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Abstract

Food webs and other ecological networks can be seen as maps
of species and their interactions (e.g., predation, pollination, and
parasitism). Such mappings frame the complex intricacies of
biological communities in a way that is analytically tractable, but also
obscure species-level information. This can lead to a gap between
studies of networks and the deep literature surrounding species’
idiosyncratic ecologies. Species roles— descriptions of the way
each species is embedded into its community —offer one way to
bridge this gap. As roles provide a species-level perspective on
network structure, patterns in species roles can often be related to
species traits in a way that the overall structure of a network usually
cannot. Thus, role-based approaches give network ecologists a way
to use species’ natural histories to understand patterns in network
structure while also making network analyses more approachable for
ecologists with different specialities.

This thesis uses a variety of definitions of species roles to explore
a variety of ecological networks, demonstrating the broad range of
questions to which species roles may be applied. The first chapter
provides an overview of several different role concepts used in
network ecology, and the second through fifth chapters each use
one or more role concept to investigate specific ecological questions.
Chapter two uses species roles to incorporate a predator-prey
network into the Theory of Island Biogeography. Chapter three uses
species roles to compare the overlap of plants’ interaction partners
in plant-pollinator and plant-herbivore networks, while chapter four
explores the changes to plants’ and insects’ roles in a single plant-
pollinator network over 15 years of climate change. Chapters five and
six are focused on aquatic food webs that include parasites. Chapter
five compares the roles of parasites and free-living species, as well as
different types of interactions between them (i.e., predation among
free-living species, parasitism, antagonism among parasites, and



x

concomitant predation on parasites inside their hosts). Chapter six
uses the roles of feeding links between free-living species to better
understand the trophic transmission of parasites. Finally, in an
appendix we show how individual variation in fishes diets affect
their parasite loads.

The key findings of this thesis are i) that using species roles to
incorporate information from food webs improves the predictions
of the Theory of Island Biogeography, ii) that more closely related
plants had more similar sets of interaction partners despite a great
deal of variation across networks and between plant families, iii)
that the roles of plants and pollinators have shown different changes
after 15 years of warming, suggesting that phenological uncoupling
may be a risk for this system, iv) that parasites and free-living
species have different roles in food webs, but only when concomitant
predation was considered, and v) that many properties of feeding
links between free-living species affect the outcomes of these links
for parasites. As well as providing answers to the driving questions
behind each chapter, this thesis demonstrates the breadth of potential
applications for species roles. We conclude species roles provide
a framework that speaks to the heart of one of the fundamental
unsolved questions in ecology— how species’ traits relate to the
structure of ecological networks.



Preface

This thesis has been written as a series of stand-alone scientific
articles which nevertheless form a cohesive unit. The articles all share
a common focus on using species roles to combine network theory
with ecological questions. As of the date of submission of this thesis,
the articles were in different stages of the publication process. The
first, “Species roles in food webs” was in preparation for submission to
Food Webs and represents a wider review of the relevant literature
than is present in the introductions of the subsequent chapters. The
second, “Knowledge of predator-prey interactions improves predictions

of immigration and extinction in island biogeography”, was published
in a special edition of Global Ecology and Biogeography June 2015:
volume 25, issue 7, pages 900–911. The third, “Conservation of

interaction partners between related plants varies widely across communities

and between plant families” was under revision at New Phytologist,
manuscript number NPH-MS-2016-21211. The fourth, “Are high-
arctic plant-pollinator networks unravelling in a warming climate?”

was under review at Ecography, manuscript number ECOG-02910.
The fifth, “Concomitant predation on parasites is highly variable but

constrains the ways in which parasites contribute to food-web structure”

was published in the Journal of Animal Ecology May 2015: volume
84, issue 3, pages 734-744. The sixth, “Taking the scenic route: trophic

transmission of parasites and the properties of links along which they travel”

was under review at Ecology, manuscript number #ECY16-0885. The
appendix, “Are parasite richness and abundance linked to prey species

richness and individual feeding preferences in fish hosts?” was published
in Parasitology January 2016: volume 143, issue 1, pages 75-86. In
the “General introduction” and “General discussion” framing these
articles, I discuss the relevance of the articles to each other and their
application in ecology.





Co-authorship statements

The following pages contain co-authorship statements for each co-
authored chapter in this thesis.



xiv



xv

Deputy Vice-Chancellor’s Office
Postgraduate Office

Co-Authorship Form

This form is to accompany the submission of any thesis that contains research reported in co-

authored work that has been published, accepted for publication, or submitted for publication. A 

copy of this form should be included for each co-authored work that is included in the thesis. 

Completed forms should be included at the front (after the thesis abstract) of each copy of the thesis 

submitted for examination and library deposit.

Please indicate the chapter/section/pages of this thesis that are extracted from co-authored work 
and provide details of the publication or submission from the extract comes: 

The entirety of chapter two was published in the journal Global Ecology and Biogeography (doi:
10.1111/geb.12332). 

Please detail the nature and extent (%) of contribution by the candidate: 

The candidate contributed to the design of the experiment (40%), performed the analyses (100%), 
and wrote the first draft (100%). Both authors contributed to subsequent drafts. 

Certification by Co-authors:
If there is more than one co-author then a single co-author can sign on behalf of all
The undersigned certifys that:

 The above statement correctly reflects the nature and extent of the PhD candidate’s 

contribution to this co-authored work 

 In cases where the candidate was the lead author of the co-authored work he or she wrote the 

text

Name: Daniel B. Stouffer Signature: Date: 29-09-2016



xvi

Deputy Vice-Chancellor’s Office
Postgraduate Office

Co-Authorship Form

This form is to accompany the submission of any thesis that contains research reported in co-

authored work that has been published, accepted for publication, or submitted for publication. A 

copy of this form should be included for each co-authored work that is included in the thesis. 

Completed forms should be included at the front (after the thesis abstract) of each copy of the thesis 

submitted for examination and library deposit.

Please indicate the chapter/section/pages of this thesis that are extracted from co-authored work 
and provide details of the publication or submission from the extract comes: 

The entirety of chapter three was submitted to the New Phytologist (manuscript number NPH-MS-
2016-21211). The manuscript was rejected with invitation to resubmit, and is currently in revision.

Please detail the nature and extent (%) of contribution by the candidate: 

The candidate contributed to the design of the experiment (60%), performed the analyses (95%), 
and wrote the first draft (100%). All authors contributed to subsequent drafts.

Certification by Co-authors:
If there is more than one co-author then a single co-author can sign on behalf of all
The undersigned certifys that:

 The above statement correctly reflects the nature and extent of the PhD candidate’s 

contribution to this co-authored work 

 In cases where the candidate was the lead author of the co-authored work he or she wrote the 

text

Name: Daniel B. Stouffer Signature: Date: 29-09-2016



xvii

Deputy Vice-Chancellor’s Office
Postgraduate Office

Co-Authorship Form

This form is to accompany the submission of any thesis that contains research reported in co-

authored work that has been published, accepted for publication, or submitted for publication. A 

copy of this form should be included for each co-authored work that is included in the thesis. 

Completed forms should be included at the front (after the thesis abstract) of each copy of the thesis 

submitted for examination and library deposit.

Please indicate the chapter/section/pages of this thesis that are extracted from co-authored work 
and provide details of the publication or submission from the extract comes: 

The entirety of chapter four was submitted to Ecography (manuscript number ECOG-02910). The 
manuscript is currently under review.

Please detail the nature and extent (%) of contribution by the candidate: 

The candidate contributed to the design of the experiment (70%), performed the analyses (100%), 
and wrote the first draft (100%). All authors contributed to subsequent drafts.

Certification by Co-authors:
If there is more than one co-author then a single co-author can sign on behalf of all
The undersigned certifys that:

 The above statement correctly reflects the nature andextent of the PhD candidate’s 

contribution to this co-authored work 

 In cases where the candidate was the lead author of the co-authored work he or she wrote the 

text

Name: Daniel B. Stouffer Signature: Date: 29-09-2016



xviii

Deputy Vice-Chancellor’s Office
Postgraduate Office

Co-Authorship Form

This form is to accompany the submission of any thesis that contains research reported in co-

authored work that has been published, accepted for publication, or submitted for publication. A 

copy of this form should be included for each co-authored work that is included in the thesis. 

Completed forms should be included at the front (after the thesis abstract) of each copy of the thesis 

submitted for examination and library deposit.

Please indicate the chapter/section/pages of this thesis that are extracted from co-authored work 
and provide details of the publication or submission from the extract comes: 

The entirety of chapter five was published in the Journal of Animal Ecology (doi: 10.1111/1 -
2 .12 2 ).

Please detail the nature and extent (%) of contribution by the candidate: 

The candidate contributed to the design of the experiment ( 0%), performed the analyses (100%), 
and wrote the first draft (100%). oth authors contributed to subsequent drafts.

Certification by Co-authors:
If there is more than one co-author then a single co-author can sign on behalf of all
The undersigned certifys that:

 The above statement correctly reflects the nature and extent of the PhD candidate’s 

contribution to this co-authored work 

 In cases where the candidate was the lead author of the co-authored work he or she wrote the 

text

Name: Daniel B. Stouffer Signature: Date: 29-09-2016



xix

Deputy Vice-Chancellor’s Office
Postgraduate Office

Co-Authorship Form

This form is to accompany the submission of any thesis that contains research reported in co-

authored work that has been published, accepted for publication, or submitted for publication. A 

copy of this form should be included for each co-authored work that is included in the thesis. 

Completed forms should be included at the front (after the thesis abstract) of each copy of the thesis 

submitted for examination and library deposit.

Please indicate the chapter/section/pages of this thesis that are extracted from co-authored work 
and provide details of the publication or submission from the extract comes: 

The entirety of chapter six was submitted for publication in the journal Ecology (MS EC 1 -0 ).
The manuscript was re ected with invitation to resubmit and is currently in revision.

Please detail the nature and extent (%) of contribution by the candidate: 

The candidate contributed to the design of the experiment ( 0%), performed the analyses (100%), 
and wrote the first draft (100%). All authors contributed to subsequent drafts.

Certification by Co-authors:
If there is more than one co-author then a single co-author can sign on behalf of all
The undersigned certifys that:

 The above statement correctly reflects the nature and extent of the PhD candidate’s 

contribution to this co-authored work 

 In cases where the candidate was the lead author of the co-authored work he or she wrote the 

text

Name: Daniel B. Stouffer Signature: Date: 29-09-2016



xx

Deputy Vice-Chancellor’s Office
Postgraduate Office

Co-Authorship Form

This form is to accompany the submission of any thesis that contains research reported in co-

authored work that has been published, accepted for publication, or submitted for publication. A 

copy of this form should be included for each co-authored work that is included in the thesis. 

Completed forms should be included at the front (after the thesis abstract) of each copy of the thesis 

submitted for examination and library deposit.

Please indicate the chapter/section/pages of this thesis that are extracted from co-authored work 
and provide details of the publication or submission from the extract comes: 

The entirety of the appendix was published in the journal Parasitology 
(doi:10.1017/S00 11 201 001 0 ).

Please detail the nature and extent (%) of contribution by the candidate: 

The candidate contributed to the design of the experiment ( 0%), performed the analyses (100%), 
and contributed to the first draft ( 0% - methods, results, discussion). All authors contributed to 
subsequent drafts.

Certification by Co-authors:
If there is more than one co-author then a single co-author can sign on behalf of all

The undersigned certifys that:

 The above statement correctly reflects the nature and extent of the PhD candidate’s 

contribution to this co-authored work 
 In cases where the candidate was the lead author of the co-authored work he or she wrote the 

text

Name: Daniel B. Stouffer Signature: Date: 29-09-2016



General introduction1

Whether to our delight or our dismay, ecology is not like physics.2

In physics, a reductionist approach to studying the world (and3

beyond) has yielded centuries of phenomenal results such as the4

discovery of the four fundamental forces, Newtonian mechanics,5

and relativity (Meyer-Ortmanns, 2015). In ecology, meanwhile,6

many senior researchers despair of uncovering fundamental laws7

(Lawton, 1999; Simberloff, 2004; Poulin, 2007; but see Turchin,8

2001). Exceptions abound to both observed patterns and theoretical9

predictions (Lawton, 1999; Poulin, 2007). This is likely due to the10

wide and wonderful variety of species, habitats, and communities11

that characterises our world. The peculiarities of living things12

are what draw many ecologists to the field, but they also make13

any pursuit of general truths very difficult. To put it simply,14

while a single species can be described relatively well in isolation,15

knowledge of one species’ population dynamics, behaviour, or16

habitat requirements may not be applicable when studying another17

species.18

One cannot, therefore, understand an ecological community19

by scaling up from the properties of single species in the same20

way that one can understand the behaviour of a gas by scaling21

up from the properties of molecules. Unlike physical systems,22

natural communities of species display emergent properties23

that cannot be predicted based on the properties of the species24

themselves (Emmerson and Yearsley, 2004; Beckerman et al., 2006;25

Stouffer, 2010). For example, natural communities routinely support26

higher numbers of species than are stable in naive models (May,27

1972). This implies that there is some form of “organisation” in28

ecological communities that stabilises them and allows them to29

persist (Dunne et al., 2002, 2004; Fortuna et al., 2010; Stouffer and30

Bascompte, 2011). To study these structures, it is thus necessary to31

consider the structure of the community as a whole, and a leading32
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way to do so is within an ecological network framework (Heleno33

et al., 2014).34

Networks are essentially maps of interactions (‘links’) between35

species. Networks have been used to map antagonistic (e.g.,36

predation [Paire, 1966] and parasitism [Wells et al., 2013]) and37

mutualistic (e.g., pollination [Olesen et al., 2007] and seed-dispersal38

[Schleuning et al., 2011]) interactions in a wide variety of habitats39

from around the globe. In each case, the network describes the40

whole community’s structure and behaviour with respect to the41

interaction of interest. By capturing the structure of interactions42

in a community, networks allow us to address questions about43

community stability (Dunne et al., 2002, 2004; Fortuna et al., 2010;44

Stouffer and Bascompte, 2011) and ecosystem functioning (Mello45

et al., 2011; Burkle et al., 2013; Poisot et al., 2013). Both the46

density (Dunne et al., 2002, 2004) and arrangement (Fortuna et al.,47

2010; Stouffer and Bascompte, 2011) of links within a community48

have been linked to communities’ ability to remain stable with high49

numbers of species. These structural characteristics, moreover, have50

also been linked to environmental factors such as latitude (Cirtwill51

et al., 2015), land use (Thompson and Townsend, 2004, 2010), and52

spatial isolation of the community (Nogales et al., 2015).53

In addition to facilitating analysis of the community as a54

whole, ecological networks can also be used to study species55

within the broader context of their community. Specifically, we56

can use ecological networks to describe species’ roles within their57

communities– that is, how they interact with other species. By58

quantifying species’ places within ecological networks, roles provide59

a bridge between species’ natural histories and the properties60

and processes at play at the community level. Integrating the two61

levels of knowledge allows us to test potential drivers of network62

structure. For example, species’ body sizes have been shown to play63

a fundamental role in structuring predator-prey interactions (Loeuille64

and Loreau, 2005; Brose et al., 2006; Curtsdotter et al., 2011; Riede65

et al., 2011; Brose et al., 2016), and the roles of plants and animals66

in pollination and frugivory networks have been linked to their67

phylogenies (Ehrlich and Raven, 1964; Jordano et al., 2003; Rezende68

et al., 2007; Guimarães et al., 2011; Rohr et al., 2014; Nogales et al.,69

2015). Moving in the other direction, knowledge of the relationships70

between species’ traits and their roles in food webs are being used71

to develop probabilistic interaction networks that better account for72

incomplete sampling of communities (Guimerà and Sales-Pardo,73

2009; Dalla Riva and Stouffer, 2015; Poisot et al., 2015). Along with74
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facilitating “pure science” research, species’ network roles can also be75

used to inform conservation plans since species with different roles76

have different responses to perturbations in their community (Eklöf77

and Ebenman, 2006; Kaiser-Bunbury et al., 2010; Curtsdotter et al.,78

2011; Wootton and Stouffer, 2016).79

Throughout this thesis, I demonstrate several ways in which80

species roles can provide a bridge between network ecology and81

knowledge about species’ particular traits. In each case, I endeavour82

to show that using species roles gives us a unique insight into83

communities. Like the species they describe, roles come in a variety84

of shapes and sizes and can be measured in different ways. For a85

very simple summary, one can count the number of interactions in86

which a species participates (its degree), or determine how ‘high’ in87

the network a species feeds (its trophic level). At the other extreme,88

concepts like betweenness centrality consider all paths through the89

network to determine a species’ impact (Jordán et al., 2006; Newman,90

2010; Lai et al., 2012). In the middle are role concepts that include91

species’ direct interactions as well as indirect interactions that are92

likely to affect the focal species, but do not include the structure93

of the entire network in each species’ role. One such definition is94

‘motif roles’; an extension of the use of meso-scale ‘motifs’. These are95

configurations of n species describing unique patterns of interactions96

that can be used to measure the structure of a network (Milo et al.,97

2002; Stouffer et al., 2007). Once a network has been described in98

terms of its component set of motifs, a species’ motif role is the list99

of frequencies with which a species appears in each unique position100

in each motif (Stouffer et al., 2012; Baker et al., 2015; Cirtwill and101

Stouffer, 2015). The motif role therefore provides a summary of the102

species’ direct and indirect (up to n-1 steps removed) interactions—103

a detailed description of the way the species is embedded in the104

community. These and other role concepts are all valid ways of105

describing species’ places within their ecological contexts, and the106

choice of role for each study will depend on the precise question107

being asked.108

To clarify the variety of concepts and methodologies used109

to describe species’ roles, I begin this thesis with a review of the110

literature surrounding species’ roles. This review takes the place111

of the literature review that would normally occur in a thesis112

introduction. In it, my co-authors and I first summarise several113

definitions of species roles (including those mentioned above). We114

then highlight similarities among definitions of role that address115

similar questions about the ways in which species interact, and finish116
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by noting extensions to role concepts currently being developed.117

One such extension, the association of species’ roles with their118

phylogenetic history, is also a major focus of Chapter 4.119

Having established definitions for a variety of role concepts and120

their broader context within the literature in Chapter 1, Chapters121

2-6 of my thesis each explore one or more role concepts in detail.122

In the second and third chapters, we define species’ roles as their123

sets of interaction partners. In Chapter 2, these are the predators124

and prey of arthropod species in a classic island biogeography125

dataset (Simberloff, 1969). Here, my co-author and I attempt to use126

knowledge of species’ roles in their local community, drawn from a127

mainland food web (Piechnik et al., 2008), to improve the accuracy of128

predictions based on the Theory of Island Biogeography (MacArthur129

and Wilson, 1963). We expect that, as species’ roles change, their130

probabilities of immigrating to or going extinct from a given131

mangrove island will also change. Specifically, we fit models which132

include terms for the presence of species’ arthropod predators133

and/or prey and/or their ability to consume basal resources as134

well as similar “classic” models which include only island size and135

isolation. We compare models based on both their fit to the empirical136

data and on the similarity of their predictions. This allows us to137

determine whether incorporating species’ roles into the Theory of138

Island Biogeography results in a meaningful improvement.139

In Chapter 3, we consider plant’s roles in terms of their140

pollinators or herbivores in a wide array of plant-pollinator and141

plant-herbivore networks. Unlike the food web used to determine142

arthropods’ roles in Chapter 2, these networks are all bipartite.143

That is, they are composed of two groups of species (e.g., plants144

and pollinators) that interact only with species from the opposite145

group (i.e., plants are pollinated by animals, not by other plants). We146

use these networks to investigate the relationship between plants’147

phylogenies and their roles. We expect that, since related plants tend148

to have similar traits and since herbivory and pollination interactions149

are both strongly affected by plants’ traits, more closely-related150

plants will have more similar roles. As herbivory is detrimental to151

plants while pollination is beneficial, we also expect that the strength152

of this relationship might differ between network types. Finally,153

we compare the strength of the relationship between phylogenetic154

relatedness and similarity of interaction partners across plant155

families.156
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In Chapters four and five, my co-authors and I define species’157

roles more explicitly using the motif roles defined in Stouffer et al.158

(2012). That is, we decompose networks into their component motifs159

and track species’ participation in each unique position across the160

set of motifs. In Chapter four, we are interested in the motif roles of161

plants and their insect pollinators. Our particular focus in this case162

is the response of each group to climate change and the associated163

changes to plants’ flowering phenologies. As pollinators depend on164

floral resources for their food, we expect that pollinators’ phenologies165

may also have advanced over time. However, since plants and insects166

active at different points in the season require different abiotic167

conditions, we also expect that changes in roles may be linked to the168

date on which a species becomes active each year. We test all of these169

hypotheses in a plant-pollinator community in Northern Greenland170

which has experienced substantial warming over the past 14 years171

and in which plant phenologies are known to have changed (Høye172

et al., 2013).173

In Chapters five and six, we return to unipartite food webs to174

explore several aspects of parasites’ participation in aquatic food175

webs. Chapter five compares the roles of parasites and free-living176

species across seven estuarine food webs to test i) whether parasites’177

roles are similar to those of free-living species at particular trophic178

levels and ii) whether parasites’ roles change as different types of179

interactions unique to parasites are included in their roles. We divide180

free-living species into basal resources (those with predators but no181

prey), intermediate consumers (those with predators and prey), and182

top predators (those with prey but no predators), and calculated the183

median motif roles of each group. We next compare these median184

roles to those of parasites. To test whether concomitant predation185

(the consumption of parasites along with their hosts) has a different186

effect on parasites’ roles than interactions in which the parasite is187

more directly involved (i.e., parasitism, predation on free-living188

life stages of the parasite, and predation among parasites sharing189

a host), we calculate parasites roles’ both including and excluding190

concomitant predation and compare each to the roles of free-living191

species.192

Chapter five also extends the motif role concept to links between193

species. Just as species’ motif roles can be described by calculating194

the frequencies with which a species occupies each unique position195

in a set of motifs, an interaction’s role can be described by calculating196

the frequency with which it occupies each unique link position in197

the same set of motifs. This description captures the different ways198
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in which each link contributes to the flow of energy and biomass199

through a web just as a species’ motif role describes the species’200

participation in the web. To compliment our investigation of the201

changes to parasites’ roles when different types of interactions are202

included, we also examine the roles of several types of link directly.203

Because species’ motif roles are determined by the interactions in204

which they participate and vice versa, taking both a species- and link-205

focused view of network structure provides a unique window into206

how each type of species and interaction is embedded in the network207

as a whole.208

In Chapter six we build on this concept of links’ roles to209

investigate the consequences of links between free-living species210

for parasites. Many parasites have complex life cycles which involve211

multiple hosts. In some cases, parasites move from one host to the212

next via trophic transmission when the parasite’s next host consumes213

its current host. As parasites generally must complete their life cycles214

in order to sexually reproduce, we expect that they will tend to use215

transmission routes that are very likely to occur (giving the parasite216

the best chance of reaching its final host). We used several definitions217

of links’ roles within networks to determine whether links resulting218

in trophic transmission have different properties from links in which219

the parasite is killed or links which do not affect the parasites.220

The latter occurs when the prey in an interaction is not a host for221

any parasites in the study system. We tested this hypothesis in a222

spatially and temporally-replicated dataset from four New Zealand223

lakes (Cirtwill et al., 2016).224

In an appendix following the main body of the thesis, I present225

additional work done during my PhD candidature at the University226

of Canterbury. As a companion study to the work in Chapter six,227

my co-authors and I test whether fish with broader diets are more228

likely to host large numbers of parasites or highly-diverse parasite229

assemblages. In particular, we are interested in the associations230

between diet and parasite load across individuals of different fish231

species. Although the six main chapters of this thesis address232

questions at the level of species and the interactions between them,233

it is worth remembering that individuals within species do not234

necessarily all participate in the same interactions or have the same235

roles. Indeed, several studies have shown that generalist species can236

be composed of much more specialised individuals (Pires et al., 2011).237

Investigating spatial, temporal, and intra-specific variation in species’238

roles is likely to be an important area of study in the future; this239
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appendix provides only one example of the questions that may be240

asked.241

Readers will note that this body of work does not explore a242

narrow area in great depth but instead applies species roles to a243

variety of questions in network ecology. This is by design. As species244

roles, particularly motif roles, are a relatively recent development245

even within network ecology (itself a young subdiscipline within246

ecology), it is not yet clear which questions require the most in-247

depth study. Instead, I have opted to demonstrate the breadth of248

potential applications for species roles. In addition to contributing to249

the ecological literature surrounding each chapter, this broad-based250

approach has also revealed strengths and weaknesses of different251

role concepts and, more importantly, ways in which I and others can252

improve them in the future.253
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Introduction461

Ecologists often wish to understand a species’ “place in the biotic462

environment, its relations to food and enemies” (Elton, 1927 in463

Johnson and Steiner, 2000) or, in short, its Eltonian niche. To do this,464

one must first map the biotic environment (community) to which465

the focal species belongs. Food webs provide just such a mapping466

by connecting species based on their trophic interactions. These467

interactions include antagonistic interactions such as predation and468

parasitism, but can also include mutualisms, such as pollination469

and seed-dispersal, where one species obtains food while aiding470

the reproduction of the other. Once a food web describing the focal471

species’ community has been assembled, there are several methods472

that can be used to describe the species’ role within the web (i.e., how473

the focal species participates in its community). Because food webs474

describe energy and biomass flows through a community (Lindeman,475

1942; Wootton, 1997), represent ecosystem functions (Memmott et al.,476

2007; Reiss et al., 2009; Thompson et al., 2012), and even offer insights477

into the community’s overall stability (Neutel et al., 2002; Thébault478

and Fontaine, 2010), describing species’ roles in food webs allows479

us to assess their niches both in terms of species’ requirements for480

survival and their impacts on their communities (Chase and Leibold,481

2003).482

Roles and Eltonian niches are related, in that both address the483

ways in which species affect and are affected by each other, but they484

are not equivalent. This is true even when we completely ignore485

species’ abiotic requirements (Peterson, 2011). Food webs generally486

only include one type of interaction (e.g., predation or pollination487

but not both [Fontaine et al., 2011]). A species’ role in a food web488

therefore describes only the portion of its niche that relates to the489

kind of interaction being described in the food web. For example, the490

roles of a species of Lepidoptera will be quite different in networks491

describing pollination, herbivory, and predation. Moreover, the492

Eltonian niche aims to identify those biotic conditions that are able493

to support a species on moderate timescales (i.e., from individual494

lifespans up to thousands of years) (Peterson, 2011), while food webs495

describe communities at a particular point in time with no guarantee496

that the species present during sampling will persist. Finally, the497

portion of a species’ niche that is described by its role in a network498

will be affected by the exact definition of role that is used. Given the499

variety of definitions used across different fields, it can be difficult500

to make comparisons across studies. To tackle this problem, here501

we review several commonly-used concepts of species’ roles in502
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food webs. In each case, we summarise the methodology used to503

obtain the role and highlight its connection to the species’ Eltonian504

niche. We are particularly interested in areas of overlap between505

role concepts, and take care to point out connections between roles506

wherever possible. We then outline ways in which researchers507

identify and group species with similar roles, and conclude with a508

very brief survey of current limitations to the idea of species’ roles,509

and how researchers are working to overcome these limitations.510

Terms in italics are defined in Box 1..511

Concepts of species’ roles in networks512

Degree513

One of the mathematically simplest definitions of a species’ role514

is it’s degree: the number of interactions in which the species515

participates (Fig. 1). Degree depends only on the focal species’ local516

neighbourhood within the network. That is, degree only considers517

other species which directly interact with the focal species. Thus,518

degree provides a measure of species’ participation in a food web519

without requiring any knowledge of the global structure of the web520

(i.e., the species that indirectly affect the focal species). Degree can521

also be used to investigate particular subsets of a species’ local522

neighbourhood. If the focal species’ role as a predator (or prey)523

specifically is of greater interest than its overall role, degree can be524

divided into in-degree— the number of incoming links (interactions)525

— and out-degree— the number of outgoing links (Fig. 1B). Note that526

this is only applicable in unipartite networks as in bipartite networks527

each group of species has only in-links or only out-links and such a528

division is not meaningful. Whether or not degree is subdivided, in529

niche terms degree tells us how important the focal species is likely530

to be, in terms of the interaction described in the food web.531

The notion that species with high degrees are particularly532

important to their communities is based on the fact that if the533

abundance of such a species changes, this will directly affect many534

other species (Lai et al., 2012). Perturbations to high-degree species535

may therefore have larger effects on the food web than perturbations536

to low-degree species. Moreover, it is more likely that high-degree537

species will have interaction partners that depend very strongly upon538

them. As such, the removal of a high-degree species is more likely539

to cause secondary extinctions than the removal of a low-degree540

species (Dunne et al., 2002; Memmott et al., 2004; Eklöf and Ebenman,541

2006; Kaiser-Bunbury et al., 2010; Curtsdotter et al., 2011). Degree542

can also have implications for the management of introduced species.543
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Figure 1: These two food webs each
contain species with different degrees
and trophic levels. A) In this bipartite
food web, pale blue squares represent
pollinators and dark green circles
represent plants. Note that species
do not interact with other species
of the same type (i.e., plants do
not pollinate other plants). B) In a
unipartite food web, any species could
potentially interact with any other.
Here, degrees can also be subdivided
into in- and out-degrees based on a
focal species’ numbers of prey and
predators, respectively. For example,
the species highlighted in the red,
dashed box has an in- degree of 2 and
an out-degree of 1, giving an overall
degree of 3. In both networks, the size
of a shape increases with its degree
while the fill represents trophic level
(TL; height in food chains). In A), the
two groups of species are at different
trophic levels. In B), trophic levels
increase from primary producers (TL=1;
dark green) to predators (TL=3, very
pale green). Most of the species in this
food web have integer trophic levels.
The species highlighted in the dotted
red box, however, is an omnivore with
both plant and animal resources. Its
trophic level therefore depends on the
exact definition of trophic level used.
Short-weighted trophic level considers
only the most direct path from the focal
species to a primary producer; under
this definition, the focal species has a
trophic level of 2. Prey-averaged trophic
level, in contrast, considers the trophic
levels of all the focal species’ prey. If
interaction strengths (indicated by line
weights) are not considered, the focal
species has a trophic level of 2.5. If
interaction strengths are accounted for,
however, the focal species’ PATL will be
closer to 2.

In particular, specialist pollinators are more likely than generalists544

to interact with exotic plants, suggesting that it may be important to545

consider the degrees of native species when developing management546

plans for introduced species (Stouffer et al., 2014).547

As well as predicting species’ effects on their communities,548

degrees can also be used to predict which species are most likely to549

go extinct after the loss of an interaction partner. Specialist predators550

(those with low in-degrees) are particularly vulnerable to the loss of551

prey (Allesina, 2012). This difference in vulnerability to secondary552

extinction in turn has implications for biogeography. As specialists553

are more likely to go extinct following the loss of a prey species, they554

are likely to have smaller geographic ranges than generalists (Gaston,555

1991). At a landscape level, these trends mean that specialists should556
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appear in fewer patches than generalists (Holt, 2010; Gravel et al.,557

2011), leading to increased beta diversity (Ødegaard, 2006). This has558

the potential to create a feedback loop, with geographically-restricted559

species having access to fewer partners than species with broader560

ranges and therefore becoming more specialised.561

Despite its utility, some have argued that the qualitative degree562

described above, which is calculated based only on the presence or563

absence of links between species, does not accurately reflect species’564

specialisation or importance to the community (e.g., Blüthgen et al.,565

2006). To address this, several quantitative extensions of degree566

have been formulated. These extensions all weight interactions to567

reflect the importance of the focal species to each of its partners568

rather than assuming all interactions are equal (Blüthgen et al., 2007;569

Dormann, 2011; Nilsson and McCann, 2016). Weighted measures may570

provide a more realistic measure of a species’ effect on its interaction571

partners than qualitative degree (Wootton, 2005; Vázquez et al., 2005).572

However, calculating weighted degrees requires detailed data that573

include interaction weights. As these data are more costly and time-574

intensive to collect, datasets including weights are much rarer than575

food webs that include only the presence or absence of interactions.576

Trophic level577

As well as describing the importance of a species’ niche, degree can578

also be used to give an idea of a species’ vertical position in a food579

web— i.e., its trophic level. This role concept refers to a species’ place580

in the food chains that make up a food web, relative to the primary581

producers that support the community. Species that do not consume582

any other species in the web (i.e., those with an in-degree of zero) are583

primary producers. At the other extreme, species with no predators584

(i.e., those with an out-degree of zero) are top predators (Fig. 1B).585

Those with both predators and prey (i.e., non-zero in- and out-586

degrees) are intermediate consumers. In niche terms, trophic levels587

tell us whether a focal species relates to its biotic environment as588

a predator, prey, or both. These categorical descriptions, however,589

are relatively imprecise. By defining the trophic level of primary590

producers to be one and those of consumers’ to be one greater than591

that of their prey (Lindeman, 1942), numerical trophic levels can be592

calculated for each species in a food web.593

For species other than primary producers and top predators,594

degree alone is not enough to calculate trophic levels. Instead, it595

is necessary to consider the network structure beyond the focal596
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species’ local neighbourhood. Specifically, trophic levels can be597

calculated by following food chains from the focal species to primary598

producers. Each step up the food chain is a new trophic level, with599

strict herbivores (that consume only basal resources) assigned a600

trophic level of two and consumers occupying ever higher values601

based on their sets of prey species (Lindeman, 1942; Darnell, 1961;602

Baird and Ulanowicz, 1989; Christian and Luczkovich, 1999). This603

simple definition was developed under the assumption that species604

feed on sets of prey with the same trophic level (Lindeman, 1942).605

As the prevalence and importance of omnivory in food webs has606

become clear (Holt, 1997; Emmerson and Yearsley, 2004; Thompson607

et al., 2007), however, non-integer trophic levels have become the608

norm (Cousins, 1987; Vander Zanden and Rasmussen, 1996; Williams609

and Martinez, 2004; Thompson et al., 2007). To emphasise this shift,610

some researchers prefer the term “trophic position” (e.g., Levine,611

1980; Cohen et al., 2003). As the two terms refer to the same quantity,612

we will continue to use trophic level to refer to a species’ vertical613

position in a food web.614

A variety of methods have been developed to account for species615

which feed on prey at different trophic levels (Fig. 1B). Each approach616

emphasises different interactions. “Shortest trophic level”, for617

example, assumes that because losses occur during the transfer of618

energy between trophic levels, species obtain most of their energy619

along the shortest food chain in which they participate (Hairston,620

Jr. and Hairson, Sr., 1993; Williams and Martinez, 2004). Under this621

concept, therefore, a species’ trophic level is one greater than the622

lowest trophic level among its prey (Hairston, Jr. and Hairson, Sr.,623

1993; Williams and Martinez, 2004). Other methods such as prey-624

averaged trophic level take all food chains in which the focal species625

participates into account (Williams and Martinez, 2004). Regardless626

of the precise methodology, however, trophic levels always rank627

species based on their vertical position in food webs, with primary628

producers setting the baseline.629

Trophic levels can also be calculated independent of food-web630

topology by using stable isotopes (Peterson and Fry, 1987; Vander631

Zanden and Rasmussen, 1996; Post, 2002). This approach uses the632

different rates of bioaccumulation of carbon and nitrogen isotopes to633

measure species’ average trophic levels without requiring knowledge634

of specific interactions between species. While the stable isotopes635

approach is therefore useful in cases where the structure of the636

food web is not known, it is also difficult to use when comparing637

across food webs. Stable isotope ratios vary between taxa and tissue638
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types depending on their particular biochemistries (Vander Zanden639

et al., 2015) and between study cites, requiring the use of baseline640

species in each food web under study (Kling et al., 1992; Cabana641

and Rasmussen, 1994; O’Reilly et al., 2002; Boecklen et al., 2011).642

Despite the differences in how trophic levels are calculated from643

stable isotopes and network topology, they have been shown to be644

strongly correlated (Williams and Martinez, 2004; Carscallen et al.,645

2012). This supports the idea that topological definitions of trophic646

levels are grounded in sound ecological characteristics, and suggests647

that trophic levels may be comparable across studies even if different648

methodologies are used.649

As well as different carbon and nitrogen isotopes, environmental650

contaminants such as DDT and mercury tend to accumulate moving651

up food chains (Rowan and Rasmussen, 1992; Gray, 2002; Wang and652

Wang, 2005; Tavares et al., 2009; Coelho et al., 2013). Trophic levels653

can therefore be used to predict the level of contamination in fish654

species that are targeted for human consumption (Beltran-Pedreros655

et al., 2011), and assess the risk of contamination for species of656

conservation concern (Bossart, 2011). The bioaccumulation of DDT in657

predatory birds is perhaps the most famous example of this process,658

and identification of this trend and its effects on bird populations led659

to the banning of DDT in North America (Grier, 1982). Apart from660

tracking the accumulation of contaminants, a species’ trophic level661

can be used to predict its potential to cause a trophic cascade (Spiller662

and Schoener, 1994; Dyer and Letourneau, 2003; Borrvall and663

Ebenman, 2006; Eklöf and Ebenman, 2006; Boersma et al., 2014; Estes664

et al., 2015; Rodríguez-Lozano et al., 2015), with top predators and665

primary producers tending to have particularly large effects on the666

rest of their communities. Like degree, therefore, trophic level offers667

information about how important a species is to its biotic community.668

Motif roles669

A major limitation to both trophic level and degree, is that they give670

little information on a species’ indirect interactions— interactions671

which can have major impacts on the focal species despite not672

involving the focal species directly (Wootton, 1994; Jordán et al.,673

2006). This limits the ability of these role concepts to describe674

species’ niches because indirect effects can modulate the relationships675

between the focal species and their predators or prey. For example,676

if the focal species’ predator has other prey and the focal species677

becomes rare, the predator might consume more of the alternative678

prey. The interaction between the predator and its alternate prey679
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might thereby provide the focal species with relief from predation680

pressure (Hammill et al., 2015). Similarly, the removal of a predator681

might allow its prey to increase in abundance, having knock-on682

effects on other predators (Sanders et al., 2013). These patterns of683

interactions describe network structure at an intermediate scale684

between the local interactions accounted for in degree and the full,685

global structure of the network. Some of these meso-scale have been686

shown to affect the focal species’ population size and dynamics (Polis687

et al., 1989; Holt, 1997; Zabalo, 2012), suggesting that meso-scale688

structures can affect species’ Eltonian niches. One way to take these689

structures into account is by defining species’ motif roles. These690

roles extend the concept of network structural motifs— unique691

patterns of n interacting species (Milo et al., 2002) —to the species692

level and aim to provide a more holistic picture of species’ niches by693

explicitly including direct and indirect interactions (Stouffer et al.,694

2012; Cirtwill and Stouffer, 2015; Fig. 2).695

To determine a species’ motif role, the network is first696

decomposed into a set of motifs (Milo et al., 2002; Stouffer697

et al., 2007). In unipartite food webs, there are 13 three-species698

motifs (Stouffer et al., 2007). Some of these motifs, such as “three-699

species food chains” (Hastings and Powell, 1991; Bascompte and700

Melián, 2005; Laws and Joern, 2013; Fig. 2), “apparent competition”701

(two prey sharing a predator [Holt and Kotler, 1987; Bascompte702

and Melián, 2005; Lefèvre et al., 2009; McKinnon et al., 2013]), and703

“intraguild predation” (two predators sharing a prey, where one704

predator also consumes the other [Polis et al., 1989; Holt, 1997;705

Kondoh, 2008; Zabalo, 2012]) have clear biological meanings and706

have been studied in isolation. Others, including many of the motifs707

involving two-way interactions (i.e., A eats B and B eats A), have not708

yet been interpreted. In bipartite food webs, there are only two three-709

species motifs. To fully describe species’ roles in these networks it710

is therefore necessary to use larger, less well-studied motifs (Baker711

et al., 2015). Where possible, however, it is best to use relatively small712

motifs. This is partly because of computational limitations and the713

difficulty in interpreting large motifs but also because the impact of714

indirect effects is expected to decrease moving farther from the focal715

species (Jordán and Scheuring, 2002; Jordán et al., 2006).716

Whatever the size of motifs being used, each motif contains one717

or more unique positions. In a three-species food chain motif, each718

species occupies a unique position as the top, bottom, and middle719

species all have different biological meanings (Stouffer et al., 2012;720

Cirtwill and Stouffer, 2015). In an apparent competition motif, in721
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Figure 2: Motif roles describe the
way a species is embedded in a
food web by decomposing the web
into its component motifs (unique
configurations of n interacting species)
and tracking the participation of the
species in each motif. There are 13

different three-species motifs; this
simple food web contains only the
five motifs that contain only one-way
interactions. The motif roles of two
species are shown below the food web.

contrast, there are only two unique positions as the two predators722

are indistinguishable in the context of that motif. Once a network723

has been broken down into its component motifs, species’ motif724

roles can be calculated by counting the number of times the focal725

species occurs in each position within each motif (Stouffer et al., 2012;726

Baker et al., 2015; Cirtwill and Stouffer, 2015). This yields a vector727
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of frequencies which describes the focal species’ role in terms of its728

direct and indirect interactions, providing a detailed picture of the729

way in which the species is embedded in its community (Stouffer730

et al., 2012; Baker et al., 2015; Cirtwill and Stouffer, 2015). Because a731

motif role provides a detailed picture of a focal species’ relationships732

to other species in the community (as predator, prey, competitor, etc.),733

the motif role can be seen as a description of the species’ niche from734

the perspective of the interaction described in the food web.735

Motif roles are a relatively new development, but have already736

been used to compare the ways in which free-living species737

and parasites fit into food webs (Cirtwill and Stouffer, 2015), to738

measure variation in species’ roles over space and time (Baker739

et al., 2015), and to test whether species’ roles are phylogenetically740

conserved (Stouffer et al., 2012). Motifs more broadly have also been741

linked to community stability, with some motifs appearing much742

more commonly in stable networks (Stouffer, 2010; Borrelli et al.,743

2015). This approach has been extended to predict which species744

contribute most to the stability of their communities (Stouffer et al.,745

2012). Motifs have also been used to track the extent of regime shifts746

in the Baltic Sea (Yletyinen et al., 2016), demonstrating the promise of747

the approach for detailed analysis of particular study systems.748

Centrality749

Structural roles incorporate meso-scale structures as well a focal750

species’ local neighbourhood. Some measures of centrality also take751

this approach to describe a species’ ability to influence the rest of the752

food web (Estrada, 2007; Lai et al., 2012). These measures extend the753

thinking behind degree (which considers only the focal species’ local754

neighbourhood) and also consider the focal species’ impact through755

indirect interactions (Jordán et al., 2006; Lai et al., 2012).756

Measures of centrality that incorporate meso-scale network757

structures are usually based on identifying the food chains in which758

the focal species participates, just as with trophic level. Unlike759

trophic levels, however, measures of centrality also consider the food760

chains which do not involve the focal species. Two such measures,761

“betweenness centrality” (Fig. 3) and “information centrality”, both762

quantify the frequency with which the focal species appears on paths763

between pairs of other species (White and Borgatti, 1994; Jordán764

et al., 2006; Estrada, 2007). The main difference between the two is765

that betweenness centrality includes only the shortest paths between766
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species, while information centrality includes all paths (Jordán et al.,767

2006; Estrada, 2007).768

While betweenness and information centrality are based on769

food chains (meso-scale structures), other definitions of centrality are770

based on the global structure of the food web. One such measure,771

“eigenvector centrality”, is based on the defining eigenvector—the772

eigenvector associated with the largest eigenvalue—of the matrix of773

interactions for a food web (Bonacich, 1972; Allesina and Pascual,774

2009). In this formulation, the centrality of species i is the ith entry775

in the defining eigenvector (Bonacich, 1972; Allesina and Pascual,776

2009; Lai et al., 2012). Eigenvector centrality can be understood as a777

weighted version of degree, where each neighbour j contributes to778

the degree of species i in proportion to j’s centrality (Lai et al., 2012).779

At least nine other measures of centrality have been proposed (Jordán780

C

B
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A

Figure 3: Betweenness centrality defines
a species’ role as its ability to affect the
rest of the food web as determined by
the number of times the species appears
on the shortest path between pairs of
other species. Species A appears on 2

such paths while species B appears on
11. Species B is therefore more likely
to have a large effect on its community
than is species A. Note that because
only the shortest path between a pair of
species is considered, the path D-B-C
(traced by the dotted arrow) does not
contribute to the betweenness centrality
of species B.
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et al., 2007). Comparative studies have generally found strong781

correlations between different centrality measures (Jordán et al.,782

2006; Estrada, 2007). This suggests that the various centrality783

measures may capture equivalent information about species’784

niches. We therefore will not describe the other measures in detail785

here (see Jordán et al. (2006, 2007); Estrada (2007) for detailed786

descriptions).787

The logic behind all of these measures of centrality draws788

heavily on the keystone species concept— the notion that certain789

species will have a much larger effect on their community than790

would be expected based on the species’ biomass alone (Paire,791

1966; Jordán et al., 2006). Indeed, because highly-central species792

are expected to affect many other species, centrality has been used793

to identify potential keystone species in several studies (Jordán794

et al., 2006; Estrada, 2007; Lai et al., 2012; Mello et al., 2015). Like795

the keystone species concept, centrality does not tell us so much what796

a species’ niche is, but rather suggests which species might have797

particularly important niches.798

As well as highlighting species that are potential keystones799

within free-living food webs, centrality has also been used to800

understand the transmission of parasites through food webs. Many801

parasites are trophically transmitted between hosts when the host for802

one life stage is consumed by the host for the next, and highly-central803

free-living species tend to host more parasites than other free-living804

species (Chen et al., 2008; Thompson et al., 2013). This suggests that805

species which have strong effects on the free-living components of806

food webs can also be important to the parasite components of the807

same communities.808

Grouping species with similar roles809

Structural and regular equivalence810

Having completed a brief survey of methods for calculating species’811

roles within networks, we will now introduce equivalence methods812

for identifying species with similar roles. These approaches differ813

from the previous definitions of role by focusing explicitly on the814

identities of species’ interaction partners (Yodzis and Winemiller,815

1999). For instance, two species with the same degree may or may not816

interact with the same partners, but two species are only structurally817

equivalent if they share identical sets of interaction partners (Borgatti,818

2002; Fig. 4). In fact, two structurally-equivalent species will have the819

same roles under any of the definitions above, but not necessarily820
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vice versa. This strict definition can be relaxed slightly to quantify821

the degree of structural equivalence on a continuous scale by using a822

distance metric such as Jaccard dissimilarity to compare the overlap823

in species’ interaction partners (Yodzis and Winemiller, 1999). While824

such quantitative measures provide more information by placing825

species on a continuous scale from fully equivalent to completely826

distinct, they are still restricted because species which interact with827

ecologically similar, but not taxonomically identical, partners will828

not be considered equivalent. For example, consider two species of829

herbivorous insects, each of which is specialised on a different plant830

from the same genus and which is preyed upon by similar spider831

species. Intuitively, we understand that these two insects have similar832

roles in their community (and niches) despite having low structural833

equivalence. To capture this intuitive similarity, another technique is834

evidently necessary.835

As one solution to this problem, some researchers (e.g., Johnson836

et al., 2001; Luczkovich et al., 2003) have proposed adopting837

the concept of regular equivalence from the study of social838

networks (White and Reitz, 1983). In this framework, nodes within839

a network are equivalent if they interact with the same “types” of840

partners (Fig. 4). In a network of several corporations, company841

presidents are equivalent because they each interact with boards842

of directors, venture capitalists, etc. (Johnson et al., 2001). Even843

though the board of directors is made up of different individuals844

in each company, the boards form a recognisable “type” or “group”845

of people that interact with company presidents. In ecological846

networks, researchers often wish to avoid defining such groups847

a priori in order to avoid biasing analyses towards collections of848

species that are appealing to humans but may not be ecologically849

relevant. Several algorithms have therefore been developed to do850

this by iteratively assigning species to groups until the best-fitting851

arrangement of groups has been reached (Borgatti and Everett, 1993;852

Johnson et al., 2001; Luczkovich et al., 2003). Happily, the groups853

determined by such algorithms (e.g., predatory insects, scavengers,854

and aquatic larvae) usually do tend to be intuitive and biologically855

meaningful (Johnson et al., 2001; Luczkovich et al., 2003). Thus, by856

identifying species with similar roles, regular equivalence groups can857

point to elements of niches that are shared by the species in a group.858

Structural and regular equivalence groups are being used859

increasingly often in food web research, with structural equivalence860

having the longer pedigree. Structurally equivalent species are often861

collapsed into trophospecies in order to reduce bias in the resolution862
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Figure 4: Sets of structurally equivalent
species (nodes with the same grey fill)
interact with exactly the same sets of
partners. Sets of regularly equivalent
species (enclosed in red, dashed boxes)
interact with partners from the same
sets of groups. In this web, regular
equivalence groups correspond
to trophic levels such that primary
producers (bottom group) only interact
with herbivores (second group from
bottom), herbivores interact with
primary producers and consumers
(second group from top), and so on.
Note that structurally-equivalent
species are also regularly-equivalent,
but the reverse is not necessarily true.

of unipartite food webs (e.g., Martinez, 1991; Vermaat et al., 2009).863

Larger, higher-trophic level species are often easier to identify than864

smaller, lower-trophic level, or cryptic species, leading to better865

resolution at the top of the food web than among basal species. This866

greater detail at the top of the food web can then bias estimates of867

food-web structural properties, hindering efforts to understand the868

true structure and function of communities. Collapsing structurally-869

equivalent species into a single node can reduce this bias and870

facilitate comparisons between communities by ensuring that each871

node represents a unique niche (Martinez, 1991).872

Regular equivalence, on the other hand, has much in common873

with the concept of functional redundancy, in which species with874

similar “functions” in a community are grouped together. This875

redundancy is believed to be important because species with similar876

niches may be able to compensate if one species becomes rare or goes877
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extinct (Naeem, 1998; Rosenfeld, 2002; Aizen et al., 2012). The loss of878

a species with a redundant role in a community will therefore have879

little effect on the rest of the community (Naeem, 1998; Rosenfeld,880

2002; Aizen et al., 2012). As well as identifying groups of species881

with redundant roles, food web models based on regular equivalence882

groups perform remarkably well (Allesina and Pascual, 2009). This883

has lead to the suggestion that groups might be the appropriate level884

of analysis in future studies of food webs, particularly as larger and885

more detailed data become available (Allesina and Pascual, 2009).886

This approach holds great promise, especially as more approaches887

are developed to incorporate more ecological information into888

regular equivalence groups (Gauzens et al., 2015).889

Module-based roles890

Another way of grouping species according to their types of891

interaction partners is through module roles, which measure the892

extent to which species interact with different modules (tightly-knit893

groups) within a network. Such modules are defined mathematically894

by interacting more tightly among themselves than with any species895

that is not a part of the module (Guimerà and Amaral, 2005a,b).896

They are usually detected algorithmically using techniques such897

as simulated annealing that aim to find the set of modules that898

minimises the number of links between different modules (Guimerà899

and Amaral, 2005a). Once modules have been defined, species can900

be classified based on A) the focal species’ importance to its own901

module and B) the extent to which the focal species’ interactions902

are distributed across modules (Guimerà and Amaral, 2005a). The903

focal species’ importance within its module is determined by on904

its “within-module degree”, a Z-score of whether the focal species905

has significantly more interactions with other species in the same906

module than the average (Guimerà and Amaral, 2005a). Species with907

a within-module degree of at least 2.5 are designated “hubs” and908

have significantly more interactions within their module than the909

average (p«0.005; Guimerà and Amaral, 2005a). Both hub and non-910

hub species can then be further divided based on the participation911

coefficient, which measures the evenness of the distribution of the912

focal species’ interactions. Values near 0 indicate species which913

interact almost entirely within their own modules, whereas values914

near 1 indicate species who interact with species in all modules915

equally (Fig. 5).916

Using these two parameters, species can be divided into varying917

numbers of roles. In general, however, hubs with low participation918
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Figure 5: This unipartite food web
contains three modules (circled in red,
dashed lines). It is possible to group
species with similar roles based on
how often they interact within their
module and with species in other
modules. The network hub (black
square) interacts with significantly more
partners than other species within its
module and has many interactions with
other modules. Module hubs (black
triangles) interact with many partners
within their modules, but rarely with
species from other modules. The
connector (black star) has interactions
spread evenly among modules. Finally,
peripheral species (white circles)
have few interaction partners within
their modules and few links to other
modules.

coefficients are module hubs, which are important to the cohesion919

of their modules but have few interactions with other modules,920

while hubs with high participation coefficients are also important921

to the coherence of the network as a whole (Guimerà and Amaral,922

2005a; Olesen et al., 2007; Poulin et al., 2013). In non-hub species,923

low participation coefficients indicate peripheral species while high924

participation coefficients indicate connector species which “glue”925

different modules together (Guimerà and Amaral, 2005a; Olesen926

et al., 2007; Poulin et al., 2013).927

As with structural roles, module-based roles are relatively new928

and their potential is only beginning to be explored. So far it has929

been shown that plants’ and pollinators’ module-based roles are930

conserved between the species’ native and exotic ranges (Olesen931

et al., 2007), and that the module-based roles of parasites and free-932

living species are phylogenetically conserved (Poulin et al., 2013).933

In seed-dispersal networks, modules tend to include species from934

different taxa (mammals, birds, fish, etc. [Donatti et al., 2011; Mello935

et al., 2011]). At a finer scale, however, closely-related species may936

not belong to the same modules (Donatti et al., 2011) and within-937

module degree tends not to be phylogenetically conserved (although938

participation coefficients were [Schleuning et al., 2014]). These939
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results emphasise the importance of both ecological and evolutionary940

processes in shaping food webs and species’ roles within them.941

Functional roles942

Rather than identifying species with potentially redundant functional943

roles using regular equivalence, it is also possible to group species944

according to their functional roles directly. This method is based945

on the premise that species with similar traits (e.g., gape sizes946

or flower morphologies) should fulfil similar functions in their947

community (Tilman, 2001; Petchey and Gaston, 2002; Dehling et al.,948

2016). Extending this notion to interactions, we expect that traits949

that represent species’ functional roles will also influence which950

interactions they participate in (Thompson and Townsend, 2005;951

Dehling et al., 2016). One trait that has been found to explain a952

great deal of variation in predator-prey interactions is body mass,953

as many taxa feed on smaller prey (e.g., Williams and Martinez, 2000;954

Stouffer et al., 2006; Petchey et al., 2008; Williams, 2008; Stouffer, 2010;955

Williams et al., 2010; Gravel et al., 2011; Stouffer et al., 2011; Zook956

et al., 2011. In most cases, however, more than one trait is necessary957

to describe all of the interactions in a community (Cattin Blandenier,958

2004; Allesina et al., 2008; Allesina, 2011; Eklöf et al., 2013). Moreover,959

while using empirical traits to create model food webs can reproduce960

general structural properties, such approaches often fail to predict961

specific interactions (Petchey et al., 2008; Bartomeus et al., 2016). In962

an attempt to address both of these shortcomings, some researchers963

have used artificial traits based on the properties of the observed964

network (Rohr et al., 2010; Dalla Riva and Stouffer, 2015; Rohr965

et al., 2016). These abstract traits cannot be directly mapped onto966

morphological traits, but they can reveal similarities between species967

that are not evident based on morphology or behaviour. Such968

hidden similarities, despite the absence of an obvious ecological969

interpretation, nevertheless identify species that may fulfil redundant970

functions in the community or strongly compete with each other; i.e.,971

species with similar niches.972

An alternative way to identify species with similar functional973

roles is to analyse the traits of the focal species’ interaction partners974

rather than the traits of the focal species itself (Fig. 6). This approach975

is common in studies of plant-pollinator communities, where976

pollination syndromes are often used to predict which species will977

interact (Waser et al., 1996; Fenster et al., 2004; Ollerton et al., 2009).978

Pollinators vary in their adherence to classical syndromes (Fenster979

et al., 2004; Ollerton et al., 2009), but in general species do tend to980
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interact with partners whose traits are relatively similar and match981

some limiting trait of the focal species (Stiles, 1975; Wolf et al., 1976;982

Dalsgaard et al., 2009; Stang et al., 2009; Junker et al., 2013; Dehling983

et al., 2014). By grouping species that interact with partners that984

have similar traits, we can infer species that have similar functional985

roles in their community. Grouping species this way is somewhat986

analogous to grouping regularly-equivalent species based on the987

types of species with which they interact. The major distinction988

is that regular-equivalence groups are emergent properties of a989

network’s topology whereas functional roles are linked at least990

implicitly to a functional mechanism (e.g., fruit size [Dehling et al.,991

2014, 2016] or flower characteristics [Fenster et al., 2004; Ollerton992

et al., 2009]). This focus on biologically-explicit groups means that993

functional roles provide a convenient summary of species’ niches in994

the type of network being studied.995

Functional roles have been used to demonstrate co-adaptation996

between interaction partners, as mutualists are expected to converge997

on compatible traits (Blüthgen et al., 2007). Species with unique998

functional roles interact with partners that have extreme or unusual999

values of the traits that affect the interaction being studied. Because1000

of this, they tend to interact with fewer partners (Junker et al., 2013;1001

Maglianesi et al., 2014; Coux et al., 2016; Dehling et al., 2016) and,1002

as specialists, may then be more vulnerable to extinction (Allesina,1003

2012).1004

Limitations to role concepts and future directions1005

As described above, one of the main limitations of species roles is1006

that while they do offer insight into a species’ niche— its “place in1007

the biotic environment, its relations to food and enemies” (Elton,1008

1927 in Johnson and Steiner, 2000), a role will only capture one1009

aspect of the niche. For some role concepts this might be a specific1010

property such as the niche’s position in food chains (trophic level)1011

or the niche’s importance (degree and other measures of centrality).1012

Other concepts such as motif roles and functional roles attempt to1013

summarise all of a species’ interactions. These roles give a better1014

picture of species’ niches from the perspective of food webs, but the1015

fact remains that roles defined in a food web describing only one1016

type of interaction will overlook components of species’ niches that1017

do not involve that interaction (Fontaine et al., 2011; Kéfi et al., 2016).1018

Combining different network types has the potential to improve this1019

by integrating different aspects of a species’ niche (e.g., as pollinators1020

and as prey [Fontaine et al., 2011]). Kéfi et al. (2016) offer one way1021

forward by identifying species’ module roles in a network which1022
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Figure 6: The functional roles
framework uses the traits of interaction
partners to group species with similar
roles. A) In this plant-pollinator
network, we are interested in
comparing the roles of the three
pollinators. B) The functional role
of each pollinator is the area of trait
space that includes all plants that the
pollinator visits. In this community, the
red and green pollinators’ roles (lower
left) overlap while the blue pollinator
has a unique role (upper right). Note
that the axes used to describe the
trait space may be concrete traits, as
shown here, or abstract axes describing
variation in many traits.

includes trophic interactions and positive and negative non-trophic1023

interactions (including provision of refuges, increased recruitment,1024

competition for space, predator importance, etc.). The roles in1025

this study therefore provide a much more comprehensive picture1026
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of species’ niches than do roles in webs which describe a single1027

interaction.1028

Another important limitation in studies of species’ roles is the1029

point-sample nature of most ecological networks. Species’ niches1030

encompass their relationships to the biotic environment as a whole,1031

but networks provide a spatially and temporally limited snapshot1032

of communities. As more networks are published that include1033

replication over time and/or space (e.g., Olesen et al., 2008, 2011;1034

Leong et al., 2015), we will obtain more thorough descriptions1035

of species’ roles. As information about the spatial and temporal1036

variability of species’ roles becomes available, we may be able to1037

better understand the differences between species’ fundamental1038

Eltonian niches (all of the interactions in which a focal species1039

could reasonably participate) and those that they actually realise1040

in a particular community. This is especially intriguing with respect1041

to species which have moved outside of their historical ranges (i.e.,1042

introduced species). It is possible that a species’ role in its native1043

community could be used to predict the way in which it will interact1044

with a novel set of potential partners (Aizen et al., 2008; Emer et al.,1045

2016). If this is true, then species’ roles will be a powerful tool for1046

conservation biologists.1047

As well as exploring the spatial and temporal variation of1048

species’ roles, researchers are increasingly connecting species’ roles1049

to their phylogenies. Related species tend to have similar roles for1050

several of the role concepts we describe above (Stouffer et al., 2012;1051

Poulin et al., 2013; Rohr and Bascompte, 2014). Species’ phylogenies1052

are believed to shape their roles because phylogenetically-conserved1053

traits affect interactions between species (Gómez et al., 2010; Dalla1054

Riva and Stouffer, 2015). Thus, conserved traits lead to conserved1055

interactions which lead to conserved roles. As well as explaining1056

similarities between the roles of related species, incorporating1057

evolutionary processes into studies of ecological networks can1058

suggest historical drivers of the structure of current communities.1059

Most current studies attempt to explain trends in network structure1060

based on species’ traits (Woodward et al., 2005; Brose, 2010) or1061

neutral processes (Siepielski et al., 2010; Canard et al., 2014; Poisot1062

et al., 2015). These approaches have been valuable, but evolutionary1063

explanations may be more parsimonious. Explanations based on1064

species’ evolutionary histories may also explain species which seem1065

to lack appropriate interaction partners in modern networks. This1066

is most obvious in the case of “evolutionary anachronisms” such1067

as the large-seeded plants of South America that are believed to1068
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have been dispersed by large mammals that are now extinct (Janzen1069

and Martin, 1982). Adaptations to extinct interaction partners can1070

also explain species’ interactions with introduced species, as when1071

the plants described above are dispersed by introduced cattle and1072

horses (Barlow, 2000).1073

Perhaps the most important factor limiting the applicability of1074

species’ roles is that role concepts are often abstract and difficult1075

to connect to species’ natural histories. This abstraction can be1076

beneficial, as it allows us to identify groups of species when we1077

are not confident that any particular taxonomic level or species1078

trait is the appropriate basis for categories (Luczkovich et al., 2003).1079

However, network researchers must admit that such abstractions1080

can make our work less accessible to non-specialist readers. Mello1081

et al. (2015) suggest that ecological concepts should be used to guide1082

the choice of network measures. We agree, with the proviso that1083

ecological prior knowledge should not be allowed to restrict species’1084

roles so as to ignore unexpected interactions such as frugivory and1085

seed dispersal by crocodilians (Platt et al., 2013) or predation on1086

nestlings by herbivores such as deer and sheep (Furness, 1988; Pietz1087

and Granfors, 2000). Such interactions may be more common than1088

previously suspected. Even if they are indeed rare, rare or weak1089

interactions may still be important for community stability because of1090

their potential for dissipating perturbations (Emmerson and Yearsley,1091

2004; Allesina and Tang, 2012; Wootton and Stouffer, 2016). After1092

selecting network measures that specifically address the aspects1093

of a species’ niche that are of most interest, we also suggest that1094

researchers bear in mind the part of a species’ niche that they are1095

analysing (e.g., niche size or vertical position in food chains, or a1096

more holistic summary such as structural roles) and use this to place1097

their results in the context of the focal species’ ecology.1098

Conclusions1099

Throughout this review, we have sketched some of the questions that1100

have been asked using each role concept. To conclude, we return to1101

the question of why species roles, in general, are useful. Networks1102

allow us to place the focal species in its community context, but the1103

network as a whole is difficult to interpret. By reducing the network1104

to a single value or vector, species’ roles compress the network into1105

a tractable form. If we consider food webs as maps of ecological1106

communities, roles provide the topographic lines, borders, and1107

roadways that simplify a map and provide meaning. Just as different1108

types of maps have different themes (e.g., political maps, terrain1109

maps, geological maps, etc.) different role concepts provide different1110
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perspectives on a food web. Our task as researchers working with1111

species’ roles is to make our choice of role concept, and the aspect of1112

species’ niches that it is meant to capture, as clear as cartographers1113

make their maps.1114
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Box 1: Glossary1127

Eltonian niche A species’ interactions with food sources and natural enemies.

