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Abstract 13 

Reliable projections of discharge and sediment are essential for future water and sediment 14 

management plans under climate change, but these are subject to numerous uncertainties. This 15 

study assessed the uncertainty in flow and sediment projections using the Soil and Water 16 

Assessment Tool (SWAT) associated with three Global Climate Models (GCMs), three 17 

Representative Concentration Pathways (RCPs) and three model parameter (MP) sets for the 3S 18 

Rivers in the Mekong River Basin. The uncertainty was analyzed for the near-term future (2021-19 

2040 or 2030s) and medium-term future (2051-2070 or 2060s) time horizons. Results show that 20 

dominant sources of uncertainty in flow and sediment constituents vary spatially across the 3S 21 

basin.  For peak flow, peak sediment, and wet seasonal flows projection, the greatest uncertainty 22 

sources also vary with time horizon.  For 95% low flows and for seasonal and annual flow 23 

projections, GCM and MP were the major sources of uncertainty, whereas RCPs had less of an 24 

effect. The uncertainty due to RCPs is large for annual sediment load projections. While model 25 

parameterization is the major source of uncertainty in the short term (2030s), GCMs and RCPs 26 

are the major contributors to uncertainty in flow and sediment projections in the longer term 27 

(2060s).  Overall, the uncertainty in sediment load projections is larger than the uncertainty in 28 

flow projections. In general, our results suggest the need to investigate the major contributing 29 

sources of uncertainty in large basins temporally and at different scales, as this can have major 30 

consequences for water and sediment management decisions. Further, since model 31 

parameterization uncertainty can play a significant role for flow and sediment projections, there 32 
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is a need to incorporate hydrological model parameter uncertainty in climate change studies and 33 

efforts to reduce the parameter uncertainty as much as possible should be considered through a 34 

careful calibration and validation process. 35 

Key words: Flow; Sediment; Climate change; Uncertainty; Mekong 36 

1. Introduction 37 

Reliable projections of discharge and sediment are essential for successful and efficient water 38 

and sediment management plans. Implementation of such plans considering the changing climate 39 

requires an understanding of uncertainty in model projections. Estimating the uncertainty and 40 

presenting the range of hydrologic projections is thus critical to managing resources under a non-41 

stationary hydrologic regime (Cameron et al., 2000; Maurer, 2007; Milly et al., 2008 as cited by 42 

Surfleet and Tullos, 2013). There are various sources of uncertainty related to climate change 43 

predictions: (a) the use of Global Climate Models (GCMs) which includes several levels of 44 

uncertainty, from lack of knowledge regarding future emissions of greenhouse gases and 45 

differing responses of GCMs to greenhouse gases, to uncertainty added by the downscaling used 46 

to translate large-scale GCMs to local scales or finer resolution (Maurer, 2007); (b) uncertainty 47 

in land use change, which is often overlooked and could play a major role in the overall 48 

uncertainty of climate change impacts on hydrology (Bennett et al., 2012); and (c) uncertainty 49 

due to hydrological and sediment modeling (Surfleet and Tullos, 2013). Several studies have 50 

characterized the uncertainties in flow projection under climate change. For instance, Kay et al. 51 

(2009) and Chen et al. (2011) investigated the uncertainties originating from greenhouse gas 52 

emission scenarios (GHGES), GCMs, GCM initial conditions, downscaling techniques, 53 

hydrological model structures and hydrological model parameters, suggesting that GCM 54 

structure is the largest source of uncertainty. For the Mekong River specifically, Thompson et al. 55 

(2013) assessed the uncertainty in river flow projections using seven GCMs and three 56 

hydrological models, finding that the choice of GCM is the major uncertainty contributor. In 57 

California, Maurer (2007) analyzed uncertainty in hydrologic impacts of climate change and 58 

concluded that future emissions scenarios play a significant role in the degree of impacts to water 59 

resources. Najafi et al. (2011) assessed the uncertainties associated with statistically downscaled 60 

outputs from eight GCMs, two emission scenarios, and four hydrologic models. Their results 61 
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show that the hydrologic model uncertainty is considerably smaller than GCM uncertainty, 62 

except during the dry season, suggesting that the selection of hydrologic model is critical when 63 

assessing the hydrologic climate change impact. Others have investigated the uncertainty in 64 

downscaling techniques. For instance, Khan et al. (2006) compared three downscaling methods 65 

(SDSM, LarsWG and ANN) and showed the significant uncertainties in the downscaled daily 66 

precipitation, and daily maximum and minimum temperatures.  Although different conclusions 67 

were drawn about the contribution of downscaling techniques and hydrologic models to 68 

uncertainty, GCMs and emission scenarios are generally considered to be the two major 69 

dominant sources of uncertainty in quantifying the climate change impacts on flows (Chen et al., 70 

2011).  71 

The assessment of hydrological model uncertainty is of major importance in hydrologic and 72 

sediment modeling (Jiang et al., 2007). It is also essential to advance our understanding of 73 

catchment processes (Clark et al., 2011). Traditionally, uncertainties associated with hydrologic 74 

models have been considered less important than other sources of uncertainties in climate change 75 

impact studies. However, in recent years, the hydrologic community has redirected efforts to 76 

better understand the effects of hydrologic modeling approaches to the assessment of climate 77 

change impacts (Mendoza et al., 2015). Generally, there are three principal sources of model 78 

uncertainty: errors with input and calibration, imperfection in model structures, and uncertainty 79 

in model parameters (Refsgaard and Storm, 1996). Model parameters that require calibration 80 

have an embedded degree of uncertainty (Kay et al., 2009). Parameter uncertainty has been 81 

demonstrated to be more important than model structure uncertainty or other model-based 82 

uncertainties (Chen et al., 2013; Mendoza et al., 2015). The uncertainty associated with model 83 

parameters should be taken into account for climate change impact analysis as they might have 84 

significant impacts on river flows in different hydrological years (Zhang et al., 2013). One way 85 

to study model parameter uncertainty is by calibrating a model using different optimal objective 86 

functions (e.g Gädeke et al., 2014; Najafi et al., 2011). Using a different measure of fit (objective 87 

function), will likely result in different calibrated parameter values, which is particularly true 88 

where there is any sort of interdependence between parameters (Kay et al., 2009). Models 89 

perform differently according to each distinct objective function, hence each model calibrated by 90 

different objective functions is treated separately (Najafi et al., 2011).   91 
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Previous contributions have clearly shown that quantifying the uncertainty at every step in the 92 

modelling process (cascading uncertainty) can address the challenge in quantitative assessment 93 

of climate change impacts on catchment hydrology considering the full range of uncertainties 94 

involved. However, most studies have generally focused on flow. There is still limited 95 

knowledge about the uncertainty in sediment projection due to future climate scenarios.  The 96 

actual response of sediment flux to future climate scenarios in a particular place can vary 97 

extensively because it is highly affected by the physical characteristics of the catchment and 98 

human activities in it (Berc et al., 2003; Zhang and Nearing, 2005). Further, assessing the 99 

uncertainty in flow and sediment projections is of particular importance to regions such as the 100 

