract walkers and cyclists in their neighbourhood environment. However challenges remain 

in conceptually matching characteristics of the built environment with specific physical activity 

behaviours (Ding and Gebel, 2012; Saelens and Handy, 2008). Mode specific indices should 

be based on conceptually acceptable links with attributes of the built environment. For 

example, this research included bike infrastructure components in the BI that were conceptually 

matched with influencing cycling behaviours.  
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 Much of the research on the built environment and active transport and physical activity 

has measured the neighbourhood environment around the residence (Kerr et al., 2013; 

Manaugh and El-Geneidy, 2011; Saelens and Handy, 2008). It is assumed that physical activity 

is restricted to the residential neighbourhood, however, this is not necessarily true. For 

example, in the case of active transport, the built environment along the route or at the 

destination could also be important in encouraging active transport behaviours. As part of this 

thesis, the built environment in three environments, the home, destination and route, were 

investigated in relation to time spent walking (Chapter 5). Even though the sample size was 

small, the analysis revealed a variation in associations with time spent walking, depending on 

the type of built environment feature, neighbourhood delineation and spatial scale used for the 

home, destination and route environments. Future research should investigate areas beyond the 

residential neighbourhood as destination and route environments could also be important areas 

for encouraging active transport and physical activity behaviours (Winters et al., 2010; 

Mackenbach et al., 2016; Vale and Pereira, 2016). 

8.3 Methodological contributions 

This study has made a number of important original methodological contributions and 

innovations to quantifying the built environment and validating associations with active 

transport, physical activity and health outcomes. The main original contributions were:  

 First, the development and comprehensive testing of a novel Basic Walk Index (BWI) 

associated with active transport, physical activity and overweight/obesity in adults. The novel 

BWI was compared and contrasted with the standard BWI that is regularly replicated in the 

literature. Results demonstrated that the novel BWI method had stronger associations with 

active lifestyle behaviours and health outcomes than the standard BWI method. After further 

refinement and improvement of the novel BWI  

 Second, further refinement of the novel BWI by creating an Enhanced Walk Index 

(EWI) that included additional elements of the built environment associated with walking 

(slope, street lights and footpaths and tracks). The EWI was comprehensively tested for 

associations with active transport, physical activity and overweight/obesity and was found to 

be improvement on the novel BWI with stronger associations with active lifestyle behaviours 

and health outcomes. In addition, the combination of both the novel method and the additional 

features included to create the novel EWI resulted in the strongest associations. Replication of 

this novel method and EWI in other locations is necessary to ensure validity and comparability 

of the method and index. Both the standard and novel methods were tested and validated against 
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two self-reported secondary datasets, the Census and NZHS. This is the first study in New 

Zealand to create novel walk indices (BWI and EWI) and compare them with an existing 

standard walk index (BWI). 

Third, the development and comprehensive testing of a novel bikeability index with 

cycling behaviours and health outcomes. The index was based on conceptually matched 

features of the built environment with cycling behaviours, including land use mix, street 

connectivity, slope, street lights, bike racks and cycle lanes. This is the first study to develop 

an index of bikeability for a city in New Zealand based on the novel method and test 

associations with active transport, physical activity and overweight/obesity health outcomes.  

 Fourth, the development and comprehensive testing of a novel neighbourhood 

destination accessibility index (NDAI). This index represents an alternative to the original 

NDAI created by Witten et al., (2011) which was based on the standard method (simple 

intensity). This is the first study to create a NDAI based on the novel method presented in this 

thesis and test associations with active transport, physical activity behaviours and health 

outcomes in a New Zealand context. 

 Fifth, measurement and testing of associations between time spent walking and novel 

individual built environment measures (land use mix, street connectivity, dwelling density, 

slope, street lights and footpaths and tracks) and novel walk indices (BWI and EWI) in three 

different environments. The built environment around the home, route and destinations were 

investigated for associations with time spent walking. While this was a pilot study (Chapter 5), 

with a small sample size, the findings are interesting and potentially reflect the importance of 

examining other environments outside of the residential neighbourhood. 

 Sixth, each of the novel indices (BWI, EWI, BI, NDAI) were created and 

comprehensively tested for two neighbourhood delineations (Euclidean and network) and at 

multiple spatial scales. In general, neighbourhood delineations based on the network buffer had 

stronger associations with active transport, physical activity and overweight/obesity health 

outcomes. This is the first study in New Zealand to examine the influence of both types of 

neighbourhood delineations, at a range of scales with a number of active and health-related 

outcomes.   