Role A species’ relationship to others in its food web.

Stability The ability of a food web to withstand perturbations.

Degree The number of interactions in which a species participates.

Centrality A species’ ability to affect the rest of the network.

Local The portion of the food web that directly affects the focal species.

Global The entire food web.

Link A connection between two nodes, indicating an interaction between them.

Unipartite web A web containing one group of species that interact amongst themselves.

Bipartite web
A web containing two groups of species where all interactions occur between
groups.

Qualitative
A web in which links are present or absent (i.e., not weighted). Also called a binary

or topological web.

Quantitative
A web where links are weighted by frequency, biomass transfer, or some other
property. Also called a weighted web.

Trophic level A species’ vertical position in a food web or height in a food chain.

Food chain
A path from a primary producer to a top predator, where each step up the chain
corresponds to an increase in trophic level.

Meso-scale
The structure of the network including the focal species’ local neighbourhood and
some indirect interactions, but not the entire network.

Motifs Unique patterns of n interacting species; building blocks of networks.

Structural
equivalence

When a set of species all interact with exactly the same set of partners.

Regular equivalence
When a set of species interacts with partners from the same groups, but not
necessarily with the same sets of partners.

Node A component of a network. In food webs, usually a species.

Trophospecies A set of structurally equivalent species, collapsed into a single node.

Module
A group of species that interact more often amongst themselves than with other
species.

Functional roles Roles defined by the traits of the focal species’ interaction partners.

Phylogenetic
conservation

The tendency for related species to have more similar traits because of their shared
common ancestry.
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Abstract1641

Aim: MacArthur and Wilson’s original formulation of the Theory1642

of Island Biogeography (TIB) included the corollary hypothesis1643

that species richness might affect immigration and extinction rates.1644

Building on this, other researchers have suggested additional top-1645

down and bottom-up effects. We compare these hypotheses to1646

identify the strongest candidates for inclusion in a “trophic TIB".1647

Location: Six mangrove islands in the Florida Keys, USA1648

Methods: We studied a classic island-biogeography time series1649

featuring lists of species observed on six mangrove islands during1650

roughly 16 censuses each across 700 days. We first used this time1651

series to determine the number of opportunities for species to1652

immigrate to an island for the first time (N=18,420), to go locally1653

extinct (N=1,943), or to re-immigrate to an island after having1654

previously gone extinct (N=1,813). We then leveraged information1655

on those species’ predators and prey to estimate the potential for1656

top-down and bottom-up interactions during each census period.1657

Finally, we constructed statistical models to test for species richness,1658

top-down, and bottom-up effects on per-species immigration and1659

extinction probabilities and validated them by comparing each model1660

with a similar model based on the classic TIB.1661

Results: We found that models including bottom-up effects gave1662

the greatest improvement over the classic TIB models. Extinction1663

probability in particular decreased sharply for species with both1664

basal resources and animal prey available. Species-richness and top-1665

down effects had far weaker impacts on per-species probabilities of1666

immigration and extinction.1667

Main conclusions: Our findings suggest that incorporating1668

information on the trophic structure of island communities–1669

particularly the species-specific availability of resources –1670

can substantially alter predictions of extinction probabilities.1671

Immigration probability, on the contrary, appeared largely stochastic.1672

Incorporating trophic information into predictions of extinction rates1673

therefore represents the most promising and best-supported way to1674

extend the TIB.1675

Keywords1676

Theory of Island Biogeography, top-down effects, bottom-up effects, community assembly,1677

predator-prey interactions, species richness, food web1678



53

Introduction1679

The Theory of Island Biogeography combines elegant simplicity1680

of formulation (Hubbell, 2009) with the ability to reliably predict1681

properties such as equilibrium species richness across both1682

islands and a range of island-like habitat patches (Simberloff and1683

Abele, 1982; Eadie et al., 1986). As such, it has become one of the1684

cornerstones of ecological theory (MacArthur and Wilson, 1963; Holt,1685

2010; Hanski, 2010; Harte, 2011). In essence, the TIB supposes that1686

immigration rates should be higher on islands that are closer to a1687

source of immigrants and that extinction rates should be higher as1688

islands get smaller (MacArthur and Wilson, 1963; Schoener, 2010).1689

These two predictions were tested empirically immediately after the1690

publication of the TIB and have generally matched observations1691

well (Diamond, 1969; Case, 1975; Gilpin and Diamond, 1976),1692

although some authors note important differences in immigration1693

and extinction rates across species (Gilpin and Diamond, 1976;1694

Whittaker et al., 2000; Piechnik et al., 2008).1695

The original TIB partially anticipates these differences by1696

predicting variation in immigration and extinction rates as species1697

richness changes on an island. Specifically, the authors of the1698

TIB predicted that, as species richness on an island increases,1699

immigration rates should decrease while extinction rates increase1700

(MacArthur and Wilson, 1963). The effect of species richness on1701

immigration is expected because species vary in their dispersal1702

abilities (Simberloff, 1969), which could bias island faunas towards1703

the best dispersers. Once these species are already present, the pool1704

of remaining colonists will therefore tend to contain poorer and1705

poorer dispersers, decreasing immigration rates (Schoener, 2010).1706

At the same time, a species-rich island may include more extinction-1707

prone species (e.g., species with low population sizes or specialised1708

diets) and will therefore tend to lose more species than one which is1709

species-poor (Schoener, 2010). Increasing species richness could also1710

directly cause increasing extinction rates if increasing species richness1711

leads to stronger inter-specific competition (Gilpin and Diamond,1712

1976). However, the effect of competition on island faunas is very1713

difficult to observe experimentally (Simberloff, 1978).1714

Apart from competition, the presence of other species on an1715

island could affect immigration and extinction rates through top-1716

down and/or bottom-up effects (Knops et al., 1999; Piechnik et al.,1717

2008; Holt, 2010; Gravel et al., 2011). Top-down effects of predators1718

on their prey may increase extinction rates either directly (Savidge,1719
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1987; Hanna and Cardillo, 2014), by causing trophic cascades (Spiller1720

and Schoener, 1994; Ryberg and Chase, 2007; Spiller and Schoener,1721

2007), or by reducing population sizes such that stochastic extinctions1722

are more common (Ryberg et al., 2012). Alternatively, the presence1723

of predators can mediate competition between species and decrease1724

the probability of any of them going extinct (Snyder and Cheson,1725

2000; Bull and Bonsall, 2010). It is intuitively less likely that there1726

will be top-down effects on immigration rates, as this would seem1727

to require species to adaptively immigrate depending on conditions1728

on islands they have not yet reached. However, given the fact that1729

any new immigrant must persist on an island for some time before1730

being recorded, it becomes easy to envisage effects of predators on1731

observed immigration rates following the mechanisms described1732

above. In such a situation, the presence of predators could either1733

reduce observed immigration rates as new arrivals are consumed1734

before being recorded or, alternatively, could reduce competition and1735

thereby increase the survival of new immigrants.1736

Bottom-up effects of resource availability on the TIB have1737

also been postulated. Species with no resources available should1738

quickly go extinct while species with abundant or varied prey may1739

be more likely to persist (Holt et al., 1999; Holt, 2002; Piechnik1740

et al., 2008; Holt, 2010). It is also possible that the presence of basal1741

resources (e.g., plants, detritus, or bacteria) can affect immigration1742

rates. In order for an island to support resident animal life, it must1743

already have some basal resource present while the converse is not1744

necessarily true (Holt et al., 1999; Holt, 2002, 2010). Basal resources1745

should therefore be present on all islands that support animals as1746

well as some that do not. This might result in a greater inclination1747

of herbivores to immigrate to new islands since doing so entails less1748

risk of starvation. Indeed, while most islands support herbivores,1749

species at higher trophic levels are much rarer (Terborgh, 2009). This1750

suggests that species which cannot consume basal resources may1751

be less likely to immigrate or establish viable populations, perhaps1752

because islands often support fewer prey species (and smaller prey1753

populations) than mainland habitats (Terborgh, 2009).1754

Finally, top-down and bottom-up effects are known to interact1755

in structuring communities, with the strengths and directions of1756

each type of effect varying over time and across species (Power, 1992;1757

Denno et al., 2002; Gratton and Denno, 2003; Gripenberg and Roslin,1758

2007). This wide variety of potential effects of interactions between1759

species has prompted the development of “trophic TIB” models1760

that incorporate community structure into island biogeography1761
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theory (Holt et al., 1999; Holt, 2002; Ryberg and Chase, 2007; Gravel1762

et al., 2011). Although these models often preserve the TIB’s spirit1763

of simplicity and clarity, it is not clear whether they significantly1764

improve on the classic version when confronted with empirical data.1765

Further, most of these models tend to be structured in a way that1766

complicates rigorous comparisons between them.1767

Rather than investigate a single mathematical model in great1768

depth, here we use empirical data to compare and contrast multiple1769

potential effects of community structure on island biogeography.1770

We are especially interested in measuring the potential effects of1771

predator-prey interactions and examining how they differ when1772

considering immigration and extinction. To this end, we construct1773

a statistical framework with which to test the following non-1774

exclusive hypotheses: 1) immigration probability will decrease1775

with increasing species richness while extinction probability will1776

increase; 2) immigration probability will decrease with the presence1777

of predators while extinction probability will increase; 3) immigration1778

probability will be higher for species that can consume basal1779

resources and extinction probability will decrease; and 4) there1780

will be no effect of the presence of animal prey on immigration1781

probability but extinction probability will decrease for species with1782

prey available. By comparing similarly-structured models built1783

around each hypothesis, our approach allows us to isolate models1784

with little support as well as demonstrating which hypotheses1785

explain similar variation in empirical data. Together, we argue that1786

these two endeavours reveal the strongest candidates for future1787

efforts to extend the TIB.1788

Methods1789

Dataset1790

We studied a classic island-biogeography time series for arthropod1791

immigration and extinction on six mangrove islands (Simberloff,1792

1969) of known diameter (11-25m) and distance from the mainland (2-1793

533m). In these experiments, each island was artificially defaunated1794

and then censused 16-18 times during the following two years for1795

a total of 96 post-defaunation censuses. Over the course of the1796

experiment, 5 basal resources (mangrove trees, fungus, lichens,1797

detritus, algae) and 231 arthropod species were observed, with most1798

resolved to the species level.1799

Using this dataset, we were able to directly estimate when the1800

different species immigrated to islands after defaunation. Specifically,1801
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Model
Initial Repeat Extinction

immigration immigration
Opportunities 18,420 1,813 1,943

Successes 476 127 461

Proportion of
successes

0.026 0.070 0.237

Table 1: Number of opportunities
for initial immigrations, repeat
immigrations, and extinctions (i.e.,
sample size), and the number of
successes and proportion of successes
in each case.

for a given island during a given census k, we considered all species1802

that were not observed to be potential immigrants. Note that we1803

did not consider species which were present before defaunation1804

but never returned during the experiment as part of this mainland1805

species pool. All potential immigrants were counted as successful1806

if they were observed during the next census k + 1 or as failed1807

otherwise. As it is possible that different mechanisms affect species1808

which are frequent immigrants than those that more rarely leave the1809

mainland, we considered initial immigration (i.e., for a given species1810

s and island i, all censuses up to and including the first successful1811

immigration to island i by species s) and repeat immigration (i.e.,1812

all immigration opportunities after species s had previously gone1813

extinct from island i) separately. Note that this distinction allowed1814

us to examine factors affecting species which immigrate relatively1815

frequently without defining this set of species a priori.1816

We estimated extinctions on each island in the dataset using a1817

similar procedure. For a given island i during a given census k, any1818

species present could potentially go locally extinct and those not1819

observed during the following census (k+ 1) were considered to have1820

done so. Species observed again in census k+ 1 were considered to1821

have persisted. See Table 1 for the numbers of potential and observed1822

immigrations and extinctions across the complete time series.1823

In order to relate these species-occupancy lists to the potential1824

interactions between species on a given island at a given time, we1825

combined them with a published list of potential prey for each1826

species based on interactions observed or inferred on the mainland1827

(see Piechnik et al., 2008 for details on the construction of this list).1828

Potential prey were restricted to other arthropods (hereafter ‘animal1829

prey’) which had been observed on at least one of the islands during1830

the time series, plus the basal resources which were assumed to1831

be present on all islands throughout the experiment (Piechnik1832

et al., 2008). As basal resources were assumed to be omnipresent1833

throughout the experiment (Piechnik et al., 2008), the ability of a1834

species to consume basal resources (or not) was recorded as one1835

measure of resource availability. The presence of animal prey, on1836



57

the contrary, varied between censuses. To determine the potential1837

for bottom-up interactions involving animal prey, we compared the1838

list of potential prey for the focal species with the occupancy list for1839

that island and census. If any of the species’ mainland prey items1840

were present, that species was assumed to be able to prey on the1841

same species on the island. Similarly, if the focal species featured1842

in the prey lists of any other species on the island at the same1843

time, there was potential for top-down interactions (i.e., predation1844

on the focal species) to occur. Determining the potential for top-1845

down and bottom-up effects on each species on each island at1846

each census allowed us to directly examine the effects of predator-1847

prey interactions on initial immigration, repeat immigration, and1848

extinction probabilities. See Table 2 for further details of the typical1849

values and ranges of these predictors.1850

Statistical Models1851

Based on the aforementioned data, we created parallel sets of1852

candidate models for the probability of a given species immigrating1853

to, re-immigrating to, or going extinct from a given island at a given1854

census. For each model, we estimated parameters using the function1855

glmer from the lme4 library (Bates et al., 2014) in R (R Core Team,1856

2014) with binomial distributions and logit link functions. We then1857

used these models to test our hypotheses relating to the effects1858

of species richness, top-down effects, bottom-up effects, and their1859

interactions using a null model and a model based on the TIB for1860

comparison.1861

Null Models1862

The simplest models for initial immigration, repeat immigration,1863

and extinction (henceforth referred to as our initial immigration null1864

model, repeat immigration null model, and extinction null model,1865

respectively) included an intercept and two random effects (S2.1,1866

Supporting Information S2). The first random effect was for focal1867

census (that is, the census from which predictor data were drawn,1868

specific to a particular island). It accounted for variation in time1869

between censuses as well as other hidden variables such that the1870

predicted immigration or extinction probability for each census is1871

expected to match that observed empirically.1872

The second random effect was intended to account for1873

pseudoreplication within the data created by repeated observations1874
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(A) Initial immigration
Predictor Min Max Mean
Distance 2 533 213

Diameter 11 25 14.9
Time between censuses 10 400 36.5
Species richness 2 47 18.8
Predators 0 1 0.782

Ability to eat plants 0 1 0.578

Animal prey available 0 1 0.440

(B) Repeat immigration
Predictor Min Max Mean
Distance 2 533 154

Diameter 11 25 15.1
Time between censuses 10 400 68.9
Species richness 11 47 32.3
Predators 0 1 0.933

Ability to eat plants 0 1 0.536

Animal prey available 0 1 0.523

(C) Extinction
Predictor Min Max Mean
Distance 2 533 164

Diameter 11 25 14.8
Time between censuses 10 400 41.5
Species richness 2 47 30.7
Predators 0 1 0.956

Ability to eat plants 0 1 0.600

Animal prey available 0 1 0.514

Table 2: Number of opportunities
for initial immigrations, repeat
immigrations, and extinctions (i.e.,
sample size), number of successes and
proportion of successes in each case,
and minima, maxima, and means for
model predictors. As each set of models
was based on slightly different data, we
present the means and ranges for each
separately.

of population-level behaviour of the same species across the1875

experiments. For initial immigration, this was a species-by-island1876

random effect as all potential immigrations of a given species to a1877

given island were drawn from the same mainland population. On1878

average, there were 8.2 pseudoreplicates per level of this random1879

effect.1880

For repeat immigration and extinction, we further distinguished1881

between different “event windows” to produce a species-by-1882

island-by-window random effect. That is, we considered repeat1883

immigration opportunities for species s to island i after the species’1884

first extinction on island i up to and including the first successful1885

repeat immigration—the first event window—to be independent1886
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from opportunities for species s to re-immigrate to island i after1887

it had gone extinct a second time up to and including the second1888

successful repeat immigration—second event window. For extinction,1889

we distinguished between opportunities for extinction associated1890

with different event windows for species s on island i (e.g., potential1891

extinctions after an initial immigration, potential extinctions after1892

the first repeat immigration, and so on). These two models included1893

fewer pseudoreplicates per random effect (mean 4.7 and mean 3.6,1894

respectively) than did the initial immigration model.1895

Theory of Island Biogeography Models1896

We next tested initial immigration, repeat immigration,1897

and extinction TIB models based on the original formulation1898

of island biogeography. The two immigration TIB models each1899

included terms for distance, diameter, and their interaction. The1900

extinction TIB model included only the diameter term as isolation1901

was not hypothesised to affect the extinction of established1902

populations (MacArthur and Wilson, 1963). In addition, each model1903

included a term for the time between the focal census and the next1904

census (i.e., the amount of time a species would have to immigrate1905

or become extinct) since this interval varied across censuses (Table 2).1906

To account for potential differences in the strength of the time effect1907

on different islands, we also included all interaction terms between1908

diameter, distance (immigration models only), and time between1909

censuses (Table S2.1, Supporting Information S2). As in the null1910

models, random effects of census and source population were also1911

included.1912

Species-richness Models1913

We then extended the TIB models to test the hypotheses that1914

initial and repeat immigration probability will decline and that1915

extinction probability will increase with increasing species richness.1916

To do this, we studied statistical models including all terms in the1917

corresponding TIB models, species richness during the focal census,1918

and interactions between species richness and all other terms in the1919

TIB models (Table S2.1, Supporting Information S2).1920

Top-down Models1921

Next, we tested the hypotheses that top-down effects decrease1922

the probability that a new immigrant survives long enough to be1923
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observed and increase extinction probabilities for species that have1924

already been observed. This was done by adding a term quantifying1925

the presence of any of the focal species’ predators during the1926

focal census to the corresponding TIB models. We also included1927

interaction terms between the presence of predators and all terms in1928

the TIB models. In order to ensure that any observed effect of top-1929

down interactions was distinct from the effect of species richness,1930

we further compared each top-down model to a similar top-down1931

& species-richness model which included all terms in the top-down1932

model, as well as terms for species richness and interactions between1933

species richness and all other terms in the top-down model (Table1934

S2.1, Supporting Information S2).1935

Bottom-up Models1936

To test the bottom-up hypothesis that the ability to eat basal1937

resources, having access to animal prey, or both, will increase a1938

species’ initial or repeat immigration probability, we created a1939

statistical model that combined all of the terms in the corresponding1940

TIB model with new terms that quantify whether or not the focal1941

species consumes basal resources, whether or not any of the focal1942

species’ animal prey were available during the focal census, and their1943

interaction. The bottom-up model also included interactions between1944

terms in the TIB model and the terms describing bottom-up effects.1945

As with the top-down model, we ensured that species-richness and1946

bottom-up effects were distinct by comparing each bottom-up model1947

to a bottom-up & species-richness model including all terms in1948

the bottom-up model, terms for species richness, and interactions1949

between species richness and all other terms in the bottom-up model1950

(Table S2.1, Supporting Information S2).1951

Top-down & Bottom-up Models1952

Finally, we tested the possibility that top-down and bottom-1953

up effects act synergistically. To do this, we examined a top-down1954

& bottom-up model including all of the terms in the bottom-up1955

model as well as terms for the presence of predators and interactions1956

between the presence of predators and all terms in the bottom-up1957

model. In keeping with the spirit of elegant simplicity of the original1958

TIB, we did not include terms for species richness in this model1959

(Table S2.1, Supporting Information S2). This decision was supported1960

by our finding that the trophic & species-richness models described1961
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in S2.1, Supporting Information S2 were all very similar to the trophic-1962

only models (see S2.4 & S2.5, Supporting Information S2).1963

Model simplification1964

For each of the aforementioned statistical models, we started by1965

fitting the most complex models including all interactions. Where1966

a full model was non-convergent (i.e., parameter estimates could1967

not be robustly determined, indicative of over-fitting), we removed1968

all interactions of the highest order (e.g., 6-way interactions) and1969

attempted to re-fit the model; we repeated this procedure (i.e.,1970

removing 5-way interactions, etc.) until we obtained a convergent1971

model from which we could proceed with simplification. We then1972

measured the AIC of these “full” models as well as each of the suite1973

of potential simplified models. Simplified models were obtained by1974

systematically removing all possible combinations of terms from the1975

full model. When an interaction term was included in a simplified1976

model, all main effects involved in that interaction term were also1977

retained.1978

Once the AIC of each model was calculated, we selected the1979

model with the lowest AIC as the best-fitting model. We performed1980

this simplification automatically using the R (R Core Team, 2014)1981

function dredge from package MuMIn (Bartón, 2014). We then1982

used the R (R Core Team, 2014) function glmer from the package1983

lme4 (Bates et al., 2014) to estimate the standardised effects (βs)1984

for each fixed effect in the best-fitting models as well as their1985

corresponding p-values. Note that all standardised effects presented1986

in the results reflect the per-unit (e.g., per 1m increase in diameter)1987

impact of each predictor on logit-transformed initial immigration,1988

repeat immigration, or extinction probability.1989

Hypothesis Comparison1990

We also wished to quantify the degree to which different hypotheses1991

give similar predictions across the dataset. If the specific predictions1992

of the species-richness and top-down models for extinction agree, for1993

example, this would indicate that the effect of species richness on1994

extinction rates is capturing the same variability in the data as does1995

the effect of predators. To compare the models and hypotheses in1996

this way, we first generated 10,000 simulated datasets for each model1997

using the R (R Core Team, 2014) function rbinom and the models’1998

predicted probabilities of immigration or extinction. If, for example,1999



62

a given model predicted that species s on island i at census k had an2000

immigration probability of 0.005, approximately 50 of the simulated2001

immigration events would be successful. Next, we used the best-fit2002

parameters of the various models (when fit to the empirical data)2003

to calculate the likelihood of observing each simulated dataset. We2004

repeated this procedure for each pair of initial immigration, repeat2005

immigration, and extinction models, including comparisons of2006

every model to itself, producing 10,000 likelihoods for each pairwise2007

comparison.2008

To quantify the degree of similarity between the set of2009

likelihoods obtained when data generated using model A were2010

fit by model A to those obtained when the same data were fit by2011

a different model B, we calculated the area under the receiver2012

operating characteristic (ROC) curve. The area under the curve2013

(AUC) represents the probability that a randomly chosen likelihood2014

for model A is greater than a randomly-chosen likelihood from2015

model B. When models A and B explain exactly the same variation2016

in the data, and therefore fit data generated by A or B equally2017

well, AUC=0.5; as model B’s ability to fit data generated by model2018

A decreases, the AUC increases towards 1. An AUC close to 0.52019

therefore indicates that the two models explain very similar variation2020

while an AUC close to 1 indicates that the models account for very2021

different variation.2022

Results2023

Initial Immigration2024

The best-fit versions of all alternate models for initial immigration2025

had significantly lower AIC’s than the null model and explained2026

greater variance (Table 3A). The best-fit species-richness, top-2027

down, bottom-up, and top-down & bottom-up models all provided2028

significantly better fits to the data than the TIB model (χ2=8.97,2029

df=2, p=0.011; χ2=8.68, df=3, p=0.034; χ2=11.7, df=4, p=0.020; and2030

χ2=16.425, df=5, p=0.006, respectively). The top-down & bottom-up2031

model provided the best fit to the data, and significantly improved2032

upon both the top-down and bottom-up models (χ2=7.74, df=2,2033

p=0.021 and χ2=4.74, df=1, p=0.029).2034

In the top-down & bottom-up model, and similar to the other2035

models, a species’ probability of immigration decreased with2036

increasing distance from the mainland (βDistance=-56.3) and increased2037

with increasing intervals between censuses (βTime=18.1, Fig. 7; Table2038
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Model
(A) Initial immigration

Effect TIB SR TD BU
TD & TD & BU &
BU SR SR

Dist. - - - - - - -
Diam. + + - - - + +
Time + + + + + + +
Species richness + + +
Predators + + 0

Animal prey + + +
Dist.:Diam. + + + + + + +
Dist.:Animal + 0 0

Diam.:Species + + +
Diam.:Predators + + 0

Diam.:Animal + + +
Time:Predators - - 0

Dist.:Diam.:Animals + 0 0 0

AIC 4271 4266 4268 4267 4264 4266 4264

Marginal R2 0.061 0.068 0.070 0.070 0.075 0.068 0.072

Conditional R2 0.213 0.214 0.214 0.228 0.223 0.214 0.222

NB: The best-fit TD & SR model was identical to the SR model. The marginal R2 of the Null model was 0 and the conditional R2

of the Null model was 0.169.

(B) Repeat immigration

Effect TIB SR TD BU
TD & TD & BU &
BU SR SR

Diameter - - - + + - +
Time - - - - - - -
Basal resources - - -
Diameter:Time - - - - - - -
Diameter:Basal - - -
Time:Basal + + +
AIC 922 922 922 912 912 922 912

Marginal R2 0.026 0.026 0.026 0.060 0.060 0.026 0.060

Conditional R2 0.141 0.141 0.141 0.222 0.222 0.141 0.222

NB: The best-fit SR, TD, and TD & SR models were identical to the TIB model, while the best-fit TD & BU and BU & SR models
were identical to the best-fit BU model. The marginal R2 of the Null model was 0 and the conditional R2 of the Null model was
0.148.

(C) Extinction

Effect TIB SR TD BU
TD & TD & BU &
BU SR SR

Diameter + - + 0 0 - +
Time + + + + + + +
Species richness + + +
Basal resources - - -
Animal prey + + -
Diameter:Time + - + 0 0 - 0

Diameter:Species - - -
Time:Species + + +
Time:Basal - - -
Time:Animal 0 0 -
Species:Basal -
Basal:Animal - - 0

Diameter:Time:Species + + 0

AIC 1912 1904 1912 1874 1874 1912 1864

Marginal R2 0.114 0.153 0.114 0.231 0.231 0.114 0.251

Conditional R2 0.296 0.373 0.296 0.497 0.497 0.296 0.524

NB: The best-fit TD and TD & SR models were identical to the best-fit TIB model, while the best-fit TD & BU model was identical
to the best-fit BU model. The marginal R2 of the Null model was 0 and the conditional R2 of the Null model was 0.325.

Table 3: Terms included in the best-fit
models for A) initial immigration, B)
repeat immigration, and C) extinction
when comparing a null model (not
shown), a model based on the Theory
of Island Biogeography (TIB), and
models based on the TIB that also
include effects of species-richness (SR),
top-down interactions (TD), bottom-up
interactions (BU), top-down & bottom-
up interactions (TD & BU), top-down
interactions & species-richness (TD
& SR), or bottom-up interactions &
species-richness (BU & SR). In all cases,
‘Dist.’ is short for distance and ‘Diam.’
is short for diameter. Each ‘+’ indicates
a positive effect, ‘-’ indicates a negative
effect, and a ‘0’ indicates that the effect
was not included in the best-fit model.
An empty cell indicates that the term
was not part of the model and hence
could not appear in the best-fit version.
For the full list of terms included
in each model, see S2.1, Supporting
Information S2. Below the individual
effects, we give the Akaike Information
Criterion (AIC) and marginal and
conditional R2 values for each model,
where marginal R2 is the amount of
variance explained by a model’s fixed
effects and conditional R2 is the amount
of variance explained by both fixed
and random effects (Nakagawa and
Schielzeth, 2013). Sample size for all
initial immigration models was 18,420

opportunities for species to immigrate,
for all repeat immigration models
was 1,813 opportunities for species to
re-immigrate following an extinction,
and for all extinction models was 1,943

opportunities for species to go extinct.

S2.7). Unlike in the TIB model, a species’ probability of immigration2039

decreased with increasing island size2040
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Figure 7: Per-species probabilities of
initial immigration in the top-down &
bottom-up model were affected by the
presence of animal prey, the presence
of predators, island diameter, distance
from the island, and time between
censuses (based on N=18,420 potential
initial immigrations). In each panel,
we show the model predictions for
different scenarios with line colour
indicating island distance and line type
indicating interval between census.
Light lines are for islands close to
the mainland (2m), medium lines for
moderately isolated islands (163m),
and dark lines for very isolated islands
(533m). Similarly, dashed lines are for
the lowest observed interval between
censuses (10 days), solid lines for the
mean interval between censuses (25

days), and dotted lines for the mean
interval between censuses plus one
standard deviation (56 days). (A) When
neither predators nor animal prey
were present, predicted immigration
probability decreased with increasing
island diameter except for islands that
were farthest from the mainland. (B)
& (C) The presence of either animal
prey or predators weakened this trend
such that immigration probability
increased with island diameter for
all islands except those closest to the
mainland. (D) When both animal
prey and predators were present,
immigration probability increased
with increasing island diameter for
all islands. In all cases, increasing
the time between censuses increased
the probability of immigration. As
no large islands were observed at
moderate to high degrees of isolation,
the corresponding predictions are
truncated to reflect the observed range
only.

(βDiameter=-0.711), but this effect was overwhelmed by a positive2041

interaction between distance and diameter (βDistance:Diameter=333).2042

Probability of immigration also increased for species with either2043

predators or animal prey present. Both of these trends were stronger2044

on larger islands (βDiameter:Predators=1.29, βDiameter:Animal=1.32).2045

Despite the statistical improvement of the other alternate models2046

over the TIB, each model described data generated by any of the2047

others well (Fig. 8; Fig. S2.2). In addition, each alternative model2048

provided a good fit to data generated by the null model, and vice2049

versa. This means that all models captured similar variation in the2050

empirical data; the extra terms in the alternative models therefore2051

may represent over-fitting.2052

Repeat Immigration2053

The best-fit versions of all alternate models for repeat immigration2054

had lower AIC’s and explained greater variance than the null model2055

(Table 3B), although the TIB model did not significantly improve on2056

the null model (χ2=6.09, df=3, p=0.107). The best-fit species-richness2057

and top-down models were identical to the best-fit TIB model, while2058

the best-fit top-down & bottom-up model was identical to the best-2059

fit bottom-up model (S2.2, Supporting Information S2). Contrary to2060

our expectations, none of the best-fit alternate models included any2061

effects of distance from the mainland on repeat immigration. The2062

bottom-up model provided the best fit to the data, significantly2063

improving upon the fits of the null and TIB models (χ2=22.4, df=6,2064

p=0.001, and χ2=16.0, df=3, p=0.001, respectively).2065
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Figure 8: Hypothesis comparison of
best-fit statistical models based on
the AUC statistic. (A & B) All best-
fit models for initial immigration
generated very similar predictions, as
did all models for repeat immigration.
(C) Among best-fit models for
extinction probability, there were
two clusters of models which generated
predictions that were similar to each
other but distinct from those in the
other cluster. In all panels, comparisons
are made between a Null model, a
model based on the Theory of Island
Biogeography (TIB), and models
based on the TIB that also include
effects of species richness (SR), top-
down interactions (TD), top-down
interactions and species richness (TD
& SR) , bottom-up interactions (BU),
bottom-up interactions and species
richness (BU & SR), or top-down &
bottom-up interactions (TD & BU). Each
cell containing an asterisk indicates that
two best-fit models were identical.

Again contrary to our expectations, a species’ probability of2066

repeat immigration in the bottom-up model decreased as the interval2067

between censuses increased (βTime=-76.8, Fig. 9, Table S2.8). This2068

effect was stronger on larger islands, but weaker for species able2069

to consume basal resources (βDiameter:Time=-431; βTime:Basal=-2.52).2070
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Figure 9: Per-species probabilities of
repeat immigration in the bottom-up
model were affected by the ability
to consume basal resources, island
diameter, and interval between censuses
(based on N=1,813 opportunities for
species to re-immigrate). In both panels,
we show model predictions for different
scenarios with line type indicating
interval between census; dashed lines
are for the lowest observed interval
between censuses (10 days), solid
lines for the mean interval between
censuses (69 days), and dotted lines for
the mean interval between censuses
plus one standard deviation (172 days).
(A) For species unable to consume
basal resources, repeat immigration
probability increased with increasing
island diameter except when the
interval between censuses was very
large. (B) For species able to consume
basal resources, repeat immigration
probability increased with increasing
diameter when the interval between
censuses was short and decreased
with increasing island diameter when
the interval between censuses was
moderate to large.

Species able to consume basal resources were, however, less likely to2071

immigrate to larger islands (βDiameter:Basal=-2.52).2072

Despite the statistical improvement of the bottom-up model2073

over the null and TIB models, all models captured very similar2074

variation in the empirical data (Fig. 8). Similarly, while the bottom-up2075

model explained significantly greater variance than the null model2076

(Table 3B), this increase was relatively small. This suggests that the2077

additional terms in the bottom-up model may indicate over-fitting,2078

and that its counterintuitive predictions may be spurious.2079

Extinction2080

Compared to the initial and repeat immigration models, the best-fit2081

alternate models for extinction showed much greater improvements2082

over the extinction null model (Table 3C). The best-fit top-down2083

model was identical to the best-fit TIB model and the best-fit top-2084

down & bottom-up model was identical to the best-fit bottom-up2085

model (S2.2, Supporting Information S2). In addition, the best-fit2086
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Figure 10: Per-species probabilities
of extinction in the bottom-up model
were affected by the presence of animal
prey, the ability to eat basal resources,
and time between censuses (based on
N=1,943 opportunities for species to
go extinct). (A) For species unable
to eat basal resources, extinction
probability increased rapidly with
interval between censuses. Extinction
probability saturated near 1 after
roughly 300 days. Species with animal
prey available were slightly more likely
to go extinct. (B) Species able to eat
basal resources had lower probabilities
of extinction overall, and probability of
extinction increased more slowly with
interval between censuses. Species with
both basal resources and animal prey
available were least likely to go extinct.

species-richness and bottom-up models both improved significantly2087

on the best-fit TIB model (χ2=16.6, df=4, p=0.002 and χ2=41.9, df=2,2088

p<0.001, respectively).2089

The effects included in the alternate extinction models varied2090

a great deal. Notably, the bottom-up model did not include any2091

effects of island diameter. The TIB and species-richness models2092

both did, although the TIB model predicted that species where2093

more likely to go extinct on larger islands while the species-richness2094

model predicted the opposite trend (Table S2.8). The bottom-up2095

model predicted that probability of extinction would be lower for2096

species able to eat basal resources, especially those which also had2097

access to animal prey, but that species with access to animal prey2098

only would be more likely to go extinct (βBasal=-0.470, βAnimal=-1.64,2099

βBasal:Animal=0.201; Fig. 10).2100

As a consequence of the significant trophic effects included in2101

the bottom-up model, it described data generated by the null, TIB,2102

and species-richness models poorly, and vice versa (Fig. 8). This2103

suggests that adding bottom-up effects and removing the effect of2104

diameter allowed this model to capture different variation in the2105

data than that accounted for by the other models. While the model2106

containing both bottom-up and species-richness effects provided a2107

significantly better fit to the data than the bottom-up model (χ2=19.5,2108

df=5, p=0.002), it nevertheless captured very similar variation in the2109
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Figure 11: Initial immigrations, repeat
immigrations, extinctions, and species
richness over time for a representative
island (island E9, 18m in diameter,
379m from the mainland). (A)-(D)

We show the cumulative values for
the observed experiment (white
circles) along with the equivalent
values as predicted by the the best-
fitting models for initial immigration,
repeat immigration, and extinction
(i.e., species-richness, bottom-up, and
bottom-up models, respectively). We
obtained the model predictions for
total species richness at each census
by adding predicted immigrants and
subtracting predicted extinctions. In
all panels, the solid line indicates the
mean prediction while the shaded
area corresponds to one standard
deviation. Comparable figures for all
other islands can be found in S2.6,
Supporting Information S2.

data (average pairwise AUC=0.618; Fig. S2.5) As such, we expect2110

that the extra terms in the bottom-up & species-richness model may2111

constitute over-fitting.2112

Discussion2113

We compared statistical models based on several factors predicted2114

to affect per-species probabilities of initial immigration, repeat2115

immigration, or extinction in the context of island biogeography2116

theory. In our dataset, species richness generally had little impact2117

on immigration or extinction. Top-down and/or bottom-up effects,2118

however, were included in each best-fit model. When directly2119

compared to the empirical data, it is apparent that each of our2120

best-fit models provides an excellent fit to the observed sequence2121

of initial immigrations, repeat immigrations, and extinctions on all2122

islands (Fig. 11 and S2.6, Supporting Information S2). This success2123

of our trophic TIB models therefore stands in contrast to previous2124

examinations of these same data where, when focusing on changes2125

in species richness over time, it has been suggested that stochastic2126

models of immigration and extinction may accurately describe the2127

system (Simberloff, 1969; Simberloff and Wilson, 1969) and that2128

colonisation as a whole does not depend on trophic interactions2129

(Simberloff and Simberloff, 1976). These differences also suggest that2130

considering immigration and extinction separately provides an extra2131

level of detail which allows us to better disentangle the underlying2132

ecology of island biogeography.2133
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Although the best-fitting initial and repeat immigration models2134

showed varying structures (for example, there was evidence that2135

initial immigration varied with the availability of animal prey and2136

repeat immigration with the ability to consume basal resources),2137

they generated very similar predictions for patterns of immigration.2138

This indicates that our expectations that island characteristics2139

and interactions between species would affect immigration2140

probabilities were incorrect. In particular, the prediction– based on2141

the TIB (MacArthur and Wilson, 1963) –that immigration probability2142

would decline with increasing distance from the mainland was2143

ultimately not supported in this system. One possible explanation2144

is that many of the arthropods in this system are highly mobile and2145

can easily reach all of the mangrove islands in this study (Simberloff,2146

1969). This scenario would appear even more likely because potential2147

colonists were restricted to arthropods that were observed on the2148

islands prior to defaunation (Wilson and Simberloff, 1969), meaning2149

that they were all previously successful immigrants.2150

Alternatively, it is possible that immigrants in this system are2151

not arriving from the mainland but rather from other mangrove2152

islands. There are many small mangrove islands in the area of the2153

study islands that could serve as sources of colonists in addition2154

to the mainland (see maps in Wilson and Simberloff, 1969). As2155

the source of arthropod immigrants was not determined, the2156

distance from each island to the mainland may not always be the2157

best reflection of the distance immigrants actually travelled. In2158

this regard, the mangrove islands in this study are quite different2159

from isolated oceanic islands but similar to habitat patches which2160

interact both amongst each other and with a larger source habitat.2161

Limitations of the TIB when dealing with complex geographies are2162

well known (Hanski, 2010), and the inability of the TIB to account for2163

multiple sources of colonists (Hanski, 2010), the existence of predator-2164

free refuges (Ryberg et al., 2012), or varying island-mainland2165

geographies (Taylor, 1987) may all contribute to the relatively poor fit2166

of TIB-based immigration models to this dataset. They may also help2167

to explain the apparently stochastic immigration patterns observed2168

here.2169

Just as the expected distance effects were not observed in the2170

immigration models, the best-fitting extinction model did not include2171

the expected effect of island diameter. It is possible that the islands2172

in this study were similar enough in size that arthropod population2173

sizes did not vary greatly between islands, or that other factors had2174

stronger effects. For example, populations on small islands might2175
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be maintained by occasional arrivals from the mainland (i.e., the2176

‘rescue effect’), preventing extinctions. While the bottom-up model2177

for extinction did not include any effect of island diameter, it did2178

include effects for the ability to consume basal resources and the2179

presence of animal prey which suggest that, all else being equal,2180

having access to both plant and animal prey makes extinction less2181

likely than having access to only one type of resource.2182

The synergistic effects of basal and animal resources are2183

surprising in light of the fact that many arthropod species form part2184

of the aerial plankton in the region (Simberloff, 1969), and others2185

such as Diptera that were seen on the islands were not recorded2186

during the experiment (Simberloff, 1969). As such, recorded animal2187

prey may have been only a small part of the diet of even obligate2188

insectivores. The strength of the observed effects therefore strongly2189

suggests that bottom-up effects provide a promising avenue for2190

extending the TIB, in agreement with previous work (Gravel et al.,2191

2011). The reduction in extinction probability where both types of2192

resources were available also suggests that prey switching between2193

basal resources and animal prey may be particularly important2194

in determining extinction probabilities (Murdoch, 1969; Coll and2195

Guershon, 2002) as well as potentially influencing immigration2196

order (Piechnik et al., 2008). It is also possible that the availability2197

of many prey species might encourage further migration from the2198

mainland and provide stronger rescue effects for these species.2199

Overall, our results suggest that incorporating bottom-up2200

interactions provides the greatest improvement over the classic2201

TIB. However, we note that our relatively weak results for top-2202

down effects contrast with the strong effects of predators observed2203

in other island systems (Spiller and Schoener, 1994; Kotiaho and2204

Sulkava, 2007; Spiller and Schoener, 2007). The apparent weakness2205

of top-down effects in this system could be due to the presence of2206

transient predators which were observed visiting the islands during2207

the experiment but not recorded in the censuses because they do2208

not breed on mangroves (Simberloff, 1969). The effects of these2209

predators cannot be measured from the available data, but could2210

potentially be large. Further complicating matters, the effects of2211

resident arthropod predators are difficult to detect in this system2212

because they were almost always present (Table 2), making the effects2213

of predators a “black box” in this system. Given these caveats, and2214

because a rich record exists of top-down and bottom-up effects acting2215

simultaneously to structure mainland communities (Power, 1992;2216

Amarasekare, 2008), we advocate that the potential for top-down2217
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effects still be considered along with bottom-up effects in any further2218

attempts to combine food-web ecology and island biogeography:2219

“two of the most important conceptual frameworks in community2220

ecology” (Holt, 2010).2221
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Summary2387

• Related plants are often hypothesised to interact with similar sets2388

of pollinators and herbivores, but empirical support for this idea2389

is mixed. Here we argue that this may be because some plant2390

families vary in their tendency to share interaction partners.2391

• We introduce a novel approach with which to quantify overlap of2392

interaction partners for each pair of plants in 59 pollination and 112393

herbivory networks. We then tested for relationships between2394

phylogenetic distance and overlap within each network, and2395

whether these relationships varied with the composition of the2396

plant community. Finally, we tested for different relationships2397

within well-represented plant families.2398

• Across all networks, more closely-related plants tended to have2399

greater overlap, and this tendency was stronger in herbivory2400

networks than pollination networks. These relationships were2401

also significantly related to the composition of the network’s plant2402

component. Within plant families, relationships varied greatly in2403

both network types.2404

• The variety of relationships between phylogenetic distance and2405

interaction partners in different plant families likely reflects a2406

variety of ecological and evolutionary processes. To understand2407

the distribution of interactions within a community, it is therefore2408

important to consider factors affecting particular plant families.2409

Keywords2410

defensive syndrome, ecological networks, herbivory, niche2411

overlap, phylogenetic signal, pollination, pollination syndrome,2412

specialisation2413
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Introduction2414

Interactions with animals affect plants’ life cycles in several critical2415

ways (Mayr, 2001; Sauve et al., 2015). On one hand, pollination and2416

other mutualistic interactions contribute to the reproductive success2417

of many angiosperms (Ollerton et al., 2011). On the other, herbivores2418

consume plant tissues (McCall and Irwin, 2006) which costs plants2419

energy and likely lowers their fitness. In both cases, these interactions2420

do not occur randomly but are strongly influenced by plants’2421

phenotypes. For example, plants that produce abundant or high-2422

quality nectar may receive more visits from pollinators (Robertson2423

et al., 1999) whereas plants that produce noxious secondary2424

metabolites may suffer fewer herbivores (Johnson et al., 2014). A2425

plant’s traits are also likely to determine which specific pollinators2426

and herbivores interact with that plant. Plants with different defences2427

(e.g., thorns vs. chemical defences) may deter different groups of2428

herbivores (Ehrlich and Raven, 1964; Johnson et al., 2014), and the2429

concept of pollination syndromes has often been used to group2430

plants into phenotypic classes believed to attract certain groups of2431

pollinators (Waser et al., 1996; Fenster et al., 2004; Ollerton et al.,2432

2009).2433

If attractive and/or defensive traits are heritable, then we can2434

reasonably expect that related plants will have similar patterns of2435

interactions with animals (Schemske and Bradshaw, 1999). Recent2436

studies that have investigated this question at the level of whole2437

communities, however, have yielded mixed results (Rezende et al.,2438

2007b; Gómez et al., 2010; Rohr and Bascompte, 2014; Fontaine2439

and Thébault, 2015; Lind et al., 2015). In particular, significant2440

phylogenetic signal in plants’ interaction partners —the tendency2441

for more closely-related plants to have more similar interactions—2442

tends to be rare in empirical networks (Rezende et al., 2007b;2443

Lind et al., 2015; but see Elias et al., 2013; Fontaine and Thébault,2444

2015). Further, plants’ roles within networks tend to be less2445

phylogenetically constrained than those of animals (Rezende et al.,2446

2007b; Chamberlain et al., 2014c; Rohr et al., 2014; Vamosi et al., 2014;2447

Lind et al., 2015).2448

Several mechanisms that might weaken the conservation of2449

interactions have been identified in the literature. Pollination and2450

herbivory may be affected by a wide variety of traits, and not2451

all of these are likely to be phylogenetically conserved (Rezende2452

et al., 2007a; Kursar et al., 2009). If, for example, floral displays2453

are strongly affected by environmental conditions (Canto et al.,2454
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2004), then pollinators may not be predicted by plants’ phylogenies.2455

Even if the traits affecting pollination and herbivory are heritable,2456

plants may experience conflicting selection pressures that weaken2457

the overall association between plant phylogeny and interaction2458

partners (Armbuster, 1997; Lankau, 2007; Siepielski et al., 2010; Wise2459

and Rausher, 2013). For instance, floral traits that are attractive to2460

pollinators can also increase herbivory (Strauss et al., 2002; Adler2461

and Bronstein, 2004; Theis, 2006). Conversely, herbivory can reduce2462

pollination by inducing chemical defences (Adler et al., 2006) or2463

altering floral display or nectar availability (Strauss, 1997). Observed2464

patterns of similarity in plants’ interaction partners therefore2465

represent a mixture of environmental effects and various selection2466

pressures as well as plants’ shared phylogenetic history.2467

A further complication is the possibility that the relationship2468

between plants’ relatedness and the similarity of their interaction2469

partners is not constant across plant clades. Closely-related plants in2470

one clade might be under strong selection to favour dissimilar sets2471

of pollinators to avoid exchanging pollen with other species (Levin2472

and Anderson, 1970; Bell et al., 2005; Mitchell et al., 2009). Similar2473

pressures could also affect related plants’ defences against herbivores2474

if congeners tend to grow in the same places such that herbivores2475

could easily move between them. Unrelated plants might also2476

converge upon similar phenotypes, attracting a particularly efficient2477

or abundant pollinator (Ollerton, 1996; Ollerton et al., 2009).2478

Likewise, herbivores may be able to depredate sets of unrelated2479

plants if they have evolved similar defences (Pichersky and Gang,2480

2000). In either case, dissimilarity of interactions among related2481

species or similarity of interactions among unrelated species could2482

result in low apparent phylogenetic signal across an entire plant2483

community. Moreover, all of the aforementioned hypotheses are non-2484

exclusive; different processes likely affect different clades, and these2485

processes might be associated with different pressures imposed by2486

pollination and herbivory.2487

Here we use a novel approach to investigate how the patterns of2488

overlap in interaction partners between pairs of plants (henceforth2489

“niche overlap”) vary over phylogenetic distance. Whereas previous2490

studies have focused on the presence or absence of phylogenetic2491

signal across entire networks, we are able to investigate the2492

relationship between niche overlap and phylogenetic distance in2493

within networks as well as different plant families. Specifically, we2494

test whether niche overlap decreases over increasing phylogenetic2495

distance in a large dataset of pollination and herbivory networks,2496
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whether the plant family composition of a community affects the2497

relationship between niche overlap and phylogenetic distance in that2498

community, and whether the relationship between niche overlap and2499

phylogenetic distance differs across plant families.2500

Materials and methods2501

Network data2502

We studied phylogenetic conservation of interactions within a2503

set of 59 pollination and 11 herbivory networks. These networks2504

span a range of biomes (desert to scrub forest to grassland) and2505

countries (Sweden to Australia), and range in size between 18 and2506

996 total species (mean 160.93, median 96) with seven to 131 plant2507

species (mean 38.06, median 28). To ensure that we were analysing2508

interactions influenced by similar sets of traits across networks, we2509

restricted our herbivory networks to insects consuming leaves. This2510

excluded sap-sucking, leaf-mining, and galling insects as well as seed2511

predators and xylophagous insects; all of these interactions involve2512

different plant tissues and means of feeding than leaf consumption2513

and so may be influenced by different plant and insect traits. We also2514

excluded networks which focused on plants from a single genus as2515

these did not contain sufficient variation in phylogenetic distance2516

between plants. See Table S3.1, Supporting Information S3 for details on2517

the original sources of all networks.2518

Phylogenetic data2519

In order to fit the plant species in all networks to a common2520

phylogeny, we first compared all species and genus names with the2521

National Center for Biotechnology Information and Taxonomic Name2522

Resolution Service databases to ensure correctness. This was done2523

using the function ‘get_tsn’ in the R (R Core Team, 2014) package2524

taxize (Chamberlain and Szocs, 2013; Chamberlain et al., 2014a).2525

Species which could not be assigned to an accepted taxonomic2526

name (e.g., ‘Unknown Forb’) were discarded, as were those with non-2527

unique common names and no binomial name given (e.g., ‘Ragwort)2528

or binomial names that could not be definitively linked to higher taxa2529

(e.g., ‘Salpiglossus sp.’). We were left with 2341 unique species in 10272530

genera and 195 families. On average, 11.43% of plants were removed2531

from each network (median 4.60%, range 0-55.10%).2532

We then estimated phylogenetic distances between species. To2533

accomplish this, we constructed a phylogenetic tree for our dataset2534

based on the phylomatic ‘mega-tree’ of higher plants (version2535
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20120829; Reveal and Chase, 2011). Where possible, we dated nodes2536

on the mega-tree according to Wikström et al. (2001). These dates2537

included divergence times in millions of years (My) between families2538

and within some families, but did not give dates for divergences2539

within genera. For those nodes that were not included in the mega-2540

tree, we used the branch length adjustment algorithm bladj (Webb2541

et al., 2008) to estimate the ages of all undated nodes. This means2542

that the ages in our phylogenies are approximations, but the presence2543

of even a subset of properly dated nodes within a phylogeny2544

improves upon undated, purely taxonomic approaches (Webb, 2007).2545

To obtain trees for each network, we pruned the dated mega-tree to2546

include only species in that network.2547

Calculating niche overlap within communities2548

To fully describe the extent to which two plants’ niches overlap, we2549

defined the overlap between two plants’ sets of interaction partners2550

by recording the frequencies with which pairs of animals (where2551

each animal interacted with at least one plant) fall into three unique2552

patterns (Fig. 12). In the first pattern, both plants interact with both2553

animals, indicating total overlap for that quartet. In the second2554

pattern, one plant interacts with both animal partners while the other2555

interacts with only one animal, indicating partial overlap. In the2556

third pattern, each animal interacts with only one plant, indicating2557

no overlap. Taken together, the frequencies of these three patterns of2558

overlap can be used to describe the degree to which two plants have2559

similar interaction partners.2560

Using the three patterns defined above provides more detail2561

than other measures of overlap, such as the proportion of one2562

species’ partners that are shared with another as given by Jaccard2563

similarity. In particular, comparing the probability of observing2564

each pattern rather than one of the other two provides a measure2565

of indirect interactions between plants by considering pairs of animal2566

partners rather than each animal separately. For example, a pair2567

of plants which share two interaction partners are more likely to2568

influence each other via these partners than two plants which do2569

not share interaction partners. Moreover, our measure of overlap has2570

greater statistical power than Jaccard dissimilarity because it includes2571

information on the number of shared interaction partners as well as2572

the proportion. For instance, a pair of plants which together interact2573

with 100 animals provides more information about shared overlap2574

than a pair of plants which together interact with only one animal2575

whereas the Jaccard similarity of both would simply be one.2576
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Figure 12: Visual depiction of our
decomposition of pairwise niche
overlap of plants’ interaction partners.
(a) First, consider the representation of
any pollination or herbivory network
as an adjacency matrix. Here, filled
cells indicate an interaction between a
particular plant (letters on rows) and
an animal (numbers on columns). (b)
For a given pair of plants (e.g., plants
A and B), we then considered the set of
animals that interact with at least one
of the focal plants. Taking each pair of
animals in this set in turn, we assigned
the resulting quartet (the two focal
plants plus two animals) to one of three
patterns of overlap. In the total overlap

pattern, both plants interact with both
animals. In the partial overlap pattern,
one plant interacts with both animals
and the other plant interacts with
only one. Finally, in the no overlap

pattern each animal interacts with
only one plant; note that this includes
cases where both animals interact with
the same plant (e.g., animals 1 and 5

and plant A) as well as cases where
each animal interacts with a different
plant (e.g., animals 1 with plant A
and animal 4 with plant B). (c-e) The
number of times each pattern occurred
was used to summarise the pairwise
niche overlap between the two plants
and then related to their phylogenetic
distance.