Mekong in Southeast Asia where there is ongoing rapid development. A number of large, flow-101 

regulating dams have been built in recent decades, and over 135 dams are planned in the Mekong 102 

River (Cochrane et al., 2014). Development of dams along the main stem of the Mekong River is 103 

ongoing, but tributary dam development is proceeding at a faster pace.  Of main concern are the 104 

Sesan, Srepok, and Sekong (3S) subbasins, where an extensive network of hydropower projects, 105 

consisting of individual dams and cascade dams, are planned (Piman et al., 2013). Annual 106 

discharge from the 3S basin represents approximately 17-20% of the total annual flows of the 107 

Mekong main stream (91,000 x 106 m3 or an average of 2,886 m3/s), making it the largest 108 

tributary contribution to the Mekong River Basin and therefore of great hydrological importance 109 

(Adamson et al., 2009). The 3S basin is also a major contributing source of sediment in the 110 

Lower Mekong Basin (LMB). Annual sediment load from the 3S is estimated at 10 – 25 Mt 111 

(Kondolf et al., 2014), but proposed dams are expected to trap 40 – 80% (Kummu et al., 2010; 112 

Wild and Loucks, 2014). In addition, the 3S basin is critical for maintaining flooding regime, 113 

aquatic biodiversity and ecosystem services (fish habitats and migration routes) to the 114 

downstream Mekong floodplains (Arias et al., 2014; Ziv et al., 2012). Given the hydrological 115 

and ecological significance of the 3S basin, all dams (constructed, ongoing and future) need to be 116 

located, operated and managed in a way that minimizes disruptions to the natural flow regime 117 

and sediment fluxes. Changes to water flow and sediment may also alter future power production 118 

and reservoir sediment trapping efficiency. Thus, it is imperative that planners and decision-119 

makers have access to information on uncertainty in flows and sediment loads so these can be 120 

accounted for in the design of new dams and the operation of current and future reservoirs.   121 
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This study aims to investigate the uncertainty in flow and sediment projections associated with 122 

future climate scenarios and model parameterization for the 3S basin. Specifically, we evaluate 123 

three sources of uncertainty: uncertainty derived from use of (1) three different GCMs, (2) three 124 

emission scenarios and (3) three sets of fitted/calibrated model parameters based on three 125 

different objective functions. Uncertainty in land use change is not included in this study as it is 126 

the scope for further work.  Flow and sediment projections for two future time horizons: short 127 

term future (2021-2040 or 2030s) and long term future (2051-2070 or 2060s) are compared to 128 

the baseline period (1986-2005) using mean annual, seasonal (dry and wet), annual peak and 129 

95% low-flow metrics.  130 

2. Methods 131 

2.1 Study area 132 

The 3S basin, a conglomerate of the three transboundary basins of the Sekong, Sesan and Srepok 133 

Rivers, is located in the Lower Mekong region in Southeast Asia (Figure 1). The 3S basin covers 134 

a total area of 78,645 km2 of which 33% is in Cambodia, 29% is in Lao People’s Democratic 135 

Republic, and 38% is in Vietnam. The elevation of the basin ranges from 49 to 2360 m above the 136 

mean sea level. The monsoon-driven climate is characterized by a wet season (May to October) 137 

and a dry season (November to April). The average annual temperature ranges from 23 to 27 C.  138 

The basin receives about 2600 mm of average annual rainfall, 88% of which comes during the 139 

wet season. Acrisols (68%) and Ferralsols (12%) with sandy clay loam and clay texture are the 140 

dominant soils in the basin. Based on the 2003 land use map the basin was dominated by forest 141 

(77%), while agriculture covered nearly 11% of the total area. Table 1 provides details on basin 142 

characteristics, meteorology, and major soil and land use type for all three subbasins.  Readers 143 

are referred to the Supplementary materials for details on soil distribution and properties, and 144 

land use of the study area (Figures S1 and S2 and Table S1).    145 
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 146 

2.2 Hydrological and sediment modeling  147 

The Soil and Water Assessment Tool, SWAT (Arnold et al., 1998; Srinivasan et al., 1998), was 148 

used for simulating flows and sediment in the 3S basin because it is one of the most widely used 149 

watershed modeling tools, applied extensively for a broad range of water quantity and quality 150 

problems worldwide (Gassman et al., 2014). Apart from its proven ability to simulate flows and 151 

sediment, SWAT is already used by the Mekong River Commission (MRC) as part of the MRC’s 152 

modeling Toolbox (MRC, 2010). Between 2010 and 2011, a preliminary SWAT model was 153 

calibrated for the 3S basins using actual river flow and rainfall measurements from 1985 to 2006 154 

(MRC, 2011). Details on the SWAT model are provided in the Supplementary Materials. 155 

The main input data for the SWAT model consists of daily precipitation, maximum and 156 

minimum air temperatures, wind speed, humidity, solar radiation, and spatial data on DEM, land 157 

use and soil layers. All model input data were provided by the Information and Knowledge 158 

Management Programme (IKMP) of the MRC. The observed precipitation data provided by 159 

MRC are at the subbasin level. MRC uses the MQUAD program (Hardy, 1971) to interpolate 160 

and aggregate the observed precipitation data from stations to the subbasins. MQUAD estimates 161 

areal rainfall by calculating a multiquadratic surface from available point rain gauge data, such 162 

that the surface passes through all gauge points. For details on MQUAD readers are referred to 163 

Shaw and Lynn (1972).     164 

2.2.1 Model calibration, validation and performance evaluation 165 

The 3S SWAT model was calibrated (1985-2000) and validated (2001-2007) for daily 166 

streamflow at seven sites with observed data: Attapeu, Trung Nghai, Kontum, Cau 14, Ban Don, 167 