Taken together, these methodological contributions advance current understandings in 

the field of the built environment and health research and represent an original contribution to 

knowledge. 
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8.4 Limitations and strengths 

 The built environment measures developed and examined in this research were tested 

with cross-sectional data, which limits identification of any causal relationships. Additionally, 

due to the cross-sectional design, it was not possible to account for self-selection and how it 

impacted on residential choices and active transport and physical activity behaviours. Further, 

each of the active transport and physical activity measures were self-reported and could be 

subject to social desirability bias and under or over reporting. Nevertheless, previous cross-

sectional research has found consistent links with the built environment and physical activity 

behaviours in adults (Oliver et al., 2015; Sallis et al., 2012) using available secondary datasets. 

In addition, advantages of using self-reported data can be ease of access, low associated costs 

in comparison to using GPS technologies and relatively fast data analysis with objective 

measures. Furthermore, this research did not investigate independent associations of the built 

environment for specific sub groups such as children, older adults, ethnic minorities, 

males/females and the disabled. 

 A potential limitation to the novel method was the use of a fixed bandwidth in the kernel 

density estimation. The fixed bandwidth of 500m was chosen after initial testing with 

bandwidths ranging from 300m to 800m, the 500m had the strongest associations. Possible 

methodological improvements could be calculating the kernel density using an adaptive 

bandwidth based on the underlying residential density (Buck et al., 2015a; Carlos et al., 2010).  

 Further limitations include: the objective GIS measures were created for Wellington 

City only and were unable to be verified with on-site visits of the physical environment due to 

time and budget constraints. Data for the NDAI ranged from 2008-2015, which does not fully 

correspond to the years in which active transport or physical activity behaviours were measured 

(HTS 2010/11-2013/14, Census 2013 and NZHS 2011/12-2015/16). There is also a possibility 

that the built environment could have changed in the years between surveys. However, these 

are likely to be minor as major changes to the built environment usually take a number of years 

to complete.  

In addition, using GIS to measure the geographical access to destinations does not 

necessarily equate with access on the ground and other subjective perceptions of safety, quality 

and desirability of destinations could also impact on physical activity behaviours (Witten et al., 

2011)..  

Due to small sample sizes in the HTS and NZHS, multiple years were combined to 

increase statistical power; therefore, results need to be interpreted with caution. Moreover, the 
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HTS and NZHS surveys were unweighted and as such cannot be generalised to the whole of 

New Zealand. However, developing measures specific to local contexts offers evidence for 

local transport and health policy makers to modify and improve the built environment in their 

own urban areas.  

 Despite these limitations, there were a number of key strengths underpinning this 

research. Multiple features of the built environment were created using an alternative and novel 

method. These features were examined separately and together in the form of composite walk 

indices with active transport behaviours using data from the HTS. In addition, various walk, 

bike and neighbourhood destination accessibility indices were developed using the novel 

method to quantify the built environment for active transport, physical activity and 

overweight/obesity health outcomes, using data from the Census and NZHS. Another strength 

is the thorough examination of each of the individual and composite indices after adjusting for 

potential demographic, socio-economic and area deprivation confounders at multiple spatial 

levels and different neighbourhood delineations. A further strength of this study was the 

comparison of the standard walk index with an alternative walk index, along with stronger 

associations being found with the latter. This finding potentially indicates that previous 

research has underestimated the influence of the built environment on active transport, physical 

activity and overweight/obesity health outcomes. In addition, the neighbourhood built 

environment was operationalised in a number of ways using different delineations and multiple 

scales to test associations. Lastly, visualising the many ways different methods and built 

environment phenomena are represented spatially, depending on the type of method, 

delineation and spatial scale utilised, drew attention to the importance of method choice in 

research on the built environment. 