Statistical analysis2577

To determine how overlap of interaction partners breaks down over2578

phylogenetic distance, we modelled the probabilities of observing2579

each pattern of overlap relative to the other two patterns. We2580

expected that the frequency of the high- and moderate-overlap2581

patterns would decrease with increasing phylogenetic distance2582

between two plants while the frequency of the low-overlap pattern2583

would increase. As we expect pollination and herbivory networks2584

could show different patterns of overlap, we included effects of2585

network type and the interaction between network type and distance.2586

Lastly, to account for the possibility that different communities show2587

different characteristic relationships, we also included random effects2588

of network ID on the slope and intercept, giving a mixed-effects2589

logistic regression of the form2590

logit(ωpnij) ∝ δij + ρn + δijρn + Nn + δijNn, (1)

where ωpnij is the probability of overlap pattern p occurring between2591

species i and j in network n, δij is the phylogenetic distance between2592

plants i and j, ρn is the network type (one in pollination networks,2593

zero in herbivory networks), and Nn and δijNn are random slope2594

and intercepts for network n. All models were fit using R function2595

glmer from package lme4 (Bates et al., 2014). Sample size for these2596

models was the sum (over all pairs of plants) of the number of2597

pairs of animals where each plant and each animal has at least one2598



84

interaction partner. Over all networks, there were 43,288,090 such2599

sets of plants and animals, with a median of 72 (mean 671 +/- 2247)2600

pairs of animals per pair of plants and median 58,528 (mean 636,590)2601

plant-animal sets per network.2602

Linking network-level trends and community composition2603

Next, we examined the connection between our network-level2604

observations and the plant families present in each community.2605

Specifically, we tested the hypothesis that varying relationships2606

between phylogenetic distance and pairwise niche overlap are due2607

to the different distributions of families across networks. To do this,2608

we performed a non-parametric permutational multi-variate analysis2609

of variance (PERMANOVA; Anderson, 2001) using the change in log2610

odds of observing each pattern of overlap to predict the Bray-Curtis2611

dissimilarity of networks based on the composition of their plant2612

component (defined as the proportions of the plant community made2613

up by each plant family present in the entire dataset). We used Bray-2614

Curtis dissimilarity because, for a given pair of networks, only those2615

plant families that appear in at least one network are considered2616

(Anderson, 2001; Cirtwill and Stouffer, 2015; Chapter 5); that is, the2617

absence of rare plant families will not make two networks appear2618

more similar than they actually are.2619

Note that a PERMANOVA does not assume that the data are2620

normally distributed, but rather compares the pseudo-F statistic2621

calculated from the observed data to a null distribution obtained2622

by permuting the raw data. As pollination and herbivory networks2623

might have different community composition and the change in log2624

odds of observing different patterns of overlap, we stratified these2625

permutations by network type. That is, the change in log odds for2626

a pollination network could only be exchanged for that of another2627

pollination network. Stratifying the permutations in this way ensures2628

that the null distribution used to calculate the P-value is not biased2629

by including combinations of changes in log odds and community2630

composition that would not occur because of inherent differences2631

in the two network types (e.g., Pinaceae only appeared in herbivory2632

networks and should not be assigned to pollination networks). We2633

used 9999 such stratified permutations to obtain the null distribution2634

and obtain a P-value.2635

The PERMANOVA tests whether there is an association between2636

community composition and network-level patterns but does not2637

give any information on which plant families have the greatest2638
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effects. To address this, we supplemented the PERMANOVA with2639

three constrained correspondence analyses (CCAs) which placed2640

plant families along an axis representing the change in log odds of2641

observing each pattern of overlap. A correspondence analysis (CA) is2642

similar to other multivariate analyses such as principal components2643

analysis in that it reduces multivariate data to a set of orthogonal2644

axes. A subset of axes that explain the majority of variation in the2645

data can then be interpreted to elucidate trends that were difficult to2646

interpret in the full multivariate space. A constrained correspondence2647

analysis (CCA) creates an extra axis based on some constraint - in2648

this case, the change in log odds of observing each pattern of overlap.2649

Calculating niche overlap within families2650

Finally, we wished to compare the breakdown of overlap of2651

interactions in different plant families. To do this, we used the2652

same definitions of overlap and phylogenetic distance as in the2653

within-network analysis but restricted our regressions to pairs of2654

plants from the same family and the same network. In order to fit2655

our regression models, we had to eliminate any family-network2656

combination where there was no variation in the probabilities of2657

any pattern of overlap or in phylogenetic distance. This occurred, for2658

example, when all plant pairs in a given family in a given network2659

were taken from the same genus (as divergence times in our dataset2660

were not resolved within genera; Wikström et al., 2001). Unlike in our2661

previous analysis, we analysed data from pollination and herbivory2662

networks separately as most well-represented plant families appeared2663

in only one network type. For those families which appeared in both2664

network types, we ran separate analyses on each subset of data.2665

For each plant family, within each network type, we then fit
one of two similar sets of models. First, when family f was found
in several networks of network type t, we fit mixed-effects logistic
regressions for each pattern of overlap ωpnt f ij of the form

logit(ωpnt f ij) ∝ δij + Nn, (2)

where ωptn f ij is the probability of overlap pattern p in network
n of network type t for plants i and j in plant family f , δij is the
phylogenetic distance between plants i and j, and Nn is a random
effect of network n. Second, if a plant family was represented in only
one network and therefore necessarily in only one network type, we
omitted the network-level random effect giving mixed-effects logistic
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regressions of the form

logit(ωpnt f ij) ∝ δij. (3)

We fit Eq. 2 using the function ‘glmer’ from the R package2666

lme4 (Bates et al., 2014) and fit Eq. 3 in R using the function ‘glm’2667

from the same package.2668

Results2669

Within-network conservation of niche overlap2670

Overlap of interaction partners decreased significantly with2671

increasing phylogenetic distance in pollination networks2672

(βδ+δρ = -17.14 My−1, P<0.001 for total overlap; βδ+δρ = -9.47 My−1,2673

P<0.001 for partial overlap). In herbivory networks, these negative2674

relationships were even stronger (βδ=-40.81 My−1, P<0.001;2675

βδ=-16.47 My−1, P<0.001 for total and partial overlap, respectively).2676

In both cases, the trends for the no-overlap pattern were opposite to2677

those described above, as expected (see S3.2, Supporting Information2678

S3 for details). That is, a pair of plants in the same genus was more2679

likely to share interaction partners than a pair of plants in the same2680

family in both types of networks, but a pair of congeners would be2681

less likely to share pollinators than to share herbivores.2682

Further, plants were slightly less likely to share pollinators than2683

herbivores regardless of their phylogenetic distance2684

(βρ=-0.94, P=0.014 and βρ=-0.40, P=0.110 for total and partial overlap,2685

respectively). This may be due to the greater proportion of specialist2686

pollinators than specialist herbivores. In our dataset, an average of2687

48% (+/- 14) of pollinators in a given web were extreme specialists2688

(i.e., visited only one plant species) compared to 29% (+/- 29) of2689

herbivores (z=5.62, df=68, P<0.001 for a binomial regression of2690

specialists and generalists over network type).2691

Despite these general trends, there was substantial variation2692

between pollination networks, with overlap of interaction partners2693

decreasing with increasing phylogenetic distance in some networks2694

and increasing in others (Fig. 13). For example, the probability of2695

observing the no-overlap pattern ranged from approximately 0.32696

to over 0.95 over the entire range of divergence times observed in2697

our dataset. Herbivory networks were less variable in the directions2698

of relationships between overlap and phylogenetic distance, but2699

there was nevertheless a great deal of variation in probabilities2700

across networks. In one network, for instance, the probability of2701
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observing the no-overlap pattern increased from 0.1 to 0.7 over2702

800 My of divergence time while in other networks the probability2703

was much more constant. Overall, overlap of interaction partners2704

decreased with increasing phylogenetic distance in 77% of pollination2705

networks (βδ+δρ+δN<0 in 46 of 59 networks for total overlap and in2706

45 of 59 networks for partial overlap). All herbivory networks, on the2707

other hand, showed decreasing overlap with increasing phylogenetic2708

distance (βδ+δN<0 in 11 of 11 networks for total and partial overlap).2709

Linking network-level trends and community composition2710

In each PERMANOVA, the change in log odds of observing a given2711

pattern of overlap in a given network was significantly associated2712

with the composition of the plant community in that network2713

(F1,68=1.79, P=0.019; F1,68=1.92, P=0.010; and F1,68=1.81, p=0.015 for2714

total overlap, partial overlap, and no overlap, respectively). In the2715

CCAs of community composition constrained by the change in log2716
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Figure 14: Change in log odds of
observing different patterns of pairwise
niche overlap per million years of
divergence time between a pair of
plants in 38 separate plant families.
Families in pollination networks are
indicated by dark purple diamonds
while families in herbivory networks
are indicated by pale green circles. Note
that changes in log odds are analogous
to the slopes of the regression lines
from Eq. 2-3 in logit-transformed
space and represent the change in the
probability of observing a pattern of
overlap per million years of divergence
time. We also show the slope of the
relationship between the log-odds
of observing each overlap pattern
and phylogenetic distance across
all plant families in herbivory (pale,
green horizontal line) and pollination
(dark, purple horizontal line) networks.
Arrows indicate significant values
for Melastomataceae in herbivory
networks which fell outside the plot
margins. See Figure S3.1; Supporting
Information S3 for more details. The
phylogenetic tree below the plots
indicates the relatedness between plant
families. Error bars represent 95%
confidence intervals.

odds of observing each pattern of overlap, the largest decreases in2717

partial overlap with increasing phylogenetic distance were associated2718

with Begoniaceae, Gleicheniaceae, Myricaceae, Siparunaceae, and2719

Apocynaceae (the ordering of plant families was qualitatively similar2720

for total overlap and no overlap– see S3.3, Supporting Information S3).2721

The largest increases in partial overlap with increasing phylogenetic2722

distance were associated with Surianaceae, Malpighiaceae, Goodeniaceae,2723

Plumbaginaceae, and Resedaceae.2724
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Family
Total overlap Partial overlap No overlap

Odds
P-value

Odds
P-value

Odds
P-value

ratio ratio ratio
Asteraceae 42.96 0.013 2.04 0.820 -27.95 0.004

Rubiaceae -66.12 <0.001 -24.24 <0.001 55.60 <0.001

Melastomataceae -528.51 0.190 -923.08 <0.001 905.82 <0.001

Euphorbiaceae -20.29 <0.001 -7.92 <0.001 17.60 <0.001

Fabaceae 71.05 0.021 32.33 <0.001 -38.87 <0.001

Poaceae -5.91 <0.001 -3.97 <0.001 6.01 <0.001

Pinaceae -47.11 0.351 -13.22 0.340 16.95 0.215

Only seven plant families were sufficiently diverse in our dataset to permit this analysis (see Materials and Methods for details).
For each pattern of overlap, we show the change in log odds per million years and the associated P-value. Statistically significant
values are indicated in bold.

Table 4: Change in log odds (per
million years of phylogenetic distance)
of observing total, partial, or no overlap
in herbivores between a pair of plants
in the same family.

Within-family conservation of niche overlap2725

The relationship between within-family niche overlap and2726

phylogenetic distance varied widely in both pollination and2727

herbivory networks. For the families that were well represented in2728

pollination networks, overlap decreased with increasing phylogenetic2729

distance in 18 (Table 5). There was no significant relationship2730

between overlap and phylogenetic distance in a further 15 plant2731

families. Finally, the overlap between pairs of Polygonaceae increased2732

with increasing phylogenetic distance. Of the seven plant families2733

that were sufficiently well represented in herbivory networks, overlap2734

decreased with increasing phylogenetic distance in four (Table 4;2735

Fig. 14). Two families did not show significant relationships between2736

phylogenetic distance and overlap, and in one family, Fabaceae,2737

overlap of interaction partners increased with increasing phylogenetic2738

distance.2739

Discussion2740

We found broad support for the hypothesis that more closely-related2741

pairs of plants have a higher degree of niche overlap. Using a novel2742

method which considers all pairs of plants together, the probability of2743

two plants sharing the same animal interaction partners decreased2744

with increasing phylogenetic distance. Considering networks2745

separately, ≈78% of the pollination and all of the herbivory networks2746

exhibited the expected trend of decreasing overlap with increasing2747

distance.2748

Within families, however, there was much greater variability.2749

More than half of the plant families in each network type behaved2750

as we hypothesised, with more closely-related plants having greater2751

niche overlap than distantly related plants. This relationship between2752

overlap and phylogenetic distance is consistent with the idea that2753

traits affecting interactions are heritable (Schemske and Bradshaw,2754

1999) and changing gradually such that closely related plants2755

resemble their common ancestor— and each other —more than2756
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Family
Total overlap Partial overlap No overlap

Odds
P-value

Odds
P-value

Odds
P-value

ratio ratio ratio
Adoxaceae - - -33.37 <0.001 33.87 <0.001

Caprifoliaceae - - 1.04 0.588 -1.23 0.522

Apiaceae 11.02 <0.001 -53.50 <0.001 59.57 <0.001

Asteraceae* -4.74 <0.001 -2.00 <0.001 2.38 <0.001

Apocynaceae -8.26 <0.001 -4.48 <0.001 5.67 <0.001

Rubiaceae - - - - - -
Boraginaceae 26.40 0.470 -24.67 <0.001 23.85 <0.001

Lamiaceae 5.81 0.528 1.90 0.255 -2.10 0.205

Orobanchaceae 241.20 0.998 261.90 0.995 -262.55 0.995

Plantaginaceae -529.93 0.940 -53.81 <0.001 58.36 <0.001

Oleaceae -11.01 0.367 -14.95 <0.001 14.90 <0.001

Solanaceae - - 12.33 0.743 -25.57 0.484

Ericaceae -5.32 <0.001 -4.48 <0.001 5.02 <0.001

Primulaceae -49.15 <0.001 -21.46 <0.001 23.22 <0.001

Hydrangeaceae -7.14 0.002 -1.16 0.027 1.47 0.004

Loasaceae 482.42 0.998 478.88 0.995 -485.71 0.995

Caryophyllaceae -3.42 0.167 -3.63 <0.001 4.09 <0.001

Montiaceae 346.61 0.999 406.10 0.998 -406.90 0.998

Polygonaceae 18.37 <0.001 14.63 <0.001 -14.99 <0.001

Brassicaceae -6.04 0.260 -1.34 0.302 1.57 0.218

Cistaceae -26.90 <0.001 -10.81 <0.001 13.33 <0.001

Malvaceae -1.29 0.558 -4.59 <0.001 5.02 <0.001

Geraniaceae -11.17 0.014 -1.25 0.730 9.96 0.013

Melastomataceae* 47.20 0.998 52.97 0.993 -53.08 0.993

Myrtaceae -70.37 <0.001 -44.38 <0.001 51.83 <0.001

Malpighiaceae -0.83 0.610 -0.26 0.850 0.99 0.513

Phyllanthaceae -389.36 0.995 -24.36 <0.001 24.88 <0.001

Fabaceae* 14.19 0.011 3.18 0.091 -4.60 0.012

Rosaceae -21.45 <0.001 -20.31 <0.001 21.50 <0.001

Saxifragaceae -4.00 0.053 0.40 0.722 0.79 0.474

Papaveraceae -27.67 0.003 -16.16 <0.001 16.80 <0.001

Ranunculaceae 69.01 0.996 -11.70 0.003 10.73 0.006

Amaryllidaceae 0.65 0.933 -1.01 0.465 0.97 0.480

Asparagaceae -73.15 0.003 -33.10 <0.001 35.56 <0.001

Iridaceae 253.09 0.998 1.68 0.773 -2.30 0.691

Poaceae* 343.63 0.996 343.55 0.990 -344.97 0.990

We were able to fit these models to 35 plant families (see Materials and Methods for details). Families marked with an asterisk
were also highly diverse in herbivory networks. Statistically significant values are indicated in bold. Dashes indicate plant
families where the corresponding overlap pattern was either extremely rare or omnipresent and the relevant model was
uninformative.

Table 5: Change in log odds (per
million years of phylogenetic distance)
of observing total, partial, or no overlap
in pollinators between a pair of plants
in the same family.

they do distantly related plants. In some families, such as Asteraceae2757

in pollination networks, the positive slope of this relationship was2758

very shallow while in others, such as Melastomataceae in herbivory2759

networks, the positive slope was extremely steep. This could indicate2760

different rates of phenotypic drift or evolution in different families.2761

In contrast, Polygonaceae in pollination networks and Fabaceae in2762

herbivory networks showed the opposite pattern. In these families,2763

closely-related plants had lower overlap than more distantly-related2764

pairs of plants. There are several possible reasons a plant family2765

might display this pattern. First, part of the family may have recently2766

undergone a period of rapid diversification with closely-related2767

species developing novel phenotypes that attract different animal2768
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interaction partners (Linder, 2008; Breitkopf et al., 2015). It is also2769

possible that the animals have undergone an adaptive radiation to2770

specialise on their most profitable partner (Janz et al., 2006). Second,2771

this pattern could be the result of ecological or environmental2772

filtering (Mayfield et al., 2009; Ackerly, 2003). Closely-related species2773

which have high degrees of overlap in their interaction partners2774

might compete too severely to coexist. This is especially likely for2775

plants sharing pollinators, where the loss of pollen to related species2776

might severely limit reproductive success (Levin and Anderson, 1970;2777

Bell et al., 2005; Mitchell et al., 2009). Indeed, animal pollination2778

and seed dispersal have been shown to act as filters for several2779

plant clades (Mayfield et al., 2009). Distantly-related plants with2780

similar interaction partners, on the other hand, may differ in some2781

other aspect of their niches and so be able to coexist. Plants sharing2782

herbivores are unlikely to compete for these interaction partners, but2783

the presence of both plants in a community could support higher2784

herbivore populations than could one species alone (Russell et al.,2785

2007). If the plants compete for some other resource, the combined2786

impact of herbivory and competition could eliminate the rarer plant2787

species. Distantly-related plants sharing herbivores, conversely,2788

would be less likely to compete for vital resources and more likely2789

to persist.2790

The remaining families did not show significant relationships2791

in either direction. That is, the niche overlap between two plants did2792

not vary linearly over phylogenetic distance. Once again, there are2793

several possible drivers for this trend (or lack thereof). These plants2794

might be highly specialised on different interaction partners and2795

therefore have low overlap at all levels of relatedness. In other plant2796

families with more moderate levels of specialisation, it is possible2797

that pollination and/or herbivory do not exert large selection2798

pressures on the plants. If traits affecting pollination or herbivory2799

are not heritable in these groups (Kursar et al., 2009) and that their2800

phenotypes are constrained by other factors (e.g., drought tolerance),2801

then we should not expect a relationship between phylogenetic2802

distance and overlap of interaction partners. Alternatively, pollination2803

and/or herbivory might exert large pressures that maintain the clade2804

within a pollination or defensive syndrome. These syndromes are2805

commonly believed to predict the pollinators or herbivores with2806

which a plant will interact (Waser et al., 1996; Fenster et al., 2004;2807

Ollerton et al., 2009; Johnson et al., 2014). As some recent studies2808

have suggested that pollination syndromes do not accurately predict2809

plants’ visitors in all plant families (Ollerton et al., 2009), it may be of2810

interest for future researchers to test whether syndromes are better2811
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predictors in families with weak relationships between overlap and2812

phylogenetic distance. Lastly, it is possible that the absence of a linear2813

relationship between niche overlap and phylogenetic distance is2814

because the data actually exhibit a strongly non-linear one. This2815

could result, for example, from an early burst of diversification2816

followed by a period of stasis (Davis et al., 2014).2817

For those families which were well-represented in both2818

pollination and herbivory networks, we can also contrast the2819

trends in the two network types. In all five such cases, there was a2820

significant relationship between overlap and phylogenetic distance2821

in only one network type (counting the singular relationships in2822

Rubiaceae in pollination networks as non-significant). This may2823

indicate that one type of interaction places greater constraints upon2824

these families than the other. Plants may not be able to respond to2825

selection on both types of interaction simultaneously because traits2826

affecting pollination can also affect herbivory, and vice versa (Strauss,2827

1997; Strauss et al., 2002; Adler and Bronstein, 2004; Adler et al.,2828

2006; Theis, 2006). Associations with pollinators and herbivores2829

may also be constrained by the larger structure of the community.2830

In one recent study, plants which are visited by many pollinators2831

are also consumed by many herbivores (Sauve et al., 2015). This2832

may be because pairing antagonistic and mutualistic interactions2833

balances the indirect effects of these interactions, leading to a more2834

stable community (Sauve et al., 2014). As more networks describing2835

pollination and herbivory in the same community become available,2836

it will be interesting to test this hypothesis more thoroughly.2837

Altogether, our study has revealed a wide variety of2838

relationships between overlap of interaction partners and2839

phylogenetic distance between plants in the same family. Regardless2840

of the precise mechanisms behind these relationships, it is clear that2841

the differences between families can affect the relationship between2842

overlap and phylogenetic distance at the network level. Interestingly,2843

in our analyses the plant families associated with the steepest2844

relationships between niche overlap and phylogenetic distance at2845

the network level did not show particularly steep relationships2846

within themselves. This result suggests that it is not just which2847

plant families are present but the additional relationships between2848

the families that affects conservation of interactions at the network2849

level and is consistent with previous work showing that the shape2850

of phylogenetic tress, as well as the phylogenetic distances between2851

species, can affect the strength of phylogenetic signal (Chamberlain2852

et al., 2014b). Our results emphasise the importance of considering2853
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conservation of interactions at multiple scales. We hope that these2854

results will help to guide future work investigating the genetic and2855

environmental drivers underpinning these relationships.2856
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Abstract3075

The Arctic is currently experiencing severe climate change, resulting3076

in substantial changes to plants’ flowering periods and insects’3077

emergence dates. This has raised concerns that the two groups3078

of species may be becoming phenologically uncoupled. If this3079

is the case, networks of plant-pollinator interactions could be3080

disrupted, with adverse consequences for both plants and insects. We3081

investigated this possibility using a temporally-replicated network3082

from a well-studied High Arctic site at Zackenberg, Greenland.3083

Specifically, we tested for turnover in community composition and3084

change in the dates at which species became active in the plant-3085

pollinator network before and after 15 years of warming. We then3086

looked for effects of these changes on species’ roles within the3087

network. Our results suggest that the plant-pollinator network is3088

beginning to unravel, with changes to the roles of plants active early3089

in the year and insects late in the year being most pronounced. This3090

is consistent with phenological uncoupling and suggests that, if the3091

trends we observed continue, the pollination network at this site may3092

be disrupted. As the Arctic is the “canary in the coal mine" for the3093

effects of climate change, we expect that similar changes may also3094

occur at more temperate sites in the future.3095

Keywords3096

pollination, phenological uncoupling, network structure3097
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Introduction3098

Plant-pollinator interactions are currently being strongly influenced3099

by climate change (Hegland et al., 2009; Miller-Struttmann et al.,3100

2015). In particular, the differential effects of climate change on3101

species’ phenologies are likely to disrupt entire networks of plant-3102

pollinator interactions (Parmesan, 2006; Tylianakis et al., 2008;3103

Settele et al., 2014). If plants and their pollinators respond to3104

climate change in different ways, changes to the active periods of3105

plants and their pollinators can disrupt pollination— even if the3106

species themselves remain present in the community (Tylianakis3107

et al., 2008; Hegland et al., 2009; Petanidou et al., 2014; Forrest,3108

2015). Advancing phenology in response to global warming has3109

been reported across biomes (Menzel et al., 2006; Høye et al., 2007;3110

Hua et al., 2016), raising concerns about just such an uncoupling3111

of trophic interactions (Both et al., 2006; Thackeray et al., 2010;3112

Rasmussen et al., 2013; Gezon et al., 2016; Hua et al., 2016; Schmidt3113

et al., 2016). For example, if early-emerging pollinators respond to3114

higher temperatures and emerge before plants blossom, they may3115

have difficulty finding food. Late-emerging pollinators, on the other3116

hand, may encounter different plant species and may or may not3117

be able to obtain nectar from or pollinate them. In this context, a3118

species’ sensitivity to climate change is likely to vary with its range3119

of alternative resources. Equally, the vulnerability of an interaction is3120

likely to o depend on the phenologies of the species involved.3121

Severe effects of climate change on plant-pollinator interactions3122

are particularly likely in the Arctic— where substantial warming3123

has already taken place (Høye et al., 2013) —challenging the ability3124

of organisms, processes, and ecosystems to adapt (Post et al., 2009).3125

Moreover, the climate of the Arctic is predicted to change faster than3126

that of most other regions (IPCC, 2013; Settele et al., 2014), making3127

understanding the effects of climate change on arctic communities3128

a priority for current research (Settele et al., 2014). Previous work3129

suggests that rapid climactic shifts in the Arctic have already led3130

to equally rapid phenological shifts (Høye et al., 2007; Høye and3131

Forchhammer, 2008b; Høye et al., 2013; Schmidt et al., 2016). Even3132

more importantly, recent studies suggest that arctic plants and their3133

pollinators respond differently to climate warming (Høye et al., 2007;3134

Høye and Forchhammer, 2008b; Høye et al., 2013; Schmidt et al.,3135

2016).3136

In a well-studied plant-pollinator community at Zackenberg,3137

Northeast Greenland, flowering dates in the plant community have3138
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been shown to advance along with earlier snowmelt (Høye et al.,3139

2007). Moreover, although variation in plant phenology across3140

the landscape is pronounced in the Arctic, this variation tends to3141

decrease under both natural and experimental warming (Post et al.,3142

2008; Høye et al., 2013). This means that differences in flowering3143

time between patches are unlikely to “rescue” pollinators which3144

require floral resources later in the summer. To complete this picture3145

of changing flower availability, late-flowering plants at Zackenberg3146

have shown greater changes to their phenologies than have early-3147

flowering plants (Høye et al., 2013; Schmidt et al., 2016). In contrast3148

to alpine communities, in which early-flowering plants have shown3149

greater advances in flowering time (Aldridge et al., 2011; Iler et al.,3150

2013), this suggests that the window of floral resources in the Arctic3151

is both changing and shrinking as the climate changes (Høye et al.,3152

2013; Schmidt et al., 2016). We note, however, that data on individual3153

pollinators’ responses to changes in the mosaic of flowering plants3154

are still lacking, meaning that conclusions about the consequences3155

of change in plants’ phenologies must be considered tentative.3156

Nevertheless, these changes have the potential disrupt the network3157

of plant-pollinator interactions at Zackenberg and similar sites,3158

posing a significant challenge to plant-pollinator interactions in the3159

future (Memmott et al., 2007; Hegland et al., 2009; Post et al., 2009).3160

As most of the pollinator community at Zackenberg has also3161

emerged earlier, tracking changes in snowmelt (Høye et al., 2007;3162

Høye and Forchhammer, 2008b), it is possible that pollination3163

interactions, and the integrity of the plant-pollinator network, might3164

be maintained despite climate change. However, phenological3165

changes vary greatly between taxa (Høye and Forchhammer,3166

2008b) and more recent studies have found declines in pollinator3167

populations in the Arctic (Potts et al., 2010; Høye et al., 2013). This3168

suggests that high-arctic plants and their pollinators may indeed be3169

vulnerable to phenological uncoupling (Høye et al., 2007; Høye and3170

Forchhammer, 2008a; Olesen et al., 2011; Rasmussen et al., 2013)3171

and that pollination networks may be disrupted (Schmidt et al.,3172

2016). At Zackenberg specifically, many species also have very short3173

active periods (4-8 days) (Rasmussen et al., 2013). For these species3174

in particular, a shift in the phenology of an important interaction3175

partner could have large effects.3176

To test whether changes in plants and pollinators’ phenologies3177

are leading to changes in the interactions between them, we draw3178

on a set of temporally-replicated plant-pollinator networks from3179

Zackenberg, Greenland which spans 15 years of warming. Given the3180
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substantial phenological change in both plants and pollinators at3181

this site, we expected (1) that there would be substantial turnover3182

in plant and/or pollinator communities and (2) that dates at3183

which pollinators begin visiting plants, and plants begin receiving3184

visitors, will have changed between decades. If there is substantial3185

turnover or phenological change, then interactions between plants3186

and their pollinators may be disrupted. We therefore expect (3)3187

that the structure of interaction networks will change over time. If3188

network structure changes over time, we then expect (4) that species’3189

structural roles within these networks (i.e., the patterns of their3190

interactions with other species) will also change over time. Moreover,3191

we expect (5) that species which become active at different times of3192

the year will have different roles in the plant-pollinator network and3193

(6) that the roles of species which become active at different times of3194

the year will change in different ways between decades. Finally, we3195

expect (7) that the change in a species’ role will depend both on the3196

magnitude of the change in its phenology and on the direction of that3197

change. For clarity and later reference, these seven hypotheses are3198

summarised in Table 6.3199

Materials and Methods3200

Study site3201

At the Zackenberg research station in High Arctic NE Greenland3202

(74◦ 28′ N, 20◦ 35′ W), the local climate has changed dramatically3203

Hypothesis
Support

Plants Pollinators

1.
Community composition
changed between decades.

Weak Strong

2.
Phenology changed between
decades.

Mixed None

3.
Network structure changed
between decades.

Strong

4.
Species’ roles changed between
decades.

Strong Strong

5.
Species’ roles were correlated
with their phenology.

Strong Strong

6.
Change in roles between
decades was correlated with
phenology.

None Mixed

7.
Amount of change in roles
was correlated with amount of
change in phenology.

None Mixed

Table 6: Summary of the hypotheses we
tested in this study and the strength of
evidence for them. Note that the aspect
of phenology we are most interested
in throughout this study is the date
at which species become active in the
plant-pollinator network.
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during the study period (1996-2011). The average near-surface air3204

temperature across June, July and August has increased at a rate of3205

1.3-1.8◦C per decade since 1996, whereas the timing of snowmelt has3206

advanced at a rate of between 9.8 and 12.8 days per decade (Høye3207

et al., 2013; Mortensen et al., 2014). Over the same period, the3208

flowering season of focal plants has shortened at the landscape scale3209

at a rate of 3.7 days per decade (Høye et al., 2013).3210

Data collection3211

We use plant-pollinator data compiled over four summers, in 19963212

and 1997 (Olesen et al., 2008) and 2010 and 2011 (Rasmussen et al.,3213

2013). Each study period lasted from the last snowmelt in spring to3214

the first frost and snowfall in autumn. In 1996 and 1997, this covered3215

43 and 69 days, respectively, of which 25 in each year had sufficiently3216

fine weather to permit observation (Olesen et al., 2008). In 2010 and3217

2011, the study period covered 70 and 69 days, respectively, of which3218

54 and 52 days were spent observing in the field (Rasmussen et al.,3219

2013). All observation days had weather suitable for foraging insects.3220

During each field day (lasting from 09:00 to 17:00), two individuals3221

of each species of flowering plant were observed for 20 minutes each3222

(i.e., 40 minutes of observation for each plant species), and all insect3223

visitors to flowers were recorded as potential pollinators (Olesen3224

et al., 2008; Rasmussen et al., 2013).3225

Quantifying species turnover and changing phenologies3226

We first assessed the amount of turnover in plants and pollinators3227

across years (Hypothesis 1). Using the 1996 community as a baseline,3228

we calculated the number of plants and pollinators in 1997 that had3229

also been detected in 1996, the number of new plants and pollinators3230

observed in 1997, and the number of plants and pollinators observed3231

in 1996 that were not found in 1997. We then repeated this procedure3232

between 1997 and 2010 and between 2010 and 2011. As well as3233

comparing numbers of persistent species, newly-observed species,3234

and species disappearing from sight from one year to the next, we3235

also quantified turnover between all pairs of years using Whittaker’s3236

beta diversity index (βW ; Whittaker, 1972). This index,3237

βW = (γ − α)/α, (4)
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compares the total number of species detected across both years (γ)3238

with the mean number of species detected in one year (α) and varies3239

between 0 (identical species in both years) and 1 (complete turnover3240

of the community). We calculated turnover separately for plants and3241

pollinators.3242

As well as changes in which species were detected, we were3243

interested in changes to these species’ phenologies (Hypothesis 2).3244

For both plants and pollinators, we calculated the change in each3245

species’ dates of first interaction between each pair of networks3246

from different decades (i.e., 1996-2010, 1996-2011, 1997-2010, and3247

1997-2011) in which the pollinator was detected. To capture the3248

phenologies of species which were observed in only one year in a3249

given decade, we included all between-decade pairs of networks,3250

thus mimicking our analysis of species turnover above. To explicitly3251

test whether the phenology of the community has changed over time,3252

we compared mean dates of first interaction between decades (19963253

and 1997 vs. 2010 and 2011) using a two-tailed two-sample t-test3254

and compared variances in emergence times between decades using3255

an F-test. In addition to comparing the distributions of the entire3256

communities, we also compared the distributions of newly-arrived3257

and persistent species.3258

We note that empirically-observed dates of first interaction3259

are highly dependent on sampling effort, species’ abundances,3260

and their interaction frequencies; to ensure that our results are not3261

biased by missing interactions, we repeated all subsequent analyses3262

using simulated dates of first interaction. These simulated dates3263

were based on the full set of observed interactions for each species3264

and allowed us to determine how robust our results may be to3265

noise in the observed first dates of interaction. In general, analyses3266

involving plants’ first dates of interaction were more robust than3267

those involving insects, but in both cases the majority of simulated3268

datasets led to qualitatively the same conclusions as the observed3269

data (see Supplemental Information: S4.1 for further details).3270

Quantifying network structure3271

To test our remaining hypotheses, we compiled plant-pollinator3272

networks for each year (1996, 1997, 2010, and 2011) and for each3273

month of sampling within each year (June, July, August), giving 163274

networks in total. Of the observations collected in 1996, 94 were not3275

precisely dated and were instead associated with a range of tentative3276

dates. As all of these dates were from late in the summer, they were3277
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not likely to affect our estimates of species’ dates of first interaction.3278

Our results were qualitatively identical whether these tentatively-3279

dated observations were included only on the best-guess date of3280

observation, included only in the yearly networks (i.e., excluded from3281

the monthly networks), or included for each network covering any3282

part of the range of tentative dates (see Supplemental Information: S4.2-3283

S4.3 for details). Thus, we present results based on networks which3284

included the tentatively-dated observations only in the networks3285

describing the best guess for the date of observation as this approach3286

preserves the number of interactions that were actually observed.3287

We then quantified the structure of each network based on the3288

organisation of interactions into two- to six-species “motifs”. These3289

motifs can be thought of as the building blocks of networks (Milo3290

et al., 2002, 2004; Stouffer et al., 2007; Baker et al., 2015). Each motif3291

represents a unique way in which sets of species interact, and hence3292

a unique contribution to the transfer of energy and other ecosystem3293

processes (i.e., pollination) within a community. As the number of3294

individual motifs in a network tends to increase with the number3295

of species in the network, we converted the counts of each motif to3296

relative frequencies by dividing by the total number of motifs in the3297

network. This ensures networks from different years do not appear to3298

have different structures simply because they have different numbers3299

of species and/or interactions.3300

Comparing network structure over time3301

Having determined the structure of each network, we then aimed to3302

test whether this structure changed over time (Hypothesis 3). To do3303

this, we first quantified differences between networks’ motif profiles3304

(i.e., structures) using Bray-Curtis dissimilarity (Anderson, 2001;3305

Baker et al., 2015). This dissimilarity measures differences between3306

networks based only on motifs which appear in at least one of the3307

networks. Thus, two networks with different structures will not3308

appear more similar to each other just because they have a large3309

number of shared “double zeros” (motifs which do not appear in3310

either network). We then used a non-parametric permutational multi-3311

variate analysis of variance (PERMANOVA Anderson, 2001) to test3312

whether network structure varied over time. We were particularly3313

interested in the change in network structure after several years of3314

warming and so we compared network structure between decades3315

(i.e., 1996-1997 to 2010-2011). With PERMANOVA, we achieved this3316

by comparing the spatial medians of network structures associated3317
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with each decade– these median structures can be considered the3318

“typical" structures for each decade.3319

Similar to a traditional ANOVA, a PERMANOVA uses a pseudo-3320

F statistic to compare differences among and within groups. Unlike3321

an ANOVA, however, the PERMANOVA does not assume that the3322

data follow any particular distribution. Instead, the raw data are3323

permuted to obtain the null distribution of the test statistic and3324

a p-value is computed using this distribution. Where possible,3325

we used 9999 permutations to calculate the null distribution. In3326

PERMANOVAs where there were fewer than 9999 possible unique3327

permutations of the data, we used the maximum number of3328

permutations possible (as noted below). All PERMANOVAs were3329

performed using the adonis function in the R (R Core Team, 2014)3330

package vegan (Oksanen et al., 2014).3331

We first compared the structure of yearly networks across3332

decades. In this case, there were only 24 possible permutations of3333

motif profiles between decades. We next compared the structure3334

of monthly networks across decades. As there were many3335

more monthly than yearly networks, we were able to use 99993336

permutations to obtain the null distribution. For these networks, it3337

was additionally possible that changes in the plants and pollinators3338

active in each month might drive large amounts of variation in3339

network structure between decades. To control for the possibility3340

that such month-to-month variation in network structure might3341

mask differences in network structure between decades, we stratified3342

permutations by month. This stratification ensures that motif profiles3343

are only shuffled between networks describing the same month (e.g.,3344

the motif profiles of June 1996 and June 2010 could be swapped but3345

the motif profiles of June 1996 and July 1996 could not).3346

To visualise the change in network structure over time, we also3347

performed a nonmetric multidimensional scaling (NMDS) analysis3348

to align the motif profiles of all networks along two major axes3349

explaining the most variation in structure. The NMDS also aligns3350

the motifs themselves along the same axes, allowing us to interpret3351

changes in structure based on the motifs which exert the greatest3352

influence on these axes. We analysed the structures of yearly and3353

monthly networks together using the metaMDS function in the R (R3354

Core Team, 2014) package vegan (Oksanen et al., 2014).3355
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A B

C D

Figure 15: In this study, we use motifs
(unique patterns of 2-6 interacting
species) to describe both the structure
of networks and species’ roles within
them. We show four small networks
with different structures. All networks
all contain 5 species but some have
different numbers of links. However,
even those with the same number
of links (i.e., B and D) have different
arrangements of those links. By
describing network structures using
motifs, we can capture these differences
in a way that is not possible with
simpler measures of network structure.
Along the same line, all of the plants
(squares) highlighted in black interact
with two pollinators (circles), but
their roles within their networks
are different. For example, the focal
plants in networks A and C interact
with two generalist partners, while
the focal plants in networks B and D
interact with one specialist and one
generalist pollinator. Moreover, by
incorporating indirect interactions,
structural roles based on motifs also
allow us to distinguish between a plant
in a network where every species is
a generalist (i.e., network A) and one
which also includes specialists (e.g.,
network C). As direct and indirect
interactions both affect the pollination
service the focal plant receives, and
therefore the plant’s population
dynamics, structural roles provide a
more comprehensive picture of changes
to species’ roles than simpler measures
such as number of interaction partners.

Comparing species’ roles over time3356

As with network structure, we used the decomposition of each3357

network into its component motifs to calculate the role of every3358

species within its network (Stouffer et al., 2012; Baker et al., 2015;3359

Cirtwill and Stouffer, 2015; Chapter 5), and then to compare these3360

roles over time (Hypothesis 4). To do so, we determined the number3361

of times the species appears in the two-species motif, each of3362

the two possible three-species motifs, four possible four-species3363

motifs, etc. (Baker et al., 2015). As each motif includes one or more3364

unique positions that a species might occupy, we next identified3365

which position the species took within each motif. There are 743366

unique positions that an species can occupy in two- to six-species3367

motifs, resulting in vectors of length 74 describing the role of3368

each species in these plant-pollinator networks (Baker et al., 2015).3369

These multidimensional roles capture the ways in which species3370

are embedded into their networks in more detail than simpler3371

measures like degree (Fig. 15), allowing us to better understand how3372

pollination is changing over time at Zackenberg.3373

We were primarily interested in whether species’ roles change3374

shape over time– that is, whether a species tends to take different3375

positions within the network in different years (Hypothesis 4) rather3376

than participating in different numbers of motifs. However, roles3377

as defined above also vary in magnitude, with species involved in3378

more interactions also tending to occupy more positions within the3379

network. This is analogous to networks containing different numbers3380

of species and interactions having different numbers of motifs. Roles3381

with different magnitudes may therefore appear different even if the3382
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species involved occur with the same frequencies across all motif3383

positions. To prevent apparent changes in shape driven solely by a3384

species having different numbers of interaction partners in different3385

years, we therefore normalised the role vectors of all species by3386

dividing each role vector by the total number of positions in which3387

that species occurred. This converts counts of occurrences in different3388

positions to relative frequencies, and we used these normalised roles3389

in all subsequent analyses.3390

We then tested whether species’ roles within networks changed3391

between decades. As when comparing network structure, we first3392

quantified differences between roles using Bray-Curtis dissimilarity3393

(Anderson, 2001; Baker et al., 2015; Cirtwill and Stouffer, 2015;3394

Chapter 5). Since this ensures that two species’ roles will not3395

be considered more similar if the species share many “double3396

zeros”– positions in which neither species occurs. We then used3397

PERMANOVAs to compare roles between decades. We were able3398

to use 9999 permutations to obtain the null distribution for all3399

PERMANOVAs of species’ roles and hence did so.3400

Testing the effect of emergence date on species’ roles3401

Next, we tested whether changes to species’ phenologies, particularly3402

their dates of first interaction at the start of each sampling season,3403

could explain patterns in their roles (Hypothesis 5) or the ways in3404

which these roles changed over time (Hypothesis 6). To address3405

Hypothesis 5, we added the effect of date of first interaction to3406

the PERMANOVAs used to compare species’ roles over time. To3407

address Hypothesis 6, we also included an interaction term between3408

date of first interaction and year or month. As above, we used 99993409

permutations to obtain the null distribution of roles in each case.3410

To test the possibility that changes in roles are driven by changes3411

in network structure over time, we performed a constrained analysis3412

of principal coordinates (CAP) that accounted for network structure.3413

This analysis, similar to a redundancy analysis, measures the3414

variance in the response (roles) explained by a set of predictors. We3415

used date of first interaction as a predictor and included network3416

structure as a “conditioning” variable. When testing the ability of3417

decade to explain variation in pollinators’ roles, the CAP compares3418

a model including only the conditioning variable (in this case, a3419

distance matrix based on network structure) with a model including3420

the conditioning variable and any other predictors. As with the3421

PERMANOVAs above, we used Bray-Curtis dissimilarities to describe3422
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both differences in network structure and differences in species’3423

roles. We performed the CAP using the capscale function in the R (R3424

Core Team, 2014) package vegan (Oksanen et al., 2014). These CAP3425

analyses also allowed us to visualise species’ median roles over time,3426

as with the NMDS used to visualise network structure.3427

As well as being interested in the effects of dates of first3428

interaction per se, we were interested in whether the change in3429

these dates was related to the amount of change in species’ roles3430

(Hypothesis 7). That is, did pollinators that became active much3431

earlier in the 2010’s than in the 1990’s have more dissimilar roles3432

in those years than pollinators that became active at very similar3433

times in each decade? To test this, we combined the Bray- Curtis3434

dissimilarities between species’ yearly roles in different decades3435

(i.e., between 1996 and 2010, 1996 and 2011, 1997 and 2010, and 19973436

and 2011) with the differences in species’ dates of first interaction3437

between these years. Negative values for change in date of first3438

interaction indicate that a species became active earlier in the later3439

network while positive values indicated a shift to becoming active3440

later in the year.3441

We then measured the correlation between within-species3442

differences in emergence date and within-species role dissimilarities.3443

As we expected that species’ roles might respond differently to3444

advancing or retreating phenologies, we analysed species which3445

became active on an earlier date in the 2010’s than in the 1990’s3446

separately from species which became active on a later date in3447

the 2010’s than in the 1990’s. In each case, and as in our previous3448

analyses, we did not assume that this statistic would follow a3449

normal distribution but rather obtained the null distribution through3450

permutations. Moreover, as some species’ dates of first interaction3451

were more variable than others, we stratified permutations to within3452

species (i.e., the difference in emergence dates for Aedes impiger from3453

1996 to 2010 could only be swapped with the difference in dates of3454

first interaction for Aedes impiger from 1996 to 2011, 1997 to 2010,3455

or 1997 to 2011). We used 9999 permutations to obtain the null3456

distribution.3457

We followed a similar approach to test the effect of the3458

magnitude of change in date of first interaction on the change in3459

species’ roles in monthly networks. In this case, we were more3460

interested in changes across years than within years (i.e., from3461

June 1996 to June 2010 rather than from June 1996 to July 1996). We3462

therefore only calculated dissimilarities between networks describing3463
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Figure 16: From 1996 to 2011, the
composition of the Zackenberg
plant-pollinator community changed
dramatically. A-B) We show the number
of species in each group that were
recorded in the previous year (solid),
the number of species detected in the
previous year that were not observed in
the focal year (no fill), and the number
of species that were detected in the
focal year but not in the previous year
(striped fill). The height of the bar
indicates the total number of plants
or pollinators observed each year. The
majority of plant species were recorded
in all four years. The pollinator
community, however, both increased in
species richness and showed substantial
turnover (Table 7). C-D) We show the
mean date of first interaction (±2SE)
for plants or their pollinators for each
year. In both communities, mean dates
of first interaction were not significantly
different between decades or between
any two years.

the same month in different years. Using these dissimilarities and3464

the changes in dates of first interaction described above, we once3465

again tested for correlation between the magnitude of change in dates3466

and the magnitude of change in roles. As with the yearly roles, we3467

performed separate tests for species emerging or flowering earlier in3468

the 2010’s than in the 1990’s and those emerging or flowering later3469

in the 2010’s. In both cases, we used 9999 permutations to obtain the3470

null distribution and permutations were stratified within species.3471

Results3472

Did community composition change between decades?3473

Both the richness and composition of the network varied between3474

years, partially supporting Hypothesis 1 (Table 6). While numbers3475

of plant species were relatively constant over time, more pollinator3476

species were observed in each year from 1996 to 2011 (Fig. 16 A-B).3477

Similarly, few plant species either appeared or disappeared between3478

years while there was a great deal of turnover of pollinator species3479

(Fig. 16C-D, Table 7).3480

Did species’ phenologies change between decades?3481

Perhaps more importantly, the dates of first interaction did not3482

vary between decades for either plants or pollinators (F1,126=0.995,3483

p=0.321 and F1,287=1.52, p=0.219, respectively). This suggests that,3484

despite the species turnover at Zackenberg, interactions between3485



112

species were more constant over time and gives no support for3486

Hypothesis 2 (Table 6). However, for those plants which persisted3487

between years, dates of first interaction were significantly earlier3488

in 2010-2011 (F1,83=6.34, p=0.018). No new plants were detected in3489

the community in 1997, but those that appeared in 2010 and 20113490

had their first visitors substantially later than the other plants in the3491

community. Among the pollinators, dates of first interaction did not3492

differ between decades for either persistent or newly-arrived species3493

(F1,150=0.299, p=0.591 and F1,75=0.538, p=0.466).3494

Did network structure change between decades?3495

The motif structure of yearly networks changed significantly3496

between the mid 1990’s and the early 2010’s (F1,2=6.27, p=0.042 for3497

a PERMANOVA of structures of yearly networks across decades).3498

The motif structure of the monthly networks also changed between3499

the mid 1990’s and the early 2010’s, but only when permutations3500

were stratified by month (F1,10=2.32, p=0.064 for an unstratified3501

PERMANOVA of structures of monthly networks across decades;3502

p=0.030 for a similar PERMANOVA stratified by month). That3503

is, while network structure did change across the decades, this3504

change could be masked by the substantial variation in network3505

structure between months within the same year if the network is not3506

resolved to finer timescales. Overall, however, these results support3507

Hypothesis 3 (Table 6).3508

These trends in network structure for both the yearly and3509

monthly networks were also visually apparent in the NMDS of3510

network structure across years. Negative values of the first NMDS3511

axis were associated with several motifs representing tightly knit3512

groups composed of generalists interacting with other generalists,3513

while positive values were associated with motifs representing more3514

loosely connected sets of species involving specialists interacting3515

with generalists. Moving from negative to positive values of the3516

second NMDS corresponds to an increase in the relative frequency of3517

Years Plant turnover Pollinator turnover
1996 1997 0.000 0.203

1996 2010 0.169 0.391

1996 2011 0.111 0.432

1997 2010 0.169 0.362

1997 2011 0.111 0.417

2010 2011 0.182 0.301

Table 7: Turnover at Zackenberg
(measured using Whittaker’s beta
diversity index) was higher among
insect pollinators than plants. Turnover
among pollinators was higher between
years in different decades (bolded)
than between years in the same decade,
while turnover in the plant community
was similar across all years.
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five- and six-species motifs and a decrease in two- and three-species3518

motifs. From the 1990’s to the 2010’s, the yearly networks increased3519

along the first NMDS axis and decreased along the second NMDS3520

axis (Fig. S4.5A, S4.5, Supporting Information S4). This suggests that3521

the yearly networks developed a more ‘open’ structure over time,3522

with fewer plants sharing all (or almost all) of their pollinators with3523

other plants and fewer ‘connector’ species connecting small motifs3524

into larger ones. This trend towards more specialised pollinators3525

is supported by the lower mean degrees (number of interaction3526

partners) of pollinators in 2010 and 2011 than in 1996 and 1997 (4.433527

and 3.23 partners for the 1990’s and 2010’s, respectively; p=0.0073528

for an anova of degree by decade). Plants, meanwhile, had similar3529

numbers of interaction partners in both decades (8.79 and 8.14,3530

respectively; p=0.573).3531

In the monthly networks, the amount of change in network3532

structure varied greatly between months (Fig. S4.5B-D). The June3533

networks in 1996, 2010, and 2011 had similar structures, but the3534

1997 network was lower along the first NMDS axis and higher along3535

the second NMDS axis, while the July networks had very similar3536

structures in each year. In both months, pollinators’ mean numbers3537

of interaction partners were similar between decades (1.958 and3538

1.907 partners in June, p=0.862 for an anova of degree by decade;3539

and 3.857 and 3.270 for July; p=0.216). Plants’ degrees were also3540

similar between decades in the June and July networks (3.76 and3541

4.12, p=0.699 for June; 6.87 and 6.26, p=0.524 for July). The August3542

networks, in contrast, showed greater variation in structure. As3543

with the yearly networks, they increased along the first NMDS axis3544

and decreased along the second axis. Once again, this corresponds3545

to the August networks developing a more ‘open’ structure with3546

fewer species sharing interaction partners, and was associated3547

with a significant decrease in pollinators’ mean degrees (2.786 and3548

1.856 partners, p=0.006). As with the other months and the yearly3549

networks, plants’ degrees were not significantly different between3550

decades (4.33 and 5.06 partners, p=0.505).3551

Did species’ roles change between decades?3552

The yearly roles of both plants and pollinators varied over time3553

(F1,126=5.35, p<0.001 and F1,287=12.7, p<0.001, respectively, for3554

PERMANOVAs of yearly roles against decade; Fig. 17 A). Likewise,3555

plants’ and pollinators’ monthly roles both varied over time3556

(F1,230=3.20, p=0.003 and F1,455=8.82, p<0.001, respectively, for3557

PERMANOVAs of monthly roles against decade). Moreover, the3558
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Figure 17: The median roles of plants
and their insect pollinators differed
between years. A-B) The median roles
of both plants and pollinators in yearly
plant-pollinator networks moved
towards more negative values along
the first axis of a redundancy analysis
(RDA) of species’ roles against year. B)
The median roles of pollinators also
moved towards more positive values
of the first RDA axis. For both plants
and pollinators, moving from negative
to positive values along the first RDA
axis represented a shift towards higher
frequencies of positions representing
generalists, while the same transition
along the second axis represented
a shift from small to large motifs
(Fig. S4.6). C-H) The median roles
of plants and pollinators in monthly
networks showed more variable trends.
C-D) In the June networks, the median
roles of plants showed similar patterns
to those in the yearly networks while
the median roles of pollinators showed
no clear trend over time. E-F) In the
July networks, the median roles of
both groups were similar across years,
although the roles of plants again
showed a more similar trend to that
in the yearly networks. G-H) In the
August networks, the median roles of
plants differed much more between
years in the same decade than across
decades while the roles of pollinators
showed a similar trend to that in the
yearly networks.