Lumphat and Stung Treng (See locations in Figure 1). The model was only calibrated (2005-168 

2008) for monthly sediment at three sites: Ban Don, Lumphat and the 3S basin outlet. For this 169 

study, the sediment load was calibrated, but not validated, because of the scarcity of data in the 170 

basin. There is a tradeoff between improving estimates using a longer data set for only 171 

calibration, versus using a shorter data set for calibration with additional validation. A study by 172 

Muleta and Nicklow (2005) suggests that relatively short calibration and validation periods can 173 

adversely affect hydrological model predictions. The model should perform well in the range of 174 

conditions for the calibration, but because of the lack of validation estimates may possibly not be 175 
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as good outside that range or time period, or for more extreme conditions. Hence, instead of 176 

splitting the short period of observed sediment data into calibration and validation periods, the 177 

whole set of observed data was used for calibration to improve model performance. There are 178 

several studies (for example Hanratty and Stefan, 1998; Shrestha et al., 2013) where calibration 179 

only was performed for improving sediment load estimates when short periods of observed data 180 

were available. Total suspended solids (TSS) measurements were available for the Lumphat and 181 

Bandon stations in the 3S basin, and for Pakse, Stung Treng and Kratie in the Mekong River 182 

(near the vicinity of the 3S basin outlet). Monthly sediment estimates were used to calibrate the 183 

model at Ban Don, Lumphat and 3S outlet. As no direct sediment measurements were made at 184 

the 3S outlet for the calibration/validation period, sediment loads at the 3S basin outlets (𝑆𝐸𝐷3𝑆) 185 

were approximated as follows:  186 

𝑆𝐸𝐷3𝑠 = 𝑇𝑆𝑆𝑆𝑡𝑢𝑛𝑔 𝑇𝑟𝑒𝑛𝑔 ∗ (𝑄𝑆𝑡𝑢𝑛𝑔 𝑇𝑟𝑒𝑛𝑔 − 𝑄𝑝𝑎𝑘𝑠𝑒)           (2.1) 187 

where 𝑇𝑆𝑆𝑆𝑡𝑢𝑛𝑔 𝑇𝑟𝑒𝑛𝑔  is the TSS concentrations in the Mekong River at Stung Treng, and 188 

𝑄𝑆𝑡𝑢𝑛𝑔 𝑇𝑟𝑒𝑛𝑔  and 𝑄𝑃𝑎𝑘𝑠𝑒  are the river flows along the Mekong at Stung Treng and Pakse, 189 

respectively.  190 

Equation 2.1 was used to overcome two major difficulties: (a) lack of long–term TSS monitoring 191 

at the 3S outlet, and (b) monthly TSS concentrations and computed sediment loads at the farthest 192 

upstream station in the study area (Pakse) are often larger than at the downstream stations Stung 193 

Treng and Kratie. This counter intuitive decrease in sediment loads downstream in the Lower 194 

Mekong has been risen as an issue before (Koehnken, 2012), and others have explained this 195 

phenomenon as a result of the overall deposition-dominated nature of the river channels in the 196 

lower Mekong (Lu et al., 2014). Mean monthly sediment loads for the three stations were 197 

estimated using the program LOADEST (Runkel et al., 2004). LOADEST estimates mean 198 

monthly sediment loads using rating curves developed from the best-fitted polynomial model and 199 

coefficients based on an Adjusted Maximum Likelihood Estimation Method. Due to 200 

unavailability of SSC data, TSS data were used for this study. TSS stands for Total Suspended 201 

Solids, an indicator primarily used for water pollution characterization and it is derived from 202 

filtering a small water subsample (100-250 mL) from a single grab sample collected at arm reach 203 

below the water surface in the middle of the river channel. SSC stands for Suspended Sediment 204 

Concentration, an indicator specifically scoped for natural waters, in which the full content of 205 
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relatively large samples (1-L normally) are obtained in order to represent the entire depth of the 206 

water body.  The difference between TSS and SSC decrease when the fraction of small particles 207 

is large (Gray et al., 2000). The suspended sediments in the Lower Mekong River are mainly 208 

composed of silt- and clay-sized particles (Walling, 2005). Koehnken (2012) indicated that the 209 

suspended sediments are mostly comprised of silt and clay downstream of Pakse and typically all 210 

of the suspended sediments are less than 63 μm in the Mekong at Kratie. In general suspended 211 

particles that are finer than 60 μm are uniformly vertically concentrated in rivers (Guy and 212 

Norman, 1970; Partheniades, 1977).  Thus, the difference between loads estimated with TSS and 213 

SC measurements in this part of the lower Mekong should not be expected to be as large as what 214 

others have found in the basin’s upper reaches upstream of Pakse (Walling, 2008).   215 

For the SWAT model, parameters are spatially designated at watershed, subbasin and 216 

Hydrological Response Unit (HRU: the lumped land area within the subbasin that comprise 217 

unique land cover, soil, slope and management combinations) levels; hence a two-stage 218 

calibration procedure was adopted in this study. First, the model was calibrated from upstream to 219 

downstream for parameters specified at subbasin and HRU levels. Second, once the parameters 220 

for subbasin and HRU levels were calibrated, they were kept unchanged and parameters 221 

specified at the watershed level were calibrated.  222 

The SWAT-CUP software (Abbaspour, 2008) was used for the automatic calibration of the 3S 223 

SWAT model. The user interaction or manual component of the SWAT-CUP calibration forces 224 

the user to obtain a better understanding of the overall hydrologic processes (e.g., baseflow 225 

ratios, evapotranspiration, sediment sources and sinks, crop yields, and nutrient balances) and of 226 

parameter sensitivity (Arnold et al., 2012). The Sequential Uncertainty Fitting (SUFI-2) 227 

algorithm (Abbaspour et al., 2004; Abbaspour et al., 2007) was used for the parameter 228 

optimization. SUFI-2 enables sensitivity analysis, calibration, validation, and uncertainty 229 

analysis of SWAT models. This algorithm is known to produce comparable results with widely 230 

used other auto-calibration methods (Yang et al., 2008). In order to run the automatic calibration 231 

in SUFI-2, the parameters to be calibrated (most sensitive ones) and their initial ranges (Table 2) 232 

were specified based on a literature review (Neitsch et al., 2011; Shrestha et al., 2013). In SUFI-233 