8.5 Research implications 

Identifying and utilising appropriate data and methods to measure the built environment 

for active transport and physical activity form part of the foundation upon which results and 

findings are built. There is a clear need to continually investigate standard methods and advance 

them by addressing inherent limitations. Proposing alternative, more specific, approaches of 

measuring the built environment for active transport and physical activity behaviours can result 

in a more accurate evidence base from which to draw and ensures continued progression of 

research on the built environment. Developing more precise methods strengthens the support 

for creating neighbourhoods that are conducive to active transport and physical activity. For 

example, utilising appropriate methods to identify areas that have low walkability and 
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bikeability can help town planners, local and central government agencies, property developers 

and urban designers, identify areas that need to be modified to enhance walking and cycling 

for leisure, utilitarian and transport purposes.  

Creating environments to enable rather than hinder physical activity can lead to 

improved individual and wider population health, reducing current and future burdens on the 

health system. Specifically, focusing resources on preventative approaches such as improving 

the built environment to facilitate physical activity behaviours, rather than curative approaches 

such as treating diseases associated with physical inactivity and obesity, can have significant 

positive effects for the economy, health system and society as a whole. The findings from the 

alternative method proposed in this research could be used by health policy advisors, transport 

planners and urban designers to advocate for improved policies and distribution of government 

resources to be allocated for improving the neighbourhood built environment. Cross 

collaboration between multiple groups from health, transport and urban design fields is 

necessary in order to reduce health system costs, improve public health and quality of life, 

reduce carbon emissions and create or modify existing neighbourhoods to encourage physical 

activity for all types of purposes and kinds of people. Some of the interventions and 

modifications necessary to improve the health and liveability of neighbourhoods span the 

health, transport and urban design fields, for example, zoning land for high residential density 

and mix of businesses, ensuring destinations such as shops, work and parks are accessible 

within a certain distance of residences, restricting car speeds in residential areas, improving 

footpath quality and connectivity and providing street lights, parks and recreation areas to 

encourage physical activity behaviours. A better distribution and utilisation of public taxes and 

government resources can be achieved by taking a preventative and collaborative approach.  

 Developing, validating and adopting improved methods, such as the novel approach 

presented in this thesis, to measure the built environment for active transport and physical 

activity represents an intrinsic part of the evidence base in order identify where further 

improvements can be made.  

8.6 Future research 

In order to identify how active travel, physical activity behaviours and health outcomes 

are influenced by the physical environment, further research replicating and validating the 

alternative novel method, developed in this thesis, for different population groups and built 

environment contexts is necessary. For example, replicating the novel method for other cities 

in New Zealand and internationally would help contribute to the value of the novel method for 
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research on the built environment and health. Measuring the built environment for specific sub 

groups such as children, older adults, ethnic minorities and the disabled is necessary in order 

to identify specific features or combinations of characteristics of the built environment that 

facilitate or hinder physical activity. This research is necessary for improving related health 

outcomes for all members of society. In addition, future research should utilise longitudinal 

data rather than cross-sectional data to help overcome issues related to self-selection, enabling 

identification of the causal association between elements of the built environment and physical 

activity behaviours (Ding and Gebel, 2012).  

Future research should investigate and validate objective KDE measures of the built 

environment with subjective perceptions of urban safety, quality and attractiveness of 

destinations, which can also impact physical activity behaviours (Witten et al., 2011). In 

addition, utilising emerging technologies such as GPS, mobile applications and life-logging 

offers more precise objective measures of where, when, and how active transport and physical 

activity behaviours take place in the built environment. Future research should measure the 

built environment for specific physical activity behaviours and purposes, such as walking or 

cycling for transport, leisure or utilitarian reasons, and identify the most appropriate scale and 

type of neighbourhood delineation depending on the outcome measured.  

Furthermore, in relation to individual data available from the HTS, this research used 

data relating to time spend walking directly from home to any destination. Future research 

could test the novel method with multiple trips of walking, cycling and public transport use for 

multiple purposes in home and destination settings.   