change in monthly roles across decades varied between months3559

for both plants and pollinators (F2,451=3.75, p<0.001 and F2,226=2.80,3560

p<0.001, respectively, for the interaction term in a PERMANOVA of3561

monthly roles against decade, month, and their interaction). This3562

means that not only are species’ roles changing over time (supporting3563

Hypothesis 4; Table 6), this change is unevenly distributed across3564

species that are active in different months.3565

For both plants and pollinators, moving from negative to3566

positive along the first CAP axis represents a shift from positions3567

representing specialists who interact with generalists to positions3568

representing generalists interacting with other generalists, although3569

the exact motifs involved differed between species groups. The3570

second axis, meanwhile, represented a shift from positions in small3571

motifs to positions representing generalists in large motifs. It is3572
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noteworthy that, although plants and pollinators were analysed3573

separately, both groups’ roles diverged along similar axes. As the3574

roles of plants and pollinators moved towards more negative values3575

along the first axis in 2010 and 2011, both groups participated more3576

frequently in specialist positions. Combining these results with those3577

for species’ degrees, described above, it is clear that while plants’3578

roles shifted towards more specialised positions the addition of3579

more pollinators to the community has meant that their numbers3580

of interaction partners have remained stable. Pollinators, on the other3581

hand, appeared in more specialised positions and interacted with3582

fewer plants in 2010-2011.3583

The roles of plants and pollinators in monthly networks,3584

however, showed different trends. The roles of plants in June3585

networks followed the same trend as the yearly networks, as did3586

the July networks (albeit to a lesser extent). Plants’ median roles in3587

the August networks, meanwhile, showed much greater differences3588

within each decade than across decades. From the pollinators’3589

perspective, species’ roles in June varied widely while roles in July3590

were very similar in all networks. Only in the August networks did3591

pollinators’ roles follow the same pattern as in the yearly networks.3592

These differing patterns suggest that, in a network context, plants3593

and pollinators are not responding to climate change in the same3594

ways.3595

Did species’ roles vary with dates of first interaction?3596

As well as varying across decades, plants’ and pollinators’ yearly3597

roles varied systematically with their dates of first interaction3598

(F1,124=16.1, p=0.004 and F1,285=37.6, p<0.001, respectively, for the date3599

term in PERMANOVAs of yearly roles against decade, date, and their3600

interaction). For both groups, the relationship between yearly roles3601

and date did not vary between decades (F1,124=0.796, p=0.843 and3602

F1,285=1.38, p=0.233, respectively, for the interaction term in the above3603

PERMANOVAs). Moreover, date remained a significant predictor3604

even after controlling for changes to network structure between years3605

(F1,123=14.9, p<0.001 and F1,284=33.8, p<0.001, respectively) in CAPs3606

of species’ roles against date, conditioned by network structure. Our3607

results for plants’ and pollinators’ yearly roles therefore support3608

Hypothesis 5 but not Hypothesis 6 (Table 6).3609

Support for these two hypotheses from the monthly roles,3610

however, was mixed. Plants monthly roles did not vary with their3611

dates of first interaction or with the interaction between date and3612
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decade (F1,228=7.68, p=0.159 and F1,228=1.02, p=0.382, respectively).3613

After controlling for changes to network structure, however, date3614

of first interaction did significantly predict plants’ monthly roles3615

(F1,219=7.92, p<0.001). Thus, plants’ roles did vary with their dates3616

of first interaction, although this variation could be obscured by3617

contrasting changes in network structure. There was, therefore, some3618

support for Hypothesis 5 but none for Hypothesis 6 from the plants’3619

monthly roles (Table 6).3620

Pollinators’ monthly roles, in contrast, did vary with their3621

dates of first interaction (F1,453=17.9, p<0.001), and this relationship3622

remained significant after accounting for network structure3623

(F1,444=26.8, p<0.001). Unlike pollinators’ yearly roles, this3624

relationship varied between decades (F1,453=4.78, p=0.004), offering3625

strong support for Hypotheses 5 and 6. When the roles of pollinators3626

in monthly networks from the 1990’s and the 2010’s were analysed3627

in separate PERMANOVAs, date of first interaction was a significant3628

predictor of pollinators’ roles in 1996 and 1997 (F1,200=14.0, p=0.011)3629

but not in 2010 and 2011 (F1,253=9.08, p=0.092). This suggests that3630

pollinators’ roles may once have been predictable by their dates3631

of first interaction, but that changes to the community have since3632

undermined this trend.3633

Was change in dates of first interaction related to change in roles?3634

The magnitudes of changes in plants’ yearly roles were not related to3635

changes in their dates of first interaction for plants with advancing3636

or retreating phenologies (R2=0.117, p=0.459 and R2=0.008, p=0.462,3637

respectively). For pollinators, in contrast, the relationship between3638

the change in date of first interaction and change in pollinators’3639

yearly roles differed depending on whether the pollinators’3640

phenologies advanced or retreated. For pollinators which became3641

active earlier in 2010 or 2011 than in 1996 or 1997, the amount of3642

dissimilarity in the pollinators’ yearly roles was not related to the3643

amount of change in date of first interaction (R2=0.110, p=0.143). For3644

pollinators which became active later in 2010 or 2011, dissimilarity3645

in yearly roles increased slightly with increasing differences between3646

dates of first interaction (R2=0.086, p=0.048). In both cases, the range3647

of dissimilarities was large for all values of change in date of first3648

interaction (Fig. 18A). Our yearly results, therefore, offer very limited3649

support for Hypothesis 7 (Table 6).3650

As with yearly roles, the amount of change in plants’ monthly3651

roles was not related to the amount of change in plants’ phenologies3652
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Figure 18: The relationship between the
magnitude of change in species’ roles
between decades and the magnitude
of change in species’ dates of first
interaction between decades differed
between plants and their pollinators.
A-B) There was no relationship between
the amount of change in plants’ roles
and the amount of change in their dates
of first interactions in either yearly or
monthly networks. C-D) Pollinators
with greater changes to their date of
first interaction also showed greater
dissimilarities between roles. C) In
yearly networks, this relationship held
for pollinators which became active
later in the year but not those which
became active earlier. D) The reverse
was true in monthly networks. In all
panels, change in roles was measured
using Bray-Curtis dissimilarity, and
difference in dates of first interaction
is measured in days. The p-values
were determined using Mantel tests
of Bray-Curtis dissimilarity between
roles against absolute difference in
dates of first interaction. Plants and
pollinators were analysed separately,
as were species becoming active earlier
and later within each species type.
Lines are based on linear regressions of
the dissimilarity between roles against
change in emergence date, sign of
change, and their interaction, and are
indicative only.

for plants which became active earlier in the year in 2010-20113653

(R2=0.117, p=0.264), but change in roles was related to change in3654

phenology for plants which became active later in the year in 2010-3655

2011 (R2=0.104, p=0.025, respectively). Pollinators’ monthly roles,3656

meanwhile, showed the opposite relationship with the amount of3657

change in dates of first interaction to that in the yearly networks.3658

Specifically, for pollinators with retreating phenologies, the amount3659

of dissimilarity in the pollinator’s monthly roles was not related3660

to the size of the change in its date of first interaction (R2=0.046,3661

p=0.549; Fig. 18B) while for pollinators with advancing phenologies3662

the amount of dissimilarity increased with the size of the change3663

in date of first interaction (R2=0.190, p=0.005). Once again, this3664

constitutes weak support for Hypothesis 7 (Table 6).3665

Simulating dates of first interaction3666

One other potential explanation for our unexpected results related3667

to Hypothesis 7 (Table 6) is that our estimates of species’ dates of3668

first interaction may not be entirely accurate. As our networks were3669

assembled by observing the visitors to focal plants, it is particularly3670

likely that pollinators’ true dates of first interaction may be different3671

than we observed. To determine how robust our results are to noise3672

in estimations of species’ dates of first interaction, we repeated our3673

tests for Hypotheses 5-7 (i.e., those which depend upon dates of3674

first interaction; Table 6) using 1000 sets of simulated dates (see S4.3,3675

Supporting Information S4 for details). In nearly all cases, our results3676
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for plants using simulated dates were similar to those obtained using3677

the observed dates. This indicates that these results are generally3678

robust to noise in our estimates of date of first interaction and means3679

we can be quite confident in them. For the pollinators, however,3680

our results for Hypotheses 5 and 6 using the observed dates were3681

significantly more extreme than those obtained using the simulated3682

dates. This suggests that our results for the pollinators were more3683

susceptible to noise in our estimates of dates of first interaction, even3684

though the results for Hypothesis 7 were similar using the observed3685

and similar datasets.3686

Discussion3687

We found evidence in support of most of the hypotheses we tested3688

in this study, although the degree of support varied between types3689

of species and network time scales. Testing the hypothesis that there3690

would be substantial species turnover during 15 years of warming3691

(Hypothesis 1), we found support from the pollinator community3692

but not the plants. This may be because the lifecycles of plants and3693

pollinators occur on different timescales— the plant community3694

at Zackenberg is perennial while the insects live for only one year.3695

Plants may also be space-limited such that new species cannot grow3696

in the study site until a plant present in the previous year dies.3697

On the surface, it appeared that there was no support for3698

the idea that dates of first interaction would change between3699

decades (Hypothesis 2), as mean dates of first interaction were not3700

significantly different between decades for plants or for pollinators.3701

However, when examining the patterns at higher resolution we found3702

that the dates of first interaction for plants which persisted in the3703

community between years did shift earlier between decades, while the3704

few plants which were first observed in 2010-2011 had substantially3705

later dates of first interaction. It therefore appears that dates of3706

first interaction among resident plants are changing in line with3707

previously reported changes to flowering phenology (Høye et al.,3708

2013; Schmidt et al., 2016). Neither the dates of first interaction for3709

persistent pollinators nor those of new arrivals differed significantly3710

between decades, indicating that changes in pollinators’ emergence3711

dates are not reflected in their interaction phenologies. While it is3712

possible that the high turnover in the pollinator community makes it3713

difficult to obtain a clear signal of changing phenology, these results3714

contrast with known changes to pollinators’ emergence dates (Høye3715

et al., 2007; Høye and Forchhammer, 2008b). The lack of change in3716

pollinators’ dates of first interactions also suggests that plants and3717

their pollinators may indeed be becoming uncoupled as proposed in3718
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earlier studies (Høye et al., 2013; Gezon et al., 2016; Hua et al., 2016;3719

Schmidt et al., 2016).3720

The possibility that plants’ and pollinators’ phenologies are3721

diverging is strengthened by our results for Hypothesis 3, where we3722

found that network structure changed consistently between decades3723

(Table 6). Specifically, the network structure shifted towards higher3724

frequencies of motifs representing plants sharing few pollinators with3725

each other. This indicates that the network became more open and3726

loosely connected over time, and that the trend was likely driven by3727

changes to plants’ roles. Examining the networks for each month3728

separately, we found that this trend was evident in the August3729

networks but not those for June or July. Given the relatively constant3730

size of the plant community over time, these monthly results indicate3731

that pollinators that are active later in the year were not able to visit3732

as many plants in 2010-2011 as they were in 1996-1997. This may be3733

because the dates of first interaction for plants have advanced while3734

those of pollinators have not. Whatever their cause, these changes in3735

network structure are likely cause for concern, as loosely connected3736

networks tend to be less robust to species loss (Dunne et al., 2002;3737

Gilbert, 2009; Kaiser-Bunbury et al., 2010).3738

We also found support for Hypothesis 4, that species’ roles3739

would change between decades. In line with the changes in3740

network structure, we found that the roles of both plants and3741

pollinators shifted towards higher frequencies of motifs representing3742

specialists interacting with generalists and lower frequencies of3743

motifs representing generalists. These changes to species’ roles were3744

significant even after controlling for changes to network structure.3745

As plants’ mean degrees did not change between decades, these3746

changes in roles suggest that newly-arrived pollinators in 2010-3747

2011 tend to interact with relatively few plants and that some of3748

the persistent pollinators have lost interaction partners such that the3749

increasing size of the pollinator community did not result in more3750

interactions per plant. Because all of the positions in plants’ roles3751

which showed the strongest declines describe generalists interacting3752

with other generalists, it seems likely that pollinators with many3753

interaction partners in 1996-1997 lost more interactions in 2010-3754

2011 than did more specialised pollinators. From the pollinators’3755

perspective, motifs describing generalists interacting with other3756

generalists and motifs describing generalists interacting with large3757

sets of specialists showed large declines. This is consistent with our3758

picture of specialist pollinators arriving at Zackenberg and persistent3759

pollinators losing some of their interactions, as is the increase in3760
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motifs describing pollinators sharing few plants with many other3761

pollinators. As specialists are more vulnerable to extinction following3762

a perturbation to their community (Burkle et al., 2013; Tylianakis,3763

2013), the changes to species’ roles we have observed suggest plants3764

and pollinators may be more vulnerable to continued climate change3765

at Zackenberg. Based on changes to species’ roles in the monthly3766

networks, it appears that the species most likely to bear the brunt of3767

future changes are plants that are most active early in the summer3768

and pollinators that are most active late in the summer.3769

After establishing that network structure and species’ roles both3770

changed between decades, we then tested whether species’ roles3771

were related to their dates of first interaction and therefore likely3772

to be affected by changes in phenology (Hypothesis 5). Plants’ and3773

pollinators’ roles in the yearly networks were significantly associated3774

with their dates of first interactions whether or not we controlled for3775

network structure, as were pollinators’ roles in monthly networks.3776

Plants’ roles in monthly networks only varied with their dates of first3777

interaction after we controlled for network structure. We therefore3778

conclude that species’ dates of first interaction are indeed related3779

to their structural roles in the plant-pollinator networks. For plants,3780

this relationship did not vary between decades (i.e., there was no3781

support for Hypothesis 6; Table 6). This suggests that, as plants’3782

dates of first interaction advanced, they merely shifted into roles that3783

had previously been occupied by other plants. For pollinators, the3784

relationship between species’ roles and their dates of first interaction3785

did not vary between decades in the yearly networks but seemed to3786

be stronger in 1996-1997 in the monthly networks. As pollinators’3787

roles changed between decades but their dates of first interaction3788

did not, it is understandable that the relationship between roles and3789

phenology is breaking down. Since this breakdown was not detected3790

in pollinators’ yearly roles, however, it may be quite a subtle effect3791

(and only detectable with the finer-grained monthly networks).3792

Lastly, we found limited support for Hypothesis 7 for both3793

plants and pollinators (Table 6). For plants, there was no relationship3794

between the change in roles and the change in their dates of first3795

interaction in the yearly networks, and a significant relationship in3796

the monthly networks for plants which became active later in 2010-3797

2011 in the monthly networks. For pollinators the situation was more3798

complex. In the yearly networks, there was a significant relationship3799

for pollinators whose dates of first interaction retreated between3800

decades, while in the monthly networks there was a significant3801

relationship for pollinators whose dates of first interaction had3802
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advanced between decades. From these results, we must conclude3803

that the amount of change in the dates when species become active3804

is not a good predictor of the amount of change in their roles.3805

Other elements of species’ phenologies, such as emergence or3806

flowering dates, may be better predictors of species’ roles within their3807

communities, but testing this was beyond the scope of the current3808

study. In addition, the results of our analyses using simulated dates3809

of first interaction suggest that our results for pollinators may be3810

more susceptible to noise than those for plants. In future studies at3811

Zackenberg, this discrepancy could be reduced by complementing3812

observations of focal plants with analyses of pollinators carrying3813

pollen are first caught, as opposed to pollinators which have emerged3814

but not yet visited a plant. In the absence of such information, we are3815

obliged to place more weight upon our results for plants than those3816

for pollinators.3817

Putting all of our results together, we have shown that the3818

plant-pollinator community at Zackenberg has experienced a great3819

deal of turnover in pollinator species and changes to the timing of3820

interactions. This is consistent with earlier findings showing that3821

plants’ flowering dates have advanced (Høye et al., 2013; Schmidt3822

et al., 2016) and that species’ ranges are shifting as the climate3823

warms (Buisson et al., 2008; Flenner and Sahlén, 2008). Along3824

with these changes, we have shown that the structure of the plant-3825

pollinator network at this site has changed over time, as have the3826

roles of species within it. In general, the Zackenberg pollination3827

network appears to be unravelling, with fewer plants sharing3828

pollinators and pollinators becoming more specialised. This is3829

especially true for plants and pollinators active late in the summer.3830

These species may have difficulty finding enough open flowers to3831

feed upon (for pollinators) or obtaining sufficient pollination service3832

(for plants). As feeding and reproduction are both essential to the3833

maintenance of a population, some of these species may be lost if3834

these trends continue for long enough. Moreover, both plants and3835

pollinators are tending to share fewer interaction partners over3836

time, leading to less redundancy in pollination services and food3837

resources, respectively. Redundant sets of interaction partners are3838

believed to provide an ‘insurance policy’ that can sustain species if3839

their most important interactions are disrupted (Yachi and Loreau,3840

1999; Memmott et al., 2004; Potts et al., 2010). With severe weather3841

and other perturbations becoming increasingly likely as climate3842

change continues (Hassol, 2004; Adger et al., 2007; Steiner et al.,3843

2015; Benestad et al., 2016), the plant-pollinator communities at high-3844

arctic sites like Zackenberg may therefore be increasingly vulnerable3845
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if species’ roles continue to change in the same ways. Moreover,3846

as arctic communities have been warming faster than temperate3847

sites (IPCC, 2013; Settele et al., 2014), they can be seen as the “canary3848

in the coal mine”, predicting future changes at lower latitudes.3849
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Summary4094

1. Previous analyses of empirical food webs (the networks of who4095

eats whom in a community) have revealed that parasites exert a4096

strong influence over observed food-web structure and alter many4097

network properties such as connectance and degree distributions.4098

It remains unclear, however, whether these community-level effects4099

are fully explained by differences in the ways that parasites and4100

free-living species interact within a food-web.4101

2. To rigorously quantify the interrelationship between food-web4102

structure, the types of species in a web and the distinct types of4103

feeding links between them, we introduce a new methodology4104

to quantify the structural roles of both species and feeding links.4105

Roles are quantified based on the frequencies with which a species4106

(or link) appears in different food-web motifs– the building blocks4107

of networks.4108

3. We hypothesised that different types of species (e.g., top predators,4109

basal resources, parasites) and different types of links between4110

species (e.g., classic predation, parasitism, concomitant predation4111

on parasites along with their hosts) will show characteristic4112

differences in their food-web roles.4113

4. We found that parasites do indeed have unique structural roles4114

in food webs. Moreover, we demonstrate that different types4115

of feeding links (e.g., parasitism, predation, or concomitant4116

predation) are distributed differently in a food-web context. More4117

than any other interaction type, concomitant predation appears to4118

constrain the roles of parasites. In contrast, concomitant predation4119

links themselves have more variable roles than any other type of4120

interaction.4121

5. Together, our results provide a novel perspective on how both4122

species and feeding link composition shapes the structure of an4123

ecological community, and vice-versa.4124

Keywords4125

network motifs, species roles, interaction roles, role dispersion, role4126

diversity4127
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Introduction4128

Food webs– the networks of who eats whom in an ecosystem –4129

provide ecologists with tools to analyse the structure of ecological4130

communities (Cohen, 1978; Pascual and Dunne, 2007) and compare4131

them across space and time (Thompson and Townsend, 2005b; Shurin4132

et al., 2006; Olesen et al., 2008). Food webs also connect biodiversity4133

to ecosystem functions by integrating patterns and processes4134

from individual to community scales (Thompson et al., 2012). In4135

particular, the overall structure of food webs has been directly tied4136

to ecosystems’ responses to environmental change (Thompson and4137

Townsend, 2010, 2005a; Tylianakis et al., 2008) and robustness to4138

species loss (Dunne et al., 2002b, 2004; Estrada, 2007; Srinivasan et al.,4139

2007; Gilbert, 2009; Rezende et al., 2009).4140

The vast majority of food web studies, however, have focused4141

on networks of predator-prey interactions between free-living4142

species (Combes, 1996; Huxham et al., 1996; Marcogliese and4143

Cone, 1997; Lafferty et al., 2006), prompting calls for a broader4144

and more comprehensive food-web theory (Marcogliese and Cone,4145

1997; Lafferty et al., 2006; Fontaine et al., 2011; Kéfi et al., 2012),4146

especially where parasites are concerned (Marcogliese and Cone,4147

1997; Lafferty et al., 2006; Dobson et al., 2008; Lafferty et al., 2008).4148

Although typically small and difficult to observe, parasites can exert4149

a strong influence on their communities (e.g., Huxham, Beaney &4150

Raffaelli, 1996). They participate in a large proportion of feeding4151

links (henceforth “links”) (Lafferty et al., 2006; Dunne et al., 2013b)4152

and exhibit comparable diversity and biomass to free-living species4153

(Dobson et al., 2008; Kuris et al., 2008). Moreover, parasites’ complex4154

life histories, which commonly involve different sets of hosts for4155

different life stages, render them vulnerable to secondary extinctions4156

and therefore decrease network robustness (Lafferty and Kuris, 2009).4157

Parasites are also of interest because of the many ways in which4158

they could potentially influence food-web structure– the organisation4159

of links between species (Combes, 1996; Thompson et al., 2005;4160

Lafferty et al., 2006; Dunne et al., 2013b; Thieltges et al., 2013, Fig. 19).4161

Like generalist predators, many parasites have multiple potential4162

hosts which may each support different life stages (Marcogliese and4163

Cone, 1997; Lafferty et al., 2006; Rudolf and Lafferty, 2011). Parasites4164

may also have one or more free-living stages which can be important4165

prey for free-living predators (Combes, 1996; Kuris et al., 2008).4166

Further, parasites vary in the ways in which they are transmitted4167

between hosts: they can actively infect new hosts, be ingested as eggs4168
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+ Parasite 

webs

Free - living

web

BA C + Concomitant

webs Figure 19: Parasites can be incorporated
into food webs in several different
ways, each of which increases the
complexity of the web. (A) Food webs
are typically composed of free-living
species (circles) and the predator-prey
links between them (arrows indicate
the direction of energy flow). (B) In
“+ parasite” webs, parasites (squares)
parasitize free-living hosts (dotted line).
They may parasitize one host for their
entire life cycle (white square), different
hosts (grey square), or be target prey
to free-living predators (black square,
hatched line). Where two parasites
infect the same host (black and white
square), one may kill the other, usually
consuming it (thick black line). (C) “+
concomitant” webs also include links
between parasites and the predators of
their hosts (curved lines). In these links,
the parasite may simply be digested
(white square), or it may infect the
predator and parasitize it as well (grey
square). In some cases, a parasite (black
square) may be consumed by the same
predator both as concomitant prey and
as target prey.

or cysts, or be ingested as concomitant prey along with the current4169

host (Kuris et al., 2008; Thieltges et al., 2013).4170

Because of their plethora of life-history strategies, small body4171

sizes, and unusual mode of life, it would appear that the ecological4172

roles of parasites are completely distinct from those of more4173

“traditional” predators and prey (Marcogliese and Cone, 1997; Rudolf4174

and Lafferty, 2011). Indeed, at least one study has concluded that4175

parasites tend to have broader and less-contiguous prey ranges than4176

free-living species (Dunne et al., 2013b). Despite these important4177

differences, however, that same study has suggested that parasites4178

and free-living species can appear to have similar effects on food-4179

web structure. For example, when parasites are added to a food4180

web without including concomitant predation, species richness4181

and number of links necessarily increase, and connectance, link4182

density, and degree distributions are altered (Dunne et al., 2013b).4183

Nevertheless, these structural changes are similar to the trends that4184

emerge when comparing webs with different numbers of free-living4185

species (Dunne et al., 2013b) and follow known patterns of scaling4186

with species richness (Riede et al., 2010).4187

In contrast, the addition of concomitant predation links4188

resulted in greater structural changes. First, by adding more links4189

but no additional species, link density and connectance must4190

necessarily increase (Dunne et al., 2013b). Importantly, this increase4191

in connectance was observed even when the connectance of webs4192

excluding concomitant predation was adjusted to account for the4193

exclusion of this class of links and did not fit the scaling pattern4194

observed in free-living webs (Dunne et al., 2013b). The higher4195

connectance of food webs including concomitant links may in turn4196

drive other trends in food-web structure, especially in properties4197

such as nestedness which have been observed to increase when4198

parasites are added to food webs (Lafferty et al., 2006) and are4199

known to positively correlate with connectance (Dunne et al., 2002a).4200

In addition to changing connectance, the addition of concomitant4201

predation altered the frequencies with which different configurations4202

of interactions among species occurred. In particular, the overlay of4203

host-parasite and predator-prey interactions changed the frequencies4204
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of two-way feeding interactions (A eats B and B eats A), reflecting an4205

effect of the intimacy between host and parasite on network structure4206

(Dunne et al., 2013b).4207

This increase in connectance and the trickle-down effects on4208

food-web structure attributable to higher connectance suggest4209

that parasites may have their most unique effects on food-web4210

structure as concomitant prey (Dunne et al., 2013b). This notion was4211

most strongly supported by an analysis of three-species food-web4212

motifs from the same study. A food-web motif represents a unique4213

interaction pattern such as three-species food chains, apparent4214

competition, or trophic loops (Milo et al., 2002; Kashtan et al., 2004;4215

Stouffer et al., 2007, 2012), and the frequencies with which different4216

motifs occur can be used to characterise fine-scale food-web structure4217

(Stouffer et al., 2007). These frequencies were similar for webs4218

composed solely of free-living species and webs including parasites4219

but not concomitant links (Dunne et al., 2013b). This implies that the4220

roles of free-living species serving as hosts are structurally similar4221

to those of free-living species serving as prey, and that parasites4222

as consumers have similar roles to free-living consumers (Dunne4223

et al., 2013b). When concomitant links were added, the frequencies of4224

motifs including at least one two-way link changed. This appeared to4225

be driven by the increase in intraguild predation (predation between4226

two species that share a common prey/host) as parasites are eaten4227

along with their host (Dunne et al., 2013b), suggesting that parasites4228

have different structural effects as resources than free-living species.4229

Comparisons of whole-network structure such as these,4230

however, can mask the mechanisms behind the trends they uncover4231

(Stouffer, 2010) since knowledge of a network-level pattern does4232

not unambiguously determine how different species contribute to4233

that pattern (Saavedra et al., 2011; Stouffer et al., 2012). For example,4234

network-level measures such as connectance are a useful first step to4235

predict predicting overall community stability (Dunne et al., 2002b);4236

but connectance alone is a poor predictor of variation in species’4237

degrees (Dunne et al., 2002a) or which species is most critical to4238

maintain that stability (Dunne et al., 2002b; Olesen et al., 2011). One4239

way to overcome this drawback is to examine network structure4240

directly from the perspective of the building blocks of networks:4241

species and the links between them (Stouffer, 2010; Baker et al., 2015).4242

Here we use an extension of food-web motifs to quantify species’4243

“structural roles”– which provide holistic summaries of how they4244

interconnect with the rest of the web (Stouffer et al., 2012, Fig. S5.1)4245
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–and hence to compare the different ways in which parasites and4246

free-living species are thus embedded in their communities. This4247

definition of role is rigorously defined by the relative frequencies4248

with which species appear across different motifs like apparent4249

competition, omnivory, or trophic loops. As such, our definition4250

of roles incorporates information on a species’ predators and prey,4251

as well as how that species is indirectly linked to more distant4252

species. Roles can therefore also be conceptualised as summaries4253

of the “shape” of species’ biotic niches within a food web. As4254

a consequence, we can estimate the degree to which species’4255

contributions to network structure (and hence to energy flows and4256

other ecosystem functions) are redundant by identifying species with4257

similar roles. Such species can likely compensate for each other in4258

the face of disturbances, increasing the network’s robustness (Naeem,4259

1998; Rosenfeld, 2002).4260

To understand how roles can vary between species, consider4261

three hypothetical top predators: one which is a strict specialist that4262

acts as the top of only one food chain; a second, generalist predator4263

that acts as the top of several food chains; and a third predator which4264

forms the top of several food chains and engages in omnivory. The4265

roles of the first two predators are very similar– despite having4266

different numbers of prey species, both predators only ever appear4267

in one position in the food web: at the top of a food chain. The third4268

predator, which is involved in motifs describing omnivory, as well4269

as three-species food-chains, has a more complex role. One could4270

therefore argue that the first two species make similar structural4271

contributions to the network while the third predator has a distinct4272

effect. Moreover, these species likely make different contributions4273

to the stability and functioning of the community (Stouffer, 2010;4274

Stouffer et al., 2012).4275

This argument rests upon the fact that species’ structural roles4276

describe the ways a species directly and indirectly influences biomass4277

and energy flows through a food web. Therefore, the hypothesis4278

that parasites and free-living species interact with other species in4279

fundamentally different ways can be directly tested by comparing4280

their structural roles. Here we focus on the comparison of the roles4281

of parasites to those of free-living species interacting only with4282

other free-living species. When concomitant predation is excluded,4283

parasites have many prey but few consumers and are usually4284

considered to be the tops of their food chains (Thompson et al.,4285

2005). We therefore expect the structural roles of parasites excluding4286

concomitant predation to be similar to the roles of free-living4287
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species with no free-living predators (hereafter “top predators”) or4288

to intermediate consumers with few free-living predators. When4289

concomitant predation is taken into account, however, parasites have4290

both prey and many consumers. If parasites have similarly-shaped4291

niches to those of free-living species, we would then expect the4292

structural roles of parasites including concomitant predation to be4293

similar to those of free-living intermediate consumers.4294

In a similar way, we can examine food webs from the perspective4295

of the links within them. Just as a species’ structural role summarises4296

the ways in which it is connected to other species, a link’s structural4297

role summarises the ways in which an energy transfer between4298

two species is embedded in the larger food web (Fig. S5.3). The4299

roles of links, like those of species, vary depending on how many4300

connections a link has to the rest of the web, and the nature of4301

species involved in those connections. A link between an unpalatable4302

basal resource, its specialist herbivore, and a specialist consumer4303

of that herbivore, for example, would have a role summarised by4304

a single dimension describing its single position. In contrast, a4305

link between two generalist intermediate consumers would have a4306

role with many dimensions corresponding to the many disparate4307

positions that link appears in across food-web motifs. Note that, as4308

with species, roles describe the relative frequencies with which a4309

link occupies different positions rather than the raw count. Thus4310

a link which appeared in the same position 10 times would have4311

the same role as a link which only appeared in that position once,4312

and both would have very different roles to a link which appeared4313

once in each of 10 different positions. By comparing link roles in this4314

way, we can determine whether feeding links involving parasites are4315

organised differently within a food web regardless of whether the4316

roles of parasites themselves are different. This alternative view is4317

hinted at by the observation that food-web structure is altered more4318

by the inclusion of concomitant links than by the simpler addition of4319

parasites without concomitant predation (Dunne et al., 2013b).4320

It is more difficult to generate intuitive hypotheses about4321

differences between the roles of types of links because of a dearth4322

of previous studies that have directly characterised their roles in food4323

webs. Nevertheless, predation, parasitism, and concomitant predation4324

all involve different types of species and have different functional4325

consequences for the two interacting species. We therefore expect4326

significant differences in the structural roles of these links. Since4327

adding concomitant predation links changed the motif structures4328

of food webs (Dunne et al., 2013b), we expect that these links4329



136

irst axis of variation

S
e
c
o
n
d

a
x
is

o
f
v
a
ri
a
ti
o
n

eb A

Trophic group 1

Trophic group 2

Figure 20: Visualising the distribution
of species roles within two hypothetical
food webs. In panels (A) and (B), the
roles of two trophic groups (e.g., top
predators and intermediate consumers)
are indicated by circles and triangles,
respectively. Because our definition
of roles is multidimensional, they
are most easily represented using a
correspondence analysis in which
roles are compared along major
axes of variation rather than axes
based on particular motifs. Axis one
might represent, for example, the
tendency for roles to contain motifs
involving two-way interactions,
while axis two might represent the
tendency for roles to contain motifs
representing trophic loops. Under
this representation, dispersion and
diversity provide complimentary
measures of the distribution of roles
within communities. Dispersion
measures the spread of roles about
the median role for a trophic group
(indicated by shapes with thick
outlines), while diversity measures
the number of statistically identifiable
role “phenotypes” (indicated by dashed
ovals). In hypothetical web A, the roles
of the two types of species have similar
levels of dispersion and diversity
despite greater numbers of species in
trophic group 2 being present in the
community. In hypothetical web B,
the roles of species in trophic group 1

are more widely-dispersed and more
diverse than those of trophic group 2.

will have different roles from those of links between free-living4330

species. Conversely, because adding links describing parasitism4331

and predation among parasites to food webs does not change motif4332

structure of food webs, we expect that these links will have similar4333

roles to those of links between free-living species.4334

As well as comparing roles of different types of species and links4335

across communities, we aimed to study the variability of different4336

roles within communities. Measuring this variability provides4337

a more rigorous analysis of the potential overlap or redundancy4338

among the structural roles of species within a type. Specifically, we4339

quantified the within-community dispersion and diversity of roles4340

for each group of species and links. The dispersion of a type of roles4341

is its within-group variance– that is, how similar the role of each4342

group of species or links is to the median role for that group in its4343

community (see Materials and methods). A high role dispersion for a4344

group of species indicates that each species’ role has limited overlap4345

with those of other species in the same group. Role diversity, in4346

contrast, quantifies the observed number of statistically unique role4347

“phenotypes”– characteristic multidimensional shapes into which4348

roles can be grouped –occupied by species or links from a particular4349

group in a community (see Materials and methods). Role diversity4350

therefore offers a perspective on how different types of species or4351

links contribute to the overall role diversity of a food web. A high4352

diversity of roles for a group of species means that these species4353

occupy a wider range of the potential roles available to all species in4354

all food webs. Importantly, these two measures are complimentary,4355

such that a group of species whose roles have high dispersion might4356

exhibit high or low role diversity (Fig. 20).4357
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Once the distributions of species and link roles have been4358

quantified within communities, we are able to compare these4359

distributions across communities. Similar patterns of distribution4360

across communities can point to general rules in food-web structure4361

such as the scaling of many food-web properties with species4362

richness and connectance (Havens, 1992; Dunne et al., 2002a; Riede4363

et al., 2010). Here we are particularly interested in whether role4364

dispersion and diversity exhibit scaling relationships with species4365

richness (or link richness, in the case of link roles). If, for example,4366

dispersion and diversity increase with species richness, this would4367

suggest that species roles are increasingly variable in larger webs4368

and that adding more species does not create redundancy within the4369

food-web. Such a situation would recall May’s “devious strategies”4370

by which communities persist, with none acting in the exact same4371

way as the next (May, 2001). It is also possible that role dispersion4372

and diversity do not increase with species or link richness; such4373

saturation of role distributions would indicate high redundancy and4374

create a community that is robust to perturbations (Petchey et al.,4375

2008).4376

Materials and methods4377

Empirical Data4378

The food webs studied here describe seven temperate coastal4379

communities (Huxham et al., 1996; Hechinger et al., 2011b; Mouritsen4380

et al., 2011; Thieltges et al., 2011a,b, Tables S1-S3) that included4381

both free-living species and parasites (see S1 for the full definition4382

of ‘parasite’). Since we were interested in particular species rather4383

than whole-network characteristics, we did not aggregate species4384

with the same predator and prey sets into trophic species as is4385

common elsewhere (Martinez, 1991; Vermaat et al., 2009; Dunne4386

et al., 2013b). The links in these food webs describe several different4387

classes of interaction: predation among free-living species, parasitism4388

of free-living species, predation among parasites, and target and4389

concomitant consumption of parasites (Hechinger et al., 2011b).4390

Using these different link types, we constructed three food4391

webs describing different interactions among the species in each4392

community (Fig. 19). The first, “free-living” web contains only4393

free-living species and the predator-prey links between them. The4394

second, “+ parasite” web includes every species and link in the4395

free-living web as well as parasites, parasitism of free-living species,4396

intraguild predation between parasites, and predation by free-living4397

species upon parasites in which the parasite is target prey (e.g.,4398



138

when a fish consumes trematode cercariae). The third, and most4399

complex, “+ concomitant” web contained all of the species and links4400

in both of the previous webs as well as concomitant links where4401

parasites are consumed together with their hosts. For each of the4402

seven communities we therefore have a free-living, parasite, and4403

concomitant web (giving a total of 21 food webs).4404

Quantifying Species Roles4405

We then analysed the role of each species within its community by4406

quantifying the ways in which the focal species participates the set4407

of 13 unique three-species building blocks that make up a food web4408

– network motifs (Milo et al., 2002; Kashtan et al., 2004; Stouffer et al.,4409

2007, 2012). Of the three-species motifs, five contain only one-way4410

interactions (A eats B, B does not eat A) and the remaining eight4411

contain at least one two-way interaction (A eats B and B eats A). The4412

two types of motifs tend to occur with different frequencies (Stouffer4413

et al., 2007) and, by definition, have different effects on energy flow4414

throughout a food web. The frequency with which a species appears4415

in each motif summarises the organisation of its feeding links, as4416

both predator and prey. Mathematically, the number of times a focal4417

species i in community s (e.g., the Ythan estuary) in web type w (e.g.,4418

the “+ parasite” web) appears in each of the 30 unique positions4419

across the 13 three-species motifs gives a multidimensional vector
−→
fwsi4420

that robustly quantifies the species’ role within the food web (Stouffer4421

et al., 2012, S5.2, Fig. S5.1; Supporting Information S5).4422

Given a dataset composed of roles for all species in all webs for4423

each community, we first compared the roles for species in different4424

trophic groups. We divided free-living species into top predators (T),4425

basal resources (B), and intermediate consumers (I) based on their4426

interactions with other free-living species (see S1 for more details).4427

Since food webs have traditionally been composed only of free-living4428

species and the roles of species have been understood in this context,4429

we used the roles of free-living species in the free-living webs as a4430

baseline against which to compare the roles of parasites with (Pc) and4431

without (P) concomitant links. Although using the free-living species4432

web as a baseline means comparing the roles of parasites in a larger4433

web to free-living species in a smaller web, network-level results4434

suggest that motif frequencies do not change systematically after the4435

addition of more species, including parasites (Bascompte and Melián,4436

2005; Stouffer et al., 2007; Dunne et al., 2013b). We therefore do not4437

expect network size to greatly influence parasites’ roles compared4438

to those of free-living species. We included the roles of the same4439
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parasite species in both the “+ parasite” and “+ concomitant” webs4440

in order to determine whether parasites have different roles when4441

concomitant links are excluded or included. All five groups of4442

species were represented in each of the seven webs, giving a sample4443

size of n = 35 for analysis of species roles.4444

Quantifying Link Roles4445

Following an analogous methodology to that used in the4446

determination of species roles, each link k in web type w at4447

community s was assigned a role vector
−→
fwsk based on the frequency4448

with which it occurred in each of the 24 unique “link positions”4449

that make up the 13 three-species motifs (S5.2, Fig. S5.2; Supporting4450

Information S5). As with the roles of species, we used links between4451

free-living species (F→F) in the free-living webs to set the de facto4452

baseline since these are the links current food-web theory is based4453

upon. For consistency with the analysis of species roles, we included4454

the roles of all other types of links from the least complex web in4455

which they appeared. That is, we used the roles of parasitism (F→P),4456

intraguild predation (P→P), and target predation on parasites (P t
−→F)4457

as calculated in the “+ parasite” webs and the roles of concomitant4458

predation (P c
−→F) links from the “+ concomitant” webs. P c

−→F links4459

include those in which the ingested parasite can infect its predator4460

(i.e., trophic transmission) and those in which the parasite is digested4461

and killed. Note that predation among parasites and target predation4462

on parasites were not recorded in the Ythan estuary web. This means4463

that while analyses of species roles had a sample size of n = 354464

(seven sites, 5 types of species roles), analyses of link roles had a4465

sample size of only n = 33 (seven sites for most link types, six sites4466

for predation among parasites and target predation on parasites).4467

Quantifying differences in the Distribution of Roles4468

Median Roles4469

We first visualised the median roles of parasites with and4470

without concomitant predation alongside of those of the three free-4471

living trophic groups. To do this, we performed a correspondence4472

analysis using the function cca from the package vegan (Oksanen4473

et al., 2014) in R (R Core Team, 2014). Using correspondence analysis4474

of species roles also allowed us to examine the axes along which4475

most variation between roles occurred. We used the same procedure4476
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to visualise the median roles of different types of links, and the axes4477

along which link roles varied.4478

To compare median roles, we used a non-parametric4479

permutational multivariate analysis of variance (PERMANOVA)4480

(Anderson, 2001) across the full set of species (or link) roles. Recall4481

that as we have defined them here, roles are multidimensional4482

descriptions; the spatial median of the roles in a given group thus4483

describes the “typical” role for that group. For species, we compared4484

median roles across trophic groups (T, I, B, P, and Pc). We conducted4485

a similar PERMANOVA analysis comparing median roles across4486

link types (F→F, F→P, P→P, P t
−→F, and P t

−→F). All comparisons of4487

median roles were conducted using the adonis function from the4488

vegan package (Oksanen et al., 2014) in R (R Core Team, 2014).4489

Like the traditional ANOVA, the PERMANOVA first calculates4490

the distance between all pairs of observations and then compares4491

among-group distances to within-group distances following a4492

pseudo-F statistic (Anderson, 2001). Importantly, a PERMANOVA4493

does not assume that the data follow any particular distribution.4494

Instead, a p-value for the test statistic is calculated by directly4495

permuting the raw data (Anderson, 2001). Since we were most4496

interested in differences between types of species (or links) and4497

not between different communities, we stratified permutations4498

by community. That is, roles were shuffled randomly within a4499

community but the complete set of roles for that community was4500

not changed by the permutation process. In this way, we compared4501

observed distances only to those that could be randomly generated4502

from the same community, controlling for possible effects of changes4503

in species richness or other properties between communities.4504

The distance metric used in a PERMANOVA helps to define4505

the null hypothesis being tested (Anderson, 2006). We used Bray-4506

Curtis dissimilarity between roles as our distance metric because4507

it has proven useful for other ecological questions (Legendre and4508

Legendre, 2012) and also has specific properties that make it well4509

suited for our purposes. In particular, Bray-Curtis dissimilarity4510

measures differences between the roles based only on positions in4511

which at least one of the species (or links) appears and hence is not4512

affected by “double zeros” in the data (Legendre and Legendre, 2012).4513

This means that species (or links) that appear in few positions are4514

not considered more similar to each other due to the large number of4515

shared zero frequencies. In addition, we wished to avoid a situation4516

in which two species involved in different numbers of links would4517
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be considered to have different roles even if they occurred with the4518

same frequencies across all motif positions. We therefore calculated4519

dissimilarities based on relative positional frequencies rather than4520

absolute frequencies (that is, the number of times a species or4521

link appeared in each position divided by the number of times it4522

appeared in any position).4523

Role Dispersion4524

In addition to comparing median roles across communities, we4525

explored the dispersion of roles about these median roles using the4526

function betadisper from the package vegan (Oksanen et al., 2014)4527

in R (R Core Team, 2014). As when comparing median roles, we4528

used Bray-Curtis dissimilarity to measure the dispersion of roles4529

within a community around their group median. We were then4530

able to compare the scaling relationships between role dispersion4531

and species or link richness across communities. We hypothesised4532

that role dispersion of a given type of species or link could increase4533

with the number of those species or links observed at an individual4534

community, indicating that each species and link fills a novel4535

structural role. To determine the relationships between the number of4536

species (or links) of a type at a community and the mean dispersion4537

of roles for that species type at that community, we used a linear4538

regression, fit using the function lm in R (R Core Team, 2014).4539

Role Diversity4540

We also measured the diversity of unique roles within a4541

community for each group of species or links. To do this, we used4542

a heuristic optimisation method to identify clusters of species (or4543

links) that appear in the same motif positions more often than one4544

would expect by chance (Guimerà et al., 2007; Sales-Pardo et al., 2007;4545

Stouffer et al., 2012, S5.3, Supporting Information S5). Each cluster was4546

interpreted as a unique role phenotype.4547

As with dispersion, we then compared the scaling relationships4548

between role diversity and species or link richness across4549

communities. We expected diversity to increase with species or link4550

richness, implying that each species or link adds to the niche space4551

of its food web. To quantify this possible relationship between the4552

number of species or links and the number of roles in a community,4553

we used a generalised linear model with a Poisson distribution and4554
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Figure 21: The median roles of species
and links vary predictably by type. (A)

Within the seven different communities,
the different types of species have
different median roles, shown here with
respect to their location along their
first two correspondence analysis axes.
The first correspondence analysis axis
for species roles described 64.9% of
their total variance, and the second axis
described 13.0%. When concomitant
links are excluded, parasites (P) tend
to have roles similar to those of top
predators (T). When concomitant links
are added, however, parasites’ (Pc)
roles are much more similar to those
of basal resources (B). Intermediate
species’ (I) roles were between those of
B and T species. (B) Different types of
links also have different median roles,
again shown with respect to their first
two correspondence analysis axes. The
first correspondence analysis axis for
links described 60.7% of their total
variance, and the second axis described
15.2%. While there is some overlap
between roles, concomitant predation
links and predation between parasites
mainly varied along the first axis while
predation between free-living species,
parasitism, and target predation on
parasites mainly varied along the
second axis.

logarithm link function, fit using the function glm in R (R Core Team,4555

2014).4556

Results4557

Median Roles4558

We found that both different trophic groups and different link types4559

have different median roles (see S4 for more details). Both Pc roles4560

and the roles of P c
−→F links were separated from the roles of other4561

types of species or links, respectively, along the first correspondence4562

analysis axis (Fig. 21). This axis corresponded to a division between4563

motifs that include only one-way interactions and those that include4564

at least one two-way interaction (Fig. S5.3), with Pc roles and the4565
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Figure 22: The influence of the number
of species in a trophic group on the
dispersion and diversity of species roles
differed between free-living species and
parasites. (Top row) Role dispersion
increased with number of species for
parasites without concomitant links
(p = 0.036). The dispersion of the roles
of all other species types did not vary
with species richness (dashed lines).
The roles of intermediate consumers
were most dispersed, followed by those
of parasites with concomitant links,
basal resources, and top predators.
Letters in the lower right of each
panel indicate groups based on mean
dispersions of each type of role (Tukey’s
HSD test with critical value = 4.11,
α=0.05, and df=29). Roles with the
same letter do not have significantly
different mean dispersions. (Bottom
row) Role diversity increased with
increasing species richness for all
types of species (p = 0.003), and the
estimated rate of increase was the
same for all species types. For any
given species richness, parasites with
concomitant links had more diverse
roles than any other type of species,
followed by intermediate consumers,
parasites without concomitant links,
basal resources, and top predators
(Tukey’s HSD test with critical
value = 4.14, α=0.05, df=26). In both
rows, shaded regions represent 95%
confidence regions for the predicted
dispersion or diversity after the removal
of statistical outliers (indicated by
‘+’s) where applicable. Refer to S5.5,
Supporting Information S5 for details on
the regressions.

roles of P c
−→F links being found more often in motifs including at4566

least one two-way interaction.4567

Dispersion & Diversity of Species Roles4568

Comparing the underlying variation of species roles, we found that4569

dispersion was not affected by species richness for B, I, T, and Pc4570

roles (t28 = 1.563, p = 0.129; Fig. 22; for details of the regression4571

see S5.5, Supporting Information S5). Pc roles were significantly more4572

dispersed than T roles but had similar dispersion to other types of4573

roles (Tukey’s HSD test with critical value = 4.11, α=0.05, and df=29).4574

Unlike all other types of species roles, dispersion of P roles increased4575

with species richness (t29 = 2.195, p = 0.036; S5.5, Supporting4576

Information S5).4577

The diversity of distinct roles in a trophic group increased4578

with the number of species in that group, but the strength of this4579

relationship did not vary across groups (Fig. 22). For any given4580

number of species, Pc roles were significantly more diverse than4581

those of other types of species (z = 5.632, p < 0.001; S5.5, Supporting4582

Information S5). P roles were significantly more diverse than T roles4583

but their diversity overlapped with those of I and B roles (Tukey’s4584

HSD with critical value 4.14, α=0.05, and df=26).4585

Dispersion & Diversity of Link Roles4586

Dispersion of the roles of P→P links was positively related to the4587

number of those links in a community (t27 = 4.195, p < 0.001;4588

Fig. 23B; S5.6, Supporting Information S5) and was independent of4589

the number of links for all other link types. Of those, the roles of4590

P c
−→F links were the most widely-dispersed, followed by those of4591

F→F links, F→P links, and P t
−→F links (Tukey’s HSD test with critical4592

value 4.13, α=0.05, and df=27; Fig. 23A). In contrast to the diversity4593

of species roles, the diversity of unique link roles did not vary with4594
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Figure 23: Dispersion of link roles
varied across link types while diversity
did not. (A) The roles of concomitant
predation links (P c

−→F) were most
dispersed followed by those of
predation among free-living species
(F→F), parasitism (F→P), and target

predation on parasites (P t
−→F). For these

link types, the dispersion of link roles
was not related to the number of links
in a community. (B) Dispersion of the
roles of links describing predation
between parasites, on the other hand,
increased with the number of such links
in a community. In (A), the different
letters indicate significantly different
dispersions and the error bars depict
95% confidence intervals about the
mean. Letters above each bar indicate
groups based on mean dispersions,
and types of link with different letters
have significantly different dispersions
(Tukey’s HSD test with critical value
4.13, α=0.05, df=27). In (B) the shaded
region represents a 95% confidence
region for predicted dispersion.
See S5.5, Supporting Information S5

for details about the regressions.

the number of links of that type in a community (Fig. S5.6), nor did it4595

differ across types of links (Tukey’s HSD test with critical value 4.10,4596

α=0.05, and df=28).4597

Discussion4598

Parasites’ unique life histories and ways of feeding suggest that4599

they should interact with other species differently than free-living4600

species (Marcogliese and Cone, 1997; Lafferty et al., 2006, 2008;4601

Warren et al., 2010; Thieltges et al., 2013). Despite these important4602

morphological and behavioural differences, a previous study4603

comparing versions of food webs including and excluding parasites4604
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found that webs including both types of species but not concomitant4605

predation have similar structural properties to similarly-sized webs4606

composed of free-living species only (Dunne et al., 2013b). This4607

indicates that differences between free-living species and parasites4608

as consumers do not translate to the network level (Dunne et al.,4609

2013b). Nevertheless, webs including free-living species, parasites,4610

and concomitant predation links do indeed have different structures4611

from other webs, suggesting that it is parasites’ unique positions4612

as concomitant resources that have the greatest effects on network4613

structure, including effects on properties such as connectance which4614

have been linked to robustness (Dunne et al., 2002b, 2013b). In order4615

to examine this inference in greater detail, here we have examined4616

food-web structure from the perspective of species and the links4617

between them. We have thus been able to systematically uncover the4618

ways in which free-living species, parasites, and the multiple types of4619

links between them differ in the broader food-web context.4620

At the species level, our results reaffirmed the impact of links4621

in which parasites are concomitant resources on network structure4622

(Poulin et al., 2013; Thieltges et al., 2013). The roles of parasites4623

excluding concomitant predation were most similar to those of top4624

predators and intermediate consumers. One potential explanation for4625

the similarity of parasites’ roles to those of free-living intermediate4626

consumers could be the aggregation of parasite life stages. While4627

free-living intermediate consumers may experience predation during4628

any time of life, parasites have very few consumers except during4629

free-living life stages. Although a stage-specific analysis is beyond4630

the scope of the present work, this suggests that the structural roles4631

of different parasite life stages could range from those of free-living4632

basal resources (for non-feeding stages with consumers) through to4633

those of free-living top predators (for parasitic stages that are not4634

affected by other parasites in the same host). Nevertheless, when4635

concomitant predation was included, the roles of parasites were4636

distinct from those of any other type of free-living species. This4637

suggests that the network-level effects of concomitant predation may4638

truly be due to changes in the roles of parasites themselves.4639

In addition to affecting the median roles of parasites, the4640

inclusion of concomitant predation greatly altered the distribution4641

of parasites’ roles. Specifically, adding concomitant predation4642

increased role variability in parasite-poor communities to a similar4643

level as that of parasite-rich communities, such that parasites’ roles4644

appeared saturated when concomitant predation was included and4645

unsaturated when they were not. This apparent homogenising effect4646
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of concomitant predation may arise from the fact that these links4647

bind the roles of parasites to those of their hosts, creating intimate4648

structural similarities. In parasite-poor communities, it is likely4649

that few parasites share common hosts and therefore common4650

concomitant predation links. As parasites “inherit” role variability4651

from their hosts via concomitant predation, less overlap in host4652

ranges among parasites may lead to greater dispersion of their roles.4653

Unlike role dispersion which was saturated for most trophic4654

groups, role diversity increased with number of species for all groups.4655

This implies that, while species roles are similarly predictable on4656

the basis of species type regardless of the size of the food web, roles4657

overall do not become more redundant as the number of species in4658

the web increases. This observation fits in well with the suggestion4659

that there is no single way to configure a stable community (May,4660

2001). Contrary to models of stable ecosystems where greater4661

diversity begets greater niche overlap in order to use resources4662

as efficiently as possible, in unstable systems each species’ niche4663

may have to be distinct if it is to withstand disturbances (May,4664

2001). Beyond this overall lack of saturation, Pc roles were more4665

diverse than other types of roles for a given number of species4666

in the trophic group. Lower redundancy in Pc roles despite their4667

similar dispersion to other role types could be a result of the different4668

potential outcomes of concomitant predation for the parasite. While4669

concomitant predation is always fatal for the host, the parasite may,4670

for certain predators, be able to infect the predator and use it as4671

its next host. For many parasites, such “trophic transmission” is4672

an essential part of the life cycle (Thieltges et al., 2013), and it is4673

possible that the roles of such links differ from those of concomitant4674

predation links in which the parasite is destroyed. This lack of4675

redundancy, coupled with the increase in role dispersion resulting4676

from including concomitant predation, means that parasites should4677

have widely varying effects on network structure. This in turn4678

implies that parasites can generate a variety of effects on population4679

dynamics and energy flows through their communities. In particular,4680

lack of redundancy means that any effects of fluctuations in the4681

population of one parasite (e.g., on host mortality) are unlikely to4682

be compensated for by another parasite with a similar role.4683

To further clarify the impact of different types of links, we4684

considered the roles of links directly. The dispersion of link roles4685

generally appeared to be saturated–that is, independent of the4686

number of a given type of links present in a network. This suggests4687

that there were sufficient links in each community to occupy the4688
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entire role space for most types of links. Given the saturation of4689

role dispersion for most types of species, this is not surprising.4690

The only type of link for which role dispersion was not saturated4691

was predation among parasites. This type of link includes hyper-4692

parasitism, predation among free-living stages of parasites, and4693

attack by one parasite on others within the same host, with or4694

without consumption (Hechinger et al., 2011b). This variety of types4695

of feeding and interaction locations might explain the apparent4696

tendency for links describing predation among parasites to be4697

increasingly distinct from the group median. Surprisingly, this4698

variability in link roles does not appear to be linked to a greater4699

diversity of unique role phenotypes.4700

Dispersion, conversely, differed among link types with the4701

roles of concomitant predation links being the most variable. While4702

concomitant predation ties the roles of parasites to those of their4703

hosts, the roles of these links are non-trivially tied to the roles of4704

the predation links that lead to them. Alternatively, it is possible4705

that the wide variety of outcomes of concomitant predation for both4706

parasite and consumer (Thieltges et al., 2013) leads to these links4707

having inherently more variable roles. Were that the case, however,4708

we could expect a greater diversity of unique roles for these links4709

as well as greater diversity, which we did not observe. It therefore4710

appears that, by combining predation with parasitism, concomitant4711

predation is simply less predictable than other types of interactions.4712

This may mean that the consequences of concomitant predation for4713

energy flows or population dynamics are similarly unpredictable.4714

Conclusions4715

Our species-centric and link-centric perspectives allow us to robustly4716

identify how and where the contributions of parasites to network4717

structure differ from those of different types of free-living species.4718

Within a complex food web, it is common to characterise species’4719

structural roles in terms of the organisation of their direct and4720

indirect links with other species (Luczkovich et al., 2003; Olesen4721

et al., 2007; Allesina and Pascual, 2009). As we show here, the4722

structural roles of links can also be characterised by the pair of4723

species that make them up and, by extension, all other links those4724

species participate in. Though both perspectives build from the same4725

fundamental information, our analysis demonstrates that they are4726

not equivalent and instead provide a complementary picture of the4727

building blocks of food-web structure.4728
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Overall, our results reinforce the idea that concomitant predation4729

plays a disproportionately important part in determining the4730

structure of food webs (Dunne et al., 2013b; Poulin et al., 2013)4731

and that it places considerable constraints on the median roles of4732

parasites while simultaneously increasing the variability about4733

these median roles. This implies that concomitant predation not4734

only affects the ways in which parasites in general affect community4735

functions and stability but that it decreases the redundancy of each4736

species’ contribution to those effects. Historically, concomitant4737

predation has often been omitted from food webs, either because4738

it is assumed to be energetically insignificant (Thieltges et al., 2013)4739

or because it is inherently difficult to directly observe (Marcogliese4740

and Cone, 1997). The structural implications of these links as shown4741

here, as well as their prevalence within food webs (Thieltges et al.,4742

2013), potential energetic implications (Lafferty et al., 2006; Hechinger4743

et al., 2011a; Thompson et al., 2013), and importance as sources4744

of either mortality or trophic transmission (Lafferty et al., 2006;4745

Thieltges et al., 2013) for parasites mean that they should no longer4746

be ignored. Finally, as concomitant predation links reveal the deep4747

intimacy between hosts and parasites, they provide a critical lens4748

through which to examine the many ways in which parasite-host and4749

predator-prey interactions are linked.4750
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Abstract5007