2 there are two ways to change parameter values during calibration: directly changing the 234 

absolute value of a parameter, and changing the absolute value relative to the initial value 235 
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specified for the parameter. Readers are referred to Abbaspour et al. (2007) for details of SUFI-2 236 

approach.  237 

The calibrated models were evaluated by comparing the simulated with the observed constituents 238 

using the Nash-Sutcliffe efficiency (NS), Coefficient of Determination (R2) and percent bias 239 

(PBIAS). NS and R2 are the most widely applied and well recommended performance measures 240 

(Masih et al., 2011), and PBIAS is also recommended as one of the measures that should be 241 

included in model performance reports (Moriasi et al., 2007). 242 

2.2.2 Model uncertainty: uncertainty in parameter estimation 243 

The final model parameter ranges are always conditioned on the form of the objective function 244 

(Abbaspour et al., 2004). The objective function used in the generation of the response surface 245 

(objective criteria) is crucial in the automatic calibration process (Gan et al., 1997).  To address 246 

the uncertainty in parameter estimation, three different objective functions were used to calibrate 247 

the 3S SWAT model. The three different objective functions were selected based on 248 

recommendations in the literature and options available in SWAT-CUP. During the automatic 249 

calibration process in the SWAT-CUP software using the SUFI-2 optimizing algorithm, the 250 

objective function and meaningful absolute minimum and maximum ranges for the parameters 251 

being optimized were defined initially. Parameters were then calibrated using a Latin Hypercube 252 

sampling procedure three times for each objective function; the first was derived from 1000 253 

simulations and the subsequent two were derived from 500 simulations.  Out of the best three 254 

resulting parameter sets, the parameter set that performed well for all performance indicators 255 

considered (NS, R2 and PBIAS) was chosen. As a result, three different model configurations 256 

were used in this study in order to assess the uncertainty in parameter estimation (Figure 2).  257 

Nash-Sutcliffe efficiency (NS)    258 

NS is a normalized statistic that determines the relative magnitude of the residual variance 259 

compared to the measured data variance (Nash and Sutcliffe, 1970). It indicates how well the 260 

plot of observed versus simulated data fits the 1:1 line.  NS is computed as:  261 

𝑁𝑆 = 1 −  
∑ (𝑄𝑚− 𝑄𝑠)𝑖

2
𝑖

∑ (𝑄𝑚,𝑖− �̅�𝑚)
2

𝑖

                   (2.2) 262 
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where 𝑄𝑚,𝑖 is the observed value (sediment load or flow) at time-step i, 𝑄𝑠 is the simulated value 263 

at time-step i, �̅�𝑚 is the mean observed value.  264 

NS is widely used (Gupta et al., 2009; Moriasi et al., 2007) and is the best objective function for 265 

reflecting the overall fit of a hydrograph (Servat and Dezetter, 1991). NS ranges between 266 

negative infinity to 1, where 1 shows a perfect model. Values between 0 and 1 are generally 267 

viewed as acceptable levels of performance.   268 

Ratio of Standard Deviation of Observations to Root Mean Square Error (RSR)  269 

RSR standardizes the Root Mean Square Error using the observations’ standard deviation. RSR 270 

incorporates the benefits of error index statistics and includes a scaling/normalization factor, so 271 

that the resulting statistics and reported values can apply to various constituents (Moriasi et al., 272 

2007).  RSR is calculated as: 273 

𝑅𝑆𝑅 =  
√∑ (𝑄𝑚− 𝑄𝑠)𝑖

2𝑛
𝑖=1

√∑ (𝑄𝑚− �̅�𝑚)2𝑛
𝑖=1

              (2.3) 274 

where 𝑄𝑚,𝑖 is the observed value at time-step i, 𝑄𝑠 is the simulated value at time-step i, �̅�𝑚 is the 275 

mean observed value, n is the total number of time-steps.  276 

RSR varies from 0 to larger positive values. The lower the RSR, the better the model fit.  277 

Mean square error (MSE) 278 

MSE measures the average of the squares of the errors. The equation for MSE is: 279 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑄𝑚 −  𝑄𝑠)𝑖

2𝑛
𝑖=1              (2.4) 280 

where 𝑄𝑚,𝑖 is the observed value at time-step i, 𝑄𝑠 is the simulated value at time-step i, n is the 281 

total number of time-steps.  282 

MSE is the most commonly used criteria for calibration and evaluation of hydrological models 283 

with observed data (Gupta et al., 2009). MSE varies from 0 to infinity. An MSE value of 0 284 

indicates a perfect fit.  285 
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In general, these objective functions tend to better fit the higher portions of the hydrograph at the 286 

expense of the lower portions to achieve a higher value of the objective function (Krause et al., 287 

2005).  288 

2.3 Future climate scenarios and downscaling technique 289 

2.3.1 GCMs and emission scenarios  290 

A previous study on selection of climate change scenarios for the Lower Mekong (MRC, 2015) 291 

found that in order to maximize the amount of uncertainty captured, climate change scenarios 292 

should be developed based on three GCMs (GISS-E2-R-CC, IPSL-CM5-MR and GFDL-CM3) 293 

and three emission scenario (referred to as Representative Concentration Pathways (RCPs)): 294 

RCP2.6 (low emissions), RCP6.0 (medium) and RCP8.5 (high). Further, these three GCMs are 295 

selected based on their satisfactory performance in simulating the most influencing climate 296 

processes in the Asian monsoon region (MRC, 2015).   Hence, for this study the aforementioned 297 

three GCMs and three RCPs are used (Table 3). Details of three RCPs used are provided in the 298 

Supplementary Materials (Table S2). 299 

The GCMs selected are part of the Coupled Model Intercomparison Project-5 (CMIP5) models, 300 

i.e. IPCC 5th Assessment Report GCMs. The CMIP5 models are newer, of higher resolution and 301 

more sophisticated than the older CMIP3, i.e. IPCC 4th Assessment Report GCMs (MRC, 2015). 302 

For rainfall of the East Asian monsoon, the CMIP5 models outperformed the CMIP3 models in 303 

terms of the interannual variability and intraseasonal variability (Sperber et al., 2013). The 304 