8.7 Thesis conclusion 

This is the first study to measure the relationship between novel measures of the built 

environment and active transport, physical activity and overweigh/obesity in adults in New 

Zealand. It is also the first study to compare existing standard methods of quantifying 

walkability with an alternative, more nuanced and novel method. In addition it is the first to 

create indices of bikeability and neighbourhood destination accessibility based on the novel 

method. Positive associations were observed for the standard and novel methods of walkability, 

bikeability, NDAI and active transport and overweight/obesity health outcomes. Further, the 

novel method of walkability (BWI) based on the network defined neighbourhood was found to 

have stronger associations with active transport behaviours and overweight/obesity than the 

standard method frequently employed in research on the built environment, suggesting the 

novel method is valid. Moreover, the novel EWI had stronger associations than the novel BWI, 
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potentially suggesting that including other relevant attributes of the built environment theorised 

to influence active transport behaviours is important. This research suggests that it is critical to 

continually strive to improve and address the limitations of the standard methods used in 

research on the built environment, active transport and physical activity in order to have better 

confidence in the evidence of associations. This research strengthens current international and 

national evidence that the built environment affects active transport and physical activity 

behaviours. Creating environments conducive to walking and cycling for all purposes could 

lead to significant population health benefits, while improving the quality of life in urban 

communities.   
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Appendix A 

 
Table 49. Summary statistics of individual exposure measures for the home and destination Euclidean 

and network buffers. 

Exposure measures 

Home 

Address          

Euclidean 

buffer  

Home Address             

network buffer  

Destination 

Address 

Euclidean 

buffer  

Destination 

Address 

network buffer  

Land use mix Mean (Std) 

400m 6.84(1.90) 6.85(1.97) 7.18(1.58) 7.07(1.72) 

800m 6.92(1.37) 6.86(1.77) 7.32(1.11) 7.08(1.44) 

1200m 7.20(0.84) 6.88(1.35) 7.52(0.78) 7.13(1.22) 

1600m 7.42(0.51) 6.94(0.99) 7.57(0.58) 7.27(0.99) 

2000m 7.56(0.44) 7.07(0.83) 7.50(0.53) 7.39(0.77) 

2400m 7.60(0.43) 7.21(0.71) 7.41(0.52) 7.44(0.64) 

Street connectivity         

400m 8.78(1.66) 8.89(1.61) 8.79(1.76) 9.03(1.07) 

800m 8.60(1.35) 8.93(1.38) 8.52(1.54) 8.99(1.43) 

1200m 8.34(1.06) 8.87(1.16) 8.23(1.32) 8.89(1.81) 

1600m 8.07(0.87) 8.79(0.97) 7.90(1.19) 8.78(1.02) 

2000m 7.72(0.86) 8.67(0.82) 7.60(1.11) 8.65(0.88) 

2400m 7.42(0.91) 8.56(0.66) 7.33(1.08) 8.57(0.75) 

Dwelling density         

400m 8.11(1.59) 8.26(1.57) 7.82(2.02) 8.11(1.97) 

800m 7.66(1.19) 8.29(1.37) 7.57(1.64) 8.09(1.65) 

1200m 7.44(0.99) 8.09(1.17) 7.30(1.36) 8.04(1.37) 

1600m 7.24(0.96) 7.98(1.01) 6.99(1.19) 7.95(1.15) 

2000m 6.92(1.01) 7.90(0.94) 6.82(1.09) 7.80(0.99) 

2400m 6.63(1.08) 7.84(0.87) 6.66(1.06) 7.71(0.89) 

Slope         

400m 3.40(2.52) 3.36(2.88) 4.04(1.99) 3.98(2.30) 

800m 3.20(1.28) 3.20(1.92) 3.73(1.40) 3.80(1.90) 

1200m 3.36(0.88) 3.19(1.53) 3.56(0.96) 3.55(1.53) 

1600m 3.50(0.86) 3.22(1.36) 3.64(0.78) 3.40(1.32) 

2000m 3.73(0.78) 3.22(1.19) 3.76(0.69) 3.30(1.16) 

2400m 3.88(0.60) 3.24(1.11) 3.80(0.61) 3.30(1.05) 

Street lights         

400m 8.06(1.41) 8.19(1.42) 8.03(1.87) 8.35(1.67) 

800m 7.81(1.34) 8.18(1.38) 7.65(1.68) 8.29(1.48) 

1200m 7.52(1.18) 8.13(1.23) 7.34(1.54) 8.13(1.34) 

1600m 7.20(1.16) 8.04(1.09) 7.03(1.44) 7.99(1.24) 

2000m 6.83(1.23) 7.90(1.04) 6.81(1.39) 7.86(1.16) 

2400m 6.57(1.32) 7.78(1.01) 6.64(1.35) 7.78(1.10) 

Footpaths and tracks         

400m 9.54(0.67) 9.66(0.61) 9.33(1.07) 9.52(0.90) 

800m 9.27(0.71) 9.63(0.53) 9.16(0.98) 9.50(0.74) 

1200m 9.09(0.70) 9.54(0.42) 8.97(0.89) 9.45(0.59) 

1600m 8.92(0.68) 9.44(0.39) 8.72(0.84) 9.40(0.49) 

2000m 8.62(0.67) 9.35(0.40) 8.47(0.87) 9.31(0.45) 

2400m 8.36(0.78) 9.28(0.37) 8.27(0.94) 9.24(0.42) 
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Table 50. Summary statistics of composite exposure measures for the home and destination Euclidean 

and network buffers. 