Some parasites move from one host to another via trophic5008

transmission— the consumption of the parasite (inside its current5009

host) by its future host. As feeding links among free-living species5010

have different dynamic and structural properties, it seems plausible5011

that these links will vary in their effectiveness as transmission routes.5012

Moreover, most parasites are restricted to certain host taxa at each5013

life stage, so not all links will be possible transmission routes. Here5014

we test this possibility for parasites and their hosts in four New5015

Zealand lakes. We use three dynamic properties and one structural5016

property to measure differences among feeding links and then5017

test whether each property can predict whether or not a link will5018

transmit parasites. In each test, we use both an unrestrictive and a5019

taxonomically-informed null model, allowing us to determine the5020

extent to which the taxonomy of free-living species affects parasites’5021

transmission routes. Contrary to our expectations, we found that5022

parasites tend to be transmitted along dynamically weak links (i.e.,5023

links that make small contributions to the diets of predators, transmit5024

little biomass, and involve rare prey). However, the structural5025

properties of links that transmit parasites reveal that they are likely5026

to be particularly important to the community because they are5027

highly central and can therefore affect many free-living species.5028

By comparing our results against our two null models, we also5029

found that several of the trends we identify are largely determined5030

by the restriction of parasites to particular host taxa. This means5031

that the host specificity of parasites is a key determinant of their5032

transmission routes. As a whole, our results suggest that parasites5033

follow transmission routes that are particularly unlikely to have a5034

destabilising effect on the community. Dynamically weak links, like5035

those that transmitted parasites in this study, tend to stabilise food5036

webs by dissipating perturbations to the community. Structurally5037

important links, conversely, can have a large impact on food webs.5038

Parasites therefore appear to strike a balance between the highway5039

and the scenic route and are transmitted along links that bind their5040

communities together.5041

Keywords5042

concomitant predation, food-web dynamics, network motifs, food-5043

web structure, interaction roles5044
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Introduction5045

Parasites are increasingly recognised as integral components of5046

ecological communities (Huxham et al., 1996; Lafferty et al., 2006;5047

Dobson et al., 2008; Kuris et al., 2008; Hechinger et al., 2011; Thieltges5048

et al., 2013; Dunne et al., 2013). In some systems, they can reach5049

similar cumulative biomasses to top predators (Kuris et al., 2008),5050

and they often act as prey for free-living species during their free-5051

living life stages (Thieltges et al., 2013). Parasites can also strongly5052

affect the population dynamics of their hosts (Freedman, 1990;5053

Marcogliese and Cone, 1997) and influence the structure of their5054

communities (Lafferty et al., 2006; Dunne et al., 2013; Cirtwill and5055

Stouffer, 2015). Many parasites in turn rely on the structure of the5056

free-living food web to complete their life cycles. These ‘trophically-5057

transmitted’ parasites move to a new host when their intermediate5058

host is consumed by an appropriate definitive host. To complete5059

their life cycles, these parasites therefore rely on certain feeding links5060

among free-living species occurring reliably. Feeding links, however,5061

differ in a number of ways that might affect their suitability as5062

transmission routes. In particular, we might expect that links which5063

are more important to the structure and/or functioning of the food5064

web might occur more reliably than other links. These important5065

links might therefore be ‘safer bets’ for parasites and more likely to5066

serve as viable transmission routes. There are, however, a variety of5067

ways that the importance of a link can be measured, each of which5068

could be expected to impact parasites for different reasons.5069

A link might be important because of its dynamic properties— its5070

contribution to the flow of energy and biomass through the food web5071

and, by extension, to the maintenance of free-living populations.5072

Three dynamic properties in particular seem likely to influence5073

the suitability of links as transmission routes. First, we might5074

expect that links which contribute a particularly large proportion5075

of a a predator’s diet might be more likely to occur and therefore5076

be a better component of a transmission route than a link which5077

contributes less to the diet of the predator. This is especially true5078

for definitive hosts, which often experience only minor effects from5079

infections (Lafferty, 1992). Because the cost of infection is low and5080

infected prey are often easier to catch and kill (Lafferty, 1992), these5081

hosts have little incentive to avoid consuming infected prey (Lafferty,5082

1992).5083

Second, parasites might instead tend to be transmitted along5084

links involving highly abundant prey, regardless of the contributions5085
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these prey make to the diets of definitive hosts (Canard et al., 2014).5086

Neutral theory suggests that more abundant prey are more likely to5087

encounter and be infected by parasites (Canard et al., 2014) and are5088

more likely to be encountered and consumed by predators (Abrams5089

and Ginzburg, 2000; Wootton, 2005). Abundant prey may also5090

represent a more productive niche that can be exploited by more5091

parasite species (Thompson et al., 2013). Of course, infecting highly-5092

abundant prey means that the parasite will often be consumed by5093

predators which are not viable definitive hosts and killed. Such5094

losses may be worthwhile, however, if the parasite can still infect its5095

definitive host more frequently than if the parasite had a different life5096

history (Poulin, 2010). Note that while abundant prey can be major5097

contributors to predators’ diets as described above, this may not be5098

the case for all predators as some species have strong preferences for5099

particular prey. The contribution of a link to the predator’s diet and5100

the abundance of the prey involved therefore provide complementary5101

information about a the impact of a link on the food web.5102

Third, parasites’ transmission routes might not be strongly5103

affected by either the abundance of the prey or the contribution of5104

the link to the predator’s diet. Instead, parasites might “go with5105

the flow” and tend to be transmitted along links which transfer a5106

large amount of biomass (Thompson et al., 2013). These energetic5107

“highways” might involve abundant prey, but they could equally5108

involve rare but large prey. Similarly, links which contribute large5109

proportions of the predator’s diet may or may not transfer large5110

amounts of biomass in the absolute sense, depending on the size5111

of the predator population and the amount each animal consumes.5112

Whatever the case may be, links which transfer large amounts of5113

biomass are likely to be critical to the overall functioning of the5114

community and therefore may be more reliable than other links.5115

In addition to their dynamic properties, a link might be5116

important because of its structural properties— the ways in which the5117

link contributes to the structure of the food web. In particular, links5118

which are highly “central”— that is, those which lie on the shortest5119

paths between many pairs of species (Newman, 2010)—could be5120

good transmission routes. These links are considered important5121

because they indirectly affect many species (Jordán et al., 2007; Lai5122

et al., 2012). As such, variability in central links would have a large5123

effect on the rest of the web and destabilise the community (Lai et al.,5124

2012). Central links may therefore be less variable and more reliable5125

than other links. Supporting this hypothesis, previous research has5126

shown that highly-central species tend to host more parasite species5127
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than do other free-living species (Chen et al., 2008; Thompson et al.,5128

2013). Highly central hosts also tend to be particularly important for5129

parasite transmission (Chen et al., 2008). We expect that what is true5130

for central species will also be true for central links.5131

Parasites are not always free to follow the best possible5132

transmission route, however, as each parasite is generally limited to5133

hosts from certain taxonomic groups at each life stage. For example,5134

most trematodes use molluscs as hosts for their first parasitic5135

life stage while acanthocephalans always use arthropods as their5136

intermediate host. Previous analyses of parasites’ transmission routes5137

have not taken these restrictions into account (e.g., Chen et al., 2008;5138

Rossiter and Sukhdeo, 2011; Thompson et al., 2013), meaning it is5139

possible that parasites tend to infect highly-connected species largely5140

because of the taxonomy of these highly-connected species rather5141

than because these hosts are the best “stops” for parasites to visit on5142

their transmission routes. When testing for effects of the properties5143

of feeding links on the potential for these links to transmit parasites,5144

it is therefore essential to control for the potential influence of the5145

taxonomy of free-living species.5146

Here we test whether parasites tend to be transmitted along5147

feeding links that are particularly important to the food web. We also5148

test which dynamic or structural properties of feeding links most5149

parsimoniously explain trends in parasite transmission. Specifically,5150

we expect that links which transmit parasites would (i) contribute5151

larger proportions of predators’ diets, (ii) involve more abundant5152

prey, (iii) transfer more biomass, and (iv) be more central than other5153

links. We also expect that the influence of these properties will5154

depend on the restriction of parasites to particular host taxa. To5155

investigate this last question, we test each of the above hypotheses5156

using both an unrestrictive null model and a more conservative,5157

taxonomically informed null model that explicitly incorporates the5158

effects of the host specificity of parasites.5159

Methods5160

Dataset5161

We constructed food webs describing the free-living communities5162

of four lakes in the South Island of New Zealand: Lake Hayes5163

(44◦58′59.4”S, 168◦48′19.8”E), Lake Tuakitoto (46◦13′42.5”S,5164

169◦49′29.2”E), Lake Waihola (46◦01′14.1”S, 170◦05′05.8”E), and5165

Tomahawk Lagoon (45◦54′06.0”S, 170◦33′02.2”E). To capture the5166

seasonal variation in each community, we constructed three separate5167
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food webs describing each community in September 2012, January5168

2013, and May 2013 (austral seasons: early spring, mid-summer, and5169

late autumn). Our dataset thus consisted of 12 food webs in total.5170

Together, these webs included 2160 links between 110 free-living5171

species. The lake communities also contained 49 parasite life stages,5172

13 of which were trophically transmitted. For a detailed description5173

of sampling methods and reconstruction of feeding links, see S6.1,5174

Supporting Information s6 and Lagrue and Poulin (2015).5175

Dynamic and structural properties of links5176

After assembling the networks, we calculated dynamic and structural5177

properties of each link in order to test whether any of these5178

properties predicted the outcome of a link for parasites. To test5179

whether parasites tend to be transmitted along links that contribute5180

large proportions of predators’ diets, we defined the contribution5181

of each link based on the proportion of the predator’s gut contents5182

accounted for by that link. For this and other properties, we took5183

the average across all individuals in a species within the same lake5184

and sampling period. A link which makes a large contribution to5185

the predator’s diet might represent either rare but large meals or5186

frequent, small meals. Because the networks in our dataset were5187

based on gut contents rather than direct observation of interactions,5188

we did not have information about interaction frequencies that would5189

allow us to tease these two possibilities apart.5190

We also expected that parasites might tend to be transmitted5191

along links involving highly-abundant prey. These links might5192

make large contributions to the predators’ diets as described above,5193

but if predators have strong preferences for certain rare prey then5194

abundant species might contribute relatively little to their diets.5195

We therefore tested the relationship between prey abundance and5196

parasite transmission separately from the relationship between5197

contribution to diet and transmission. We defined abundance as the5198

number of prey individuals per m2 in each lake. For some resources,5199

such as terrestrial insects which occasionally fall into the lakes,5200

we were unable to reliably estimate the standing local abundance5201

and so we removed these links (see S6.1, Supporting Information5202

S6 for details). This left us with 1464 links. Because encounter and5203

consumption rates might depend on the biomass of the prey rather5204

than its abundance, we also calculated the total biomass of the prey5205

in each link. We defined prey biomass as the estimated mass of the5206

prey species per m2 in each lake. As with abundance, we were unable5207
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to reliably estimate the standing local biomass of some species and5208

removed these links from the analysis. This left us with 1627 links.5209

Thirdly, it is possible that parasites “go with the flow” and tend
to be transmitted along links that transfer large amounts of biomass.
These links may make large contributions to predators’ diets and
involve abundant prey, but this depends on the total amount of
biomass the predator consumes and the size of each individual prey.
We therefore tested the relationship between the amount of biomass
transferred along a link and its outcome for parasites independently
of the other properties. We estimated the biomass transfer ωilm for
each link i in lake l during sampling period m as

ωilm ≈ κ3/4lm ρilm, (5)

where κlm is the mean biomass of the consumer from link i in5210

lake l during sampling period m, and ρilm is the proportion of the5211

predator’s diet contributed by interaction i in lake l during sampling5212

period m. Following Brose et al. (2008), we used a scaling factor of5213

3/4 to account for efficiencies of scale in larger species. As biomass5214

transfer, so defined, depends on the predator’s diet and local biomass5215

but not on the prey’s local biomass or abundance, we were able to5216

estimate the amount of biomass transfer for all 2160 links.5217

Finally, because the suitability of a link as a transmission route5218

might depend on its structural importance as well as its role in the5219

food web’s dynamics, we tested whether or not the centrality of5220

a link affected its outcome for parasites. To do this, we calculated5221

the “betweenness centrality” of each link. This measure represents5222

the frequency with which a given link lies on the shortest paths5223

between pairs of species (Newman, 2010) and may be calculated5224

using weighted (e.g., by the amount of biomass transferred) or5225

unweighted links. Because we dealt with the dynamic properties5226

of links separately, we calculated centrality using unweighted links.5227

Although central links are generally thought to be particularly5228

important to the structure and functioning of a community, from5229

the parasite perspective these “highways” are a double-edged sword.5230

Depending on the broader structure of the network, a central link5231

has the potential to expose the parasite to many free-living species5232

that are not suitable hosts. Highly-central links could therefore either5233

promote transmission or result in losses for the parasite. To get an5234

idea of these broader structures, and how they affect the outcomes5235

of links for parasites, we also characterised links’ structural roles5236

using motifs— unique patterns of interacting species that can be5237

understood as the building blocks of networks (see S6.2, Supporting5238



164

Information S6 for details). The results for these structural roles were5239

qualitatively similar to those for centrality and so are not presented5240

here.5241

Outcomes of links for parasites5242

Next, we categorised the outcomes of feeding links for each parasite5243

life stage. As a given link might transmit one life stage while killing5244

another stage of the same species, we performed all of our analyses5245

at the life-stage level. We therefore expanded our dataset by cross-5246

referencing the l links included in each food web with the p parasite5247

life stages observed in that web, resulting in an l×p table of feeding5248

links and their outcomes for each lake-season combination. Note5249

that the outcome of a given link for a given parasite life stage was5250

assumed to be the same in all lakes and sampling periods in which5251

both the link and the parasite were observed. That is, if a life stage5252

of the focal parasite was observed in one individual of a free-living5253

species, that species was considered to be a viable host in all of the5254

webs in our dataset.5255

A link was categorised as a “transmission” link if 1) the focal5256

parasite life stage was known to be trophically transmitted and 2)5257

the predator and prey in the link were observed as hosts for the focal5258

parasite life stage and the next stage in the parasite life cycle (Fig. 24).5259

If the prey was a host for the focal parasite life stage but the parasite5260

life stage could not be trophically transmitted, or if the predator was5261

not a host for the next stage in the parasite life cycle, then the link5262

was categorised as a “loss”. This includes cases where the parasite5263

is digested along with its host by the predator (e.g. trematode5264

sporocysts inside a snail host that is eaten by a fish) as well as cases5265

where the parasite is killed in an indigestible cyst form (e.g. some5266

encysted trematode metacercariae when their second intermediate5267

host is eaten by an unsuitable predator). In rare cases, the parasite5268

may sometimes be able to reproduce by selfing at an earlier life stage5269

(e.g., trematode metacercariae achieving progenesis in their second5270

intermediate host; Poulin and Cribb, 2002). Nevertheless, these5271

parasites should still be under selection to complete their normal life5272

cycles and reproduce sexually. We therefore assumed that completing5273

its full life cycle is the best option for the parasite and, for the two5274

parasites that may be capable of progenesis in our dataset, categorise5275

links that lead to the normal definitive hosts as “transmission” and5276

links leading to other predators as “loss” even if the parasite can5277

reproduce in an earlier host. The remaining links, where the prey5278

was not a host for the focal parasite life stage, were categorised as5279
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Figure 24: The small subset of
species represented here (taken
from the dataset used in this study)
is used to illustrate the different
outcomes of feeding links for parasites.
Maritrema poulini uses amphipods
and Stegodexamene anguillae uses
small fish as intermediate host prey.
These parasites are transmitted to their
respective definitive hosts along specific
trophic links (predator-prey links). Each
trophic link may transmit the parasite
to the appropriate definitive host
(“transmission” link), the parasite
may be consumed by a non-host
predator and killed (“loss” link), or
the parasite may not be affected by
the link (“unused” link). Maritrema
poulini only uses birds as definitive
hosts and is killed (as indicated by
the pale, crossed-out symbol) when
its amphipod host is consumed by a
fish (“loss” link; link 1). For M. poulini,
“transmission” is only achieved through
link 2. Stegodexamene anguillae does
not infect amphipods and thus trophic
links including amphipods as prey are
“unused” by this parasite (links 1 and
2). For S. anguillae, link 3 is a “loss”
link while link 4 is the appropriate
“transmission” link to eel definitive
hosts; links 3 and 4 are “unused” by M.
poulini.

“unused”. These links should not have any impact on the parasite5280

unless they affect other life stages of the same species.5281

Throughout our analyses we treated these outcomes as5282

distinct categories. We note that this ignores the possibility that the5283

proportion of parasites in an intermediate host that can infect the5284

predator may vary among the links. For example, some predators5285

may process their prey (e.g., by chewing) more thoroughly and5286

thereby kill more parasites than one which consumes the same5287

prey relatively whole. Alternatively, some predators may simply5288

be more susceptible to infection than other suitable hosts. In either5289

case, parasites may exist at different intensities in different hosts,5290

and changes in intensity of infection between predator and prey5291

could be used to infer continuous values for parasite transmission.5292

However, as neither loss nor unused links ever result in the infection5293

of the predator and the completion of the parasite life cycle, treating5294

transmission as a continuous variable would obscure the difference5295

between these two outcomes— a result we chose to avoid.5296
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Outcomes of links as a function of dynamic and structural properties5297

We began by testing what combination of the five properties5298

we consider (contribution to predator’s diet, abundance of prey,5299

biomass of prey, amount of biomass transferred, and centrality)5300

provided the most parsimonious explanation for the outcome of a5301

link for a parasite. To do this, we performed a series of canonical5302

correspondence analyses (CCAs) using the cca function in the R (R5303

Core Team, 2014) package vegan (Oksanen et al., 2014). Each CCA5304

relates a matrix of dummy variables describing the outcomes of5305

links for parasites to a constraining matrix composed of different5306

combinations of link properties. We performed a CCA for each of the5307

31 unique linear combinations of predictors. In each case, we scaled5308

and centred all properties. To provide a baseline, we also performed5309

a “null” CCA which related the matrix describing outcomes of links5310

to a unit vector. For each model, we obtained the AIC score using5311

the function extractAIC, again from vegan (Oksanen et al., 2014).5312

We then compared these AIC values to find the combination of5313

predictors that most parsimoniously explains the outcomes of links5314

for parasites (Table S3). To supplement this analysis, we also tested5315

whether any of the properties were strongly correlated. Clear linear5316

relationships between properties would mean that they provide5317

redundant information, potentially biasing our results.5318

Based on the results of these preliminary tests (see Appendices5319

S6.3 & S6.4), we chose to explore the relationships between outcomes5320

of links for parasites and each property (i.e., hypotheses i-iv)5321

separately. To do this, we began by comparing the mean values of5322

each property for links with different outcomes using a modified5323

Tukey’s Honest Significant Difference test. Rather than assuming5324

equal variances in all links, we used pooled variances for each pair5325

of outcomes. We then tested whether each property was a significant5326

predictor of links’ outcomes using a modified ANOVA. Rather than5327

assume that each property was normally distributed, we obtained5328

the null distribution of the F statistic by permuting values of the5329

focal property across the set of links 999 times. In order to control5330

for the different numbers of intermediate (prey) and definitive5331

(predator) hosts for different parasite life stages, we restricted our5332

permutations to occur within the interaction-outcome combinations5333

for each parasite.5334

At first, we imposed no further restrictions on the permutations5335

to control for the host specificity of parasites. Such an unrestrictive5336

null model, however, can re-assign transmission links to5337

physiologically and ecologically inappropriate hosts. As noted5338
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previously, parasites are often restricted to hosts from a particular5339

taxonomic group (Table S6.2, S6.1; Supporting Information S6). To5340

control for these restrictions, we compared our results to those5341

obtained using a taxonomically-informed, restrictive null model5342

where links with a given outcome for a parasite (e.g., transmission)5343

were only shuffled within the set of predator-prey interactions that5344

could conceivably have that outcome, as determined based on expert5345

knowledge. Specifically, we limited the substitution of dynamic5346

properties for “transmission” links to interactions where the prey was5347

a potential intermediate host of the parasite— based on the taxonomy5348

of known intermediate hosts — and the predator was a potential5349

definitive host (again based on taxonomy). Similarly, we restricted5350

the substitution of properties for “loss” links to interactions where5351

the prey was a potential intermediate host of the parasite but the5352

predator was not a potential definitive host. Thirdly, we restricted5353

the substitution of properties for “unused” links to interactions5354

where the prey was not a potential intermediate host (regardless5355

of the predator). For those parasites that relied upon insect hosts, we5356

considered only aquatic insects to be valid potential hosts. Although5357

there may be parasites in some systems that infect both terrestrial5358

insects and fish, our dataset did not contain any such parasites and5359

hence transmission could only occur between aquatic insects and5360

their consumers.5361

Results5362

Outcomes & contribution to predator’s diet5363

The contribution of a feeding link to the predator’s diet was5364

significantly associated with the outcome of the link for parasites5365

when the host specificity of parasites was ignored (F2,42019=13.62,5366

P<0.001), but not when we used the taxonomically-informed null5367

model (F2,42019=13.62, P=0.999). Surprisingly, transmission links made5368

up a smaller proportion of predators’ diets than did unused links5369

(∆Transmission−Unused=-0.072, P<0.001 for a Tukey’s HSD test; Fig 25A)5370

and made similar contributions to loss links (∆Transmission−Loss=-0.062,5371

P=0.391). Comparing these results to each of our null models, we5372

found that transmission links contributed a much lower proportion5373

of predators’ diets than expected based on the unrestrictive null5374

model, but made similar contributions to those expected under the5375

taxonomically-informed null model (Fig. 25A). Loss links, meanwhile,5376

contributed similar proportions of predators’ diets to those predicted5377

by the unrestrictive null model but higher proportions than expected5378

based on the taxonomically-informed null model. Unused links made5379

similar contributions to those predicted by both null models.5380
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Figure 25: The dynamic properties
of feeding links among free-living
species affect the consequences of
these links for parasites. a) The
contributions of feeding links to
the predator’s diet varied across
links with different outcomes for
parasites, but this trend was not
significant when the host specificity
of parasites was taken into account.
b-c) The local abundance and local
biomass of the prey species, however,
varied significantly among links with
different outcomes whether or not
host specificity was acknowledged. d)
The amount of biomass transferred
along a link showed the same trend
as we observed for the contribution of
a link to the predator’s diet. For each
property, we show the mean observed
value (±2 SE; circles). Different letters
above the observed values represent
significant differences in Tukey’s HSD
tests for each property. Empty symbols
(to the left of the observed values)
represent the mean value (±2 SE)
expected using our unrestrictive null
model while symbols with striped fill
(to the right of the observed values)
represent the mean value (±2 SE)
expected under our taxonomically-
informed (T-I) null model.

Outcomes & prey abundance5381

As with the contribution of links to predators’ diets, the abundance5382

of prey was significantly associated with the outcome of a link for the5383

parasite under the unrestrictive null model (F2,28793=392.875, P<0.001).5384

Abundance was also significantly associated with different outcomes5385

when the host specificity of parasites was taken into account in the5386

taxonomically-informed null model (F2,28793=392.875, P<0.001).5387

Contrary to our expectations, transmission links involved prey5388

with lower abundances than did loss links (∆Transmission−Loss=-737,5389

P<0.001 for a Tukey’s HSD test; Fig. 25b). However, transmission5390

links did involve prey with higher abundances than unused links5391

(∆Transmission−Unused=861, P<0.001). Comparing these observed values5392

with those in the null models, we found that unused links involved5393

prey with similar abundances to those expected under both null5394

models while transmission and loss links behaved differently than5395

expected (Fig. 25b). Specifically, transmission links involved prey5396

with higher abundances than expected based on the unrestrictive null5397

model, but slightly lower than expected based on the taxonomically-5398

informed null model. Loss links, in contrast, involved prey with5399

higher abundances than predicted by either null model.5400

The relationship between the biomass of prey and the outcomes5401

of links for parasites was qualitatively identical to that between5402

abundance and the outcomes of links. The local biomass of the5403
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prey species was significantly associated with different outcomes5404

of the link for parasites, whether the host specificity of parasites5405

was ignored or taken into account (F2,31832=257.9, p<0.001 and5406

F2,31832=257.9, p<0.001, respectively). Transmission links involved5407

prey with lower biomasses than did loss links,5408

(∆Transmission−Loss=-5.76g, p<0.001 for a Tukey’s HSD test; Fig. 25c).5409

Both transmission and loss links involved prey with higher biomasses5410

than did unused links (∆Transmission−Unused=4.47g, p<0.001 and5411

∆Loss−Unused=10.2g, p<0.001, respectively). The observed biomass5412

values for unused links were similar to those expected under both5413

null models (as with all other link properties we tested). As with5414

prey abundance, transmission links involved prey with higher5415

biomasses than expected based on the unrestrictive null model, but5416

slightly lower than expected based on the restrictive null model.5417

Loss links, in contrast, involved prey with higher biomasses than5418

predicted by on either null model.5419

Outcomes & biomass transfer5420

Again as with the contribution of links to predators’ diets, the5421

amount of biomass transferred along a link was correlated with5422

outcomes for parasites when the unrestrictive null model was used,5423

but not under the taxonomically-informed null model (F2,42019=8.169,5424

P=0.001; F2,42019=8.169, P=0.643, respectively). Surprisingly,5425

transmission links transferred less biomass than did loss or unused5426

links (∆Transmission−Loss=-18.4mg, P=0.002 and5427

∆Transmission−Unused=-29.0mg, P<0.001, respectively, for a Tukey’s5428

HSD test; Fig. 25d). Again like the contribution to predators’ diets,5429

and similar to prey abundance, the amount of biomass transferred5430

by unused links was similar to what was expected under either5431

null model (Fig. 25d). Both transmission and loss links transferred5432

less biomass than expected under the unrestrictive null model,5433

but transmission links also transferred less biomass than expected5434

under the taxonomically-informed null model. Loss links, in contrast,5435

transferred more biomass than expected based on the taxonomically-5436

informed null model.5437

Outcomes & centrality5438

Like prey abundance, link centrality was significantly correlated5439

with different outcomes for parasites, whether or not host specificity5440

was taken into account (F2,42019=527.5, P<0.001 in both cases). Both5441

transmission links had much higher centralities than unused links5442
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(∆Transmission−Unused=22.3, P=0.011 and for a Tukey’s HSD test; Fig. 26).5443

Loss links, however, were more central than transmission links5444

(∆Transmission−Loss=-4.37, P<0.001). As with the dynamic properties5445

described above, the centralities of unused links were very similar5446

to those expected under either null model (Fig. 26). Transmission5447

and loss links, meanwhile, were both more central than expected5448

under either null model, although when using the taxonomically-5449

informed null model transmission links were only slightly (but still5450

significantly) more central than expected based on the null model.5451

Discussion5452

Taken together, our results clearly show that the dynamic and5453

structural properties of links among free-living species affect the5454

links’ likelihoods of transmitting parasites. The contribution of a5455

link to the predator’s diet, the abundance of the prey, the amount5456

of biomass it transfers, and the centrality of a link all significantly5457

predicted whether or not a link would transmit a parasite. However,5458

these relationships did not always run in the direction we expected.5459

In particular, parasites tended to be transmitted along links that5460

would appear to be less important than other links in terms of their5461

dynamic properties.5462

Transmission links tended to contribute less to predators’ diets5463

than other types of links. Predators therefore appear to be “avoiding”5464
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prey species which contain parasites that can infect the predator.5465

After taking the host specificities of parasites into account, however,5466

transmission links make similar contributions to predators’ diets to5467

what would be expected at random. This suggests that taxa which5468

are potential intermediate hosts for the parasites in this system are5469

not particularly important prey for parasites’ definitive hosts. Loss5470

links, meanwhile, make much greater contributions to predators’5471

diets than expected based on the taxonomically-informed null model.5472

This suggests that consuming infected prey is a common strategy5473

for predators which are not suitable hosts for the focal parasite. This5474

has previously been observed in other aquatic systems where, for5475

example, cockles infected with trematodes are mainly consumed5476

by fish and whelks and only rarely by the parasites’ bird definitive5477

hosts (Mouritsen and Poulin, 2003). The parasite induces changes5478

in its host that limit burrowing ability and make the cockle more5479

vulnerable to predation by birds, but other predators also take5480

advantage of the increased availability of this prey (Mouritsen and5481

Poulin, 2003). As morphological and behavioural changes that5482

make parasites’ intermediate hosts more vulnerable to predation5483

are common (Ness and Foster, 1999; Miura et al., 2006; Mouritsen5484

and Poulin, 2003; Lefèvre et al., 2009), it is likely that exploitation of5485

these modifications by predators other than the definitive host are5486

also common.5487

Our results for prey abundance were quite similar to those for5488

the contribution of links to predators’ diets. Transmission links5489

involved more abundant prey than unused links, but less than loss5490

links. Moreover, prey abundances for transmission links were similar5491

to (but lower than) what was expected under the taxonomically-5492

informed null model. This once again suggests that parasites use5493

abundant intermediate hosts largely because they are restricted to5494

these host taxa. We expected that abundant hosts might promote5495

transmission because these species tend to be encountered frequently5496

and therefore involved in many feeding interactions (Wootton,5497

2005; Canard et al., 2014). For parasites, however, this means that5498

an abundant intermediate host is likely to be consumed by many5499

predators that are not suitable definitive hosts (Canard et al., 2014).5500

By infecting rarer intermediate hosts where possible, parasites5501

may be using prey that are actively sought by their definitive5502

hosts (Wootton, 2005), improving the odds of transmission. Without5503

knowledge of predators’ preferences for different prey, however,5504

testing this possibility is beyond the scope of this study.5505
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Transmission links also transferred less biomass than any other5506

link type. Unlike the other properties we considered, transmission5507

links transferred less biomass than expected based on either null5508

model. Based on this result, predators appear to be obtaining most of5509

their food either from prey infected with parasites that cannot infect5510

the predator (i.e., loss links) or uninfected prey (i.e., unused links).5511

This provides a counterpoint to Thompson et al. (2013)’s finding5512

that parasites tend to accumulate in species which participate in5513

many high-biomass food chains. Thompson et al. (2013) did not,5514

however, find any relationship between parasite diversity and the5515

amount of biomass flowing into a species— a closer equivalent to5516

our measure of biomass transfer. It therefore appears that while5517

parasites may “go with the flow” to the extent that they enter food5518

chains which transmit large amounts of biomass, they are more5519

often killed than transmitted to their definitive hosts along such5520

chains. As loss links in particular transferred more biomass than5521

expected under the taxonomically-informed null model, predators5522

may even preferentially consume infected prey as long as they are5523

not suitable hosts for the parasite. This is consistent with previous5524

work suggesting that infected prey are easier to find and/or capture,5525

reducing foraging costs for a predator (Lafferty, 1992; Mouritsen and5526

Poulin, 2003).5527

Although transmission links tended to be less important than5528

other links in terms of their dynamic properties, our results for5529

centrality supported our hypothesis that transmission links would5530

be structurally important. Notably, loss links were also highly central.5531

This is consistent with earlier research that found that more parasite5532

species infect highly central hosts (Chen et al., 2008) or hosts with5533

many links to other species (Thompson et al., 2013). Despite loss5534

and transmission links having similar centralities, our use of motifs5535

to examine links’ structural properties in more detail indicates that5536

transmission and loss links tended to be embedded in the food web5537

in different ways. In particular, it seems that generalist predators5538

are frequently “dead ends” for parasites while links involving prey5539

species with many predators more commonly result in transmission.5540

This demonstrates that, while transmission and loss links are both5541

structurally important, they nevertheless play different roles within5542

the food web, just as suggested by our results for links’ dynamic5543

properties.5544

Overall, our results highlight the critical importance of taking5545

host specificity into account. This outcome may be particularly5546

striking since we address host specificity at a relatively coarse level5547
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(i.e., classes) when some parasites are known to be specialised to5548

particular families or genera. It is therefore possible that our null5549

model may not fully capture the restrictions on some parasite species.5550

Nevertheless, the dramatic differences in the interpretation of our5551

results after including even coarse measures of host specificity in our5552

analyses demonstrate that, to truly understand trophic transmission5553

of parasites, host specificity must be taken into account.5554

Beyond emphasising the importance of host specificity, our5555

results make it clear that parasite transmission is affected by the5556

structure and dynamics of the free-living community. In particular,5557

several of our results suggest that weak links— links that make5558

relatively small contributions to the predator’s diet, transfer little5559

biomass, etc. —may be the most important for parasites’ transmission5560

through food webs. Intriguingly, weak links have also been touted5561

as critical for community stability (McCann et al., 1998; Emmerson5562

and Yearsley, 2004; Banašek-Richter et al., 2009). Where weak links5563

are paired with strong ones, perturbations to the community tend5564

to dissipate. This reduces the likelihood of a permanent change to5565

the system, stabilising it (McCann et al., 1998; Wootton and Stouffer,5566

2016).5567

Weak links’ contribution to community stability might also5568

explain why they are common transmission routes for parasites.5569

Due to their complex life cycles and dependence on specific hosts,5570

parasites may be unusually vulnerable to perturbations to their5571

communities (Lafferty and Kuris, 2009). Parasites can also cause5572

such perturbations by altering the population dynamics of their5573

hosts (Marcogliese and Cone, 1997) or affecting the strength of5574

interactions among free-living species (Lefèvre et al., 2009). If5575

parasites were transmitted along dynamically strong links, the effects5576

of parasites on their hosts could exacerbate any environmental5577

perturbations the community experienced. This could lead to5578

dramatic fluctuations in host populations and the loss of the parasite.5579

This scenario seems especially likely given our result that parasites5580

tend to be transmitted along highly central links. As described above,5581

perturbations to these links are likely to have substantial effects on5582

the community (Jordán et al., 2007). It may well be that parasites can5583

only be transmitted along links that are structurally or dynamically5584

important without destabilising their hosts’ populations. More5585

work is necessary to determine whether the long-term persistence5586

of parasites in a community is indeed related to the community’s5587

overall stability, but our results suggest that this is an avenue worth5588

following.5589
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General discussion5719

Summary of results5720

Over the course of this thesis, I have demonstrated several ways5721

in which species’ roles in ecological networks can be used to5722

connect their natural histories to the structure and function of the5723

communities in which they are embedded. In Chapter 1, my co-5724

authors and I reviewed several common definitions of species’ roles5725

and highlighted the similarities and differences among them. We5726

framed each definition of species’ roles in terms of their niches, and5727

suggested that discussing species’ roles in a niche context will avoid5728

confusion between role definitions. Although the remaining chapters5729

in this review use only a few of the role concepts included in the5730

review, Chapter 1 also illustrates the range of potential applications5731

of species’ roles.5732

Chapters 2 through 6 present original research. In Chapter 2,5733

we tested whether knowledge about arthropods’ roles in a mainland5734

food web could be used to improve the predictions of models based5735

on the Theory of Island Biogeography. In this case we defined5736

roles as simply the set of prey and arthropod predators for each5737

species. We found that incorporating information about species’5738

roles significantly improved the predictions of models for both5739

immigration and extinction. Arthropods’ roles as consumers were5740

especially informative. This could be because the presence of prey5741

for a given species was much more variable than the presence of5742

predators across our dataset, or because the dataset only included5743

information on arthropods and neglected other taxa (e.g., birds)5744

that could have large impacts on the arthropods’ ability to colonise5745

islands.5746

In Chapter 3, we again defined species’ roles as their sets of5747

interaction partners. This time, we used plants’ roles in pollination5748

and herbivory networks to test whether closely-related species have5749

more similar roles. In general, this was indeed the case. In both5750
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network types, dissimilarity in species’ interaction partners increased5751

as phylogenetic distance increased. Within families, however, there5752

was a great deal of variability. In some families more closely-related5753

species had more similar roles, as expected, while in others the5754

opposite trend emerged. Our results therefore suggest a complex5755

history of convergent and divergent evolution among plants and their5756

interaction partners.5757

In Chapters 4-6, we defined roles more abstractly. Specifically,5758

we used motifs to categorise the roles of species (Chapters 4 and 5)5759

and interactions between species (Chapters 5 and 6). In Chapter 4,5760

we tested whether the roles of plants and their insect pollinators in5761

a high-Arctic community changed after 15 years of climate change.5762

Both groups’ roles did indeed change, as did the structure of the5763

network overall. In particular, our results suggest that phenological5764

uncoupling may be occurring in this system. This suggests that,5765

under continuing climate change, some plants may not receive5766

adequate pollination services and some pollinators may not find5767

sufficient food.5768

In Chapter 5, we compared the roles of parasites and free-living5769

species in order to establish whether parasites’ roles are similar to5770

those of any free-living group and whether including different types5771

of interactions (i.e., parasitism, antagonism among parasites, and5772

concomitant predation on parasites inside their hosts) affect parasites’5773

roles. When concomitant predation was not included in parasites’5774

roles, they were similar to those of free-living top predators and5775

intermediate consumers. When concomitant predation was included5776

in parasites’ roles, however, these roles were unlike those of any5777

group of free-living species. By analysing their roles in this way, we5778

demonstrated that parasites are important both as consumers of free-5779

living species and as a food source for them.5780

In this chapter, we also expanded the concept of species’5781

structural roles to interactions between species. We showed that5782

different types of interaction (predation between free-living species,5783

parasitism, antagonism among parasites, and concomitant predation)5784

had different roles, and that the roles of concomitant predation5785

interaction were particularly variable. This interaction is contingent5786

upon parasitism and predation interactions already taking place,5787

and so likely inherits variation in roles from both of these interaction5788

types. Concomitant predation is also interesting because it can have5789

a variety of consequences for parasites. For trophically-transmitted5790

parasites, consumption of the current host by a suitable host for the5791
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parasite’s next life stage is required for the parasite to complete5792

its life cycle (Marcogliese and Cone, 1997). If the current host is5793

consumed by an inappropriate predator, however, or if the parasite5794

is not trophically-transmitted, then the parasite dies. It seems likely5795

that interactions which have different outcomes for the parasites have5796

different structural roles. While testing this possibility was beyond5797

the scope of Chapter 5, it formed the focus of Chapter 6.5798

In Chapter 6, we defined the roles of feeding links between5799

free-living species based on their motifs (as in Chapter 5), but also5800

based on other structural and dynamic properties. Specifically, we5801

measured each link’s centrality (the number of times it appears5802

on the shortest path between two species), its importance to the5803

predator (i.e., the proportion of the predator’s diet that the link5804

contributes), the amount of biomass transferred along the link, and5805

the abundance and biomass of the prey involved in the link. These5806

measures combined give a comprehensive picture of the way each5807

link fits into the overall network. We then tested whether any of5808

our measures of links’ roles were related to the outcome of these5809

links for parasites. We expected that parasites would tend to be5810

transmitted along links that were very important to the structure5811

and dynamics of the network (i.e., highly central, transferring large5812

amounts of biomass, etc.). We did indeed find that parasites tended5813

to be transmitted along highly central links, transmission links also5814

tended to be dynamically (e.g., transmit less biomass) weaker than5815

links resulting in the death of the parasite. As such weak links are5816

believed to promote community stability by dissipating perturbations5817

to any one species, while highly central links are believed to transmit5818

perturbations and could thereby destabilise the community, it5819

appears that parasites are transmitted along routes that are unlikely5820

to strongly disrupt the community.5821

Implications5822

As the implications of each chapter have been discussed within the5823

chapters themselves, I will now consider the impact of this thesis as5824

a whole. In Chapters 2 through 6, my co-authors and I demonstrated5825

a variety of contexts in which species’ roles can be used to gain a5826

deeper understanding of ecological communities. In each case, we5827

used species’ roles either as a bridge between the overall network5828

structure and species’ traits or to tailor community-level ecological5829

theory to particular species. Thus, this thesis demonstrates how5830

species roles can be used to make network ecology directly applicable5831

for parasitologists, island biogeographers, etc. Over the course of this5832
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thesis, I have become firmly convinced that this type of applicability5833

is essential for network ecology to achieve its full potential.5834

Network ecology began as an offshoot of graph theory and,5835

like other extensions of graph theory in linguistics, neurology,5836

and sociology, has remained strongly interdisciplinary (Dunne,5837

2006). Some of the methods I used to determine species’ roles in5838

Chapters two through six, for example, were first developed in the5839

context of sociology (Jordán et al., 2007; Lai et al., 2012) or statistical5840

physics (Guimerà et al., 2007). This history has shaped network5841

ecology into a highly versatile discipline, able to address any type5842

of interaction in any system one might wish. However, because they5843

borrow so many terms and methodologies from outside of ecology,5844

studies of networks can be difficult for non-specialists to understand5845

and connect to their own work. As demonstrated by Chapters four5846

and six (which were collaborations with empirically-grounded5847

researchers), roles are one way to overcome this dilemma.5848

Because roles are species-level properties, they are easy to5849

associate with other knowledge about species in a way that analyses5850

of network structure are not. For example, we can identify the5851

most central species in a lake food web and determine whether5852

they are fish, invertebrates, or algae and how their morphologies5853

and behaviours differ from less-central species. Thus, a species’5854

importance to the rest of the network can be explained in typically5855

ecological terms. A network-level metric like connectance, in contrast,5856

is more difficult to connect to the particulars of the study system5857

because it summarises all species and interactions into a single5858

measure. Instead, network metrics have been studied in the context5859

of site characteristics like latitude and ecosystem type (Briand, 1983;5860

Riede et al., 2011; Baiser et al., 2012; Cirtwill et al., 2015) or spatial5861

scale (Martinez and Lawton, 1995; Thompson and Townsend, 2005).5862

Similarly, while network-level properties have been used to gauge5863

the stability of different ecological communities (May, 1972; Dunne5864

et al., 2002; Gilbert, 2009; Fortuna et al., 2010; Plank and Law, 2012),5865

such studies are not concerned with the persistence of any particular5866

species of interest. Roles could be used to fill this gap in the future.5867

Although species’ roles are easier to integrate with natural5868

history than network-level metrics, they can still be unintuitive and5869

difficult to interpret. This is particularly true for high-dimensional5870

role concepts like structural roles. The length of the vectors used to5871

define structural roles is undoubtedly part of the problem; even a5872

24-dimensional vector is difficult for a human to grasp, and in studies5873
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of bipartite networks structural role vectors may be over 100 entries5874

long. This issue is easily solved by comparing roles statistically and5875

interpreting differences between them with respect to the motifs5876

which explain the most variation. However, the motifs themselves5877

can also be a challenge to interpret. Few of the motifs used to define5878

species’ structural roles have been empirically studied (Bascompte5879

and Melián, 2005). Those that have are small (3-4 species) and5880

include only one-way interactions. Although one-way feeding links5881

are more common than two-way links overall, for some types of5882

species (e.g., fish whose diets change depending on their age and5883

size [Rudolf and Lafferty, 2011]) two-way interactions may be both5884

more common than expected and quite important to the population5885

dynamics of both species involved. Motifs including two-way5886

interactions therefore merit further study, particularly in empirical5887

systems rather than simulations.5888

One-dimensional conceptions of species’ roles are often easier5889

to interpret, but can be just as difficult to connect with particular5890

ecological traits if the traits in question were not the focus of the5891

study. We saw this in Chapter 3, where our ability to interpret the5892

changing trends in conservation of plants’ roles across families was5893

limited by a dearth of information about relevant traits of these5894

families. This highlights the benefits of collaborations between5895

network ecologists and researchers with expertise in the study5896

system being examined. Such collaborations can suggest which of5897

species’ traits are most relevant to their network roles, but also tend5898

to suggest interesting questions that might not develop in a group5899

comprised of only network specialists. I believe that the work in5900

this thesis argues strongly for intradisciplinary but inter-speciality5901

collaborations, and I intend to continue along this line in my future5902

work.5903

Next steps5904

Over the course of this thesis we use several different definitions5905

of species and link roles. Going forward, it would be useful to5906

understand which role definitions are strongly correlated and which5907

provide unique information about species’ relationships to their5908

communities. As well as understanding the relationships between5909

different role concepts in relatively stable communities, it would5910

also be interesting to investigate how different definitions of species’5911

roles change as interaction networks are altered. Interactions can be5912

lost long before the species involved go extinct (Aizen et al., 2012)5913

and some definitions of species roles may be better than others at5914

tracking the effects of interaction loss across the network. Moreover,5915
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different definitions of roles may vary in their ability to predict5916

species’ impact on their community and species’ persistence in the5917

face of perturbations. Identifying which role concepts are best suited5918

to these types of questions will make roles a much more useful tool5919

for conservation ecologists and other working on similar questions.5920

As well as working to understand the relationships between role5921

concepts, it would be fruitful to investigate the spatial and temporal5922

variation in species’ roles. Roles are likely to vary over both large5923

and small scales, but there may be consistent “archetypal” roles in5924

different ecosystem types, for different taxa, etc. Comparing species’5925

roles across smaller scales, meanwhile, would indicate how variable5926

interactions are across species. Those with highly variable roles5927

might be more able to adapt to climate change or other perturbations,5928

but they might also be more likely to become invasive if introduced5929

to a new community. Where spatially replicated communities can be5930

combined with information about the assembly of the community, it5931

would also be interesting to test whether the order in which species5932

colonise a site affects their roles. In addition to comparing the roles5933

for a single species across sites, it would be interesting to compare5934

the roles of large collections of species. Specifically, it may be possible5935

to group species roles into a small number of ‘archetypal’ roles that5936

are particularly common across sites. Examining which species share5937

similar roles could provide a great deal of insight into how similar5938

network structures develop from disparate communities.5939

As with spatial variation, temporal variation in species’ roles can5940

also indicate how species are responding to global change. As my co-5941

authors and I showed in Chapter 4, comparing species’ roles across5942

decades can show how communities are responding to global change.5943

This approach could be used in many other systems to investigate the5944

effects of different perturbations on entire communities. It would also5945

be interesting to investigate how species’ roles change throughout a5946

year. A species that acts as a relatively minor component of a food5947

web for the majority of the year might assume a keystone role during5948

one season. This variation is obscured in most food webs which are5949

either snapshots of a single time period or aggregated over long time5950

scales, but has the potential to dramatically alter our understanding5951

of the structure and functioning of ecological communities.5952

Combining food webs with phylogenies is yet another area ripe5953

for exploration. Earlier work has shown that species’ roles tend to5954

be conserved across phylogenies (Stouffer et al., 2012), but my co-5955

authors and I also show (Chapter 3) that there can be substantial5956
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variation about this general trend. Identifying the conditions under5957

which species’ roles tend to be phylogenetically conserved has the5958

potential to illuminate the interplay between evolution and ecology5959

in structuring biological communities. The cases in which species’5960

roles are not conserved are likely to be particularly interesting as5961

non-conservation of interactions could be due to convergent or5962

divergent evolution, the loss of interaction partners, or a number5963

of other causes. Species with unique roles based on their phylogenies5964

could also be of particular conservation concern, as these species are5965

unlikely to be replaced by a relative if they are lost.5966

Moving from species roles to interaction roles, it would also be5967

interesting to test whether strong and weak interactions tend to have5968

different structural roles in networks. The distribution of interaction5969

strengths within a network has been linked to stability in several5970

studies (McCann et al., 1998; Emmerson and Yearsley, 2004; Banašek-5971

Richter et al., 2009; Tang et al., 2014; Nilsson and McCann, 2016), but5972

a link’s structural role may modulate the effects of its strength on5973

the rest of the community. In particular, because concepts like motif5974

roles describe meso-scale or global network structures they have the5975

potential to capture different links’ abilities to affect species other5976

than the two that are directly involved.5977

Apart from continuing to build on role concepts as described5978

above, studies of species’ roles have much to gain from collaborations5979

between network ecologists and those with more empirical expertise.5980

As ecologists find more ways in which species’ traits are related to5981

their roles in ecological networks, species’ roles will become more5982

and more valuable tools with which to understand their ecology.5983

In particular, understanding the roles of introduced species in5984

their native communities may help us to predict which species5985

will become invasive and how they will spread by helping us to5986

predict likely interaction partners for the introduced species in its5987

novel range. Similarly, gaining a better understanding of the roles of5988

species that are economically important to humans (e.g., food fish,5989

crop plants, bees) will help policymakers to manage the impact of5990

human activities across whole ecological communities rather than5991

from the perspective of a single metric at a time. These are only5992

a few ways in which concepts of species roles may be used in the5993

near future; such a versatile toolkit will surely come to be applied in5994

myriad ways and in a plethora of systems.5995
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Conclusion5996

I hope that the body of work that this thesis represents is a5997

convincing argument that species’ roles are a valuable addition5998

to network ecology; particularly as a bridge between network5999

structure and species’ traits. Connecting network-level and species-6000

level information has been named as one of the 100 outstanding6001

fundamental questions in ecology (Sutherland et al., 2013), and6002

I am pleased to have made a contribution to solving it. Moving6003

forward, more attention should be given to the biological meaning6004

of different role concepts. The studies which make up this thesis6005

offer several ways to do this— by collaborating with specialists in the6006

study system from which the web is drawn, by making an important6007

ecological trait like parasitism the focus of the study, or by drawing6008

on an extensive literature about the system. I am certain that I and6009

other researchers will find more links between network ecology and6010

other subdisciplines in the future.6011
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Summary6112

Variations in levels of parasitism among individuals in a population6113

of hosts underpin the importance of parasites as an evolutionary or6114

ecological force. Factors influencing parasite richness (number of6115

parasite species) and load (abundance and biomass) at the individual6116

host level ultimately form the basis of parasite infection patterns. In6117

fish, diet range (number of prey taxa consumed) and prey selectivity6118

(proportion of a particular prey taxon in the diet) have been shown to6119

influence parasite infection levels. However, fish diet is most often6120

characterised at the species or fish population level, thus ignoring6121

variation among conspecific individuals and its potential effects on6122

infection patterns among individuals. Here, we examined parasite6123

infections and stomach contents of New Zealand freshwater fish at6124

the individual level. We tested for potential links between the6125

richness, abundance and biomass of helminth parasites and the diet6126

range and prey selectivity of individual fish hosts. There was no6127

obvious link between individual fish host diet and helminth infection6128

levels. Our results were consistent across multiple fish host and6129

parasite species and contrast with those of earlier studies in which6130

fish diet and parasite infection were linked, hinting at a true6131

disconnect between host diet and measures of parasite infections in6132

our study systems. This absence of relationship between host diet6133

and infection levels may be due to the relatively low richness of6134

freshwater helminth parasites in New Zealand and high host-parasite6135

specificity.6136

Keywords6137

fish diet, helminth parasites, infection levels, individual host,6138

transmission mode.6139
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Introduction6140