CMIP5 models are also superior to the older CMIP3 models in terms of utilizing the most up to 305 

date scientific information and computing technology (MRC, 2015).  306 

The two time horizons, short term future (2021-2040) and long term future (2051-2070), were 307 

used to produce climate change projections for the 3S basin.  These time horizons are critical for 308 

planning purposes and have been used in previous MRC work.  309 

2.3.2 Climate model downscaling 310 

The climate change projections dataset used for this study was provided by the MRC Climate 311 

Change and Adaptation Initiative (CCAI). This dataset includes SWAT model-ready monthly 312 

‘change factors’ for precipitation, temperature, solar radiation and relative humidity. MRC CCAI 313 

uses SimCLIM software to downscale the climate projections. SimCLIM is an integrated 314 
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assessment model that was originally developed to enable integrated assessments of the effects 315 

of climate change on New Zealand’s environment (Kenny et al., 1995). It is designed by CLIM 316 

systems, which uses projections of global mean temperature change and combines them with 317 

spatial patterns of change from GCM simulations to derive future climate projections for a range 318 

of variables at high spatial resolutions. SimCLIM employs pattern scaling plus bilinear 319 

interpolation to downscale the GCM outputs. Pattern scaling constructs future climate time series 320 

by linearly relating change in any variable (at any region or time in the future) with the change in 321 

global mean temperature for the corresponding GHG emission and time period. In pattern scaling 322 

for a given climate variable (𝑉), its anomaly ∆𝑉∗ for a particular grid cell i, month j and year or 323 

period y under an emission scenario is given by:  324 

∆𝑉𝑦𝑖𝑗
∗ =  ∆𝑇𝑦∆𝑉𝑖𝑗

′                (2.5) 325 

where ∆𝑇 is the change in annual global mean temperature and ∆𝑉𝑖𝑗
′  is the local change pattern 326 

value.  327 

∆𝑉𝑖𝑗
′  is calculated from the GCM simulation anomaly (∆𝑉𝑦𝑖𝑗)  using linear least squares 328 

regression as:  329 

∆𝑉𝑖𝑗
′ =

∑ ∆𝑇𝑦∆𝑉𝑦𝑖𝑗
𝑚
𝑦=1

∑ (∆𝑇𝑦)
2𝑚

𝑦=1

             (2.6) 330 

where m is the number of future 5-year sample periods used (i.e from 2006-2100, 19 periods in 331 

total).  332 

Pattern scaling is done at the GCM grid scale, hence it does not downscale.  Downscaled 333 

information is obtained by bilinear interpolation. This method interpolates the pattern scaled data 334 

from the original resolution (i.e the resolution of the GCM) to 0.5 x 0.5 grids which ensures 335 

consistency and allows comparison across the different GCMs, different time horizons, different 336 

emission scenarios, different variables, and with the baseline data.   337 

SimCLIM provides ‘change factors’ and ‘absolute projected values’ to quantify the projected 338 

alterations to the climate. Change factors are the differences between GCM future and GCM 339 

historical climate simulations while absolute projected values are the actual GCM future climate 340 

change simulations. MRC CCAI uses change factors to quantify the projected alterations to the 341 
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climate because the change factor approach represents the simplest and most practical way to 342 

produce scenarios based on multiple GCMs, emission scenarios, sensitivities, time horizons and 343 

locations (MRC, 2015).   344 

2.4 Uncertainty analysis 345 

The uncertainty analysis for this study is based on the methodology suggested by Chen et al. 346 

(2011). We used three different 3S SWAT model configurations (use of separate parameter 347 

solutions sets) for each of three GCMs and three RCPs combinations for a total of 27 simulations 348 

for each of two time horizons (Table 4).  The flow and sediment projections from the same 349 

source of uncertainty were first grouped and then averaged for a mean projection and compared 350 

with the baseline period (1986-2005). For instance, to investigate the uncertainty linked to 351 

GCMs, flow and sediment projections were grouped by GCMs (three GCMs), each group 352 

including flow and sediment projections from three emission scenarios and three model 353 

configurations.  354 

The mean flow and sediment loads for the baseline period were represented by the average of the 355 

simulations of the three model configurations for the baseline period. The ranges of difference 356 

between the future hydrologic projections resulting from the use of different GCM, RCP and MP 357 

as compared to the baseline are referred to as uncertainty due to GCM, RCP and MP, 358 

respectively. Five major hydrological parameters for flow (annual, dry, wet, peak and 95% low 359 

flows) and two parameters for sediment (total annual and peak sediments) were calculated to 360 

investigate each source of uncertainty.  361 

3. Results and discussion 362 

3.1 Calibration and Validation of the SWAT model  363 

The comparisons for the observed and model simulated discharge and sediment load show an 364 

overall good agreement in seasonal patterns with some discrepancies in peak events and 365 

interannual variability (Figure 3 and Figure 4). None of the model configurations (SWATNS, 366 

SWATRSR, SWATMSE) were able to capture peak flows for three stations (Kontum, Cau 14 and 367 

Ban Don; Figure 3), which might be attributed to precipitation data, potential errors in the 368 

observed stream flow data (especially during high flows), and inadequate representation of 369 
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natural or man-made processes in the model. Similarly, none of the model configurations were 370 

able to capture the peak sediment events (Figure 4). This mismatch in peak sediment may be due 371 

to uncertainty in the modified universal soil loss equation (MUSLE) used in SWAT. MUSLE 372 

tends to overpredict the sediment yields for small events and underpredict yields for large events 373 

(Jackson et al., 1986; Johnson et al., 1986). Further, high sediment yields during the wet season 374 

may be caused by effects that cannot be captured by the model; for instance, heavy (local) 375 

rainfall-induced landslides, river bank collapses or human activities. Moreover, the model’s poor 376 

capture of the interannual variability in sediment loads could be related to the uncertainty in 377 

sediment sampling itself, which for the dataset used to calibrate this model was done based on 378 

grab samples of suspended solids as opposed to detailed suspended sediment concentration data 379 

(Walling, 2008), which only began to be monitored very recently in the 3S and for which only 380 

one year of data are available at the 3S outlet (Koehnken, 2014). 381 

The performance of the 3S SWAT model for the three model configurations was also verified in 382 

terms of three different statistical parameters/indicators (Table 5 and Table 6). In general, the 383 

results indicate that all three model configurations performed satisfactorily with performance 384 

indicators within the expected range for SWAT applications in other data-scarce basins (Ndomba 385 

et al., 2008a; Ndomba et al., 2008b; Rostamian et al., 2008; Setegn et al., 2010; Shrestha et al., 386 