Exposure measures 

Home 

Address          

Euclidean 

buffer  

Home Address             

network buffer  

 Destination 

Address 

Euclidean 

buffer  

Destination 

Address 

network buffer  

Basic Walk Indexa Mean (Std) 

400m 23.69(3.54) 23.98(3.58) 23.79(3.87) 24.22(3.93) 

800m 23.06(2.86) 24.01(3.28) 23.27(3.74) 24.08(3.52) 

1200m 22.75(2.65) 23.77(2.69) 22.73(3.63) 23.97(3.02) 

1600m 22.33(2.70) 23.65(2.36) 21.84(3.49) 23.90(2.60) 

2000m 21.49(2.77) 23.57(2.29) 20.94(3.49) 23.75(2.28) 

2400m 20.67(2.93) 23.53(2.13) 20.19(3.54) 23.60(2.04) 

Enhanced Walk Indexb               

400m 43.97(6.01) 44.31(5.80) 44.72(7.15) 45.64(7.04) 

800m 42.92(4.89) 44.59(5.44) 43.38(6.68) 45.25(6.01) 

1200m 42.33(4.61) 44.26(4.67) 42.18(6.14) 44.78(5.19) 

1600m 41.56(7.75) 44.05(4.25) 40.76(5.84) 44.40(4.57) 

2000m 40.22(4.83) 43.79(4.09) 39.35(5.87) 43.98(4.10) 

2400m 38.89(5.13) 43.62(3.76) 38.10(6.05) 43.68(3.70) 

Neighbourhood Destination 

Accessibility Indexc         

400m 8.78(0.98) 8.78(1.09) 9.21(1.25) 9.29(1.23) 

800m 8.81(0.85) 8.91(0.89) 8.80(1.16) 9.21(1.10) 

1200m 8.70(0.85) 8.97(0.74) 8.49(1.13) 9.05(0.91) 

1600m 8.34(0.94) 8.98(0.72) 8.19(1.17) 8.94(0.80) 

2000m 7.99(1.14) 8.87(0.76) 7.87(1.29) 8.84(0.78) 

2400m 7.74(1.27) 8.71(0.75) 7.62(1.41) 8.74(0.76) 
a The Basic Walk Index is comprised of the sum of three components, standardised to deciles, land use 

mix, street connectivity and dwelling density. The raw values range from 3-30, values close to 30 indicate 

high basic walkability. 
b The Enhanced Walk Index is comprised of the sum of six components, standardised to deciles, land use 

mix, street connectivity and dwelling density, slope, street lights and footpaths and tracks. The raw values 

range from 6-60, values close to 60 indicate high enhance walkability. 
c The Neighbourhood Destination Accessibility Index is comprised of the sum of eight deciled 

components, education, transport, recreation, social and cultural, food retail, financial, and health and other 

retail. The raw values range from 8-80, values close to 80 indicate high destination accessibility. 
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Table 51. Summary statistics of individual and composite exposure measures for the route between home 

and any destination. 

Exposure measures 

Route buffer       

50m 100m 

 Mean (Std) 

Land use mix 6.91(1.62) 6.90(1.60) 

Street connectivity 9.13(1.57) 9.10(1.57) 

Dwelling density 8.41(1.68) 8.35(1.67) 

Slope 3.99(2.50) 3.94(2.40) 

Street lights 8.51(1.53) 8.49(1.52) 

Footpaths and tracks 9.68(0.72) 9.65(0.73) 

BWI 24.43(3.57) 24.34(3.54) 

EWI 46.31(6.92) 46.08(6.77) 

NDAI 9.15(1.15) 9.14(1.12) 

 

 

 

 

 

 

 

 