Parasites are both important agents of natural selection and factors6141

contributing to the dynamics of host populations (Ebert et al., 2000;6142

Albon et al., 2002; Marcogliese, 2004). Within a population, variation6143

in the degree of parasitism incurred by individual hosts underpins6144

the importance of parasitism as an evolutionary or ecological force.6145

Identifying which processes influence parasite distribution among6146

hosts, and make some hosts more susceptible to infection than others,6147

is thus a central question in parasite ecology (Carney and Dick, 1999;6148

Poulin, 2000; González and Poulin, 2005). Factors influencing parasite6149

richness (number of parasite species) and abundance (number of6150

conspecific parasite individuals) at the individual host level6151

ultimately form the basis of parasite infection patterns (Carney and6152

Dick, 2000). Several ecological factors and host attributes can6153

influence the number and diversity of parasites infecting hosts at the6154

individual level. In fish, these factors may include age/size, the6155

number of different prey consumed as well as prey selectivity, habitat,6156

etc. (Poulin, 2000; Johnson et al., 2004b; Locke et al., 2014). Many6157

helminth parasites have complex life cycles that are embedded within6158

food webs, relying on trophic transmission (i.e. consumption of an6159

infected prey by the predator host) to reach their next host (Simková6160

et al., 2001). For example, richness and abundance of trophically6161

transmitted parasites in fish can thus be largely explained by the6162

diversity of the prey/intermediate host community upon which6163

different fish feed (Carney and Dick, 2000; Bolnick et al., 2003;6164

Klimpel et al., 2006). Fish with a broad diet, feeding on more species6165

of prey, may thus have more diverse trophically transmitted adult6166

parasites (i.e. higher parasite richness) than those with more narrow,6167

specialised diets (Kennedy et al., 1986; Lo et al., 1998; Locke et al.,6168

2014). At the same time, a selective diet may not preclude fish hosts6169

from accumulating large numbers of parasites (i.e. high parasite6170

abundance). Trophically transmitted parasites usually utilise limited6171

numbers (often only 1 or 2) of intermediate host prey taxa, and6172

parasite abundance in fish hosts therefore depends on the importance6173

of these few species in the fish diet rather than the absolute number6174

of prey groups consumed; i.e. a fish feeding mostly on the parasite’s6175

intermediate host is more likely to accumulate parasites than a fish6176

feeding equally on all prey species forming its diet (Kennedy et al.,6177

1986; Marques et al., 2011). The degree of diet selectivity and the6178

type/taxa of prey favoured by fish hosts may thus influence parasite6179

infection levels, even in fish with qualitatively broad diets (Kennedy6180

et al., 1986; Marques et al., 2011). Shifts in dietary preference with6181

age/size can also be important determinants of adult helminth6182
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richness and abundances in fish hosts (Johnson et al., 2004b; Poulin6183

et al., 2011). Prey selection is largely gape-limited, both within and6184

among fish species, and the diversity of prey consumed usually6185

increase with gape size, itself strongly linked to fish body6186

size (Wainwright and Richard, 1995; Hyndes et al., 1997; Marcogliese,6187

2002; Klimpel et al., 2006). Overall, variability in feeding preferences6188

may thus strongly affect parasite richness and abundance among6189

sympatric, conspecific fish hosts (Knudsen et al., 1997).6190

On the contrary, prey diversity should have little effect on parasites6191

that infect fish directly (Simková et al., 2001). Many larval trematodes6192

infect fish through skin penetration and use fish as intermediate6193

rather than definitive hosts (Locke et al., 2013, 2014). Larval6194

trematodes directly penetrating fish skin subsequently enter a6195

dormant stage and wait for the fish to be consumed by the6196

appropriate definitive host predator. Trematode larvae can6197

accumulate in fish hosts over time, unlike adult helminths in the6198

gastrointestinal tract which are shorter lived (Carney and Dick, 2000;6199

Locke et al., 2014). As a result, larger fish are expected to have higher6200

richness and abundances of skin-penetrating trematode6201

larvae (Zelmer and Arai, 1998; Carney and Dick, 2000; Poulin, 2000).6202

Overall, among conspecific fish, larger individuals may harbour6203

higher adult and larval helminth richness and abundances because6204

they tend to consume a greater number of prey; they should be6205

exposed to an increasing variety of potential intermediate hosts,6206

being less gape-limited, and have been accumulating more larval6207

parasites than their smaller conspecifics (Bell and Burt, 1991; Poulin,6208

1995; Morand et al., 2000; González and Poulin, 2005; Dick et al., 2009;6209

Zelmer, 2014).6210

Phylogenetic effects relating to host specificity can also structure6211

parasite communities among fish species that have similar diets but6212

are phylogenetically distinct (Poulin, 1995). A broad diet may bring a6213

fish into contact with a wide diversity of parasite species, though6214

only a small subset of these may infect the host for evolutionary6215

reasons (e.g. host-parasite compatibility; Kennedy et al., 1986).6216

Ingestion of larval helminths by fish is frequent in most fish species6217

due to the abundance and diversity of these parasites in aquatic6218

ecosystems (Marcogliese, 2002; Parker et al., 2003). However, while6219

different, co-occurring fish species can be exposed to the same6220

helminths, host-parasite compatibility may subsequently modulate6221

parasite infection patterns among fish host species (Lagrue et al.,6222

2011). Overall, similarities or differences in parasite richness and6223

abundance among sympatric fish species should be largely6224
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influenced by the combination of host diet and species-specific6225

host-parasite compatibility (Lile, 1998; Knudsen et al., 2008; Lagrue6226

et al., 2011).6227

Despite the potential for effects on parasite infection patterns, fish6228

diet is most often characterised at the species or population level,6229

thus ignoring potential variation among individuals (Fodrie et al.,6230

2015). Diet variation and ‘individual specialisation’ among6231

conspecific individuals is common in natural populations, including6232

fish (Bolnick et al., 2002, 2003; Araújo et al., 2011; Layman et al., 2015;6233

Rosenblatt et al., 2015). Species assumed to be dietary generalists and6234

exhibiting broad population-level diets can actually specialise at the6235

individual level, inducing intraspecific differences in risk of6236

parasitism (Curtis et al., 1995; Wilson et al., 1996). Combining data on6237

individual fish stomach contents (number of prey groups and relative6238

abundance in fish diet) and parasites (richness and specific6239

abundances) may therefore provide a more accurate picture of the6240

link between host diet and infection levels. Numerous fish species are6241

considered opportunistic omnivores consuming a wide variety of6242

prey taxa, though as individuals, fish can display contrasting dietary6243

preferences that may yield differences in parasite richness and6244

abundance among conspecific hosts. An individual host typically6245

harbours a small sample of the local parasite community that reflects6246

its individual diet range (i.e. number of prey groups consumed) and6247

prey selectivity (Locke et al., 2013). Usually, parasites are aggregated6248

among available hosts (Poulin, 2007; Poulin et al., 2013). This is often6249

due to differences in the rate of parasite acquisition among hosts. For6250

trophically transmitted helminths, differences in diet among6251

conspecific hosts can generate heterogeneity in exposure to parasites6252

and ultimately produce such aggregated distributions (Knudsen6253

et al., 2004; Poulin, 2007).6254

Here, we used field sampling to quantify and analyse the richness6255

and abundance of all helminth parasites as well as stomach contents6256

of individual fish of 11 species. Stomach contents reflect short-term6257

feeding patterns, but may still capture the causal link between diet6258

and helminth richness and abundance among but also within fish6259

species (i.e. among conspecific fish individuals; (Johnson et al.,6260

2004b). Individual fish feeding preferences are likely consistent over6261

time, at least seasonally, and even a single stomach content sample6262

should reflect fairly accurately individual fish diet. Strong overlap in6263

parasite infection (richness and abundance), or lack thereof, among6264

unrelated fish species may reflect similarities or differences in diet,6265

habitat and host specificity (or a combination of these factors) that6266
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are sometimes difficult to tease apart due to phylogenetic6267

effects (Carney and Dick, 1999). Here, by comparing parasite richness6268

and abundance among sympatric conspecifics, we eliminated these6269

potential phylogenetic and geographical effects. Our main goal was6270

to determine whether differences in parasite richness and abundance6271

among fish species and among conspecific fish individuals can be6272

linked to variations in the number of prey groups consumed, feeding6273

preferences and/or fish size. These factors should have contrasting6274

influences on trophically compared with directly transmitted6275

parasites. We thus tested the potential effects of diet range and6276

selectivity on parasite infection levels in individual fish host6277

separately for the 2 parasite categories. Trophically transmitted6278

parasite richness should increase with diet range in fish diet and6279

specific parasite abundance be more influenced by individual fish6280

feeding preferences. In contrast, directly transmitted parasites should6281

not be influenced by fish host diet. Overall, differences in feeding6282

preferences among individuals may be reflected in differences in6283

parasite infections. Ideally, individual feeding preferences would be6284

assessed at multiple time points; however, for obvious reasons (the6285

need to sacrifice fish to recover gut contents and parasites), this is not6286

possible, and we must rely on a single measurement.6287

Material and Methods6288

Data collection6289

Field sampling6290

Fish were sampled in 4 lake ecosystems. Lake Hayes (44◦58’59.4"S,6291

168◦48’19.8"E), Lake Tuakitoto (46◦13’42.5"S, 169◦49’29.2"E), Lake6292

Waihola (46◦01’14.1"S, 170◦05’05.8"E) and Tomahawk Lagoon6293

(45◦54’06.0"S, 170◦33’02.2"E; South Island, New Zealand) were6294

selected to provide a variety of lake types (size, depth and altitude),6295

freshwater communities (coastal vs alpine, trophic state and tidal or6296

not; see Table SA.1 for details). Within each lake, 4 sampling sites6297

were selected along the littoral zone to cover all microhabitat types6298

(substrate, macrophytes, riparian vegetation, etc.) present within each6299

lake. The 4 lakes were sampled in early spring, summer and late6300

autumn (austral seasons: September 2012, January and May 2013).6301

Fish were captured at each site and in each lake to assess potential6302

spatial variability within and among lakes in fish gut contents (prey6303

richness and selectivity) and infection levels (parasite richness and6304

abundance). We used a combination of fish catching gear types so6305

that accurate cross-sections of fish species and size classes were6306

sampled from each site. Two fyke nets and 10 minnow traps were set6307
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overnight in each site, when some fish species are more active (i.e.6308

eels and common bully), as they are passive sampling methods6309

relying on fish to willingly encounter and enter traps (Hubert, 1996).6310

The next day, trapped fish were recovered and set aside for later6311

dissection. Sampling was then complemented using two 15m long6312

multi-mesh gillnets. Gillnets were benthic-weighted sets with top6313

floats, 1.5m high and comprised 3 panels of 25, 38 and 56mm meshes,6314

each 5m long. Gillnets covered the whole water column and were6315

used to capture highly mobile, mainly diurnal fish (i.e. trout, perch6316

and mullet). Fish caught in the nets were removed immediately to6317

avoid excessive accumulation and the potential visual deterrence to6318

incoming fish (Lagrue et al., 2011). Finally, fish sampling was6319

completed using a standard, fine-mesh (5mm mesh size) purse seine6320

net. As an active sampling method, seine netting captures small6321

and/or sedentary fish species (i.e. galaxiids, smelt and juvenile fish6322

of most species) that are not captured by passive gear like fyke nets6323

or gillnets (Thorogood, 1986). All fish were killed immediately to6324

inhibit the digestion process and stored on ice to preserve internal6325

tissues, stomach contents and parasites for future identification,6326

count and measures. In the laboratory, fish were identified to species,6327

measured to the nearest millimetre (fork length), weighed to the6328

nearest 0.01g and then dissected. The gastrointestinal tract, from6329

oesophagus to anus, and all internal organs (heart, liver, gall bladder,6330

gonads, swim bladder, etc.) of each fish were removed and preserved6331

in 70% ethanol for later diet and parasite analyses. Fish bodies were6332

frozen separately for later parasite analyses as ethanol preservation6333

renders muscle tissues difficult to screen for parasites.6334

Parasites6335

Complete necropsies of all fish were conducted under a dissecting6336

microscope. The head, gills, eyes, brain and spine of each fish were6337

examined using fine forceps to pull apart fish tissues and obtain an6338

accurate, total parasite count for all helminth species in each6339

individual fish. Soft tissues (muscle and skin) were removed from the6340

spine, crushed between 2 glass plates and examined by transparency6341

to identify and count parasites. Internal organs and the6342

gastrointestinal tract were first rinsed in water to wash off the6343

ethanol. The digestive tract was then separated from other organs.6344

Liver, swim bladder, gall bladder, gonads and other organs and6345

tissues from the body cavity (fat, mesentery, kidneys, heart, etc.) were6346

all screened for parasites. Finally, the digestive tract was dissected.6347

Stomach and intestine contents were removed, screened for parasites6348

and then set aside for later diet examination. Oesophagus, stomach,6349
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pyloric caeca (when present), intestine and rectum were then6350

examined for gastrointestinal parasites. All parasites were identified6351

and counted. For each fish individual, helminth parasite richness6352

(total number of species) and specific abundances (total number of6353

individuals per parasite species) were determined. The life stage6354

(adult or larval) and infection mode (directly or trophically6355

transmitted) of all individuals was also recorded. Note that no6356

external parasite (copepods, monogeneans or leeches) were recovered6357

from any of the fish examined and are thus not considered here.6358

Fish diet contents6359

Food items from the stomach and intestine of all fish were identified6360

under a dissecting microscope to determine the diet range of each6361

individual (number of different prey taxa). Prey items were also6362

counted to estimate the relative importance of each prey taxa in6363

individual fish gut contents. Relative importance of each prey6364

(number of a specific prey divided by the total number of prey items6365

in the fish diet contents) was used as an estimate of diet selectivity of6366

individual fish hosts.6367

Analyses6368

Parasite richness6369

As different mechanisms are expected to affect the number of directly6370

and trophically transmitted parasite species acquired by a given fish6371

host, we first divided the parasite community within each fish based6372

on transmission mode (considering each life stage separately for6373

parasites with complex life cycles). We then tested for a potential6374

relationship between the richness of each group of parasites and host6375

diet range (here defined as the number of prey taxa found in the fish6376

host’s gut contents), size (log of weight in grams) and their6377

interaction. To account for the possibility that the richness of a host’s6378

parasite community was lower or higher because of its environment,6379

we also included nested random effects of lake and site within lake.6380

These random effects allow us to control for additional variation in6381

parasite richness that can be explained by lake and site-within-lake6382
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without sacrificing the degrees of freedom that would be lost if they6383

were fixed effects. This gave us the model:6384

Σi = β0+ β0t+(β1+ β1t)ωi+(β2+ β2t)ρi+(β3+ β3t)ωiρi+ Li+Si+ ǫi
(6)

where Σi is the number of parasite species with a given transmission6385

mode (direct or trophic) in an individual host i, ωi is the log of the6386

weight of the fish host, ρi is the host’s diet range, Li is a random6387

effect of lake, Si is a nested random effect of site within lake, and ǫi is6388

a residual error term. Note that β0, β1, β2, and β3 refer to6389

directly-transmitted parasites while β0t, β1t, β2t, and β3t are6390

‘adjustments’ to these β’s when considering trophically transmitted6391

parasites. As we were not interested in seasonal variations in this6392

study, we analysed data from all 3 seasons together.6393

As richness, defined here as the number of parasite species per fish6394

host, can take integer values only, and because many potential hosts6395

did not contain any parasites, we fit these models as zero-inflated6396

Poisson processes where the fixed effects described above applied to6397

the Poisson components of the model only. That is, the zero-inflated6398

component consisted of a fixed probability of having a parasite6399

richness of zero, modulated by different random effects of lake and6400

site within lake. In addition to having separate random effects,6401

separate variance terms were fit to the zero-inflated and Poisson6402

components of the model with no covariance between them. Because6403

the number of parasites infecting a host varied among fish species,6404

we fit separate models for each host species. We also restricted our6405

analyses to fish host species in which at least 1 individual was6406

infected with at least 1 parasite and to host species represented by at6407

least 11 individuals (to give the necessary degrees of freedom to fit6408

the model above). Individuals of Anguilla australis and Anguilla6409

dieffenbachi were pooled under Anguilla spp. to increase sample size6410

and fit a single model at the genus level. Both species are biologically6411

and functionally similar, feeding on the same prey and acquiring the6412

same parasites, and often co-exist (McDowall, 1990). We fit all models6413

using the function MCMCglmm in the R (R Core Team, 2014)6414

package of the same name (Hadfield, 2010).6415
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Abundance and biomass of trophically transmitted6416

parasites6417

We next tested whether feeding preferences of individual fish hosts6418

showed any relationship with the abundance and biomass of6419

trophically transmitted parasites with which they were infected. For6420

each fish host species and each trophically transmitted parasite6421

species found in that host, we determined the proportion ηiq of host6422

i’s gut contents (by abundance) accounted for by intermediate host q.6423

We used abundance (rather than biomass or volume) to determine6424

proportions because, while prey species deliver different amounts of6425

energy to the predator depending on their size, each intermediate6426

host acts as a single ‘packet’ of parasites delivered to the definitive6427

host. While addressing the richness of fish parasite communities, we6428

fit separate models for each observed combination of fish host and6429

parasite species.6430

Using these data, we constructed parallel models for the abundance6431

of each parasite species in each individual fish host. When a host i6432

had 2 intermediate host preys q and r, we fit the model:6433

Υij = β0 + β0t + β1ωi+ β2ηiq + β3ηir + β4ωiηiq + β5ωiηir + Li + Si + ǫij
(7)

where Υij is the number of individuals of parasite species j observed6434

in a fish host i and all other symbols are as in equation 6 or as6435

defined above. Where only 1 intermediate host prey taxon was6436

observed for a given fish host-parasite combination, β3 and β5 were6437

omitted from the model. We then fit an equivalent model for the total6438

biomass of parasites,6439

Mij = β0+ β0t+ β1ωi+ β2ηiq+ β3ηir+ β4ωiηiq+ β5ωiηir+ Li +Si+ ǫij
(8)

where Mij is the biomass of parasite species j observed in host6440

species i and all other symbols are as above.6441

We fit both of these models to each fish host-parasite combination6442

with sufficient sample size (the minimum required sample size varied6443

depending on the number of intermediate hosts and levels of random6444

effects). We also excluded combinations where none of the parasite’s6445

potential intermediate hosts were observed in the diet of fish hosts as6446
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the effect of diet could not be measured in these cases. As parasite6447

abundances were integer values, we fit the models of parasite6448

abundances as Poisson processes, and we fit the model of parasite6449

biomass as a Gaussian process. We therefore fit equation 7 using the6450

function glmer in the R (R Core Team, 2014) package lme4 (Bates6451

et al., 2014) and fit equation (Venables and Ripley, 2002) using the6452

function lmer in the R package lmerTest (Kuznetsova et al., 2014)6453

(Kuznetsova et al. 2014). After fitting the full models, we fit the suite6454

of all possible reduced models for each full model using the R (R6455

Core Team, 2014) function dredge from package MuMIn (Bartón,6456

2014) and then averaged across all models (weighting by AIC) using6457

the function model.avg, also from the package MuMIn.6458

Results6459

Across all samples, 614 fish representing 11 species were examined,6460

and 12 species of parasites were identified (see Table A1 for details).6461

A total of 309 546 parasites with different transmission modes (direct6462

vs trophic) and prey hosts were recovered (see Table A2 for details).6463

Note that the trematodes Stegodexamene anguillae and Telogaster6464

opisthorchis use fish, albeit different species, as both intermediate and6465

definitive hosts and were found as either directly transmitted6466

metacercariae (i.e. trematode parasites larval stage) or trophically6467

transmitted adults (Table A2). The different life stages of these 26468

parasite species were thus considered separately in the models.6469

Table A1: Details of the fish species, status, life-history strategy and numbers
examined for our study with the parasite species identified from each fish
species.

Fish species Status L.S. nTot n1-n2-n3-n4 Parasite species
Aldrichetta forsteri Nat. M.v. 15 0-0-15-0 H. spinigera

Anguilla spp. Nat. Cat. 38 4-11-15-8
Anguillicola sp., C. parvum, H. spinigera,
S. anguillae, T. opisthorchis, Nematoda sp.

Galaxias argenteus Nat. Amp. 1 0-0-1-0

Galaxias maculatus Nat. Amp. 70 0-12-15-43
A. galaxii, Eustrongylides sp., S. anguillae,
T. opisthorchis

Gobiomorphus cotidianus Nat. F.r. 268 60-24-68-116

Apatemon sp., C. parvum, Deretrema

sp., Eustrongylides sp., S. anguillae, T.
opisthorchis, Tilodelphys sp., Cestoda sp.

Onchorhynchus mykiss Int. F.r. 4 0-0-0-4

Perca fluviatilis Int F.r. 179 50-46-47-36
A. galaxii, C. parvum, Eustrongylides sp.,
H. spinigera

Retropinna retropinna Nat. Amp. 23 0-10-13-0
Eustrongylides sp., H. spinigera, Cestoda
sp.

Rhombosolea retiaria Nat. Amp. 2 0-0-2-0 A. galaxii, C. parvum, H. spinigera

Salmo trutta Int. F.r. 14 3-1-10-0 A. galaxii, C. parvum, Eustrongylides sp.
Nat., native; Int., introduced; L.S., life-history strategy; M.v., marine visitor; Cat., catadromous; Amp., amphidromous; F.r.,
freshwater resident; nTot, total number of fish examined; number of fish examined from lakes Hayes (n1), Tuakitoto (n2),
Waihola (n3) and Tomahawk Lagoon (n4).



202

Table A2: Details of the parasite phylum/class, numbers, life stage, transmission
mode, and prey host species used for transmission for each parasite species.

(B) Parasite Transmission
Species Phylum/class Life stage nTotal Mode Prey host(s)
Acanthocephalus galaxii Acanthocephala Cyst. 26 Trophic Amphipod sp.A
Anguillicola sp. Nematoda Ad. 9 Trophic Copepod sp.
Apatemon sp. Trematoda Mc. 270 666 Direct
Coitocaecum parvum Trematoda Ad. 721 Trophic Amphipod spp.A,B
Deretrema sp. Trematoda Ad. 14 Trophic Decapod sp.
Eustrongylides sp. Nematoda L. 231 Trophic Oligochaete sp.
Hedruris spinigera Nematoda Ad. 645 Trophic Amphipod sp.B
Stegodexamene anguillae Trematoda Mc. 28 469 Direct
S. anguillae Trematoda Ad. 1791 Trophic Fish
Telogaster opisthorchis Trematoda Mc. 5029 Direct
T. opisthorchis Trematoda Ad. 1112 Trophic Fish
Tilodelphys sp. Trematoda Mc. 600 Direct
Unnamed sp. Cestoda L. 4 Direct
Unnamed sp. Nematoda Ad. 229 Unknown
Cyst., cystacanth; Ad., adult; Mc., metacercaria; L., larva; Prey host(s): Paracalliope fluviatilis (Amphipoda sp.A), Paracorophium
excavatum (Amphipoda sp.B), Tenagomysis chiltoni (Decapod sp.), Gobiomorphus cotidianus and Galaxias maculatus (Fish).

Overall, 2 224 096 prey items belonging to 53 different taxa were6470

found in stomach contents of fish, identified and counted.6471

Parasite richness6472

We were able to fit our models in 6 fish taxa: Aldrichetta forsteri6473

(n=15), Anguilla spp. (n= 38), Gobiomorphus cotidianus (n=268), Perca6474

fluviatilis (n=179), Galaxias maculatus (n=70) and Salmo trutta (n=14).6475

As hypothesised, there was no significant effect of host diet range on6476

the richness of directly transmitted parasites in A. forsteri (β2=2.30,6477

P=0.165), Anguilla spp. (β2=1.21, P=0.106), G. maculatus (β2=-1.74,6478

P=0.182), G. cotidianus (β2=0.101, P=0.459), P. fluviatilis (β2=-0.299,6479

P=0.454) or S. trutta (β2=-3.25, P=0.221). In G. maculatus, there was a6480

significant interaction between diet range and host size (β3=2.61,6481

P<0.001), but in all other fish species the interaction was6482

non-significant (β3=-0.194, P=0.967; β3=0.727, P=0.518; β3=-0.209,6483

P=0.133; β3=-0.062, P=0.761; and β3=1.24, P=0.649 for A. forsteri,6484

Anguilla spp., G. cotidianus, P. fluviatilis and S. trutta, respectively).6485

There was thus no overall effect of fish gut contents on directly6486

transmitted parasite richness in any of the 4 fish taxa mentioned6487

above; in the case of G. maculatus the effect of the interaction between6488

host mass and diet range was small relative to the variability between6489

MCMCglmm fits (Fig. A1; Table A3).6490



203

10
2

10
3

-10

-5

0

5

10

10
1

10
2

10
3

-10

-5

0

5

10

10
0

10
1

-10

-5

0

5

10

10
-1

10
0

10
1

-10

-5

0

5

10

10
0

10
1

10
2

10
3

-10

-5

0

5

10

M
ar

gi
na

l e
ffe

ct
 o

f d
ie

t r
an

ge
 o

n 
di

re
ct

ly
-t

ra
ns

m
itt

ed
 p

ar
as

ite
 r

ic
hn

es
s

10
1

10
2

10
3

Host mass (g)

-10

-5

0

5

10

A

C

E

B

D

F

Aldrichetta forsteri Anguilla spp.

Galaxias maculatus Gobiomorphus cotidianus

Perca fluviatilis Salmo trutta

Figure A1: Marginal effects of fish host
diet range on the richness of directly
transmitted parasites found in the
6 fish taxa for which models could
be fitted; (A) Aldrichetta forsteri, (B)
Anguilla spp., (C) Galaxias maculatus,
(D) Gobiomorphus cotidianus, (E) Perca
fluviatilis and (F) Salmo trutta. Marginal
effects are obtained by summing the
effect of host diet range with the effect
of the interaction between host mass
and diet range across the observed
range of fish host masses. A marginal
effect of zero indicates that there is
no overall effect of host diet range
on parasite richness. Marginal effects
greater than zero indicate that parasite
richness increases with increasing host
diet range, and marginal effects below
zero indicate that parasite richness
decreases as host diet range increases.
Horizontal lines indicate that the effect
of host diet range does not vary with
host size, while sloped lines indicate
that the effect of host diet range differs
among hosts of different sizes. We
show mean marginal effects (mean over
10 000 MCMCglmm iterations; black
line) along with the marginal effects
estimated in 100 of the MCMCglmm
iterations with below-average deviances
(grey lines).

Contrary to our expectations, there was no effect of host diet range6491

on the richness of trophically transmitted parasites in A. forsteri,6492

Anguilla spp., G. maculatus, G. cotidianus, P. fluviatilis and S. trutta6493

(β2 + β2t=-0.227, P=0.780; β2 + β2t=0.291, P=0.651; β2 + β2t=-0.779,6494

P=0.445; β2 + β2t=-0.268, P=0.175; β2 + β2t=-0.267, P=0.436; and6495

β2 + β2t=1.61, P=0.437, respectively). Furthermore, there was no6496

significant interaction between host size and diet range in any of the6497

above fish (β3 + β3t= 0.044, P=0.928; β3 + β3t=-0.615, P=0.524;6498

β3 + β3t=-0.622, P=0.532; β3 + β3t= 0.279, P=0.089;6499

β3 + β3t=-0.242, P=0.778; and β3 + β3t=-0.154, P=0.957, respectively).6500

There was therefore no overall effect of diet range on the richness of6501

trophically transmitted parasites at any host size in these fish (Fig.6502

A2; Table A3).6503
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Table A3: Estimated fixed effects in equation 6 (with P-values in parentheses).
β1, β2 and β3, represent the effects of host mass, diet range and their interaction
(respectively) on the richness of directly transmitted parasites, while β1t, β2t and
β3t are adjustments to these effects for trophically transmitted parasites. β1 +
β1t therefore represents the main effect of host mass acting on the richness of
trophically transmitted parasites. Effects are means over 1000 MCMC iterations.

Species β1 β1 + β1t β2 β2 + β2t β3 β3 + β3t

Aldrichetta -0.718 0.118 2.30 -0.227 -0.194 0.044

forsteri (0.366) (0.582) (0.165) (0.780) (0.967) (0.928)
Anguilla -0.324 1.67 1.21 0.291 0.727 -0.615

spp. (0. 532) (<0.001) (0.106) (0.651) (0.518) (0.524)
Galaxias -1.68 0.971 -1.74 -0.779 2.61 -0.622

maculatus (0.303) (0.474) (0.182) (0.445) (<0.001) (0.532)
Gobiomorphus 0.332 0.101 0.067 -0.268 -0.209 0.279

cotidianus (0.005) (<0.001) (0.459) (0.175) (0.133) (0.089)
Perca 0.390 0.846 -0.299 -0.267 -0.062 -0.242

fluviatilis (0.590) (0.025) (0.454) (0.436) (0.761) (0.778)
Salmo 2.42 -0.870 -3.25 1.61 1.24 -0.154

trutta (0.429) (0.483) (0.221) (0.437) (0.649) (0.957)

Abundance and biomass of trophically transmitted parasites6504

We were able to fit our models to the abundance and biomass of 36505

trophically transmitted parasites in 3 fish host taxa: Hedruris spinigera6506

in A. forsteri, Coitocaecum parvum in P. fluviatilis, and both6507

Eustrongylides sp. and C. parvum in G. cotidianus. In the first 3 cases,6508

only 1 prey species is used by the parasite as an intermediate host.6509

Hedruris spinigera uses the amphipod Paracorophium excavatum for6510

transmission to A. forsteri, C. parvum uses the amphipod Paracalliope6511

fluviatilis only for transmission to P. fluviatilis and Eustrongylides uses6512

oligochaete sp. to reach G. cotidianus. Two prey species, the6513

amphipods P. excavatum and Pa. fluviatilis are used as intermediate6514

hosts by C. parvum to be transmitted to and infect G. cotidianus. As6515

expected, the abundance of H. spinigera in A. forsteri (i.e. number of6516

parasites per individual fish host) tended to increase as the6517

proportion of the intermediate host P. excavatum in the diet of an6518

individual fish increased (β2=15.6, P=0.005). This effect interacted6519

negatively with host mass (β4=-10.7, P<0.001) such that in smaller A.6520

forsteri (roughly <300mm) the abundance of H. spinigera increased6521

sharply with the proportion of P. excavatum in the diet but in the6522

largest A. forsteri the abundance of H. spinigera decreased (Fig. A3-A;6523

Table A4). Note that ‘small’ and ‘large’ here refer to opposite ends of6524

the continuum of A. forsteri lengths and not to explicit groups.6525

The abundances of C. parvum in P. fluviatilis and Eustrongylides sp. in6526

G. cotidianus did not vary with the proportion of intermediate hosts6527
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(the amphipod Pa. fluviatilis and an unnamed oligochaete,6528

respectively) in the diets of the fish hosts (β2=0.010, P=0.989 and6529

β2=0.006, P=0.723, respectively). There was no significant interaction6530

between fish host size and the proportion of intermediate hosts in6531

fish host diets (β4=0.025, P=0.966 and β4=0.002, P=0.839,6532

respectively). As such, there was no overall effect of the proportion of6533

intermediate hosts in fish diet contents on parasite abundance for6534

these 2 parasite-host combinations (Fig. A3-B, C; Table A4).6535

Likewise, the abundance of C. parvum in G. cotidianus did not vary6536

with the diet of fish hosts. Parasite abundance was not significantly6537

associated with the proportion of either intermediate host (the6538

amphipods Pa. fluviatilis and P. excavatum; β2=-0.087, P=0.383 and6539

β3=-0.127, P=0.283, respectively). Further, there were weak6540

interactions between the proportions of each intermediate host in the6541

diet and fish host size (β4=-0.034, P=0.955 and β5= 0.307, P=0.610,6542
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Figure A2: Marginal effects of fish host
diet range on the richness of trophically
transmitted parasites found in the 6 fish
taxa for which models could be fitted;
(A) Aldrichetta forsteri, (B) Anguilla spp.,
(C) Galaxias maculatus, (D) Gobiomorphus
cotidianus, (E) Perca fluviatilis and
(F) Salmo trutta. Marginal effects are
obtained by summing the effect of
host diet range with the effect of the
interaction between host mass and diet
range across the observed range of fish
host masses. We show mean marginal
effects (mean over 10 000 MCMCglmm
iterations; black line) along with the
marginal effects estimated in 100 of
the MCMCglmm iterations with below-
average deviances (grey lines). See Fig.
A1 for details about the interpretation
of marginal effects.
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Figure A3: Marginal effects of the
proportion of intermediate hosts in fish
stomach contents on the abundance
of trophically transmitted parasites in
individual fish hosts in the 4 parasite-
fish host taxon combinations for which
models could be fitted; (A) Hedruris
spinigera in Aldrichetta forsteri, (B)
Coitocaecum parvum in Perca fluviatilis,
(C) Eustrongylides sp. in Gobiomorphus
cotidianus and (D) C. parvum in G.
cotidianus. Intermediate host prey
taxa are also identified within each
panel. Marginal effects are obtained
by summing the effect of proportion of
intermediate host with the effect of the
interaction between fish host mass and
proportion of intermediate hosts across
the observed range of fish host masses.
We show mean marginal effects ( black
lines) with 95% confidence intervals
(grey). See Fig. A1 for details about the
interpretation of marginal effects.

respectively). Overall, the abundance of C. parvum did not vary6543

significantly with the diet of G. cotidianus (Fig. A3-D; Table A4). In6544

general, relationships between parasite biomass and proportions of6545

intermediate hosts in the diet of fish hosts were similar to the6546

relationships with parasite abundances described above (see6547

Supplementary Material for details).6548

Discussion6549

Conspecific individuals are often treated as ecologically equivalent6550

although individual specialisation in habitat or resource use is a6551

Table A4: Estimated fixed effects in equation 7 (with P-values in parentheses).
β1 indicates the effect of fish host mass on the abundance of the parasite, β2
and β3 the effects of the proportions of 2 intermediate hosts in the diet of the
fish host, and β4 and β5 the effects of the interaction between proportion of
intermediate host and fish host mass. NA indicates that only 1 intermediate host
was found in the gut contents of the fish host. Estimates are based on averages
over the full equation 7 and all possible reduced models, weighted by AIC.

Fish host Parasite β1 β2 β3 β4 β5

Aldrichetta Hedruris 0.257 15.6 NA -10.72 NA
forsteri spinigera (<0.001) (0.005) (<0.001)
Perca Coitocaecum 0.119 0.010 NA 0.025 NA
fluviatilis parvum (0.862) (0.989) (0.966)
Gobiomorphus Eustrongylides 0.441 0.006 NA 0.002 NA
cotidianus sp. (<0.001) (0.723) (0.839)
Gobiomorphus Coitocaecum 0.375 -0.087 -0.127 -0.034 0.307

cotidianus parvum (<0.001) (0.383) (0.283) (0.955) (0.610)
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widespread phenomenon with potentially broad ecological6552

implications (Bolnick et al., 2003). Inter-individual variation in diet6553

can influence infection risk among conspecific fish when exposure to6554

parasites varies with prey type (Curtis et al., 1995; Wilson et al., 1996).6555

Fish that consume more species of prey should have more diverse6556

trophically transmitted parasites (Locke et al., 2014). Comparatively,6557

exposure to directly transmitted parasites should not depend on host6558

diet (Simková et al., 2001; Locke et al., 2013, 2014). We indeed found6559

no clear relationship between fish gut contents and the richness of6560

directly transmitted parasites in individual hosts. Results indicate6561

that infection levels of directly transmitted helminth larvae are highly6562

variable among fish species, indicating high host specificity and6563

potential phylogenetic constraints in these parasites.6564

In contrast with our predictions, we also did not find clear6565

relationships between host diet range and the richness of trophically6566

transmitted parasites in fish hosts. Although broader diet range has6567

been linked with higher parasite richness in fish, this pattern is only6568

observed when a wide variety of prey species is utilised by a diverse6569

array of parasite species for transmission (Carney and Dick, 1999). If6570

only a few species in the ecosystem are actually used by local6571

parasites for trophic transmission, then parasite richness in fish host6572

is unlikely to increase with diet range (Kennedy et al., 1986). In lakes6573

sampled here, the number of fish parasite species using trophic6574

transmission is relatively low (8 species overall with a maximum of 76575

in any 1 lake/season combination) and the overall number of prey6576

taxa used by these parasites limited to 7, divided into only 3 groups6577

(fish, crustaceans and oligochaetes). Comparatively, 53 different prey6578

taxa were found in fish gut contents with a maximum of 26 prey taxa6579

in any 1 site/lake/season combination. It is thus possible that, as6580

long as the few prey taxa used by parasites are consumed by fish, a6581

broader diet range does not further increase the richness of parasites6582

found in individual hosts (Kennedy et al., 1986). Usually, larger fish6583

harbour higher parasite diversities because large individuals have a6584

higher feeding rate and are also less gape-limited (and thus less6585

restricted in prey choice) than small fish (Poulin and Cribb, 2002;6586

González and Poulin, 2005). Generally, our results indicate that6587

individual fish size did not have major effects on the relationship6588

between host diet range and parasite richness in fish species captured6589

in the present study.6590

Interspecific differences in diet range and host-parasite compatibility6591

among fish species may add extra layers of complexity to the factors6592

determining parasite richness in individual fish hosts (Knudsen et al.,6593
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1997, 2008; Lagrue et al., 2011). Fish species sampled here have6594

contrasting life-history strategies, varying from freshwater resident to6595

marine visitors, potentially affecting their parasite fauna (Bouillon6596

and Dempson, 1989; Kristoffersen et al., 1994). However, apart from6597

A. forsteri, all other fish species examined in our study are permanent6598

freshwater residents as adults (McDowall, 1990). Although the larvae6599

of the catadromous and amphidromous fish sampled here are6600

oceanic, their freshwater parasite fauna could not have been6601

influenced by different life-history strategies. Aldrichetta forsteri is a6602

marine fish that migrates inland into freshwater during the summer6603

months and usually remains freshwater bound for several months,6604

feeding exclusively on freshwater prey. However, it is possible that6605

recently immigrated fish individuals may lack freshwater parasites6606

due to their recent arrival from the sea, potentially influencing6607

diet-parasite links. Unfortunately, this cannot be determined from6608

our data as we cannot determine residence time of fish in freshwater.6609

Parasites can also be highly host-specific and may never be found in6610

some fish species even though prey taxa used for transmission are6611

consumed by that particular fish species. Alternatively, some6612

parasite-carrying prey may never be consumed by a given fish6613

species, further reducing parasite richness in any particular6614

host (Kennedy et al., 1986; Lagrue et al., 2011); for example, parasites6615

transmitted through fish prey consumption can only infect large6616

piscivorous fish predators. Finally, gut contents may also provide a6617

biased representation of individual diet range (Svanbäck et al., 2015).6618

Apparent differences in diet among individual fish may reflect6619

short-term foraging activities, with observed diets being only6620

snapshots of actual diet ranges; all fish within a population may6621

actually be feeding on the same range of available prey (Curtis et al.,6622

1995). Comparatively, parasites likely remain in fish for longer than6623

the prey used for transmission and thus provide a clearer signature6624

of prey consumed over extended time periods than stomach6625

contents (Johnson et al., 2004a; Valtonen et al., 2010). For example, in6626

our study, prevalence of H. spinigera in A. forsteri was 100% although6627

only 40% of fish were found with the intermediate host prey P.6628

excavatum in their gut contents, indicating that all fish individuals6629

were feeding on P. excavatum even though the prey was not found in6630

stomach contents. Similarly, only around 10% of G. cotidianus6631

individuals infected with Eustrongylides sp. larvae had eaten6632

oligochaetes recently. However, on the other end of the spectrum,6633

only around 10% of G. cotidianus individual infected by C. parvum6634

had not consumed the host Pa. fluviatilis, while all infected P.6635

fluviatilis had the prey intermediate host in their stomachs. These6636
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differences are likely explained by the specific persistence time (i.e.6637

lifespan) of each parasite in fish hosts. Eustrongylides sp. larvae6638

remain in the fish until transmission to the bird definitive host and6639

thus potentially for the life time of the fish. Hedruris spinigera is a6640

large nematode that attaches to the stomach epithelium of the fish6641

host, needing to achieve significant growth and to find a mate before6642

reproduction, and likely remain in the fish for longer than the small,6643

fast maturing, hermaphrodite C. parvum adult (Lagrue et al., 2011).6644

On the other hand, although intestinal parasites were found in6645

introduced fish host species (Table A1), a previous study on the same6646

system showed that their abundance and size are significantly lower6647

in introduced hosts (Lagrue et al., 2011). Despite feeding heavily on6648

intermediate host prey, these fish harboured low abundances of small6649

parasites, hinting at a quick turnover with parasites remaining in fish6650

host for a short amount of time due to host-parasite incompatibility.6651

As a result, infection levels in introduced species may be more closely6652

linked to recent, short-term fish host diet. Overall, stomach content6653

data represent only a very limited window of time unless stomach6654

contents are repeatedly sampled from the same individual using6655

non-lethal methods like stomach flushing (Araújo et al., 2011).6656

However, this is logistically very difficult to achieve and cannot6657

document parasite richness and abundance simultaneously as6658

parasite identification and count require host dissection. Overall, the6659

utility of the stomach contents data when assessing fish diet range6660

and selectivity and their link with parasite richness and abundance6661

will likely be influenced by species-specific host-parasite6662

characteristics.6663

While diet range did not seem to influence parasite richness, diet6664

specialisation among fish individuals may still influence their6665

exposure to trophically transmitted parasites (Bolnick et al., 2003).6666

Among individuals, variation in diet is common in natural6667

populations (Svanbäck et al., 2015). Intraspecific differences in diet6668

preferences (i.e. individual diet specialisation; Layman et al., 2015;6669

Rosenblatt et al., 2015) should thus translate in abundance variations6670

of trophically transmitted parasites among conspecific fish6671

hosts (Curtis et al., 1995; Wilson et al., 1996). Diet range may be6672

limited, but fish feeding intensively on the few prey taxa used by6673

local parasites for transmission should carry heavy parasite loads,6674

and vice versa for fish feeding preferentially on prey taxa devoid of6675

parasites (Kennedy et al., 1986; Dick et al., 2009). Differences in prey6676

selectivity among sympatric fish should thus cause differences in6677

parasite acquisition, and potential patterns of parasite segregation6678

and aggregation among hosts (Crofton, 1971; Knudsen et al., 1997,6679
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2004, 2008). However, our results showed no clear link between the6680

proportion of prey intermediate hosts in individual fish diet contents6681

(i.e. individual diet preference) and the abundance of parasites in fish6682

hosts. Furthermore, relationships between diet preferences and6683

parasite abundance were differentially influenced by fish size and6684

species as well as prey and parasite species. In particular, the6685

relationship between the abundance of H. spinigera in A. forsteri and6686

the proportion of the intermediate host in the diet of A. forsteri was6687

stronger in smaller fish. It is important to note, however, that feeding6688

observations over short time frames (e.g., stomach content analyses)6689

may overestimate the degree of diet specialisation and thus influence6690

documented relationship between parasite loads and host6691

diet (Novak and Tinker, 2015). As mentioned previously, the6692

temporal scale of study, as well as the number of independent6693

observations, can greatly influence estimates of the degree and6694

persistence over time of diet range and preferences (Curtis et al., 1995;6695

Fodrie et al., 2015). Dietary variations among individuals can also be6696

caused by temporal or spatial patchiness in prey distribution rather6697

than individual specialisation and may not be reflected in parasite6698

loads if individual hosts are mobile enough to move among prey6699

patches (Rosenblatt et al., 2015). Again, potential links between6700

feeding specialisation and variation in parasite loads among6701

individual fish hosts should be confirmed through repeated diet and6702

parasite sampling, if at all feasible.6703

Overall, there was no clear relationship between diet range, estimated6704

as the number of prey taxa in fish stomach contents, and parasite6705

richness or between diet preferences (i.e. the proportion of prey6706

species used for parasite transmission in individual fish diet contents)6707

and parasite loads among individual fish hosts. Whether this lack of6708

clear patterns was due to stomach sampling method limitations or6709

accurately represents host-parasite relationships in the study systems6710

is a question that should be tested further, but is technically and6711

logistically challenging. Sampling repeatedly and concomitantly6712

stomach contents and parasite abundances overtime in the same fish6713

individuals would be ideal but is difficult if not impossible in wild6714

fish. Although the methods used here are only a proxy of overall fish6715

diet and parasite surveys, our results are roughly consistent across6716

several host and parasite species, and contrast with those of earlier6717

studies using similar methods in which diet and parasite infection6718

were linked (Curtis et al., 1995; Knudsen et al., 1997, 2003; Bertrand6719

et al., 2008). This pattern hints at a true disconnect between host diet6720

(at least as measured here) and measures of parasite infections6721

although host-parasite species-specific patterns may vary. Inherent6722
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characteristics of New Zealand lake systems (low parasite species6723

richness, limited numbers of prey species used for trophic6724

transmission, high host-parasite specificity) likely limit the influence6725

of diet range and individual diet specialisation on parasite richness6726

and abundance patterns. Repeated diet sampling over a longer time6727

period, by maintaining fish in enclosure and using non-lethal6728

stomach flushing to document individual fish diet for example,6729

would help confirm or invalidate the utility of gut content data as6730

well as the role of variation among individuals in diet specialisation6731

and its effects on parasite loads among sympatric fish. Our results6732

and those of previous studies confirm that, although parasite6733

acquisition is obviously related to host diet, other factors that vary6734

widely among ecosystems, hosts and parasites likely influence how6735

parasite richness and load are linked to host diet.6736
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S2.1: Full models6958

Table S2.1: Main effects included in the full initial immigration, repeat immigration, and extinction models. Note that
each model also included all possible interaction terms between the fixed effects indicated below, plus random effects of
census and source population. These models were simplified to give the models in Tables S2.4–S2.6. See Tables S2.2-S2.3
for a complete list of terms included in each model. TIB refers to models based on the Theory of Island Biogeography–
that is, excluding any trophic interactions.

Model Main effects
(a) Initial and Distance Island Interval Species Presence Ability to Presence
repeat from diameter between richness of consume of
immigration mainland censuses predators basal resources animal prey
Null
TIB X X X
Species-richness X X X X
Top-down X X X X
Top-down &
Species-richness

X X X X X

Bottom-up X X X X X
Bottom-up &
Species-richness

X X X X X X

Top-down &
Bottom-up

X X X X X X

(b) Extinction
Null
TIB X X
Species-richness X X X
Top-down X X X
Top-down &
Species-richness

X X X X

Bottom-up X X X X
Bottom-up &
Species-richness

X X X X X

Top-down &
Bottom-up

X X X X X
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Table S2.2: Symbols used in mathematical description of the statistical models.

Symbol Description
Cijk+1 Probability of immigration for species i on island j between census k and census k+ 1
Xijk+1 Probability of extinction for species i on island j between census k and census k+ 1

δj Distance of island j from the mainland (meters)
λj Diameter of island j (meters)

τk+1 Time between census k and census k+ 1 (days)
Σk Species richness during census k
ρijk Presence of predators of species i on island j during census k:

ρijk=1 if predators of species i were observed on island j during census k, ρijk=0

otherwise
ηi Ability of species i to eat plants:

ηi=1 if species i is able to eat basal resources, ηi=0 otherwise
αijk Presence of animal prey for species i on island j during census k:

αijk=1 if prey of species i were observed on island j during census k, αijk=0 otherwise
Ek+1 Random effect of period between censuses k and k+ 1
Si Random effect of species i

Wijq
Random effect of source population (i.e., the interaction between species i, island j, and
event window q)

ǫijk+1 Residual error for species i on island j between census k and census k+ 1



2
2

2Table S2.3: Mathematical structure of the full initial immigration models. Mathematical structure of the repeat immigration models was identical except that the
random effect of species (Si) was replaced with a random effect of the interaction between species, island, and colonisation interval (Wijq) as in the full extinction
models (Table S2.4). All symbols are as in Table S2.2. TIB refers to a model based on the original Theory of Island Biogeography, without any trophic effects.

Model Mathematical structure
Null Cijk+1 = Ek+1 + ǫijk+1

TIB Cijk+1 = δj + λj + τk+1 + δjλj + δjτk+1 + λjτk+1 + δjλjτk+1 + Ek+1 + Si + ǫijk+1

Species-richness Cijk+1 = δj + λj + τk+1 + Σk + δjλj + δjτk+1 + δjΣk + λjτk+1 + λjΣk + τk+1Σk + δjλjτk+1 + δjλjΣj + δjτk+1Σj + λjτk+1Σj + δjλjτk+1Σj + Ek+1 +
Si + ǫijk+1

Top-down Cijk+1 = δj + λj + τk+1 + ρijk + δjλj + δjτk+1 + δjρijk + λjτk+1 + λjρijk + τk+1ρijk + δjλjτk+1 + δjλjρijk + δjτk+1ρijk + λjτk+1ρijk + δjλjτk+1ρijk +
Ek+1 + Si + ǫijk+1

Top-down & Species-richness Cijk+1 = δj + λj + τk+1 + Σk + ρijk + δjλj + δjτk+1 + δjΣj + δjρijk + λjτk+1 + λjΣj + λjρijk + τk+1Σk + τk+1ρijk + Σkρijk + δjλjτk+1 +
δjλjΣk + δjλjρijk + δjτk+1Σk + δjτk+1ρijk + δjΣkρijk + λjτk+1Σk + λjτk+1ρijk + τk+1Σkρijk + δjλjτk+1Σk + δjλjτk+1ρijk + δjλjΣkρijk + δjτk+1Σkρijk +
λjτk+1Σkρijk + δjλjτk+1Σkρijk + Ek+1 + Si + ǫijk+1

Bottom-up Cijk+1 = δj + λj+ τk+1+ ηi + αijk+ δjλj + δjτk+1+ δjηi + δjαijk+ λjτk+1+ λjηi + λjαijk+ τk+1ηi + τk+1αijk+ ηiαijk+ δjλjτk+1+ δjλjηi + δjλjαijk+
δjτk+1ηi + δjτk+1αijk+ δjηiαijk + λjτk+1ηi + λjτk+1αijk+ λjηiαijk + τk+1ηiαijk + δjλjτk+1ηi + δjλjτk+1αijk + δjλjηiαijk + δjτk+1ηiαijk+ λjτk+1ηiαijk+
δjλjτk+1ηiαijk + Ek+1 + Si + ǫijk+1

Bottom-up & Species-richness Cijk+1 = δj + λj + τk+1 + Σk + ηi + αijk + δjλj + δjτk+1 + δjΣk + δjηi + δjαijk + λjτk+1 + λjΣk + λjηi + λjαijk + τk+1Σk + τk+1ηi + τk+1αijk +
Σkηi + Σkαijk + ηiαijk + δjλjτk+1 + δjλjΣk + δjλjηi + δjλjαijk + δjτk+1Σk + δjτk+1ηi + δjτk+1αijk + δjΣkηi + δjΣkαijk + δjηiαijk + λjτk+1Σk +
λjτk+1ηi + λjτk+1αijk + λjΣkηi + λjΣkαijk + λjηiαijk + τk+1Σkηi + τk+1Σkαijk + τk+1ηiαijk + Σkηiαijk + δjλjτk+1Σk + δjλjτk+1ηi + δjλjτk+1αijk +
δjλjΣkηi + δjλjΣkαijk + δjλjηiαijk+ δjτk+1Σkηi + δjτk+1Σkαijk+ δjτk+1ηiαijk + δjΣkηiαijk + λjτk+1Σkηi + λjτk+1Σkαijk + λjτk+1ηiαijk + λjΣkηiαijk+
τk+1Σkηiαijk + δjλjτk+1Σkηi + δjλjτk+1Σkαijk + δjλjτk+1ηiαijk + δjλjΣkηiαijk + δjτk+1Σkηiαijk + λjτk+1Σkηiαijk + δjλjτk+1Σkηiαijk + Ek+1 + Si +
ǫijk+1

Top-down & Bottom-up Cijk+1 = δj + λj + τk+1 + ρijk + ηi + αijk + δjλj + δjτk+1 + δjρijk + δjηi + δjαijk + λjτk+1 + λjρijk + λjηi + λjαijk + τk+1ρijk + τk+1ηi +
τk+1αijk + ρijkηi + ρijkαijk + ηiαijk + δjλjτk+1 + δjλjρijk + δjλjηi + δjλjαijk + δjτk+1ρijk + δjτk+1ηi + δjτk+1αijk + δjρijkηi + δjρijkαijk + δjηiαijk +
λjτk+1ρijk + λjτk+1ηi + λjτk+1αijk + λjρijkηi + λjρijkαijk + λjηiαijk + τk+1ρijkηi + τk+1ρijkαijk + τk+1ηiαijk + ρijkηiαijk + δjλjτk+1ρijk + δjλjτk+1ηi +
δjλjτk+1αijk + δjλjρijkηi + δjλjρijkαijk + δjλjηiαijk + δjτk+1ρijkηi + δjτk+1ρijkαijk + δjτk+1ηiαijk + δjρijkηiαijk + λjτk+1ρijkηi + λjτk+1ρijkαijk +
λjτk+1ηiαijk + λjρijkηiαijk + τk+1ρijkηiαijk + δjλjτk+1ρijkηi + δjλjτk+1ρijkαijk + δjλjτk+1ηiαijk + δjλjρijkηiαijk + δjτk+1ρijkηiαijk + λjτk+1ρijkηiαijk +
δjλjτk+1ρijkηiαijk + Ek+1 + Si + ǫijk+1
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Table S2.4: Mathematical structure of the full extinction models. All symbols are as in Table S2.2. TIB refers to a model based on the original Theory of Island
Biogeography, without any trophic effects.

Model Mathematical structure
Null Xijk+1 = Ek+1 +Wijq + ǫijk+1

TIB Xijk+1 = λj + τk+1 + λjτk+1 + Ek+1 +Wijq + ǫijk+1

Species-richness Xijk+1 = λj + τk+1 + Σk + λjτk+1 + λjΣk + τk+1Σk + λjτk+1Σj + Ek+1 +Wijq + ǫijk+1

Top-down Xijk+1 = λj + τk+1 + ρijk + λjτk+1 + λjρijk + τk+1ρijk + λjτk+1ρijk + Ek+1 +Wijq + ǫijk+1

Top-down & Species-richness Xijk+1 = λj + τk+1 + Σk + ρijk + λjτk+1 + λjΣj + λjρijk + τk+1Σk + τk+1ρijk + Σkρijk + λjτk+1Σk +

λjτk+1ρijk + λjΣkρijk + τk+1Σkρijk + λjτk+1Σkρijk + Ek+1 +Wijq + ǫijk+1

Bottom-up Xijk+1 = λj + τk+1 + ηi + αijk + λjτk+1 + λjηi + λjαijk + τk+1ηi + τk+1αijk + ηiαijk + λjτk+1ηi +

λjτk+1αijk + λjηiαijk + τk+1ηiαijk + λjτk+1ηiαijk + Ek+1 +Wijq + ǫijk+1

Bottom-up & Species-richness Xijk+1 = λj + τk+1 + Σk + ηi + αijk + λjτk+1 + λjΣk + λjηi + λjαijk + τk+1Σk + τk+1ηi + τk+1αijk +

Σkηi + Σkαijk + ηiαijk+ λjτk+1Σk + λjτk+1ηi + λjτk+1αijk + λjΣkηi + λjΣkαijk + λjηiαijk + τk+1Σkηi +

τk+1Σkαijk + τk+1ηiαijk + Σkηiαijk + λjτk+1Σkηi + λjτk+1Σkαijk + λjτk+1ηiαijk + λjΣkηiαijk +

τk+1Σkηiαijk + λjτk+1Σkηiαijk + Ek+1 +Wijq + ǫijk+1

Top-down & Bottom-up Xijk+1 = λj + τk+1 + ρijk + ηi + αijk + λjτk+1 + λjρijk + λjηi + λjαijk + τk+1ρijk + τk+1ηi + τk+1αijk +

ρijkηi + ρijkαijk + ηiαijk + λjτk+1ρijk + λjτk+1ηi + λjτk+1αijk + λjρijkηi + λjρijkαijk + λjηiαijk +

τk+1ρijkηi + τk+1ρijkαijk + τk+1ηiαijk + ρijkηiαijk + λjτk+1ρijkηi + λjτk+1ρijkαijk + λjτk+1ηiαijk +

λjρijkηiαijk + τk+1ρijkηiαijk + λjτk+1ρijkηiαijk + Ek+1 +Wijq + ǫijk+1
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S2.2: Best-fit models6959

Table S2.5: Mathematical structure of the best-fitting initial immigration models after model simplification. All symbols
are as in Table S2.2. TIB refers to a model based on the original Theory of Island Biogeography, without any trophic
effects.

Model Mathematical structure

TIB Cijk+1 = δj + λj + τk+1 + δjλj + Ek+1 + Si + ǫijk+1

Species-richness Cijk+1 = δj + λj + τk+1 + Σk+1 + δjλj + λjΣk+1 + Ek+1 + Si + ǫijk+1

Top-down
Cijk+1 = δj + λj + τk+1 + ρijk+1 + δjλj + δjρijk+1 + τk+1ρijk+1 + Ek+1 +

Si + ǫijk+1

Top-down & Species-richness Equivalent to Top-down model

Bottom-up
Cijk+1 = δj + λj + τk+1 + αijk+1 + δjλj + δjαijk+1 + λjαijk+1 + δjλjαijk+1 +

Ek+1 + Si + ǫijk+1

Bottom-up & Species-richness
Cijk+1 = δj + λj + τk+1 + Σk+1 + αijk+1 + δjλj + λjΣk+1 + λjαijk+1 +

Ek+1 + Si + ǫijk+1

Top-down & Bottom-up
Cijk+1 = δj + λj + τk+1 + ρijk+1 + αijk+1 + δjλj + λjρijk+1 + λjαijk+1 +

τk+1ρijk+1 + Ek+1 + ǫijk+1

Table S2.6: Mathematical structure of the best-fitting repeat immigration models after model simplification. All symbols
are as in Table S2.2. TIB refers to a model based on the original Theory of Island Biogeography, without any trophic
effects.

Model Mathematical structure
TIB Cijk+1 = λj + τk+1 + λjτk+1 + Ek+1 +Wijq + ǫijk+1

Species-richness Equivalent to TIB model

Top-down Equivalent to TIB model

Top-down & Species-richness Equivalent to TIB model

Bottom-up Cijk+1 = λj + τk+1 + ηi + λjτk+1 + λjηi + τk+1ηi + Ek+1 +Wijq + ǫijk+1

Bottom-up & Species-richness Equivalent to Bottom-up model

Top-down & Bottom-up Equivalent to Bottom-up model
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Table S2.7: Mathematical structure of the best-fitting extinction models after model simplification. All symbols are as in
Table S2.2. TIB refers to a model based on the original Theory of Island Biogeography, without any trophic effects.