2013). To our knowledge, there is only one other SWAT application that has been calibrated for 387 

suspended sediments in the Mekong (Shrestha et al., 2013), and a comparison of calibration 388 

results (all R2 and NS values below 0.60) highlights the difficulty of accurately calibrating a 389 

sediment model in this basin. Assessment of the sediment flux of a river system is predominantly 390 

dependent upon the number and locations of measuring stations, the amount of available data, 391 

reliability, accuracy, the temporal resolution of the data, and, finally, the length of the records 392 

(Walling, 2008). A number of key SWAT parameters (for example, SPCON, SPEXP and PRF) 393 

can only have single values across the whole watershed; however, in a large watershed these 394 

parameters may vary considerably and this restriction could affect modeling performance (Gong 395 

et al., 2012). The PBIAS for flow tends to be higher in the validation period as compared to the 396 

calibration period, which might be due to over fitting of volume–sensitive parameters (Bennett et 397 

al., 2012), assumptions that the calibrated parameters are stationary (and valid for both 398 

calibration and validation periods), or not incorporating dynamic land cover.     399 
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Based on the visual and statistical performance indicators comparison, the overall performance 400 

of the models was not affected substantially when different objective functions were used for 401 

calibration.  The resulting range of selected parameters used for the model calibration is provided 402 

in the Supplementary Material (Figure S3).  403 

3.2 Climate change projections 404 

Projected changes in the seasonal (dry and wet) and annual temperature (differences) and 405 

precipitation (ratio) for the 3S basin are presented by GCMs and emission scenarios (RCP) to 406 

illustrate each source of uncertainty (Figure 5). Climate projections from the same source are 407 

first grouped and then averaged for a mean climate projection. Further, the changes were also 408 

calculated for the three subbasins (Sekong, Sesan and Srepok) to reflect the variability of 409 

projections across the 3S basin. Readers are referred to the Supplementary Material (Figure S4) 410 

for results at the subbasin level.  411 

All GCMs and RCPs show an increase in seasonal and annual temperature across the 3S basin, 412 

with similar variability in shifts for all subbasins, for future horizons.  In the case of precipitation 413 

for all subbasins, two GCMs (except GFDL-CM3) and RCPs suggest decreases in the mean dry 414 

season precipitation. In general, all projections show an increase in the wet season and annual 415 

precipitation over the 3S basin. However, for the Srepok subbasin, GISS-E2-R-CC GCM 416 

suggests a decrease in wet season and annual precipitation.  417 

In contrast to temperature, the variability in annual and seasonal precipitation differs among 418 

subbasins. For instance, the projected changes in wet season precipitation for 2060s (2051 – 419 

2070) range from 1.0 to 8.5% for Sekong, 0.9 to 7.4% for Sesan, and -5.4 to 5.0% for the Srepok 420 

subbasin.  Projected changes in precipitation are not unidirectional and vary depending on the 421 

GCMs, time period, and season. The bidirectional changes in precipitation may be due to the 422 

complexity in interpreting precipitation, as different GCMs often do not agree with regard to 423 

changes in both magnitude and direction at a specific location (Girvetz et al., 2009).  424 

The uncertainties related to GCMs and RCPs for two variables increase with time as shown by 425 

the higher variability in temperature and precipitation changes from the 2030’s and 2060’s 426 

projections (Figure 5). The uncertainty linked to the GCMs is higher than for RCPs for seasonal 427 

and annual precipitation for the 3S basin. In contrast, basin wide analysis showed that the 428 
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uncertainty related to the GCMs is smaller than for RCPs for wet season and annual precipitation 429 

for the Sekong and Sesan subbasins. The uncertainty related to GCMs arises due to incomplete 430 

understanding of the physical processes and the limitations in implementing such understanding 431 

in the models (Vetter et al., 2015). For precipitation projections, uncertainty due to GCMs is 432 

generally the dominant source of uncertainty for longer time horizons (Hawkins and Sutton, 433 

2011).  Uncertainty related to RCPs is larger for temperature than precipitation, and this is even 434 

greater for the 2060s period than for the 2030s period, which largely agrees with other studies 435 

(Yip et al., 2011).   436 

3.3 Uncertainty analysis 437 

3.3.1 Flow 438 

The cumulative distribution functions (CDFs) of peak flow and 95% low flow changes for the 439 

two future time periods (or horizons) (2030s and 2060s) were analyzed for the 3S basin (Figures 440 

6 and 7, respectively). CDFs are plotted to compare the importance of all three uncertainty 441 

components.  The peak flow is likely to increase for both time horizons. For example, for the 442 

2060s (2051-2070) period using GISS, GFDL and IPSL GCMs, there is a likelihood of nearly 443 

64%, 74% and 69%, respectively, of increased (i.e., positive changes) peak flow (Figure 6). 444 

Model parameter is the main contributor to uncertainty in peak flow for the 2030s period, while 445 

RCP is the main source of uncertainty for the 2060s period which is clearly indicated by the 446 

large differences between CDFs of RCP for more extreme peak flow increases. For the 2060s, 447 

the likelihood of increased peak flow ranges from 54.1% under RCP 2.6 to 78.9% under RCP 448 

8.5. GCM is the source of uncertainty with the least influence for both time periods. In contrast, 449 

the low flow is likely to decrease for all future horizons except for GFDL GCM, which predicts 450 

about 68% and 75% likelihood of increased low flows for the 2030s and 2060s periods, 451 

respectively (Figure 7). In comparison, the uncertainty due to GCM is large, which is mainly due 452 

to the GFDL model. RCPs provide the smallest source of uncertainty for low flow for the 2030s, 453 

while model parameter is the least source of uncertainty for the 2060s period.  454 

Results at the subbasin level suggest that there is substantial spatial variability in changes in peak 455 

and low flows across the 3S basin (Figure 8). For the Sekong subbasin, RCP is the main 456 

contributor to uncertainty of peak flow for both periods. For instance, the absolute differences 457 

(i.e., absolute differences between minimum and maximum values as shown in Figure 8) in the 458 
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peak flow for GCM, RCP and model parameter are 2.9%, 4.1% and 1.2%, respectively. In 459 

comparison, the largest absolute difference is for RCP which makes RCP the largest source of 460 

uncertainty. Model parameters result in the least uncertainty among sources. For low flows, the 461 

uncertainty due to GCM is large and mainly due to the GFDL model. Model parameter is the 462 

least source of uncertainty for both periods. With regard to the Sesan subbasin, model parameter 463 

is the main source of uncertainty for both periods, while GCM is the least contributor to 464 

uncertainty of peak flow. Model parameter is the main source of uncertainty and RCP is the least 465 

source of uncertainty for low flow projections for both time horizons. For the Srepok subbasin, 466 

model parameter is the main contributor to uncertainty of peak flow for the 2030s period, while 467 

GCM is the main source of uncertainty for the 2060s period. RCP result in the least uncertainty 468 

among sources. For low flows, model parameter is the main contributor and RCP is the least 469 

contributor to uncertainty for all time horizons.  470 

In general, the greatest source of uncertainty for peak flows projection varies both with time 471 

horizon and space, while for low flows the major contributing sources of uncertainty vary 472 

spatially primarily. Nevertheless, model parameter and GCM are the two major contributors to 473 

uncertainty in low-flow projections, while RCPs have a lesser effect. The uncertainties in peak 474 

and low flow projection due to hydrological model parameters can be significant, which was also 475 

concluded by Wilby and Harris (2006). Najafi et al. (2011) also found that the hydrologic model 476 

uncertainties become important when analyzing dry season flows. Hydrological model parameter 477 

uncertainty and careful calibration and validation to reduce parameter uncertainty should be 478 

taken into account in practical use of hydrological models for decision making (Zhang et al., 479 

2014). The parameter uncertainty should be properly addressed in climate change studies to 480 

avoid an over-confident portrayal of climate change impacts (Mendoza et al., 2015). 481 

The changes in seasonal as well as annual flows are bidirectional (Figure 9 and Table 7) as the 482 

projections of hydrological changes in the basin are highly dependent on the direction of the 483 

projected changes in precipitation (Kingston et al., 2011; Shrestha et al., 2013). Similar to peak 484 

and low flows, the dominant source of uncertainty for seasonal and annual flow varies spatially 485 

across the 3S basin (Table 7). For the Sekong subbasin, GCM is the major contributing source of 486 

uncertainty for seasonal and annual flow for all future time horizons. In contrast, uncertainty due 487 

to model parameter is larger for seasonal and annual flow in the Sesan. For the Srepok subbasin, 488 
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uncertainty due to model parameter dominates during the 2030s period for seasonal flows and for 489 

dry season flow during the 2060s, which is mainly caused by model parameterization in the RSR 490 

model configuration.  Spatial variability may be due to sensitivity of basin runoff processes to 491 

variability in climate, physiographic factors and spread/range of hydrological model parameters 492 

used to capture the runoff process in the basin. For instance, RCPs represent an important driving 493 

factor for basins where the more certain projected trends in temperature are probably more 494 

relevant for projected discharges than the precipitation process (Vetter et al., 2015). Variability 495 

in spread/range of the selected hydrological model parameter(s) can have variable influences in 496 

the watersheds and the uncertainty because hydrologic parameter uncertainty tends to be larger 497 

when GCM and emissions anomalies are larger (Bennett et al., 2012). Parameter sets with 498 

similar performance, but located in different regions of the parameter space, can generate a range 499 

of projections for future catchment behavior (Mendoza et al., 2015). Our results support that 500 

optimal solutions may lead to a wide range, and spatially variable set of hydrological model 501 

parameters (Figure S3 in the Supplementary Material). 502 

In general, we found that in the short term (2030s) uncertainty due to model parameter can be 503 

most significant for wet season flows, but in the longer term (2060s) GCM is the major 504 

contributing source of uncertainty for seasonal as well as annual flow projections (Figure 9). The 505 

dominance of uncertainty due to GCM has been reported before (e.g., Chen et al., 2011), mostly 506 

due to the large uncertainty contribution of climate models for precipitation projections (Vetter et 507 

al., 2015). The change in the major source of uncertainty with time, however, is a key finding 508 

from this research that should be studied in more detail as it could result in important 509 

implications for the way climate change scenarios are translated from GCMs to watershed 510 

models.    511 

3.3.2 Sediment  512 

The cumulative distribution functions (CDFs) of peak sediment load changes were plotted to 513 

compare three uncertainty components in peak sediment load projection for the 2030s and 2060s 514 

time horizons (Figure 10).  In general, all simulations show that the peak sediment load is likely 515 

to increase in the future. For instance, under emission scenarios the likelihoods of increased peak 516 

sediment load ranges between 63.5 and 94% for the 3S basin as a whole, with subbasin 517 

variability of  61.19 – 93.10%, 63.38 – 78.91% and 56.67 – 72.50% for the Sekong, Sesan and 518 
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Srepok subbasins, respectively. Overall, our results for the 3S basin suggest that model 519 

parameter is the main contributor to uncertainty of peak sediment load in the short term (2030s), 520 

while RCP is the main source of uncertainty in the longer term (2060s). The choice of GCM 521 

results in the smallest source of uncertainty.  522 

Similar to peak flows, the dominant source of uncertainty for peak sediment projection is 523 

subbasin dependent (Figure 11).  The ranking of sources of uncertainty for Sekong and Sesan 524 

subbasins load are the same as for the entire 3S basin. In contrast, in the Srepok uncertainty due 525 

to GCM dominates the uncertainty in peak sediment load projections. This is mainly due to GISS 526 

GCM that predicts decrease in peak sediment load for the Srepok in opposite to other two 527 

subbasins. Model parameter is the smallest source of uncertainty for peak sediment load for the 528 

2060s period and the uncertainty due to RCPs is small for 2030s.   529 

Basin wide analysis shows that the annual sediment load is likely to increase in the future (Figure 530 

12), despite differences in the direction of change among subbasins load (Table 8). One of the 531 

possible explanations for this spatial variability could be due to differences in hydrologic 532 

properties (like precipitation, temperature). For instance, the changes in wet season precipitation 533 

for the Srepok appeared to be bidirectional which is opposite from the other two subbasins 534 