Model Mathematical structure

TIB Xijk+1 = λj + τk+1 + λjτk+1 + Ek+1 +Wijq + ǫijk+1

Species-richness
Xijk+1 = λj + τk+1 + Σk + λjτk+1 + λjΣk + τk+1Σk + λjτk+1Σk + Ek+1 +

Wijq + ǫijk+1

Top-down Equivalent to TIB model

Top-down & Species-richness Equivalent to Species-richness model

Bottom-up Xijk+1 = τk+1 + ηi + αijk + τk+1ηi + ηiαijk +Wijq + Ek+1 + ǫijk+1

Bottom-up & Species-richness
Xijk+1 = λj + τk+1 + Σk + ηi + αijk + λjΣk + τk+1Σk + τk+1ηi + τk+1αijk +

Σkηi + Ek+1 +Wijq + ǫijk+1

Top-down & Bottom-up Equivalent to Bottom-up model
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S2.3: Summary tables for best-fit models6960

Table S2.8: Summary tables of the best-fit Theory of Island Biogeography (TIB), Species-richness (SR), Top-down
(TD), Bottom-up (BU), Bottom-up & Species-richness (BU & SR), and Top-down & Bottom-up (TD & BU) models for
probability of initial immigration. The best-fit Top-down & Species-richness model was identical to the best-fit species-
richness model and is not shown. Standardised effects (βs) and intercepts shown refer to the same scale as the logit-
transformed data (e.g., a 1 day increase in time between censuses or a 1m increase in distance from the mainland).
Models are as in Table S2.5. The intercept of the null model was -3.84 (p<0.001). Standardised effects of 0 were not
included in the best-fit versions of each model. An empty cell indicates that the term was not part of the full model and
hence could not appear in the best-fit version.

Fixed effect TIB SR TD Bottom-up BU & SR TD & BU
β p-value β p-value β p-value β p-value β p-value β p-value

Intercept -3.77 <0.001 -3.78 <0.001 -3.98 <0.001 -3.87 <0.001 -3.84 <0.001 -4.02 <0.001
Distance -55.7 <0.001 -56.5 <0.001 -57.1 <0.001 -61.7 <0.001 -55.3 <0.001 -56.3 <0.001
Diameter 0.977 0.015 0.938 0.016 -0.122 0.865 -0.041 0.938 0.425 0.353 -0.711 0.34
Timesince 11.1 <0.001 10.7 <0.001 17.8 <0.001 11.1 <0.001 10.7 <0.001 18.1 <0.001
Species 1.19 0.07 1.1 0.103
Predators 0.251 0.081 0.239 0.104
Animal Prey 0.22 0.112 0.125 0.368 0.119 0.387
Distance:Diameter 327 <0.001 304 <0.001 322.7 <0.001 205 0.045 314 <0.001 333 <0.001
Distance:Animals 12.7 0.568 0 NA 0 NA
Diameter:Species 7.31 0.026 6.59 0.048
Diameter:Predators 1.29 0.08 1.29 0.077
Diameter:Animals 2.27 0.002 1.13 0.027 1.32 0.009
Time:Predators -9.01 0.108 -9.32 0.099
Distance:Diameter:Animals 285 0.05 0 NA 0 NA

Table S2.9: Summary tables of the best-fit Theory of Island Biogeography (TIB)
and Bottom-up models for probability of repeat immigration. The best-fit Top-
down, Species-richness, and Top-down & Species-richness models were identical
to the best-fit TIB model, while the best-fit Bottom-up & Species-richness and
Top-down & Bottom-up models were identical to the best-fit Bottom-up model
and are not shown. Standardised effects (βs) and intercepts shown refer to the
same scale as the logit-transformed data (e.g., a 1 day increase in time between
censuses or a 1m increase in distance from the mainland). The best-fitting
Species-richness, Top-down, and Top-down & Species-richness models were
identical to the best-fitting TIB model, and the best-fit Bottom-up & Species-
richness and Top-down & Bottom-up models were identical to the Bottom-up
model. Models are as in Table S2.6. The intercept of the null model was -2.77

(p<0.001). Standardised effects of 0 were not included in the best-fit versions of
each model. An empty cell indicates that the term was not part of the full model
and hence could not appear in the best-fit version.

Fixed effect
TIB Bottom-up

β p-value β p-value
Intercept -2.91 <0.001 -2.82 <0.001

Diameter -0.671 0.486 0.504 0.637

Time -46.8 0.137 -76.8 0.027

Basal resources -0.164 0.431

Diameter:Time -464 0.052 -431 0.073

Diameter:Basal -2.52 0.025

Time:Basal 51.5 0.024



227

Table S2.10: Summary tables of the best-fit Theory of Island Biogeography (TIB), Species-richness, Top-down, Bottom-
up, and Bottom-up & Species-richness (BU & SR) models for extinction probability. The best-fit Top-down model was
identical to the best-fit TIB model, the best-fit Top-down & Species-richness model was identical to the best-fit Species-
richness model, and the best-fit Top-down & Bottom-up model was identical to the best-fit Bottom-up model. None are
shown here. Standardised effects (βs) and intercepts shown refer to the same scale as the logit-transformed data (e.g.,
a 1 day increase in time between censuses or a 1m increase in distance from the mainland). The best-fitting Top-down
model was identical to the best-fitting TIB model, the best-fitting Top-down & Species-richness model was identical to
the best-fitting Species-richness model, and the best-fitting Top-down & Bottom-up model was identical to the best-fitting
Bottom-up model. Models are as in Table S2.7. The intercept of the null model was -0.587 (p<0.001). Standardised effects
of 0 were not included in the best-fit versions of each model. An empty cell indicates that the term was not part of the
full model and hence could not appear in the best-fit version.

Fixed effect
TIB Species-richness Bottom-up BU & SR

β p-value β p-value β p-value β p-value
Intercept -0.462 <0.001 -0.59 <0.001 -0.174 0.863 1.22 0.007

Diameter 0.437 0.419 -0.836 0.276 0 NA 0.009 0.987

Time 60.0 <0.001 23.9 0.252 91.9 <0.001 117 <0.001

Species-richness 4.00 0.001 4.75 <0.001

Basal resources -0.470 0.646 -1.87 <0.001

Animals 0.201 0.844 -1.19 0.003

Diameter:Time 140 0.008 -209 0.210 0 NA 0 NA
Diameter:Species -2.55 0.652 -9.02 0.031

Time:Species 546 0.017 166 0.016

Time:Basal -57.7 <0.001 -69.4 <0.001

Time:Animals -20.4 0.146

Species:Basal -3.70 0.036

Basal:Animals -1.64 0.135 0 NA
Diameter:Time:Species 2.74x103 0.037 0 NA
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S2.4: Details of models not described in the main text6961

Initial immigration models6962
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Figure S2.1: Predicted per-species
probabilities of initial immigration,
repeat immigration, and extinction
as a function of island diameter in
models based on the classic Theory
of Island Biogeography. (A) Predicted
initial immigration probability was
affected by island diameter, distance
from the mainland, and interval
between censuses. For islands that
were relatively far from the mainland,
a species’ immigration probability
increased with island size. The opposite
trend occurred for islands close to the
mainland. Predictions are shown for an
island close to the mainland (2m, light,
dashed line), a moderate distance from
the mainland (163 m, solid line), and far
from the mainland (533 m, dark, dotted
line). All predictions used the mean
observed interval between censuses of
37 days and were based on a sample
size of 18,420 opportunities for initial
immigration. Predicted probability of
initial immigration increased linearly
with an increasing interval between
censuses (not shown). (B) Predicted
repeat immigration probability
varied with island diameter and
interval between censuses. For short
to moderate intervals between censuses,
repeat immigration probability
increased with island diameter.
When the interval between censuses
was short, immigration probability
decreased with increasing island
diameter. (C) Predicted extinction
probability increased with increasing
island diameter, and this increase was
steeper when the interval between
censuses was long. In panels (B) and
(C), predicted per-species probabilities
of immigration and extinction are
shown for the minimum observed
interval between censuses of 10 days
(dashed line), a moderate interval of 28

days (solid line), and a large interval
between censuses (76 days). Predictions
were based on N=1,674 and N=1,943

opportunities for repeat immigration
and extinction, respectively.

The best-fitting TIB model for initial immigration included main6963

effects for diameter, distance from the mainland, interval between6964

censuses, and interactions between diameter and both distance and6965

interval between censuses (Table S2.5). This model significantly6966

improved upon the AIC of the null model (χ2=52.0, df=4, p<0.001;6967

Table 3A, main text). As we expected, species were less likely to6968

immigrate to more isolated islands (βDistance=-55.7), although this6969

effect was reversed on large islands (βDistance:Diameter=327). More6970
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intuitively, probability of immigration also increased when the6971

interval between censuses was long (βTime=11.1; Fig. S2.1).6972

The best-fitting species-richness model also improved on the fit of the6973

null model (χ2=60.9, df=6, p<0.001). As in the TIB model, a species’6974

probability of immigration increased with increasing island diameter6975

and interval between censuses, and decreased with increasing6976

distance from the mainland. All effect sizes were very similar to6977

those in the TIB model (Table S2.8). Contrary to our expectations,6978

species’ probability of immigration also increased with increasing6979

species richness (βSpecies=7.31).6980

The best-fitting top-down model also significantly improved upon the6981

fit of the null model (χ2=60.7, df=7, p<0.001). As with the6982

species-richness model, in the top-down model a species’ probability6983

of immigration decreased with increasing distance from the6984

mainland, except on large islands (Table S2.8). Species with predators6985

present were more likely to immigrate, especially on large islands6986

(βPredators=0.251, βDiameter:Predators=1.29). However, for these species6987
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TIB Species-richness Top-down Bottom-up TD & BU Figure S2.2: Hypothesis comparison for
Theory of Island Biogeography (TIB),
species-richness, top-down, bottom-up,
and top-down & bottom-up (TD & BU)
initial immigration models. Row names
indicate the model from which test data
was generated; column names indicate
the model used to fit the test data.
Each plot shows the histogram of log-
likelihoods of obtaining test data from
one model using another, based on
10,000 randomly-generated test datasets.
Dotted curves indicate the success of a
given model at predicting itself, as do
plots on the diagonal. The grey shaded
regions indicate overlap between the
two models, where a given dataset
was equally likely to have come from
either model. All pairs of models have
AUC’s close to 0.5, indicating that the
likelihood of observing a given dataset
was approximately equal assuming
either model were true.
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for species-richness, species-richness
& bottom-up, and bottom-up initial
immigration models. Row names
indicate the model from which test
data was generated; column names
indicate the model used to fit the test
data. Each plot shows the histogram of
log-likelihoods of obtaining test data
from one model using another, based
on 10,000 randomly-generated test
datasets. Dotted curves indicate the
success of a given model at predicting
itself, as do plots on the diagonal. The
grey shaded regions indicate overlap
between the two models, where a given
dataset was equally likely to have come
from either model. Data generated by
each model was fit well by either of
the other models. This indicates that
all three models capture very similar
variation in the data.

likelihood of immigration increased less with increasing interval6988

between censuses than for other species (βTime=17.8,6989

βTime:Predators=-9.01).6990

The bottom-up model, which also significantly improved upon the6991

null model (χ2=63.7, df=8, p<0.001), also included similar terms for6992

distance from the mainland, interval between censuses, and the6993

interaction between distance and island diameter (Table S2.8).6994

Contrary to our expectations, the bottom-up model did not include6995

any terms for the ability to consume basal resources. However,6996

species with animal prey present were more likely to immigrate than6997

those without animal prey present (βAnimals=0.22). This effect was6998

stronger on larger islands, islands farther from the mainland, and6999

especially on large, isolated islands (βDistance:Animal=12.7,7000

βDiameter:Animal=2.27, βDistance:Diameter:Animal=285).7001

The best-fit top-down & species-richness model was identical to the7002

best-fit species-richness model. The best-fit bottom-up &7003

species-richness model, however, included terms for species richness7004

and the presence of animal prey similar to those in the7005
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species-richness and bottom-up models in addition to similar terms7006

to those in the TIB model (Table S2.8). Despite combining features of7007

the species- richness and bottom-up models, the bottom-up &7008

species-richness model did not significantly improve upon the fit of7009

either (χ2=5.92, df=2, p=0.052 and χ2=0, df=0, p>0.999). Each of the7010

species-richness, bottom-up, and bottom-up & species-richness7011

models all fit data generated by any of the other models extremely7012

well (Fig. S2.3).7013

Repeat immigration models7014

The best-fitting TIB model did not significantly improve upon the7015

null model (χ2=6.09, df=3, p=0.107). The TIB model included terms7016

for island diameter, interval between censuses, and their interaction,7017

but no terms relating to distance from the mainland (Table S2.6). In7018

this model, a species’ probability of re-immigration decreased with7019

increasing island diameter (βDiameter=-0.671), an effect which was7020

strengthened when the interval between censuses was large7021

(βDiameter:Time=-464; Fig. S2.1). The species-richness and top-down7022

models both reduced to the best-fitting TIB model, indicating that the7023

number of species or presence of predators on an island explained7024

little variation in the data. Unsurprisingly, the combined model7025

including species-richness and top-down effects also reduced to the7026

best-fitting TIB model.7027

Extinction models7028

The best-fitting TIB model for extinction was the full model (χ2=59.8,7029

df=3, p<0.001; Table S2.7), and this model had a lower AIC than the7030

null model (Table 3C, main text). Contrary to our expectations, the7031

data indicated that extinction probability increased on larger islands7032

(βDiameter=0.437). More intuitively, extinction probability also7033

increased with increasing intervals between censuses (βTime=60.0).7034

The larger the island, the larger this effect (βDiameter:Time=140; Fig.7035

S2.1).7036

Similarly, the best-fitting species-richness model was the full model,7037

which had a lower AIC than both the null and TIB models (Table 3C,7038

main text). Unlike the TIB model, the species-richness model7039

predicted that extinction probability would decrease on larger islands7040

(βDiameter=-0.836), and that this effect would be stronger with large7041

census intervals (βDiameter:Time=-209). As expected, probability of7042

extinction increased with species richness (βSpecies=4.00), although7043
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Null TIB Bottom-up Figure S2.4: Hypothesis comparison for
null, Theory of Island Biogeography
(TIB), and bottom-up repeat
immigration models. Note that the
best-fitting species-richness and
top-down models were identical to
the best-fitting TIB model while the
best-fitting top-down & bottom-up
model was identical to the best-fitting
bottom-up model. Row names indicate
the model from which test data was
generated; column names indicate
the model used to fit the test data.
Each plot shows the histogram of log-
likelihoods of obtaining test data from
one model using another, based on
10,000 randomly-generated test datasets.
Dotted curves indicate the success of a
given model at predicting itself, as do
plots on the diagonal. The grey shaded
regions indicate overlap between the
two models, where a given dataset
was equally likely to have come from
either model. All pairs of models have
AUC’s close to 0.5, indicating that the
likelihood of observing a given dataset
was approximately equal assuming
either model were true.

this effect was weaker on larger islands (βDiameter:Species=-2.55).7044

Because of a strong three-way interaction between diameter, species7045

richness, and time between censuses, any of the above relationships7046

could be reversed when both species richness and the interval7047

between censuses were sufficiently large (or when both were small)7048

(βDiameter:Time:Species=2740). Nevertheless, overall the species-richness7049

model generated very similar predictions to those of the TIB model7050

(Fig. S2.5). The best-fitting top-down model was identical to the TIB7051

model while the best-fitting top-down & species-richness model was7052

identical to the species-richness model.7053

The bottom-up & species-richness model provided significant7054

statistical improvement over both the species-richness and bottom-up7055

models (χ2=44.8, df=3, p<0.001 and χ2=19.5, df=5, p=0.002,7056

respectively). In this model, as in the bottom-up model, extinction7057

probabilities were lower for species with animal prey available or7058

able to consume basal resources (βAnimals=-1.19, βBasal=-1.87). Further,7059

the increase in probability of extinction with increasing interval7060

between censuses was weaker for these species. Unlike the bottom-up7061

model, the bottom-up & species-richness model also included7062
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Null TIB Species-richness Bottom-up Figure S2.5: Hypothesis comparison for
null, Theory of Island Biogeography
(TIB), species-richness and bottom-
up extinction models. The top-down
model was identical to the TIB model
while the top-down & bottom-up was
identical to the bottom-up model. Row
names indicate the model from which
test data were generated; column names
indicate the model used to fit the test
data. Each plot shows the histogram of
log-likelihoods of obtaining test data
from one model using another, based
on 10,000 randomly-generated test
datasets. Dotted curves indicate the
success of a given model at predicting
itself, as do plots on the diagonal. The
grey shaded regions indicate overlap
between the two models, where a given
dataset was equally likely to have come
from either model.

positive effects of species-richness and the interaction between7063

species-richness and census interval on probability of extinction7064

(βSpecies=4.75 and βTime:Species=166). Despite these additional terms,7065

the bottom-up & species-richness model captured similar variation in7066

the data to the bottom-up model (average pairwise AUC = 0.618,7067

Fig. S2.6). In addition, the parameters of the combined and7068

bottom-up models were qualitatively similar (Table S2.10), suggesting7069

that the statistical gains of the combined model may be due to7070

over-fitting.7071
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S2.5: Cumulative species richness plots for islands not shown7072

in the main text7073
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Figure S2.7: Initial immigrations, repeat
immigrations, extinctions, and species
richness over time for island E1, (11m
in diameter, 533m from the mainland).
(A)-(D) We show the cumulative values
for the observed experiment (white
circles) along with the equivalent values
as predicted by the the best-fitting
models for initial immigration, repeat
immigration, and extinction (i.e., top-
down & bottom-up, bottom-up, and
bottom-up models, respectively). We
obtained the model predictions for
total species richness at each census
by adding predicted immigrants and
subtracting predicted extinctions. In
all panels, the solid line indicates the
mean prediction while the shaded area
corresponds to one standard deviation.
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Figure S2.8: Initial immigrations, repeat
immigrations, extinctions, and species
richness over time for island E2 (12m
in diameter, 2m from the mainland).
(A)-(D) We show the cumulative values
for the observed experiment (white
circles) along with the equivalent values
as predicted by the the best-fitting
models for initial immigration, repeat
immigration, and extinction (i.e., top-
down & bottom-up, bottom-up, and
bottom-up models, respectively). We
obtained the model predictions for
total species richness at each census
by adding predicted immigrants and
subtracting predicted extinctions. In
all panels, the solid line indicates the
mean prediction while the shaded area
corresponds to one standard deviation.
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Figure S2.9: Initial immigrations, repeat
immigrations, extinctions, and species
richness over time for island E3 (12m
in diameter, 172m from the mainland).
(A)-(D) We show the cumulative values
for the observed experiment (white
circles) along with the equivalent values
as predicted by the the best-fitting
models for initial immigration, repeat
immigration, and extinction (i.e., top-
down & bottom-up, bottom-up, and
bottom-up models, respectively). We
obtained the model predictions for
total species richness at each census
by adding predicted immigrants and
subtracting predicted extinctions. In
all panels, the solid line indicates the
mean prediction while the shaded area
corresponds to one standard deviation.
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Figure S2.10: Initial immigrations,
repeat immigrations, extinctions, and
species richness over time for island
E7 (25m in diameter, 15m from the
mainland). (A)-(D) We show the
cumulative values for the observed
experiment (white circles) along with
the equivalent values as predicted by
the the best-fitting models for initial
immigration, repeat immigration, and
extinction (i.e., top-down & bottom-up,
bottom-up, and bottom-up models,
respectively). We obtained the model
predictions for total species richness
at each census by adding predicted
immigrants and subtracting predicted
extinctions. In all panels, the solid line
indicates the mean prediction while
the shaded area corresponds to one
standard deviation.
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Figure S2.11: Initial immigrations,
repeat immigrations, extinctions, and
species richness over time for island
E9 (18m in diameter, 379m from the
mainland). (A)-(D) We show the
cumulative values for the observed
experiment (white circles) along with
the equivalent values as predicted by
the the best-fitting models for initial
immigration, repeat immigration, and
extinction (i.e., top-down & bottom-up,
bottom-up, and bottom-up models,
respectively). We obtained the model
predictions for total species richness
at each census by adding predicted
immigrants and subtracting predicted
extinctions. In all panels, the solid line
indicates the mean prediction while
the shaded area corresponds to one
standard deviation.
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Figure S2.12: Initial immigrations,
repeat immigrations, extinctions, and
species richness over time for island
ST2 (11m in diameter, 154m from
the mainland). (A)-(D) We show the
cumulative values for the observed
experiment (white circles) along with
the equivalent values as predicted by
the the best-fitting models for initial
immigration, repeat immigration, and
extinction (i.e., top-down & bottom-up,
bottom-up, and bottom-up models,
respectively). We obtained the model
predictions for total species richness
at each census by adding predicted
immigrants and subtracting predicted
extinctions. In all panels, the solid line
indicates the mean prediction while
the shaded area corresponds to one
standard deviation.
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S3.1. Original sources for networks7081

Table S3.1: Original sources for all networks used in this analysis. PH indicates a
plant-herbivore network, and PP a plant-pollinator network.

Network Network type Source
1 PH (Basset and Samuelson, 1996)
2 PH (Blüthgen et al., 2006)
3 PH (Bodner et al., 2010)
4 PH (Cagnolo et al., 2011)
5 PH (Coley et al., 2006)
6 PH (Ibanez et al., 2013)
7 PH (Novotny et al., 2012)
8 PH (Otte and Joern, 1976)
9 PH (Peralta et al., 2014)
10 PH (Sheldon and Rogers, 1978)
11 PH (Ueckert and Hansen, 1971)
12 PP (Arroyo et al., 1982)
13 PP (Arroyo et al., 1982)
14 PP (Arroyo et al., 1982)
15 PP (Barrett and Helenurm, 1987)
16 PP (Clements and Long, 1923)
17 PP (Dicks et al., 2002)
18 PP (Dicks et al., 2002)
19 PP (Dupont et al., 2003)
20 PP (Elberling and Olesen, 1999)
21 PP Elberling, H. & Olesen, J. M. (unpubl.).
22 PP (Olesen and Jordano, 2002)
23 PP Olesen, J. M. (unpubl.).
24 PP (Ollerton et al., 2003)
25 PP (Hocking, 1968)
26 PP (Petanidou, 1991)
27 PP (Herrera, 1988)
28 PP (Memmott, 1999)
29 PP Olesen, J. M. (unpubl.).
30 PP (Inouye and Pyke, 1988)
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Table S3.1, continued.

Network Network type Source
31 PP (Kevan, 1970)
32 PP (Kato et al., 1990)
33 PP (Medan et al., 2002)
34 PP (Medan et al., 2002)
35 PP (Mosquin and Martin, 1967)
36 PP (Motten, 1982)
37 PP (McMullen, 1993)
38 PP (Primack, 1983)
39 PP (Primack, 1983)
40 PP (Primack, 1983)
41 PP (Ramirez and Brito, 1992)
42 PP (Ramirez, 1989)
43 PP (Schemske et al., 1978)
44 PP (Small, 1976)
45 PP (Smith-Ramírez et al., 2005)
46 PP (Percival, 1974)
47 PP Olesen, J. M. (unpubl.).
48 PP (Montero, 2005)
49 PP (Montero, 2005)
49 PP (Stald, 2003)
50 PP (Ingversen, 2006)
51 PP (Ingversen, 2006)
52 PP (Philipp et al., 2006)
53 PP (Montero, 2005)
54 PP (Kato, 2000)
55 PP (Lundgren and Olesen, 2005)
56 PP (Bundgaard, 2003)
57 PP (Dupont et al., 2009)
58 PP (Dupont et al., 2009)
59 PP (Bek, 2006)
60 PP (Stald, 2003)
61 PP (Vázquez, D. P., 2002)
62 PP (Witt, 1998)
63 PP (Yamazaki and Kato, 2003)
64 PP (Kakutani et al., 1990)
65 PP (Kato and Miura, 1996)
66 PP (Kato et al., 1993)
67 PP (Inoue et al., 1990)
68 PP (Bartomeus et al., 2008)
69 PP (Bezerra et al., 2009)
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S3.2. Supplemental within-network results7082

The frequency of the no-overlap pattern increased significantly with7083

decreasing phylogenetic distance in both pollination and herbivory7084

networks (βδ+δρ = 11.21; P<0.001 and βδ = 26.96; P=0.006). In both7085

cases, this indicates that overlap of interaction partners decreases7086

with increasing phylogenetic distance. This is the same trend as7087

observed in the other patterns of overlap (see Results, Chapter 3).7088
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S3.3. Supplemental within-family results7089

Families associated with the largest changes in overlap7090

The largest decreases in total overlap with increasing phylogenetic7091

distance were associated with Apocynaceae, Lacistemataceae, Olacaceae,7092

Sapotaceae, and Chrysobalanaceae. The largest increases in the no7093

overlap pattern with increasing phyloganaetic overlap were7094

associated with Apocynaceae, Begoniaceae, Gleicheniaceae, Myricaceae,7095

and Siparunaceae. The largest increases in total overlap with7096

increasing phylogenetic distance were associated with Malpighiaceae,7097

Plumbaginaceae, Surianaceae, Cactaceae, and Goodeniaceae. The largest7098

decreases in the no overlap pattern with increasing phylogenetic7099

distance were associated with Malpighiaceae, Surianaceae,7100

Plumbaginaceae, Goodeniaceae, and Cactaceae. These orders were similar7101

to those for the partial overlap pattern (see Results, Chapter 3).7102
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Figure S3.1: Change in log odds of
observing different patterns of pairwise
niche overlap per million years of
divergence time between a pair of
plants in 38 separate plant families.
Families in pollination networks are
indicated by dark purple diamonds
while families in herbivory networks
are indicated by pale green circles. Note
that changes in log odds are analogous
to the slopes of the regression lines
from Eq.2-3 (Results, Chapter 3) in logit-
transformed space and represent the
change in the probability of observing
a pattern of overlap per million years
of divergence time. We also show the
slope of the relationship between the
log-odds of observing each overlap
pattern and phylogenetic distance
across all plant families in herbivory
(pale, green horizontal line) and
pollination (dark, purple horizontal
line) networks. The phylogenetic
tree below the plots indicates the
relatedness between plant families.
Error bars represent 95% confidence
intervals.
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S4.1 - Simulated dates of first interaction7281

Methods7282

To test whether our results are vulnerable to small errors in the7283

estimation of species’ dates of first interaction, we repeated all7284

analyses that included date of first interaction as a predictor using7285

1000 simulated dates of first interaction for each species. The7286

simulations were designed to give reasonable dates of first interaction7287

based on the distribution of observed interactions for each species,7288

and for the community as a whole. We obtained separate sets of7289

dates for each species for each year. Within each year, we also7290

simulated dates for plants and insects independently. As we did not7291

want to alter the number of interactions in the networks, and as our7292

results did not vary depending on the method used to account for7293

the tentatively-dated species (see S4.2-3), we used the single7294

best-guess dates when creating simulated datasets.7295

For each species type (plant or insect) in each year (1996, 1997, 2010,7296

or 2011), we first fit a linear regression of interaction dates against7297

species identity, with no intercept. This gave us the mean values of7298

the normal distributions that best described the observed interactions7299

for each species. In order to account for the varying amounts of7300

information we had about different species, we weighted the7301

regression using the number of observed interactions for each species.7302

Thus, the confidence intervals of the fitted means were narrower for7303

species with many observed interactions and wider for species with7304

few observed interactions.7305

To obtain simulated dates of first interactions, we simulated 1000 sets7306

of interaction dates using the linear regression described above, and7307

then took the earliest date for each species as its simulated date of7308

first interaction. Note that simulating interactions in this way7309

generated datasets of the same size and structure as the observed7310

dataset, such that species with only one observed interaction also had7311

only one simulated interaction. We then used these sets of simulated7312

earliest interactions to repeat our tests for Hypotheses 5, 6, and 7 (i.e.,7313

that species active at different times of the year will have different7314

roles, that their roles will change in different ways between decades,7315

and that the magnitude of change in species’ roles will depend on the7316

magnitude and direction of change in their dates of first interaction).7317

We present the results of these repeated analyses below.7318
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Hypothesis 57319

Species with different dates of interaction had different roles in both7320

the observed data (see main text) and in the majority of simulated7321

datasets. Specifically, plants with different dates of first interaction7322

had significantly different roles in 602/1000 simulated datasets for7323

the yearly networks and 765/1000 datasets for the monthly networks.7324

Pollinators, on the other hand, had significantly different roles in7325

655/1000 simulated datasets for the yearly networks and 659/10007326

datasets for the monthly networks. In general, however, the results7327

for the observed data were significantly more extreme than the7328

simulated datasets. For plants, this was true in the yearly networks,7329

while for the monthly networks the result from the observed dataset7330

were similar to those from the simulated datasets (p=0.004 for the7331

yearly networks and p=0.354 for the monthly networks; Fig. S4.1).7332

For insects, on the other hand, the F-statistic from the observed7333

dataset were more extreme than those obtained from the simulated7334

datasets in both monthly and yearly datasets (p<0.001 for both7335

monthly and yearly webs). This indicates that our results for7336

pollinators were more susceptible to observation error in dates of first7337

interaction than were our results for the plants. However, as the7338

majority of our simulation results remained significant we can still be7339

confident that different dates of first interaction are indeed associated7340

with different roles. This is also the case for plants’ roles in yearly7341

webs, although we can be more confident in this case because the7342

values for the observed and simulated datasets were more similar.7343
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Figure S4.1: Values of the F-statistics
for the main effect of date of first
interaction in a PERMANOVA test
of species’ roles against date of
first interaction, decade, and their
interaction (Hypothesis 5). In each
panel we show the F-statistics for 1000

simulated dates of first interaction
(circles) as well as the value of the
F-statistic for the observed dataset
(horizontal line). We also give the
probability that the F-statistic from
the observed dataset was significantly
larger than the F-statistics from the
simulated datasets.
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In addition to testing whether species with different dates of first7344

interaction had different structural roles, we repeated our CAP7345

analysis testing whether this difference could be explained by7346

changes in network structure. As with the PERMANOVA described7347

above, the relationship between species’ roles and their dates of first7348

interaction remained significant after accounting for network7349

structure in most of the simulated datasets (984/1000 for plants’ roles7350

in yearly networks, 996/1000 for plants’ roles in monthly networks,7351

573/1000 for pollinators’ roles in yearly networks, and 819/1000 for7352

pollinators’ role in monthly networks). Our results for plants’ roles7353

were similar in the observed and simulated datasets for both the7354

yearly and monthly networks (p=0.075 and p=0.546, respectively; Fig.7355

S4.2). As with the PERMANOVA results, this suggests that our7356

results for plants’ roles are relatively robust to noise in our estimates7357

of first date of interaction. The F-statistics we observed for insects’7358

roles, however, were significantly greater than those we obtained7359

from the simulated datasets (p<0.001 for both network types). This7360

suggests that our results for insects’ roles are much more sensitive to7361

potential errors in estimates of species’ dates of first interaction.7362

Nevertheless, as the majority of simulated datasets also gave7363

significant results, we remain confident in our results.7364
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Figure S4.2: Value of the F-statistic for
a CAP analysis of species’ roles against
date of first interaction, constrained
by network structure (Hypothesis 5).
In each panel we show the F-statistics
for 1000 datasets with simulated dates
of first interaction (circles) as well as
the F-statistic for the observed dataset
(horizontal line). In each panel, we
also give the probability that the F-
statistic from the observed dataset was
more extreme than the values from the
simulated datasets.
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Figure S4.3: Values of the F-statistics for
the interaction term in a PERMANOVA
test of species’ roles against date of
first interaction, decade, and their
interaction (Hypothesis 6). In each
panel we show the F-statistics for 1000

simulated dates of first interaction
(circles) as well as the value of the
F-statistic for the observed dataset
(horizontal line). We also give the
probability that the F-statistic from
the observed dataset was significantly
larger than the F-statistics from the
simulated datasets.

The PERMANOVA we used to test Hypothesis 5 was also used to test7366

Hypothesis 6, that relationships between species’ roles and their7367

dates of first interaction would change between decades. Consistent7368

with our observed result that this relationship did not change7369

between decades for plants, this relationship was significant in only7370

317/1000 simulated datasets for yearly webs and 101/1000 simulated7371

datasets for the monthly webs, and the F-statistics we obtained from7372

the simulated datasets were not significantly different from those we7373

found in the observed datasets in both cases (p=0.790 for the yearly7374

webs and p=0.724 for the monthly webs; Fig. S4.3). Likewise, our7375

results for insects’ roles in yearly webs were similar for the observed7376

and simulated datasets (p=0.220), with only 31/1000 simulated7377

datasets showing a significant change in the relationship between7378

species’ roles and their dates of first interaction between decades. The7379

results for simulated datasets in the monthly networks were similar,7380

with only 20/1000 datasets showing a significant change in the7381

relationship. This contrasts strongly with the significant result in the7382

observed dataset. Moreover, the F-statistic we obtained from the7383

observed data for insects’ roles in monthly networks was significantly7384

larger than the results we obtained from the simulated datasets7385

(p<0.001). This indicates that this result may be more susceptible to7386

errors in estimation of species’ dates of first interaction.7387

Hypothesis 77388

Finally, we compared the correlations between the magnitude of7389

change in species’ roles and the magnitude of change in dates of first7390
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interaction in the observed dataset with the correlations in the7391

simulated datasets. As in the main text, we analysed species with7392

advancing and retreating phenologies separately. For plants’ roles in7393

yearly webs, 98/1000 simulated datasets had significant results for7394

species with advancing phenologies and 78/1000 had significant7395

results for species with retreating phenologies. This is consistent with7396

the non-significant results for the observed dataset, and indeed the7397

observed correlations were not significantly different from those in7398

the simulated datasets (p=0.515 for species becoming active earlier in7399

the year and p=0.633 for species becoming active later; Fig. S4.3).7400

This was also the case for plants’ roles in monthly networks, with few7401

simulated datasets yielding significant results (494/1000 for plants7402

becoming active earlier and 231/1000 for plants becoming active7403

later) and the observed correlations not significantly different from7404

those obtained using simulated datasets (p=0.475 and p=0.549,7405

respectively). Likewise, most of the simulated datasets yielded7406

non-significant results for insects’ roles in yearly webs (84/1000 for7407

those active earlier and 22/1000 for those active later) and the7408

observed correlations were similar to those from the simulated7409

datasets (p=0.526 and p=0.278, respectively). This was also true for7410

insects’ roles in monthly networks for species becoming active earlier7411

(67/1000 simulated datasets with significant results, p=0.191 for the7412

observed correlation being different from those in the simulated7413

datasets) and those becoming active later (107/1000, p=0.45).To7414

reiterate, in all cases the correlations in our observed dataset were not7415

significantly different from the correlations in our simulated datasets.7416

Plants

-1.0

-0.5

0.0

0.5

1.0
p=0.515 p=0.633

Pollinators

Y
early w

ebs

p=0.526 p=0.278

Became active earlier Became active later
-1.0

-0.5

0.0

0.5

1.0

C
or

re
la

tio
n

p=0.475 p=0.549

Became active earlier Became active later

M
onthly w

ebs

p=0.191 p=0.354

A B

C D

Figure S4.4: R2 values for correlations
between the change in species’
roles and change in their dates of
first interaction between decades
(Hypothesis 7). As we expected that
species with advancing and retreating
phenologies might show different
trends, we analysed each group
separately. In each panel, we show the
values for 1000 datasets using simulated
dates of first interaction (circles) as well
as the value from the observed dataset
(horizontal lines). We also show the
probability that the R2 value from the
observed dataset is more extreme than
the values from the simulated datasets.
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This indicates that all of these results are quite robust to7417

mis-estimation of species’ dates of first interaction.7418
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S4.2 - Tentatively-dated observations: methods7419

There were 94 interactions in our dataset which could not be ascribed7420

to a definite date. Of these, 41 were observed in 1996 and the7421

remaining 53 were observed in 1997. The interactions involve five7422

insect species visiting 15 plant species. Boloria chariclea visited all 157423

plants, Colias hecla visited four plant species, Limnophyes brachytomus7424

visited three, and Paraphaenocladius impensus and Syngrapha parilis7425

each visited one. In addition to visiting the most plant species, Boloria7426

chariclea was observed far more often than any of the other insects (797427

of the 94 tentatively-dated observations).7428

Each interaction is associated with a range of possible dates where7429

the plant had been observed flowering and the insect had been7430

observed at the site. Within this range, we used the earliest date that7431

was not associated with a definitively-labelled interaction as the7432

best-guess date for the interaction. This date was used to include the7433

interaction in the monthly networks described in the main text.7434

Because of the uncertainty regarding these dates, we repeated our7435

analyses using two other methods of assigning these interactions.7436

First, we excluded these interactions from the monthly networks7437

entirely. As each interaction was definitively associated with a7438

particular year, however, we included the interactions in the yearly7439

networks. This method underestimated the number of interactions in7440

the 1996 and 1997 monthly networks but presented no risk of7441

assigning an interaction incorrectly. Second, we included the7442

interaction in all networks describing any part of the range of7443

potential dates. This included the yearly networks, as in the other7444

methods, and any relevant monthly networks. This method7445

over-estimates the number of interactions in the 1996 and 19977446

monthly networks, but does not exclude any of the pollination7447

interactions that occurred. These three methods of assembling the7448

monthly networks cover a range of conservatism and all have7449

different attendant biases. As described below, all results were7450

qualitatively identical regardless of the method use.7451
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S4.3 - Tentatively-dated observations: results7452

Change in network structure7453

When tentatively-dated observations were not included in the7454

monthly webs, change in network structure between decades was7455

very similar to the change in network structure when7456

tentatively-dated observations were only included on their most7457

likely date. That is, the structure of monthly networks did not change7458

between decades (F1,10=2.13, p=0.091 for a PERMANOVA of monthly7459

network structure against decade) except when controlling for7460

differences between months (F1,10=2.24, p=0.042 for a PERMANOVA7461

of monthly network structure against decade, stratified by month).7462

When tentatively-dated observations were included for all dates7463

within the probable range, however, the structure of monthly7464

networks differed between decades regardless of whether differences7465

between months were taken into account (F1,10=4.03, p=0.002 for a7466

PERMANOVA of monthly network structure against decade;7467

F1,10=4.27, p=0.002 for a similar PERMANOVA, stratified by month).7468

Despite this minor difference, all three methods of accounting for7469

tentatively-dated observations agree that, if the differences between7470

networks describing June, July, and August in different years are7471

taken into account, network structure undoubtedly changed between7472

the 1990’s and the 2010’s.7473

Change in species’ roles7474

Changes in plants’ and pollinators’ roles in the monthly networks7475

were similar regardless of the way in which the tentatively-dated7476

interactions were included. Plants’ roles changed between decades7477

regardless of whether these interactions were included only in the7478

yearly networks or for the full range of possible dates (F1,227=2.28,7479

p=0.017 and F1,247=5.78, p<0.001, respectively, for a PERMANOVA of7480

monthly roles against decade, stratified by species). This was also the7481

case for pollinators’ roles (F1,458=13.5, p<0.001 and F1,455=7.96,7482

p<0.001, respectively). In all cases, these results were qualitatively7483

identical to those presented in the main text.7484

The extent of change in species’ roles varied between months7485

regardless of how the tentatively-dated interactions were treated.7486

That is, the interaction term in a PERMANOVA of species’ roles7487

against decade, month, and their interaction was significant whether7488

the tentatively-dated observations were included only in the yearly7489

networks or for the full range of possible dates (F1,223=2.13, p=0.0117490
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and F1,243=4.65, p<0.001, respectively for plants and F2,451=2.78,7491

p=0.003 and F2,454=4.85, p<0.001, respectively, for pollinators).7492

Effect of date of first interaction on species’ roles7493

Our results relating species’ roles to their dates of first interaction7494

were also robust to different ways of including the tentatively-dated7495

observations. Plants’ roles initially did not appear to be related to7496

their dates of first interaction when tentatively-dated observations7497

were included in only the yearly networks (F1,225=7.36, p=0.126 in a7498

PERMANOVA of PERMANOVA of plants’ roles against decade, date7499

of first interaction, and the interaction between them). After7500

controlling for network structure, however, plants’ roles were related7501

to their dates of first interaction, as in the Main Text (F1,216=7.63,7502

p<0.001 for a CAP of plants’ roles against their date of first7503

interaction, conditioned by network structure). When the7504

tentatively-dated observations were included across the full range of7505

possible dates, plants’ roles varied with their dates of first interaction7506

whether or not network structure was taken into account (F1,245=11.1,7507

p=0.016 for a PERMANOVA similar to that described above, and7508

F1,236=11.7, p<0.001 for a CAP as described above). The relationship7509

between plants’ roles and their dates of first interaction did not vary7510

between decades regardless of how tentatively-dated interactions7511

were included, again as in the Main Text (F1,225=1.08, p=0.344 when7512

these interactions were included in the yearly webs only and7513

F1,245=0.761, p=0.660 when they were included across the range of7514

possible dates).7515

Pollinators’ roles were likewise associated with their dates of first7516

interaction regardless of whether the tentatively-dated interactions7517

were included in the yearly webs only or in all possible dates7518

(F1,453=15.9, p=0.001 and F1,456=20.5, p<0.001, respectively, for the7519

main effect of date in PERMANOVAs of pollinators’ monthly roles7520

against decade, date of first interaction, and their interaction). This7521

relationship remained significant when accounting for network7522

structure (F1,447=19.3, p<0.001 and F1,444=14.791, p<0.001, respectively,7523

in the CAPs described above). Unlike plants’ roles, but consistent7524

with the results we present in the Main Text, the relationship between7525

pollinators’ roles and their dates of first interaction changed between7526

decades whether we included the tentatively-dated observations in7527

the yearly webs only or for the full range of potential dates7528

(F1,444=14.8, p<0.001 and F1,447=27.4, p<0.001, respectively, for the7529

interaction term in the PERMANOVAs described above). As with our7530

other results, these are identical to the results presented in the main7531
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text where tentatively-dated interactions were included only on their7532

most probable date.7533

Magnitude of change in roles and change in dates of first interaction7534

The magnitude of change in plants’ roles was not related to the7535

magnitude of change in their dates of first interaction for species7536

which became active earlier in the year (R2=0.094, p=0.440 when7537

tentatively-dated observations were included in the yearly webs only7538

and R2=0.014, p=0.620 when these observation were included for the7539

full range of potential dates). For plants which became active later in7540

the year, on the other hand, change in roles was related to change in7541

dates of first interaction (R2=0.107, p=0.017 and R2=0.084, p0.034,7542

respectively).7543

For pollinators, these patterns were reversed. Change in roles was7544

related to change in dates of first interaction for species which7545

became active earlier in 2010-2011 than in 1996-1997 (R2=0.028,7546

p=0.012; and R2=0.028, p=0.020, respectively). For species which7547

became active later in 2010-2011, this relationship was not significant7548

(R2<0.001, p=0.292; and R2=0.016, p=0.310, respectively). Once again,7549

these results are all qualitatively identical to those in the main text.7550

This indicates that including using the best-guess dates for the7551

tentatively-dated observations did not affect our results.7552
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S4.4 - Supplemental figures7553
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Figure S4.5: The structure of plant-
pollinator networks at Zackenberg,
Greenland changed between years. A)
Yearly networks generally increased
along the first NMDS axis and
decreased slightly along the second
NMDS axis. The structures of the 1996

and 1997 webs were very similar, with
larger changes from 1997 onwards. The
changes in the structure of monthly
networks was more variable. B-D) In
June, the 1996, 2010, and 2011 networks
were fairly similar while the 1997 web
was lower along the first NMDS axis;
the July networks were very similar in
all four years; and the August networks
increased along the first NMDS axis
in every year and showed a hump-
shaped trend along the second NMDS
axis. Moving from negative to positive
values along the first axis represented
a shift from high frequencies of motifs
representing tightly-knit groups to high
frequencies of more loosely-connected
motifs. Moving from negative to
positive values of the second NMDS
axis corresponds to an increase in
larger (five or six species) motifs and a
decrease in smaller motifs.
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Figure S4.6: Here we show the five
motifs most strongly associated with
the two axes of a constrained analysis
of principal coordinates (CAP) of
species’ roles conditioned by the overall
network structure. As plants and their
pollinators never occupy the same
positions within motifs, we analysed
the two groups separately. In both
cases, however, the axes had similar
interpretations. A-B) Moving from
negative to positive values along the
first axis represented a shift from high
frequencies of positions that tend to
represent specialists to high frequencies
of positions that tend to represent
generalists. C-D) Moving from negative
to positive values along the second axis,
meanwhile, represented a shift from
high frequencies of positions in small
motifs to high frequencies of positions
in large motifs. Positions that were
strongly associated with an axis are
indicated in black. Small dots indicate
the exact location of each position with
respect to the two axes.
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S5.1. Additional References and Description of Food Webs7560

Table S5.1: Locations and original sources for food-web datasets. The Ythan
web used is version 3 from Huxham et al. (1996). Following Huxham et al.
(1996), species 100 in this web was removed as it is an animal with no recorded
resources in the food web. This also resulted in the removal of one link
100 → 85 where species 100 appeared as a resource.

Site Source Location
Bahia Hechinger et al. (2011) Bahia Falsa, Baja California Mexico
Carpinteria Hechinger et al. (2011) Carpinteria Salt Marsh, California USA
Estero Hechinger et al. (2011) Estero de Punta Banda, Baja California Mexico
Fjord Thieltges et al. (2011a) Flensburg Fjord, Baltic Sea Germany/Denmark
Otago Mouritsen et al. (2011) Otago Harbour New Zealand
Sylt Thieltges et al. (2011b) Sylt Tidal Basin, North Sea Germany/Denmark
Ythan Huxham et al. (1996) Ythan Estuary, Scotland UK

Trophic groups of free-living species were defined based on the7561

free-living webs. Top predators (T) were defined as species with prey7562

but no predators, basal resources (B) as species with predators but no7563

prey, and intermediate consumers (I) were all remaining species (that7564

is species with both predators and prey). Cannibalistic species were7565

considered to be intermediate consumers, as some individuals serve7566

as prey to their conspecifics even if they are not prey to other species7567

(Williams and Martinez, 2000). Parasites were defined by the authors7568

of the original food webs, and included species ranging from7569

apicomplexan and ciliate protozoans to nematode, trematode, and7570

cestode worms to parasitic copepods (Dunne et al., 2013; Huxham7571

et al., 1996; Hechinger et al., 2011; Mouritsen et al., 2011; Thieltges7572

et al., 2011b,a). Any species with both parasitic and free-living life7573

stages was considered a parasite.7574



265

Table S5.2: Representation of each type of species across the different food webs.
Type “free-living” refers to webs with free-living species only while type “par &
con” refers to “parasite” and “concomitant” webs which include parasites and
free-living species. S refers to the total species richness in each web. %F , %T, %I ,
%B, and %P refer to the proportion of species that are free-living, top predators,
intermediate consumers, basal resources, and parasites, respectively.

Site Type S %F %T %I %B %P

Bahia free-living 119 100 7 79 14 0

Bahia par & con 171 70 5 55 10 30

Carpinteria free-living 107 100 5 84 11 0

Carpinteria par & con 165 65 3 55 7 35

Estero free-living 138 100 7 83 10 0

Estero par & con 214 64 4 54 6 36

Flensburg free-living 77 100 12 80 8 0

Flensburg par & con 123 62 7 50 5 38

Otago free-living 123 100 26 71 3 0

Otago par & con 142 87 23 61 3 13

Sylt free-living 126 100 21 74 5 0

Sylt par & con 161 78 17 58 3 22

Ythan free-living 91 100 34 62 4 0

Ythan par & con 133 68 23 42 3 32

Table S5.3: Frequency of different types of links across the different food webs.
L refers to the total number of links in each web while F → F, P → F, P → P,
F

t
−→ P, and F

c
−→ P to the number of links describing predation among free-

living species, parasitism, predation between parasites, target predation of free-
living species on parasites, and concomitant predation on parasites, respectively.

Note that neither F t
−→ P nor P → P links were observed in the Ythan web.

Site Type L F → F F → P P → P P
t
−→ F P

c
−→ F

Bahia free-living 1075 1075 0 0 0 0

Bahia parasite 2232 1075 807 165 185 0

Bahia concomitant 3765 1075 807 165 185 1533

Carpinteria free-living 963 963 0 0 0 0

Carpinteria parasite 2180 963 755 166 296 0

Carpinteria concomitant 3762 963 755 166 296 1582

Estero free-living 1647 1647 0 0 0 0

Estero parasite 3324 1647 835 169 673 0

Estero concomitant 5805 1647 835 169 673 2481

Fjord free-living 577 577 0 0 0 0

Fjord parasite 966 577 271 40 78 0

Fjord concomitant 1428 577 271 40 78 462

Otago free-living 1200 1200 0 0 0 0

Otago parasite 1481 1200 173 19 89 0

Otago concomitant 1852 1200 173 19 89 371

Sylt free-living 1047 1047 0 0 0 0

Sylt parasite 1944 1047 552 69 276 0

Sylt concomitant 3033 1047 552 69 276 1089

Ythan free-living 416 416 0 0 0 0

Ythan parasite 593 416 177 0 0 0

Ythan concomitant 1268 416 177 0 0 675
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S5.2. Supplemental methods: quantifying species’ and links’7575

roles7576

1

2

3

4

5

6

7

7

7

8

9

8

10

11

10

12

13

12

14

15

14

16

17

18

19

20

21

22

23

24

25

25

25

26

27

28

29

30

29

Figure S5.1: Three-species motifs with
unique positions numbered.

Interactions between species are a direct consequence of the motif7577

structure of a food web. Motifs are the set of 13 three-species7578

subwebs describing all possible interaction patterns of three species7579

(Milo et al., 2002; Stouffer et al., 2007, Fig. S5.1). Each motif contains7580

one or more unique positions, indicating a unique way in which a7581

species’ interactions are organised in that motif (e.g., the top predator,7582

intermediate consumer, and resource in a three- species food chain)7583

(Stouffer et al., 2012). In the 13 three-species motifs, there are 30 such7584

positions (Kashtan et al., 2004; Stouffer et al., 2012). Similarly, there7585

are 24 unique link types connecting species (Fig. S5.2). By counting7586

the frequency cwij with which each species i in community s in web7587

type w (i.e., free-living, parasite, or concomitant) occurs in each7588

position j, we obtained a vector
−→
fwsi describing the overall role of that7589

species within its food web,7590

−→
fwsi = {ci1, ci2, ..., ci29, ci30}ws . (9)

The same process was used to determine the roles of links between7591

species, giving a vector7592

−→
fwsl = {cl1, cl2, ..., cl23, cl24}

w
s . (10)

that describes the role
−→
fwsl for each link l in community s in web type7593

w.7594
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Figure S5.2: Three-species motifs with
unique links numbered.
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S5.3. Supplemental methods: role dispersion & diversity7595

As described in Chapter 5, we quantified the distribution of species’7596

and links’ roles by their role dispersion and role diversity (Fig. 20,7597

Chapter 5). In order to quantify role diversity, we first needed to7598

identify subsets of species (or links) that have statistically-similar7599

motif-based roles; that is, clusters of species (or links) that appear in7600

the same motif positions more often than one would expect by7601

chance. To perform a clustering of this nature, we followed a7602

recently-proposed method that is an extension of community7603

detection algorithms for complex networks to the case of detecting7604

groups of nodes in bipartite networks with weighted edges7605

(Sales-Pardo et al., 2007; Stouffer et al., 2012). Here, the bipartite7606

network consists of each species (or link) in our dataset on one side7607

and the different motif positions on the other. Each edge in this7608

network is weighted by the frequency cwsij with which the species or7609

link i in community s in web type w occupies position j. The7610

clustering algorithm consists of maximising an objective function M7611

(referred to as “modularity”) that is high when nodes in the same7612

cluster tend to occupy the same positions with similar frequencies7613

and low otherwise (Stouffer et al., 2012).7614

We used a stochastic and heuristic optimisation method known as7615

simulated annealing (Kirkpatrick et al., 1982) to cluster nodes (species7616

or links) while maximising modularity (Sales-Pardo et al., 2007;7617

Girvan and J., 2002). Since this procedure is not always guaranteed to7618

find a global optimum, and since we are most interested in the7619

expected variety of clusters per group as a proxy for role diversity,7620

we performed this modularity maximisation 100 separate times for7621

roles of species and links in each community. As with dispersion, we7622

included the roles of free-living species from the “free-living” web as7623

well as the roles of parasites from both the “parasite” and7624

“concomitant” webs. We then calculated the weighted average7625

number of clusters containing each type of species (or link) across the7626

100 modularity-maximised clusterings following7627

N̂j = ∑
i

piNij , pi = eMi/∑
k

eMk , (11)

where Mi is the modularity of a given clustering i, ∑k e
Mk is the sum7628

of modularities over all k clusterings, and pi is the relative probability7629

of obtaining a clustering i weighted by its modularity; Nij is the7630

number of clusters containing species type j in clustering i, and N̂j is7631
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the weighted average of the number of clusters containing species (or7632

link) type j (Sales-Pardo et al., 2007). We assume that each cluster7633

represents a unique structural role, therefore this average number of7634

clusters provides an estimate of the role diversity for each type of7635

species and links.7636
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S5.4. Supplemental results: median roles7637
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Figure S5.3: The major axes of variation
for median roles demonstrated key
differences in the roles of different
types of species and links. (A) The
first major axis of variation for species
roles corresponded to a split between
positions in motifs containing only
one-way interactions and positions in
motifs containing at least one two-way
interaction. This axis separates the
roles of parasites including concomitant
predation from other types of roles
(Fig. 21A, Chapter 5). The second major
axis was largely defined by positions
representing the base of a three-species
food chain (3) and a species with two
predators which do not eat each other.
These positions are most common in
the roles of basal resources. (B) The first
major axis of variation for link roles
also corresponds to a split between
positions in motifs that contain only
one-way interactions and those in
motifs containing at least one two-
way interaction. Positions associated
with two-way interactions were more
frequent in the roles of concomitant
predation links than in other role
types (Fig. 21B, Chapter 5). The second
axis is largely determined by two
positions representing mutual predation
between species with a common prey
or common predator. These positions
are most common in the roles of links
describing predation between parasites.

When comparing across different types of species, we found that7638

trophic group was a significant predictor of median roles, as7639

hypothesised (F4,1432 = 218.15, p= 0.001; Fig. 21A, Chapter 5). The P7640

roles were between those of I and T free-living species, and they7641

slightly overlapped with each. The Pc roles, in contrast, were distinct7642

from all other role types. They were separated from T, I, and P roles7643

along the first correspondence analysis axis (which accounted for7644

64.9% of total variance in species roles) and separated from B roles7645

along the second correspondence analysis axis (which explained7646

13.0% of total variance).7647
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The first axis corresponds mainly to a split between positions in7648

motifs containing only one-way interactions and positions in motifs7649

with at least one two-way interaction (Fig. S5.3A). T, I, and P roles are7650

associated with a greater frequency of one-way motifs, while Pc roles7651

are associated with a greater frequency of two-way motifs. The7652

second axis was largely defined by the frequencies of positions 3 and7653

9 (Fig. S5.2). Position 3 represents the base of a three-species food7654

chain, while position 9 represents a species which is preyed upon by7655

two other species (apparent competitors). These positions are more7656

frequent in B roles and less frequent in other types of roles.7657

When comparing different types of links, we found that link type7658

significantly predicted median roles (F4,20908 = 1018.75, p < 0.001;7659

Fig. 21B, Chapter 5). There was a great deal of overlap between the7660

median roles of F→P and F→F links while the median roles of P→P7661

links were highly variable across communities. In general, the roles7662

of P c
−→F and P→P links showed more variation along the first7663

principal-component axis (which accounted for 60.7% of total7664

variance in link roles) while the roles of F→F links, F→P links, and7665

P t
−→F links showed more variation along the second7666

principal-component axis (which accounted for 15.2% of total7667

variance).7668

As with species roles, the first correspondence axis corresponds to a7669

split between one-way interactions and two-way interactions (Fig.7670

S5.3B). Two-way interaction positions were more frequent in the roles7671

of concomitant predation links and less frequent in other groups. The7672

second axis corresponds to mainly to link positions 10 and 12, which7673

represent species with a common prey that consume each other and7674

species which consume each other and have a common predator,7675

respectively (Fig. S5.3). These link positions are most common in7676

links describing predation among parasites.7677
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S5.5. Supplemental results: species roles7678

Dispersion7679

We determined the overall relationship between species-richness and7680

role dispersion using the model7681

σgs = β1Bg + β2 I + g+ β3Tg + β4Pg + β5Pcg + β6Ngs + β6PgNgs . (12)

where σgs is the dispersion of group g (B, I, T, P, or Pc) in community7682

s (e.g., Ythan), Bg, Ig, Tg, Pg, and Pcg are dummy variables that equal7683

1 if g is the corresponding group type (i.e., Bg=1 if g represents the7684

roles of basal resources), Ngs is the number of species N in group g at7685

community s, and PgNgs represents the number of species N in group7686

g at community s if g represents the roles of parasites without7687

concomitant predation links.7688

We then removed the non-significant overall effect of species richness7689

(Table S5.4), leaving the model,7690

σgs = β1Bg + β2 Ig + β3Tg + β4Pg + β5Pcg + β6PgNgs , (13)

which was used to compare the dispersions of B, I, T, and Pc roles as7691

well as the slope of P role dispersion over species richness.7692

Table S5.4: Standardised effects, t-values, and p-values for all terms included
in models 1 and 2, as well as the F-statistic, degrees of freedom, and p-value of
each model overall

Model 1 Model 2

Parameter Effect t-value p-value Effect t-value p-value
B 0.251 11.903 <0.001 0.261 12.703 <0.001

I 0.255 3.961 <0.001 0.352 17.133 <0.001

T 0.213 9.050 <0.001 0.233 11.344 <0.001

P 0.189 3.157 0.004 0.189 3.081 0.005

Pc 0.268 6.825 <0.001 0.320 15.611 <0.001

Ngs 0.001 1.563 0.129 NA
PgNgs 0.002 1.128 0.269 0.003 2.195 0.036

F-statistic 160.6 178.1
Degrees of freedom 7, 28 6, 29

Overall p-value <2.2e-16 <2.2e-16
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Table S5.5: Standardised effects, z-values, and p-values for all terms included
in models 3 and 4, as well as the AIC and degrees of freedom of each model
overall

Model 3 Model 4

Parameter Effect t-value p-value Effect t-value p-value
Intercept NA 0.189 0.802 0.422

B 0.291 0.901 0.368 NA
I 0.566 0.892 0.372 NA
T -0.128 -0.320 0.749 NA
P 0.617 1.407 0.159 NA
Pc 1.558 4.081 <0.001 1.151 5.632 <0.001

N 0.007 1.000 0.317 0.012 2.968 0.003

AIC 122.56 108.83

Degrees of freedom 26 29

Diversity7693

We tested the effect of species richness on role diversity using the7694

model,7695

δgs = β1Bg + β2 Ig + β3Tg + β4Pg + β5Pcg + β6Ngs , (14)

where δgs is the role diversity of trophic group g in community s and7696

all other symbols are as in the dispersion models above. Only Pc7697

roles had a diversity significantly different from zero and there was7698

no significant effect of species richness. This model was also used in7699

the Tukey’s HSD test of mean diversities across groups, as the7700

reduced model used to establish the mean diversity of Pc roles,7701

δgs = β0 + β1Pcg + β2Ngs , (15)

did not include intercepts for other role types (Table S5.5).7702
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S5.6. Link roles7703

Dispersion7704

We examined the effect of link richness on the dispersion of link roles7705

using the model,7706

σls = β1F → Fl + β2F → Pl + β3P
t
−→ Fl + β4P

c
−→ F+ β5P → Pl + β6Nls + β7P → PlNls , (16)

where σls is the dispersion of the roles of link type l in community s,7707

F → Fl , F → Pl, P
t
−→ Fl , P

c
−→ Fl , and P → Pl are dummy variables7708

that are equal to 1 if link type l is the relevant type (i.e., F → Fl=1 for7709

F → F links) and 0 otherwise, Nls is the number of links of type l in7710

community s, and P → PlNls is an additional effect of link richness7711

specific to P → P roles, only the model above which includes the7712

interaction between link richness and P → P roles showed any7713

significant effect of link richness on link role dispersion. This model7714

was used to conclude that link richness does not affect the dispersion7715

of F → Fl , F → Pl, P
t
−→ Fl , and P

c
−→ Fl roles.7716

We then used the reduced model,7717

σls = β1F → Fl + β2F → Pl + β3P
t
−→ Fl + β4P

c
−→ Fl + β5P → Pl + β7P → PlNls , (17)

which includes an effect of link richness for P → P roles only, to7718

calculate the confidence intervals in Fig. 23, Chapter 5). The best7719

parameter estimates returned by the two models were very similar7720

(Table S5.6).7721

Diversity7722

Finally, we determined that there was no effect of link richness on7723

link role diversity using the model7724

Nls = β1F → Fl + β2F → Pl + β3P
t
−→ Fl + β4P

c
−→ Fl + β5P → Pl + β7Nls , (18)

where Nls is the role diversity for link type l in community s and all7725

other symbols are as above. We then used the model7726
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Table S5.6: Standardised effects, t-values, and p-values for all terms included
in models 5 and 6, as well as the F-statistic, degrees of freedom, and p-value of
each model overall.

Model 5 Model 6

Parameter Effect t-value p-value Effect t-value p-value
F → Fl 0.345 12.066 <0.001 0.359 19.342 <0.001

F → Pl 0.295 13.524 <0.001 0.302 16.282 <0.001

P
t
−→ Fl 0.264 12.504 <0.001 0.267 13.338 <0.001

P
c
−→ Fl 0.450 14.179 <0.001 0.466 25.095 <0.001

P → Pl 0.262 6.709 <0.001 0.262 6.783 <0.001

Nls <0.001 0.640 0.528 NA
P → PlNls 0.001 4.095 <0.001 0.001 4.195 <0.001

F-statistic 260.3 310.4
Degrees of freedom 7, 26 6, 27

Overall p-value <2.2e-16 <2.2e-16

δls = β1F → Fl + β2F → Pl + β3P
t
−→ Fl + β4P

c
−→ Fl + β5P → Pl , (19)

to generate confidence intervals in Fig. S5.4. Although the estimated7727

diversities for each link type differed between models (Table S5.7),7728

the standard errors on these estimates were large, such that different7729

types of links did not have significantly different role diversities.7730

Table S5.7: Standardised effects, z-values, and p-values for all terms included
in models 7 and 8, as well as the AIC and degrees of freedom of each model
overall.

Model 7 Model 8

Parameter Effect t-value p-value Effect t-value p-value
F → Fl 12.147 2.676 0.013 8.616 2.886 0.007

F → Pl 9.022 3.465 0.015 7.201 2.412 0.023

P
t
−→ Fl 9.483 3.350 0.009 8.533 2.646 0.013

P
c
−→ Fl 14.730 2.929 0.007 10.553 3.535 0.001

P → Pl 7.507 2.316 0.028 7.133 2.212 0.035

Nls -0.004 -1.032 0.311 NA
AIC 237.35 236.63

Degrees of freedom 27 28
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Figure S5.4: Diversity of unique roles
was not related to the number of links
in a community for any link type.
Diversity of unique roles did not differ
across link types.
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S6.1: Detailed methods for data collection7786

Study lakes and sampling sites7787

Detailed field data on food web composition and structure, including7788

parasites, was obtained from four lake ecosystems. Based on existing7789

knowledge and accessibility, Lake Hayes, Lake Tuakitoto, Lake7790

Waihola, and Tomahawk Lagoon (South Island, New Zealand) were7791

selected to provide a variety of lake types (size, depth, altitude; Table7792

S6.1) and freshwater communities (coastal versus alpine, oligotrophic7793

versus eutrophic, tidal or not, etc.). Within each lake, 4 sampling sites7794

were selected along the littoral zone. Site selection was partly7795

restricted by accessibility and sampling permit specification (New7796

Zealand Department of Conservation permit OT-34204-RES and Fish7797

and Game New Zealand permit to capture fish for research7798

purposes), but was ultimately made to represent all habitat types7799

(substrate, macrophytes, riparian vegetation, etc.) present within each7800

lake. Sampling sites consisted of 225m2 square areas (15m × 15m)7801

with one side of the square following the lake shore line (Figure S6.1).7802

Distances between sampling sites varied within and among lakes7803

according to lake size and shape as well as sampling site distribution7804

(Table S6.1; Figure S6.1). The four lakes were sampled in early spring,7805

mid-summer, and late autumn (austral seasons: September 2012,7806

January and May 2013). In each lake and in each season (4 lakes × 37807

seasons = 12 full sets of samples), fish, benthic and demersal7808

invertebrates, plankton, periphyton, and macrophytes were sampled7809

in each sampling site to determine their local species composition,7810

density and/or biomass as well as that of their parasites, and7811

potential temporal and spatial variability within and among lakes. In7812

all cases, we averaged values across the four sites within a lake and7813

sampling period prior to any analysis.7814

Table S6.1: Geographical locations and characteristics of the four study lakes
(South Island of New Zealand), and distance between sampling sites (straight
lines).

Lake
GPS Surface area Depth (m) Altitude Dist. between sites (m)

coordinates (km2) Mean Max (m) Min Mean Max

Hayes
44◦58’59.4"S 2.76 3.1 33 329 314 1190 2250

168◦48’19.8"E

Tuakitoto
46◦13’42.5"S 1.32 1.0 3 15 417 794 1590

169◦49’29.2"E

Waihola
46◦01’14.1"S 6.35 1.3 2 4 1330 1620 2020

170◦05’05.8"E
Tomahawk 45◦54’06.0"S 0.10 1.0 1 15 124 253 438

Lagoon 170◦33’02.2"E
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Figure S6.1: Location, size (see scale
bars) and shape of the four study lakes
on the South Island of New Zealand.
The position of the 4 sampling sites per
lake is indicated by shaded squares (not
drawn to scale).

Field sampling7815

Fish7816

Fish were sampled once per season at each sampling site in each lake7817

(1 sample × 4 sites × 3 seasons = 12 replicates per lake). We used a7818

combination of fish-catching gear types following a standardised7819

protocol so that samples represented accurately fish diversity and7820

density (Hayes, 1989). First, two fyke nets and ten minnow traps7821

were set in the evening. Fyke nets were positioned perpendicularly to7822

the shore at either edge of the sampling site (i.e., 15m apart) to stop7823

and capture fish swimming in and out of the focal 225m2 area. Fyke7824

nets consist of a cylinder of netting (2m length, 15mm mesh size)7825

wrapped around a series of hoops to create a trap. Fish enter through7826

the mouth of the trap and are retained by a series of funnel-shaped7827

constrictions. One leader (or wing) is attached to the mouth and used7828

to direct fish into the fyke net. The leader (3m length, 50cm height,7829

15mm mesh size) has a float-line at the top and lead-line at the7830

bottom to keep it upright in the water and in close contact with the7831
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substrate. To prevent fish from swimming around it, the end of the7832

leader was securely anchored to the lake shore. Along with the two7833

fyke nets, 10 minnow traps were set overnight in each sampling site.7834

Traps were set diagonally across the sampling area at regular7835

intervals (i.e., ≈1.7m apart). Minnow traps are small fish traps that7836

typically consist of two funnel-shaped entrances (25mm entrance7837

diameter) at either end of a mesh box (40 × 25 × 25cm, 2mm mesh7838

size). Fyke nets and minnow traps were set during the night, when7839

fish are more active, as they are passive sampling methods relying on7840

fish to willingly encounter and enter traps (Hubert, 1996). The next7841

day, all trapped fish were recovered from the nets and a subsample of7842

fish from each species was set aside for later dissection. Remaining7843

individuals were identified to species, counted and measured to the7844

nearest mm (fork length). These fish were then released at least a7845

hundred meters away from the sampling site.7846

Fish sampling was then complemented using two 15m long7847

multi-mesh gillnets. Gillnets were benthic weighted sets with top7848

floats, 1.5m high and comprised 3 panels of 25, 38 and 56mm meshes,7849

each 5m long. Nets were set 15m apart similarly to fyke nets,7850

perpendicularly to the shore line and anchored to the lake shore on7851

the edge of the 225m2 sampled area with the finer mesh panel closer7852

to shore on one side and further from shore on the other. Gillnets7853

covered the whole water column in all cases and were checked every7854

15 min for an hour. Fish caught in the nets were removed7855

immediately to avoid excessive accumulation and potential visual7856

deterrence to incoming fish (Lagrue et al., 2011). Fish caught in fyke7857

nets and gillnets were either entering or exiting the sampling site and7858

thus considered as site “users/occupants". All fish were identified,7859

counted, and measured. Again, a subsample was kept for later7860

dissection and the remaining fish released away from the sampling7861

site.7862

Finally, fish sampling was completed using a standard, fine-mesh7863

purse seine net. As an active sampling method, seine netting captures7864

small and/or sedentary (i.e., resident) fish that are not captured by7865

passive gear like fyke nets or gillnets (Thorogood, 1986). The seine7866

net was 20m long and 1.5m high (5mm mesh size), thus covering the7867

whole water column, and dragged by two people across the whole7868

sampling area, catching virtually all small, sedentary fish remaining7869

in the 225m2 area. A final subsample of fish was kept for dissections7870

and all other fish captured in the seine net were identified, counted,7871

measured, and immediately released. All fish set aside for later7872

dissection were killed immediately following University of Otago7873
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Animal Ethics Committee guidelines (permit ET 10/12) to inhibit the7874

digestion process and stored on ice to preserve internal tissues,7875

stomach contents, and parasites for future identification, counts, and7876

other measures.7877

Plankton7878

Four plankton samples were taken per site and per season in each7879

lake (4 samples × 4 sites × 3 seasons = 48 replicates per lake).7880

Sampling was done at night when planktonic organisms migrate up7881

from the shelter of the substrate to the top water layers of the7882

lake (Iwasa, 1982; Haney, 1988; Rhode et al., 2001). Samples were7883

taken using plankton net tows. The net used was a conical device7884

(25cm mouth diameter) made of fine nylon mesh (90µm mesh size)7885

pulled through the water for a set distance. Since we sampled the7886

littoral zone of shallow lakes, water depth was always less than a7887

meter. We thus used a three meter horizontal pull repeated four7888

times within each sampling area (i.e., four samples per site). Samples7889

were distributed haphazardly across the 225m2 area. Animals7890

captured at the bottom of the net were rinsed into a storage jar and7891

fixed in 70% ethanol for later identification and count. The amount of7892

water from which zooplankton are removed was estimated as length7893

of tow (3m) times mouth diameter of the net (25cm). Plankton7894

density and biomass could thus be later determined using the sample7895

count, volume of water filtered, and water depth at the sampling site.7896

Demersal and benthic invertebrates7897

Six demersal and six benthic invertebrate samples were taken per site7898

and per season in each lake (6 samples × 4 sites × 3 seasons = 727899

replicates per lake for each sample type). Benthic sampling was done7900

using a standard Surber sampler net with a 0.1m2 horizontal metal7901

frame (0.33 × 0.3m) fitted with a 250µm mesh collecting net (Surber,7902

1937; Fenchel, 2011). Samples were taken by embedding the Surber’s7903

metal frame into the lake bottom. Substrate and macrophytes7904

enclosed within the frame were manually scooped up into the net to7905

a depth of 5cm so that animals living on or within (hyporheic habitat)7906

the substrate were captured into the net. Demersal invertebrates7907

living on or near the substrate but either too fast or too rare to be7908

captured in Surber nets were sampled using a rectangular dip net7909

(i.e., a 30cm wide and 22cm high frame fitted with a 250µm mesh net7910

and attached to a long pole). Each demersal sample consisted of a7911

fast, two meter long sweep of the net along the lake bottom without7912
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dredging the substrate. Again, the 12 samples (6 benthic and 67913

demersal) were distributed haphazardly across the 225m2 sampling7914

area so that none overlapped. Substrate, wood debris, and7915

macrophytes contained in the net (Surber or dip net) were placed into7916

a bucket of water and stirred, shaken, and/or scrubbed to dislodge7917

attached invertebrates, and then transferred into another bucket.7918

Animals and substrate remaining in the first bucket were transferred7919

onto a sieve (250µm mesh size) so fine sediment could be rinsed off.7920

Samples were then stored individually in jars filled with 70% ethanol7921

for later sorting, identification, count, and measurement of7922

invertebrates. Benthic and demersal invertebrate density and biomass7923

were then determined using sample counts and sampling surface7924

area.7925

Periphyton7926

Periphyton growing on hard substrate (rocks, gravels) was brushed7927

off rocks with a toothbrush and rinsed with lake water into a7928

container. We used a 3.9cm diameter PVC pipe as a template to7929

standardise sampling surface (11.9cm2; Hughes et al., 2012).7930

Periphyton from soft sediment bottom (sand or mud) was sampled7931

from the top 5mm layer of sediments. The top half of a Petri dish7932

(9cm in diameter, 63.6cm2 sampling surface) was pushed into the lake7933

bottom sediment and a small spatula was slipped under, sealing the7934

sample inside the Petri dish. Then the sample was lifted and rinsed7935

with lake water into a container. Five samples of periphyton,7936

distributed haphazardly across the 225m2 area, were taken per7937

sampling site. The number of periphyton samples from soft and hard7938

substrate parts of each sampling site was representative of the7939

relative proportion of each substrate type within each sampling area.7940

Samples were preserved in Lugol’s solution and stored in the dark7941

for later identification and count (Wood et al., 2012).7942

Macrophytes7943

Macrophytes recovered in benthic invertebrate samples were used to7944

examine macrophyte diversity and abundance within sampling sites.7945

During benthic sampling, macrophytes transferred into Surber nets7946

with substrate and invertebrates were recovered, rinsed to dislodge7947

invertebrates and wash off all sediment, and bagged into zip-lock7948

bags. Macrophyte samples were frozen for later sorting, identification7949

and biomass assessment.7950
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Birds7951

Birds could not be sampled for dissections (permission was not7952

granted by the New Zealand Department of Conservation). However,7953

species composition and relative species abundances of the bird7954

communities foraging at each sampling site of each lake and during7955

each season were assessed by visual counts carried out from shore7956

with binoculars. Once per site and per season, birds present around7957

each sampling area were identified to species (Heather and7958

Robertson, 1996). Birds were observed over a one hour period and7959

every bird present or passing through a 200m radius zone centred on7960

the sampling site was counted. Given the small size of Tomahawk7961

Lagoon, all birds present on the lake were identified and counted.7962

Note that bird counts were done during the day and did not account7963

for highly secretive and/or nocturnal bird species like the7964

Australasian bittern (Botaurus poiciloptilus) or marsh crake (Porzana7965

pusilla). However, these birds are rare and represent a negligible7966

fraction of the bird populations in our study lakes.7967

Laboratory analyses7968

Fish7969

In the laboratory, fish were identified to species, measured to the7970

nearest mm (fork length), weighed to the nearest 0.01g and then7971

dissected. Their gastrointestinal tract, from esophagus to anus, and7972

all internal organs (heart, liver, gall bladder, gonads, swim bladder,7973

etc.) were removed and preserved in 70% ethanol for later diet and7974

parasite analyses. Fish bodies were frozen individually.7975

All fish bodies were later examined for parasites. The head, gills,7976

eyes, brain, and spine of each fish were examined under a dissecting7977

microscope using fine forceps to pull apart fish tissues to obtain an7978

accurate overall parasite count for each fish. Soft tissues (muscle and7979

skin) were removed from the spine, crushed between two glass plates,7980

and examined by transparency under a dissecting microscope to7981

identify and count parasites. Internal organs and gastrointestinal7982

tract were first rinsed in water to wash off the ethanol. The digestive7983

tract was then separated from other organs. Liver, swim bladder, gall7984

bladder, gonads, and other organs and tissues from the body cavity7985

(fat, mesentery, kidneys, heart, etc.) were all screened for parasites.7986

Finally, the digestive tract was dissected and stomach contents were7987

removed and examined. Prey items were counted and identified to7988

genus or species when possible to assess diet composition and the7989
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dietary importance of each prey taxon. Esophagus, stomach, pyloric7990

ceca (when present), intestine, and rectum were then examined for7991

gastrointestinal parasites. All parasites were identified, counted, and7992

a subsample of 20 individuals per genus/species (or all individuals7993

when less than 20 were found in a fish) were measured to the nearest7994

0.01mm (diameter for spherical parasites; length, width, and7995

thickness for flattened ellipsoids; length and width for7996

cylinder-shaped parasites).7997

Plankton7998

Plankton samples were examined under a dissecting microscope. All7999

individuals were counted, identified to genus, and a subsample of 208000

individuals per genus per sample (or all individuals when less than8001

20 were found in a sample) was measured to the nearest 0.01mm8002

(body length) to assess potential within genus variations in body size8003

across sites, seasons, and/or lakes. Planktonic crustaceans were8004

examined for parasites by crushing subsamples of individuals from8005

each genus between two glass plates, but no metazoan parasite could8006

be detected in any sample.8007

Demersal and benthic invertebrates8008

Demersal and benthic samples were sorted under a dissecting8009

microscope. All invertebrates were separated from debris and8010

sediment, identified to genus or species when possible (using8011

identification keys; see Winterbourn et al., 1989; Moore, 1997;8012

Chapman et al., 2011), and counted. Again, a subsample of 208013

individuals per taxon (genus or species) and per sample (or all8014

individuals when less than 20 were found in a sample) were8015

measured to the nearest 0.01mm (body length) to assess potential8016

within-taxon variations in body size across sites, seasons, and/or8017

lakes. Invertebrates were then dissected under a dissecting8018

microscope using fine forceps and examined for parasites. For8019

abundant invertebrate taxa (chironomid larvae, gastropods,8020

amphipods, etc.), subsamples of 20 to 80 individuals per sample were8021

dissected. All parasites were identified, counted, and a subsample of8022

20 individual parasites per genus/species (or all individuals when8023

less than 20 were found in a sample) were measured to the nearest8024

0.01mm (diameter for spherical parasites; length, width, and8025

thickness for flattened ellipsoids; length and width for cylinder8026

shaped parasites). Stomach contents of carnivorous invertebrates8027

(odonate larvae, leeches, Trichoptera larvae, etc.) were also examined.8028
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Prey items were counted and identified to genus or species when8029

possible to assess diet composition and the dietary importance of8030

particular prey taxa.8031

Periphyton8032

Periphyton samples were topped up with distilled water to8033

standardise sample volume to 50ml and stored in the dark until8034

analysis. Samples were then homogenised and, using a compound8035

microscope and a Palmer-Maloney counting chamber, algae, diatoms,8036

and cyanobacteria cells were identified and counted. An aliquot of8037

the homogenised sample was first transferred into the counting8038

chamber and cells were allowed to settle at the bottom. Cells were8039

then counted and identified following standard protocols for8040

quantitative periphyton analysis (Biggs and Kilroy, 2000). Because of8041

their small size, periphyton cells were not measured. Mean body8042

sizes of the different taxa recorded were obtained from the literature8043

and used to calculate body volumes for each taxon and for later8044

biomass estimation (Biggs and Kilroy, 2000).8045

Macrophytes8046

Macrophytes from each sample were sorted by species and8047

identified (Clayton and Edwards, 2006). Plants were patted dry to8048

eliminate excess moisture and weighed to determine the fresh weight8049

of each species (all individuals combined) within each sample.8050

Body mass8051

Body mass was calculated/measured differently for different types of8052

organisms. Parasites were too small to be individually weighed and8053

body measurements indicated that they varied little in size within8054

each life stage of each taxonomic species. We thus calculated body8055

volume for the subsamples of parasite individuals measured during8056

host dissection based on the most appropriate formula for each8057

species’ shape (e.g. adult nematodes and acanthocephalans,8058

trematode rediae and sporocysts = cylinder, adult trematodes =8059

flattened ellipsoid, encysted juvenile trematodes [metacercariae] =8060

spheres). Body volume was then calculated for each life stage of each8061

species and their volume was converted to mass assuming their8062

density equalled that of water. We could thus calculate a mean (± SE)8063

individual body mass for each life stage of each parasite species. In8064

the case of trematodes in their snail first intermediate host, since8065
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rediae or sporocysts are the product of clonal multiplication, all8066

rediae or sporocysts have the same genotype (with infrequent8067

exceptions) and are issued from the same larva hatched from a single8068

egg. Individual parasite body mass was thus considered as the sum8069

of all rediae/sporocysts present in a snail host. Although rediae and8070

sporocysts size (length and width) and volume (cylinder) were8071

measured or calculated for each redia/sporocyst for convenience,8072

individual parasite body mass for that life stage was reported as the8073

total body mass of all rediae/sporocysts present in a snail host.8074

Most free-living invertebrates were large enough to be weighed8075

individually (isopods, chironomids, odonates, large Trichoptera8076

larvae, adult hemiptera, molluscs, leeches, etc.). Invertebrates varied8077

little in size within taxonomic species or genus and by weighing a8078

subsample of individuals for each taxon (to the nearest 0.01mg) we8079

could calculate the mean body mass of an individual for all8080

invertebrate taxa. For small free-living invertebrates, which varied8081

little in size intraspecifically (amphipods, small Trichoptera larvae,8082

oligochaetes, planktonic crustaceans, etc.), we pooled 5, 10, or 208083

conspecific individuals (depending on individual body size) from8084

random subsamples, weighed them as a group, and from the total8085

mass calculated the average body mass of one individual.8086

For fish, each individual was weighed individually and fish body8087

mass could be directly inferred from the data. Consequently fish8088

body mass data for a given species varied across lakes and seasons,8089

while the body mass of smaller organisms was treated as constant for8090

each genus/species (or life stage of parasites within a taxonomic8091

genus/species).8092

Similarly to parasites, periphyton cells were too small to be weighed.8093

Taxon-specific sizes and shapes were obtained from the literature and8094

used to calculate body volume (Biggs and Kilroy, 2000). Body volume8095

was then converted to body mass assuming their density equalled8096

that of water.8097

Density8098

Density of organisms (number of individuals per m2 and its variance)8099

was calculated for all taxa except macrophytes for which only8100

biomass (mg per m2) was estimated. For fish, we obtained a single8101

estimate of abundance (number of fish per species) per sampling site8102

per season. Since we used a combination of passive and active gear8103

types and virtually captured all fish individuals present in (sedentary8104
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individuals) or passing through (user/occupant) each sampling area,8105

we considered the number of fish captured as representative of the8106

fish community present at and/or using the site. Fish density was8107

thus calculated as the total number of fish captured divided by the8108

surface of the entire sampling area (225m2). One value of fish density8109

was thus obtained per sampling site per season per lake and for each8110

species present.8111

Densities of benthic and demersal invertebrates were simply8112

calculated as the number of individuals of each taxon captured in a8113

sample divided by the surface of the lake bottom sampled, regardless8114

of water depth since these organisms live in, on and/or close to the8115

substrate. Sample surface was 0.1m2 for benthic and 0.6m2 (0.3m net8116

width × 2m sweep of the net) for demersal invertebrates.8117

Invertebrate densities were calculated for all samples and could then8118

be used to estimate mean densities per site, season and/or lakes.8119

Plankton density in each sample was first expressed as the number of8120

individuals per m3 of water filtered by dividing the number of8121

individuals captured in a sample by the volume of the sample8122

(0.15m3; 0.25m net diameter and 3m net tow). Density per m3 was8123

then converted to density per m2 by projection of the number of8124

individuals per plankton taxon contained in 1m3 of lake water onto8125

the flat surface necessary to contain that 1m3 of water according to8126

water depth at each sampling site.8127

Parasite populations are usually quantified as individuals per host8128

rather than per surface area. Here, we calculated parasite densities8129

(individuals per m2) to provide a common metric for all free-living8130

and parasite taxa. Also, because distinct life stages of parasites with8131

complex life cycles exploit completely different host species, we8132

estimated parasite densities separately for each life stage of these8133

parasites (trematodes, nematodes, acanthocephalans, etc.). Parasite8134

abundance (mean number of parasites per individual host) was first8135

calculated for each parasite taxon in each host species from dissection8136

data. Parasite abundance was then multiplied by host density8137

(number of hosts per m2) to obtain parasite density. Parasite densities8138

were also estimated in all individual samples. In the case of8139

trematode parasites in their snail host, we did not count each8140

individual redia or sporocyst as separate individual parasites, since8141

these are the product of clonal multiplication. All rediae or8142

sporocysts are issued from the same larva hatched from a single egg8143

and were considered as a single individual. Density of these life8144
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stages was thus estimated as the number of infected snail hosts per8145

m2.8146

Density of periphyton was calculated from the number of cells8147

counted in the volume of the subsample contained in a8148

Palmer-Maloney counting chamber (0.05ml). By multiplying the8149

number of periphyton cells found in the subsample by 1000 we8150

obtained an estimation of the number of cells in a whole sample.8151

That number was then divided by sampling surface (11.9cm2 for hard8152

substrate and 63.6cm2 for soft sediments) to obtain periphyton8153

density (cells per m2) in each sample. Mean density per site, season8154

and/or lake could then be estimated.8155

Density of birds was estimated per species from the number of8156

individuals identified during bird counting. Density (number of8157

individuals per m2) was thus calculated as the number of birds8158

counted per species divided by the area sampled. Area sampled8159

corresponded to the whole lake for Tomahawk Lagoon or circular8160

sector centred on each sampling site and delimited by two 150m8161

shoreline radii and an arc within which birds were counted.8162

Biomass8163

Biomass of organisms (mg fresh weight per m2) was calculated for all8164

taxa. For fish, only one biomass estimate could be calculated per site8165

in each season (4 biomass estimates per season in each lake) because8166

only one density estimate was obtained per site. First we calculated a8167

mean body mass for each fish species in each sampling site. Mean8168

body mass of each species was then multiplied by the species density8169

(number of individuals per m2) in the same sampling site, giving the8170

biomass of each species in each sampling site for all seasons and8171

lakes.8172

For invertebrates and parasites, biomass was simply the product of8173

the mean individual body mass of each taxon by the density (number8174

of individuals per m2) of that particular taxon in each sample. We8175

thus obtained biomass estimates for all individual samples.8176

Biomass of macrophytes was calculated as the mass of each species8177

(mg of fresh weight per sample) recovered in Surber nets during8178

benthic samples divided by the surface sampled (0.1m2 with Surber8179

nets). Since 6 replicates were taken in each site, a mean macrophyte8180

biomass per site could be calculated.8181
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Biomass of birds was calculated for each species as the product of the8182

density (number of individuals per m2) of each species observed at8183

each sampling site by the mean individual body mass obtained from8184

the literature.8185

Weighted trophic links8186

Because we recorded diet of predatory taxa both qualitatively and8187

quantitatively, we could calculate weighted trophic links. While the8188

diets of primary consumers were estimated from the literature and8189

the actual food sources available in each sampling site, stomach8190

contents recorded during dissections of predator taxa were used to8191

calculate the proportion of each prey taxon in the diet of predators,8192

both numerically and in terms of biomass/energy transfer. First, we8193

calculated the proportional contribution of each resource taxon, in8194

terms of biomass, to the total diet of a consumer taxon, and assigned8195

a fraction (between 0 and 1) to each resource-consumer link such that8196

the sum of all trophic links toward any consumer species equalled 1.8197

This was done for all consumers.8198

The diet of grazers and detritivores could not be quantified from8199

stomach contents. Instead, we assumed that the diet of grazers8200

consisted of a mixture of periphyton taxa proportional to their local8201

abundance at the site and season of sampling. The diet of detritivores8202

was assumed to consist entirely of detritus (not measured in the8203

present study).8204

Many of the top predators in the 4 lake food webs considered here8205

are birds. Because we were not allowed to sample birds, we used8206

published information on their diet (O’Donnell, 1982; Sagar, P.M.,8207

Schwarz, A.-M., Howard-Williams, 1995; Wakelin, 2004) to establish8208

the relative composition of their diet in terms of the main groups of8209

fish or invertebrates or macrophytes. We assumed the diet of the8210

birds at out study site matched that of the same bird species studied8211

elsewhere, and used (where necessary) the species available locally to8212

reconstruct the most likely diet of each bird species.8213

The ‘diet’ of each parasite taxon consists of the range of host species8214

they use. For host-specific parasites, i.e., those occurring in only one8215

host species at a given stage of their life cycle, the diet consists only8216

of that host (a single trophic link of value 1 going to the parasite). For8217

parasite species or life stages using more than one host species, we8218

calculated the proportional contribution of each host taxon, in terms8219

of the proportion of the parasite population harboured by each host,8220
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to the total diet of the parasite. Each link from a particular host was8221

then assigned a fraction (between 0 and 1) such that the sum of all8222

trophic links toward any parasite equalled 1.8223

Finally, many parasites are consumed by non-host predators that8224

capture and eat their current host, a phenomenon known as8225

concomitant predation on parasites. This creates trophic links in8226

which these parasites become resources for the non-host predators.8227

From stomach content analysis of all predator taxa, we estimated the8228

contribution of concomitant predation on parasites to each predator’s8229

diet. Furthermore, we determined whether parasites consumed by8230

non-host predators were digested and thus assimilated to the8231

predator’s diet or simply lost in the faeces without being digested;8232

trematode metacercariae protected by thick cysts are often passed8233

through the faeces intact and should not be included in the8234

predator’s diet. For each parasite life stage of each species, the mean8235

number of parasites per prey item was multiplied by the mean8236

number of individual prey consumed by unsuitable hosts for that8237

parasite. For parasites actually digested by the predator, after8238

converting this number of parasites eaten into biomass, these new8239

links were added to the more traditional prey-predator links going to8240

a consumer, and as above assigned a fraction (always very small)8241

representing their contribution to the total diet of the consumer.8242



293

Potential host taxa for parasite life stages8243

Table S6.2: Potential host taxa for the parasite life stages observed in this dataset.
For each life stage, we identify the host taxa for both the focal life stage and
the next life stage in the parasite life cycle. If the next life stage is free-living or
the current life stage is the adult ( final) stage in the parasite’s life cycle, there
are no future hosts (indicated by a ‘-’). In our null model which accounted
for parasites’ host specificity, only those links where the prey was a potential
current host and the predator was a potential future host were included as
possible “transmission” links; links where the prey was a potential current host
but the predator was not a potential future host were considered possible “loss”
links; and all other links were categorised as “unused” (see Material and Methods,
Chapter 6 for details).
Parasite Life stage Host for focal stage Host for next stage
Acanthocephalus galaxii Cystacanth Amphipod Fish
Acanthocephalus galaxii Adult Fish -
Anisakidae sp. Larva Unknown Fish
Apatemon sp. Metacercaria Fish Bird
Apatemon sp. Sporocyst Gastropod -
Aporocotylid sp. I Sporocyst Gastropod -
Coitocaecum parvum Metacercaria Amphipod or Mysid Fish
Coitocaecum parvum Sporocyst Gastropod -
Coitocaecum parvum Adult Fish -
Deretrema sp. Adult Fish -
Eustrongylides sp. Larva Fish Bird
Gymnocephalous sp. I Redia Gastropod -
Hedruris spinigera Larva Amphipod Fish
Hedruris spinigera Adult Fish -
Hydracarina sp. Larva Insects (aquatic) -
Lepocreadiidae sp. Metacercaria Leech Bird
Maritrema poulini Metacercaria Amphipod or Isopod Bird
Maritrema poulini Sporocyst Gastropod -
Microphalloidea sp. Metacercaria Trichoptera Bird
Microphallus livelyi Metacercaria Gastropod Bird
Microphallus sp. Metacercaria Amphipod or Isopod Bird
Neoechinorhynchus sp. Adult Fish -
Notocotylus sp. Metacercaria Mollusc Bird
Notocotylus sp. Redia Gastropod -
Plagiorchioid sp. Sporocyst Gastropod -
Pronocephaloid sp. I Metacercaria Mollusc Bird
Pronocephaloid sp. I Redia Mollusc -
Pronocephaloid sp. IV Metacercaria Mollusc Bird
Pronocephaloid sp. IV Redia Mollusc -
Stegodexamene anguillae Metacercaria Fish Fish
Stegodexamene anguillae Redia Mollusc -
Stegodexamene anguillae Adult Fish -
Telogaster opisthorchis Metacercaria Fish Fish
Telogaster opisthorchis Redia Mollusc -
Telogaster opisthorchis Adult Fish -
Tylodelphys sp. Metacercaria Fish Bird
Virgulate sp. I Sporocyst Mollusc -
Unidentified “Apatemon sp.” Metacercaria Odonate Bird
Unidentified cestode sp. Larva Fish Bird
Unidentified nematode sp. Adult Fish -
Unidentified trematode sp. Metacercaria Mollusc Bird
Unidentified trematode sp. A Adult Fish -
Unidentified trematode sp. B Adult Fish -
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S6.2: Supplemental methods and results for links’ structural8244

properties8245

Methods8246

In addition to calculating each link’s centrality, we also defined their8247

structural roles to get a richer picture of the ways in which species8248

are embedded in their networks. These roles describe the link’s8249

position in the network in terms of “motifs”— unique patterns of 38250

interacting species that can be understood as the building blocks of8251

networks (Milo et al., 2002; Kashtan et al., 2004; Stouffer et al., 2007).8252

Each motif has different implications for the flow of energy and8253

biomass through the network (Stouffer et al., 2007; Stouffer and8254

Bascompte, 2010). For example, the populations of three species in a8255

direct competition motif (two predators with one prey) will affect8256

each other differently from those of the three species in an apparent8257

competition motif (two prey with one predator). Moreover, each8258

unique position in each motif has different implications (Cirtwill and8259

Stouffer, 2015). For example, in the omnivory motif the top predator8260

consumes both an intermediate consumer and a basal species that is8261

also eaten by the intermediate consumer, and each of these links will8262

almost certainly provide the top predator with different amounts of8263

biomass and energy, and the top predator will in turn affect the8264

intermediate and basal species differently. By tracking the frequency8265

with which a link appears in each position in each motif, we thereby8266

obtain a rich picture of the way each link is embedded in the8267

network.8268

To calculate a link’s structural role, therefore, we counted the8269

frequency with which the link appears in each of the 24 unique8270

positions in the 3-species motifs. We were interested in comparing8271

the shapes of links’ roles rather than their sizes (i.e., the number of8272

times the link appeared across all motifs). To ensure that different8273

role sizes did not influence our analyses, we normalised each role8274

vector by dividing by the total number of positions in which the link8275

appears.8276

After obtaining these normalised role vectors for each link, we tested8277

whether links with different outcomes had different typical roles. We8278

first visualised the median roles for each outcome using a canonical8279

correspondence analysis conducted using the function cca from the8280

package vegan (Oksanen et al., 2014) in R (R Core Team, 2014). The8281

median roles for each outcome as determined by this analysis8282

describe the outcomes’ “typical” roles. This visualisation is8283

equivalent to the Tukey’s HSD tests performed for the univariate8284
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properties above. We then statistically compared these typical roles8285

with a non-parametric permutational multivariate analysis of8286

variance (PERMANOVA Anderson, 2001) by using the adonis8287

function from the package vegan (Oksanen et al., 2014) in R (R Core8288

Team, 2014).8289

Like our modified ANOVA in Chapter 6, the PERMANOVA compares8290

between-group differences to within-group differences following a8291

pseudo-F statistic (Anderson, 2001). As when testing for correlations8292

between links’ roles and other structural or dynamic properties, we8293

defined differences between links’ roles using Bray-Curtis8294

dissimilarity, calculated using relative frequencies of positions within8295

each role (see above). Once again, we did not assume a particular8296

distribution of the data and computed p-values from null8297

distributions based on permutations of the data (Anderson, 2001). As8298

in our modified ANOVA tests, we used both the unrestrictive and8299

taxonomically-informed null models.8300

Results8301

Links with different outcomes were associated with different8302

structural roles, whether we used the unrestrictive or the8303

taxonomically-informed null model (F2,42019=126.5, p<0.001 in both8304

cases). Transmission links, on average, had more positive values on8305

both axes than loss links, and loss links in turn had more positive8306

values on both axes than unused links (Fig. S6.5A).8307

To put these results into context, positive values of the first RDA axis8308

were most strongly associated with frequent participation in the8309

direct competition motif, where one prey has two predators, followed8310

by the lower link in a three-species food chain (Fig. S6.5B). Negative8311

values of this axis were strongly associated with frequent8312

participation in the apparent competition motif, where one predator8313

has two prey. Positive values of the second RDA axis were associated8314

with frequent participation in both direct and apparent competition,8315

while negative values were associated with both links in a8316

three-species food chain. These motifs were more strongly associated8317

with the RDA axes than any others by at least an order of magnitude.8318

Transmission links therefore tended to appear more frequently in the8319

bottom of food chains and in direct competition links.8320
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Figure S6.5: Feeding links between
free-living species with different
outcomes for parasites also had
different structural roles. A) For each
outcome, we show the median role
across all parasite life stages (±2SE)
with respect to the first two axes of
a redundancy analysis that, together,
explain 76.5% of variation in links’
structural roles. B) We also show the
four structural role positions that were
most strongly associated with the two
RDA axes. The dashed box indicates
the location of panel A, while the
lines indicate the strict relationship
between the frequency of each position
(highlighted in black) and the two RDA
axes. Note that all four lines extend
far beyond the borders of panel B. The
four positions were: the single unique
position in the direct competition motif
(top right), the single unique position
in the apparent competition motif (top
left), the upper link in the three-species
food chain (bottom centre, black link),
and the lower link in the three-species
food chain (bottom right, black link).
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S6.3: Results of model selection8321

Table S6.3: AIC scores for CCAs of outcomes of links for parasites against
different combinations of dynamic and structural properties. In the table below,
an ‘X’ indicate that a property was included in the model. The models have been
ranked from lowest to highest AIC. A line separates the best two models from
those with AIC’s significantly greater (∆AIC>2) than the most parsimonious
model.

Model
Properties

AIC scoreContribution to Prey Prey Biomass Centrality
predator’s diet abundance biomass transfer

1 X X X X 18151.36

2 X X X X X 18152.12

3 X X X 18154.81

4 X X X X 18155.54

5 X X X 18179.01

6 X X X X 18180.02

7 X X 18184.66

8 X X X 18185.60

9 X X X 18562.44

10 X X X X 18563.40

11 X X 18566.94

12 X X X 18567.89

13 X X 18595.06

14 X X X 18596.25

15 X 18600.21

16 X X 18601.35

17 X X X X 18894.91

18 X X X 18900.35

19 X X X 18989.52

20 X X 18995.31

21 X X X 19192.71

22 X X 19198.19

23 X X 19311.62

24 X 19318.33

25 X X X 19451.30

26 X X 19459.78

27 X X 19565.75

28 X 19570.78

29 X X 19803.15

30 X 19811.87

31 X 19947.92

32 19953.55
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S6.4: Testing for correlations between link properties8322

Methods8323

To control for the possibility that relationships between outcomes of8324

feeding links and dynamic properties might be similar because of8325

hidden relationships between the properties, we first tested for8326

correlations between them. We did this using the R (R Core Team,8327

2014) function cor.test from the stats package (R Core Team, 2014).8328

When testing for correlation between links’ contributions to8329

predators’ diets and the amount of biomass they transfer, we8330

included all links (n=2160). When testing for correlations between8331

prey biomass or prey abundance and any other property, however,8332

we restricted our sample to those links where the local prey biomass8333

(n=1627) or abundance (n=1464) could be estimated.8334

We also tested for correlations between links’ structural roles and the8335

other predictors. To do this, we performed a series of non-parametric8336

t-tests for multivariate independence, using the function dcor.ttest in8337

the R (R Core Team, 2014) package energy (Rizzo and Szekely, 2014).8338

Once again, we included only those links where biomass or8339

abundance had been estimated when testing for correlations8340

involving prey biomass or abundance. This function tests for8341

correlations between the inter-point distances in two datasets. In our8342

case, these were the sets of structural roles for each link and the set of8343

links’ contributions to predators’ diets (or any other univariate8344

predictor we considered). We defined differences between links’ roles8345

using Bray-Curtis dissimilarity (Anderson, 2001; Baker et al., 2015;8346

Cirtwill and Stouffer, 2015) since it measures differences between8347

roles based only on positions in which at least one of the links8348

appears. That is, this dissimilarity is not affected by “double zeros”8349

such that links which appear in few positions are not considered8350

more similar to each other due to the large number of shared zeros8351

frequencies. We also wished to avoid a situation in which two links8352

involved in different numbers of positions would be interpreted as8353

having different roles even if they occurred with the same frequencies8354

across all positions; we therefore calculated the dissimilarities based8355

on positions’ relative frequencies (that is, the number of times a link8356

appears in a position divided by the number of times it appeared in8357

any position). As all of the other properties we tested were univariate8358

and Bray-Curtis dissimilarity could not be used, we calculated8359

Euclidean distances between links for these properties.8360
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Results8361

As we expected, there were significant correlations among many of8362

the dynamic properties we investigated. The contribution of a link to8363

the predator’s diet was significantly and positively correlated with8364

the local abundance of the prey species (R2=0.073, p=0.005), the local8365

biomass of the prey species (R2=0.198, p<0.001), and the amount of8366

biomass transferred along the link (R2=0.238, p<0.001). However, not8367

all of these properties were correlated amongst themselves. In8368

particular, prey abundance and prey biomass were not significantly8369

correlated with the amount of biomass transferred along a link8370

(R2=0.016, p=0.537 and R2=0.024, p=0.326, respectively). Prey8371

abundance and biomass were strongly correlated with each other8372

(R2=0.521, p<0.001). It is worth noting that, even though many of8373

these properties were significantly correlated, the correlations tended8374

to be both weak and potentially non-linear (Fig. S6.2). We therefore8375

present the results for each property separately.8376

Centrality was significantly and positively correlated with the8377

contribution of a link to the predator’s diet, the abundance of the8378

prey, and the amount of biomass transferred along a link (R2=0.088,8379

p<0.001; R2=0.071 , p=0.007; and R2=0.133, p<0.001, respectively; Fig.8380

S6.3). Centrality was not, however, correlated with prey biomass8381

(R2=0.030, p=0.227). Links’ structural roles, meanwhile, were strongly8382

correlated with each of the link’s contribution to the predator’s diet,8383

the biomass of the prey, the abundance of the prey, and the amount8384

of biomass transferred along a link (t2158=685, p<0.001; t1625=57.9,8385

p<0.001; t1462=69.5, p<0.001; and t2158=69.5, p<0.001, respectively).8386

Finally, centrality and link’s structural roles were also significantly8387

correlated t2158=35.4, p<0.001). Once again, however, the correlations8388

between centrality and dynamic properties were weak and non-linear,8389

while the linearity of correlations between structural roles and other8390

properties is difficult to assess. We therefore present all results8391

independently but note the potential for confounding effects between8392

properties.8393
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Figure S6.2: The contribution of a
feeding link to the predator’s diet
was positively correlated with the
local abundance and biomass of the
prey (p<0.001 in both cases) and with
the amount of biomass transferred
along the link (p<0.001). Likewise,
prey abundance was correlated with
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however, was not correlated with the
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(p<0.001), the abundance of the prey
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S7.1. Supplemental results: biomass of trophically transmitted8490

parasites8491
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Figure SA.1: Marginal effects of the
proportion of intermediate host prey
in the diet of fish hosts on the total
biomass of trophically-transmitted
parasites in individual hosts in the four
parasite-fish host taxon combinations
for which models could be fitted;
(A) Hedruris spinigera in Aldrichetta
forsteri, (B) Coitocaecum parvum in
Perca fluviatilis, (C) Eustrongylides sp.
in Gobiomorphus cotidianus and (D) C.
parvum in G. cotidianus. Intermediate
host prey taxa are also identified
within each panel. Marginal effects
are obtained by summing the effect of
proportion of intermediate host with
the effect of the interaction between
fish host mass and proportion of
intermediate hosts across the observed
range of fish host masses. We show
mean marginal effects (black lines) with
95% confidence intervals (grey). See
Fig. A1, Appendix for details about the
interpretation of marginal effects.

In general, relationships between parasite biomass and proportions of8492

intermediate hosts in the diet of fish hosts were similar to the8493

relationships with parasite abundances described above (Fig. S7.1).8494

The main distinction was that, unlike the abundance of H. spinigera in8495

A. forsteri, the biomass of the parasite did not vary significantly with8496

the proportion of P. excavatum in the fish’s diet, and there was no8497

significant interaction with the size of A. forsteri (β2 = 758, P = 0.607;8498

β3 = -560, P = 0.456). As such, host diet did not affect the biomass of8499

H. spinigera for A. forsteri of any size (Fig. S7.1A; Table S7.2). Also8500

unlike abundance, the biomass of Eustrongylides sp. in G. cotidianus8501

increased with the proportion of intermediate hosts in the fish’s diet8502

(β2 = 2.96, P<0.001). However, there was no significant interaction8503

with fish host size (β3 = 0.009, P = 0.874) and the high degree of8504

variance associated with this interaction meant that, overall, the8505

biomass of Eustrongylides sp. did not vary with the diet of G.8506

cotidianus (Fig. S7.1C). More similarly, neither the biomass of C.8507

parvum in P. fluviatilis nor the biomass of C. parvum in G. cotidianus8508

varied with the proportion of intermediate hosts in the fishes’ diets8509

(β2 = -2.80x10−4, P = 0.960 and β2 = -0.029, P = 0.557; β3 = -0.048, P =8510

0.434, respectively). Further, there were no significant interactions8511

between proportions of intermediate hosts and fish host size (β3 =8512

2.09x10−6, P = 0.999 and β4 = 0.038, P = 0.906; β5 = 0.134, P = 0.676).8513

Therefore there was no overall effect of the proportion of either8514

intermediate host on C. parvum biomass (Fig. S7.1B, D; Table S7.2).8515
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Table SA.1: Geographical locations and characteristics of the four lakes sampled
for G. cotidianus (South Island of New Zealand).

Lake
GPS
coordinates

Surface
area
(km2)

Depth (m)
Mean - Max

Altitude
(m)

Trophic
status

Tidal

Hayes
44◦58’59.4"S
168◦48’19.8"E

2.76 3.1 - 33 329 Mesotrophic No

Tuakitoto
46◦13’42.5"S
169◦49’29.2"E

1.32 0.95 - 3 5 Mesotrophic Yes

Waihola
46◦01’14.1"S
170◦05’05.8"E

6.35 1.3 - 2.2 4 Eutrophic Yes

Tomahawk
Lagoon

4◦54’06.0"S
170◦33’02.2"E

0.096 1.0 - 1.2 15 Eutrophic No

Table SA.2: Estimated fixed effects in equation 3 (with P-values in parentheses). β1 indicates the
effect of fish host mass on the biomass of the parasite, β2 and β3 the effects of the proportions of two
intermediate hosts in the diet of the fish host, and β4 and β5 the effects of the interaction between
proportion of intermediate host and fish host mass. NA indicates that only one intermediate host
was found in the gut contents of the fish host. Estimates are based on averages over the full equation
2 and all possible reduced models, weighted by AIC.

Fish host Parasite β1 β2 β3 β4 β5

Aldrichetta Hedruris 14.0 758 NA -560 NA
forsteri spinigera (0.224) (0.607) (0.456)
Perca Coitocaecum 0.003 -2.80x10−4 NA 2.09x10−6 NA
fluviatilis parvum (0.823) (0.960) (0.999)
Gobiomorphus Eustrongylides 2.96 0.036 NA 0.009 NA
cotidianus sp. (<0.001) (0.775) (0.874)
Gobiomorphus Coitocaecum 0.004 -0.029 -0.048 0.038 0.134

cotidianus parvum (0.948) (0.557) (0.434) (0.906) (0.676)

Table SA.3: Estimated fixed effects in equation 2 (with P-values in parentheses) where proportions
of intermediate hosts were determined using masses of intermediate hosts. β1 indicates the effect
of fish host mass on the abundance of the parasite, β2 and β3 the effects of the proportions of two
intermediate hosts in the diet of the fish host, and β4 and β5 the effects of the interaction between
proportion of intermediate host and fish host mass. NA indicates that only one intermediate host
was found in the gut contents of the fish host. Estimates are based on averages over the full equation
2 and all possible reduced models, weighted by AIC.

Fish host Parasite β1 β2 β3 β4 β5

Aldrichetta Hedruris 0.208 44.6 NA 0.991 NA
forsteri spinigera (<0.001) (0.002) (0.898)
Perca Coitocaecum 0.113 0.007 NA 0.024 NA
fluviatilis parvum (0.839) (0.991) (0.964)
Gobiomorphus Eustrongylides 0.438 0.287 NA 0.028 NA
cotidianus sp. (<0.001) (0.075) (0.725)
Gobiomorphus parvum 0.131 -0.847 1.07 6.10 -4.41

cotidianus parvum (0.191) (0.358) (0.229) (0.250) (0.405)
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Table SA.4: Estimated fixed effects in equation 3 (with P-values in parentheses) where proportions
were determined based on the masses of each intermediate host. β1 indicates the effect of fish host
mass on the biomass of the parasite, β2 and β3 the effects of the proportions of two intermediate
hosts in the diet of the fish host, and β4 and β5 the effects of the interaction between proportion of
intermediate host and fish host mass. NA indicates that only one intermediate host was found in
the gut contents of the fish host. Estimates are based on averages over the full equation 2 and all
possible reduced models, weighted by AIC.

Fish host Parasite β1 β2 β3 β4 β5

Aldrichetta Hedruris 10.4 2.88x103 NA 3.45x102 NA
forsteri spinigera (0.415) (0.632) (0.287)
Perca Coitocaecum 0.003 -2.62x10−4 NA 1.79x10−6 NA
fluviatilis parvum (0.823) (0.962) (0.998)
Gobiomorphus Eustrongylides 3.27 5.19 NA 1.49 NA
cotidianus sp. (<0.001) (<0.001) (0.138)
Gobiomorphus parvum 0.042 -0.273 0.442 4.83 -4.38

cotidianus parvum (0.571) (0.694) (0.516) (0.320) (0.365)

Table SA.5: Estimated fixed effects in equation 2 (with P-values in parentheses) using absolute
counts of intermediate hosts consumed rather than proportions. β1 indicates the effect of fish host
mass on the abundance of the parasite, β2 and β3 the effects of the counts of two intermediate
hosts in the diet of the fish host, and β4 and β5 the effects of the interaction between number
of intermediate host individuals consumed and fish host mass. NA indicates that only one
intermediate host was found in the gut contents of the fish host. Estimates are based on averages
over the full equation 2 and all possible reduced models, weighted by AIC.

Fish host Parasite β1 β2 β3 β4 β5

Aldrichetta Hedruris 0.130 1.18 NA 0.549 NA
forsteri spinigera (<0.001) (<0.001) (0.002)
Perca Coitocaecum 0.095 5.76 NA -2.77 NA
fluviatilis parvum (0.922) (0.885) (0.993)
Gobiomorphus Eustrongylides 0.411 0.007 NA -0.009 NA
cotidianus sp. (<0.001) (0.842) (0.889)
Gobiomorphus Coitocaecum 0.891 0.842 -0.156 4.59 -0.423

cotidianus parvum (<0.001) (0.187) (<0.001) (0.013) (0.015)

Table SA.6: Estimated fixed effects in equation 3 (with P-values in parentheses) using absolute
counts of intermediate hosts consumed rather than proportions. β1 indicates the effect of fish host
mass on the abundance of the parasite, β2 and β3 the effects of the counts of two intermediate
hosts in the diet of the fish host, and β4 and β5 the effects of the interaction between number
of intermediate host individuals consumed and fish host mass. NA indicates that only one
intermediate host was found in the gut contents of the fish host. Estimates are based on averages
over the full equation 2 and all possible reduced models, weighted by AIC.

Fish host Parasite β1 β2 β3 β4 β5

Aldrichetta Hedruris 8.43 78.9 NA 48.5 NA
forsteri spinigera (0.212) (0.076) (0.222)
Perca Coitocaecum 0.003 0.025 NA -9.42x10−4 NA
fluviatilis parvum (0.824) (0.933) (0.999)
Gobiomorphus Eustrongylides 2.91 0.106 NA -0.225 NA
cotidianus sp. (<0.001) (0.809) (0.823)
Gobiomorphus Coitocaecum 0.081 0.017 -9.14x10−4 0.003 2.16x10−4

cotidianus parvum (0.388) (0.903) (0.911) (0.974) (0.974)
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