(where changes are unidirectional). The wet season precipitation change for the Srepok ranges 535 

from -3.0 to 2.8% for the 2030s and -5.4 to 5.0% for 2060s. This larger response to precipitation 536 

events may explain why there is bidirectional change in annual sediment yield. Dry season 537 

sediment loads are an insignificant fraction compared to wet season sediment loads for the 3S 538 

basin. In general, changes in sediment loads follow patterns of flow, however our results indicate 539 

bidirectional flow projections can all lead to increasing sediment load for both periods. The 540 

changes of sediment yield and discharge in response to climate change do not always happen in 541 

the same direction (Shrestha et al., 2013). This also suggests that the sediment yield projection is 542 

more sensitive to temperature and rainfall changes than flow. Decrease in rainfall and increase in 543 

temperature can lead to water stress, which reduces the growth of plants and hence increases the 544 

erosion rate. This change in erosion rate causes change in the sediment flux in a river, which was 545 

also outlined by (Zhu et al., 2008). The temporal and spatial variability in the major contributing 546 

sources of uncertainty for the annual sediment load projections is also observed across the 3S 547 

basin (Table 8).  Results of the subbasin wide analysis show that model parameter and RCP are 548 
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the largest sources of uncertainty for the annual sediment load during the 2030s and uncertainty 549 

due to RCPs and GCMs dominates for the 2060s.  550 

In general, the uncertainty due to RCPs is larger than other two sources of uncertainty for the 551 

annual sediment load projection of the 3S basin (Figure 12). The uncertainty due to RCP is large 552 

mainly due to RCP 8.5, in which change signals are expected to be larger (i.e emissions continue 553 

to rise heading to radiative forcing > 8.5 W/m2 in 2100). This indicates that annual sediment 554 

projections for the 3S basin have a much larger response to temperature changes than 555 

precipitation changes. Other studies have shown that sediment yield can be influenced by 556 

temperature changes. Harrison (2000) found temperature was exponentially related to the erosion 557 

rates, and Syvitski et al. (2003) indicated there was a negative relationship between temperature 558 

and sediment load in a tropical zone. Increased temperature may increase the soil erosion rate 559 

and, consequently, increase sediment flux through its influence on vegetation and weathering (Li 560 

et al., 2011; Zhu et al., 2008). SWAT simulates plant growth based on daily accumulated heat 561 

units where temperature is a major factor governing the plant growth. Increase in temperature 562 

may result in water stress, which reduces plant growth and hence increases the erosion rate. The 563 

decrease in sediment flux may be due to significant influence of increased evapotranspiration 564 

and crop growth process under warmer climate (Bogaart et al., 2003). Further, it is also 565 

interesting to note that the uncertainty in the sediment load projection is larger than the 566 

uncertainty in the flow projections, which is most probably due to higher changes in sediment 567 

yields than the corresponding changes in flow. For instance, the annual sediment load change for 568 

the 3S basin ranges from 4.8 to 50.1% for 2060s while for the flow the changes ranges from -0.6 569 

to 3.1%. A study by Shrestha et al. (2013) has also concluded that the impact of climate change 570 

on sediment yield can be greater than on flow. Although analysis of uncertainty due to land use 571 

change is not included in this study, it is important to note that the sediment prediction 572 

uncertainty due to the climate signal might be smaller than land use change uncertainty. A 573 

comparison of the contributions of climate and land use change in China by Ma et al. (2014) and 574 

Dai et al. (2009) for instance, showed that projected land use change governed changes in 575 

sediment yield. Hence, it is essential to include uncertainty in land use change as it could help 576 

understand the range and major sources of uncertainties for better sediment management 577 

planning.  578 
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4. Conclusion 579 

This study investigated the uncertainty in flow and sediment projections from climate change for 580 

the 3S basin using SWAT. Three sources of uncertainty were evaluated: GCMs, RCPs, and 581 

model parameterization. The analysis of climate change projections results showed that all of the 582 

GCMs and RCPs suggest an increase in seasonal and annual temperature across the 3S basin, 583 

with similar variability in shifts for the Sekong, Sesan and Srepok subbasins for the 2030s and 584 

2060s. In contrast to temperature, projected changes in precipitation are bidirectional and vary 585 

depending on the GCM, time horizon, season, and subbasin. GCM is the major contributor to 586 

uncertainty in dry season precipitation projections, whereas uncertainty related to RCP is large 587 

for wet/annual precipitation and temperature across the 3S basin. 588 

A major finding of this study is that the dominant sources of uncertainty in flow and sediment 589 

constituents vary temporally, and that results are scale dependent (basin or subbasin scale). 590 

Model parameters and GCMs are the two major contributors to the uncertainty in low flow 591 

projections, whereas RCPs had less of an effect. Model parameterization is the major 592 

contributing source of uncertainty for wet seasonal flow projections in the short term (2030s), 593 

whereas uncertainty due to GCMs dominates for seasonal and annual flow projections in the 594 

longer term (2060s). Although the uncertainty due to RCPs is large for the peak and annual 595 

sediment load projections, model parameterization uncertainty can play a significant role in 596 

uncertainty of the sediment projections for the 2030s period. Our results also suggest that there is 597 

more uncertainty in sediment loads than flow projections.  598 

In general, our study highlights that it is essential to investigate the major contributing sources of 599 

uncertainty in large basins over time and at different scales, as this can have important 600 

consequences for decision making on flow and sediment management as part of adaptation to 601 

climate change implications. Careful investigation of sources of uncertainty is an important step 602 

for decision making as it helps to improve characterization of uncertainties and avoid an over-603 

confident portrayal of climate change impacts (Mendoza et al., 2014). Decision making under 604 

climate change should be based on assessments of risk of potential outcomes rather than 605 

traditional norm-based probability assessments (Juston et al., 2013). Overall, there are two major 606 

practical uses of uncertainty assessments: (1) through uncertainty analysis we produce more 607 

reliable and robust predictions (Addor et al., 2014) and (2) we will be able to better communicate 608 
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risk, which can be essential in gaining and retaining the trust of the public (Juston et al., 2013).. 609 

This is more important for sediment projections because impact of climate change on sediment 610 

yield is expected to be greater than on flow.  Further, since model parameterization uncertainty 611 

can be significant for flow and sediment projections, there is a need to incorporate parameter 612 

uncertainty in climate change studies and efforts to reduce the parameter uncertainty as much as 613 

possible should be considered through a careful calibration and validation. Land use/land cover 614 

could also be an important influence in model projections, and future work will evaluate the 615 

uncertainty associated with this factor. 616 
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