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Abstract Spontaneous deposition of Ir onto Ni substrates was investigated as
a method to produce electrocatalytic layers for the oxygen evolution reaction
in 30% KOH solution. UV/Vis spectroscopy, cyclic voltammetry and other
electrochemical methods are used to investigate the deposition process and
the activity of the electrocatalytic coating towards the oxygen evolution reac-
tion. From three solutions (IrCl3+HCl, H2IrCl6+HCl, and H2IrCl6), H2IrCl6
is shown to give the most active and stable coating, with deposition times of
45 minutes at 60 ◦C enough to increase the activity of the Ni substrate for the
oxygen evolution reaction. It is proposed that Ir deposition can occur via the
reduction of the Ir precursor coupled to Ni oxidation, as well as the hydrolysis
and localised precipitation of the Ir precursor due to the increase in surface
pH during Ni dissolution.

Keywords Iridium oxide · Nickel oxide · Oxygen Evolution Reaction ·

Alkaline water electrolysis · Electrocatalysis

1 Introduction

To improve the energy efficiency of water electrolysers, electrocatalysts are
used to decrease the overpotentials of the oxygen and hydrogen evolution re-
actions. These electrocatalysts must have high electrocatalytic activity, high
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active surface areas, and be stable for long periods, while being inexpensive
and easy to manipulate [1,2]. Iridium oxide is very active for the oxygen evo-
lution reaction (OER) with Tafel slopes as low as 40 mV and overpotentials
as low as 83 mV at 10 mA cm−2 [3–5]. However, as Ir is an expensive metal,
normally thin coatings of iridium (or iridium oxide) on inert substrates are
used as the active electrodes.

Spontaneous deposition is one approach whereby noble metals can be
coated onto Ni substrates [6–10]. In this method, the noble metal precursor
is reduced onto the surface of Ni substrate through the oxidation of the Ni to
Ni2+ [6,7]. This approach has been used to produce Ir-Ni and Ru-Ni electrodes
for the hydrogen evolution reaction (HER) [6–8,10], and RuO2-Ni anodes for
the OER [6]. Ir-Ni cathodes for the HER have also been successfully prduced
via electrodepsoition of Ir onto Ni [11]. However despite the well-known activ-
ity of IrOx for the OER, spontaneous deposition has not yet been investigated
as a method to produce OER electrocatalysts. Importantly, IrNiOx core -
shell nanoparticles were recently shown to be more active and more stable for
OER than IrOx supported on either carbon or doped-SnO2 [12] and have been
suggested to have higher intrinsic activity for OER compared to pure Ir elec-
trocatalysts [13]. Similarly, others have shown that IrO2/Ni anodes prepared
by electrochemical deposition are more active than pure Ni substrates for the
OER [14]. Here, spontaneous deposition of Ir onto Ni foil is investigated as a
simple method to produce active Ir layers for the OER in concentrated KOH
electrolytes. Specifically, the effect of the Ir precursor and deposition time on
the activity of these electrodes is reported.

2 Experimental

1 cm2 Ni foil substrates (Sigma-Aldrich ≥ 99.9%) were cleaned in acetone for
5 minutes, ultrasonicated in soapy water, and then thoroughly rinsed with
deionised (18.2 MΩ) water. These clean foils were then etched in 1 M HCl
solution with 5.25 g L−1 of hydrogen peroxide for 15 minutes and finally rinsed
in deionised water. Contact with the Ni foil was achieved by spot welding a
Ni wire (0.5 mm diameter) to the foil. The deposition process was performed
immediately after substrate preparation to reduce the effects of self-passivation
of the freshly etched Ni foil.

Spontaneous deposition was performed at 60◦C for 30-120 minutes in one of
three solutions: 0.001 M H2IrCl6 + 0.1 M HCl (Solution A), 0.001 M H2IrCl6
(Solution B), or 0.001 M IrCl3 + 0.1 M HCl (Solution C). The precursor
solutions were deaerated with 40 cm3 min−1 Ar for at least 10 minutes prior to
and during deposition [7,8,11,10]. After deposition, the Ir modified electrodes
were rinsed in DI water then dried at 60◦C for 1 hour prior to electrochemical
characterisation.

Electrochemical testing was performed in a thermostatically controlled
(25◦C) PTFE cell with 30 wt% KOH electrolyte, a nickel foil (30 cm2) counter
electrode and a Hg/HgO/30 wt% KOH reference electrode. All potentials in
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this work are given relative to the Hg/HgO/30 wt% KOH reference electrode
unless otherwise stated, where EHg/HgO/30%KOH = 0.933 V vs. RHE [15].
Cyclic voltammetry and galvanostatic oxygen evolution were performed us-
ing a Gamry Instruments Reference 3000 potentiostat, and in all cases the
ohmic resistance between the working and reference electrode was compen-
sated (either using positive-feedback for the voltammetry or post-measurement
for galvanostatic measurements) using the value determined by electrochem-
ical impedance spectroscopy. Cyclic voltammetry was conducted both before
and after 6 hours of galvanostatic oxygen evolution to assess the stability and
changes to the electrochemical behaviour of the coated electrodes during oxy-
gen evolution.

UV/Vis spectroscopy was performed on the precursor solutions using a
Shimadzu multispec 1500 UV/Vis spectrometer in a quartz crystal curvette
over the 200-800 nm range. To confirm that changes in the precursor solution
was due to the deposition process itself and not just ageing of the precursor
solutions [10], the absorbance of unused solutions was also measured in parallel
with the solutions used in the deposition process.

3 Results and Discussion

3.1 Influence of the iridium precursor solution

While both IrCl3 and H2IrCl6 solutions have been used for spontaneous de-
position of Ir in previous literature [8,10], no direct comparison between these
precursors has been reported and thus we began by investigating the influence
of the Ir precursor. In some cases, HCl has been added to the precursor so-
lution [7,16,10], and so three solutions were chosen for comparison: 0.001 M
H2IrCl6 + 0.1 M HCl (Solution A), 0.001 M H2IrCl6 (Solution B), and 0.001
M IrCl3 + 0.1 M HCl (Solution C).

Absorption spectra were recorded for the three solutions prior to use (Fig-
ure 1a), with the H2IrCl6 containing solutions exhibiting peaks (415, 432 and

488 nm) characteristic of the [IrCl6]
2–

complex [17–20]. The UV/Vis spectra
of solution A and B also have a very small peak at 360 nm which is most
likely from [IrCl6]

3– which also has a peak at 415 nm [17]. While we cannot

quantify the concentration of [IrCl6]
3–

present in this solution, as the molar

absorptivity of [IrCl6]
3–

is about 30x less than [IrCl6]
2–
, it is likely that so-

lution A and B contain more than trace amounts of [IrCl6]
3–
. In addition to

the peaks attributed to [IrCl6]
2–

and [IrCl6]
3–
, clear peaks are also observed

at 305 and 580 nm. While these are also seen in the [IrCl6]
2– spectra reported

previously [17,18], others have suggested that the peaks at 305 and 580 nm

originate form [Ir(OH)6]
2–

and Ir-O-Ir linkages respectively [21]. For solution
C (prepared from IrCl3), clear peaks at 327 and 390 nm and a small peak at
550 nm were observed, and as expected the overall absorbance of this solution
was much lower than the solutions prepared from H2IrCl6 [22,23]. In this case,
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the peak at 390 nm is assigned to Ir(H2O)3Cl3 [18], and the peak at 327 nm is

assigned to the hydrolysis product [Ir(OH)6]
3–

[24]. Interestingly, others have
suggested that ageing the precursor solution prior to use can greatly improve
the deposition process [7,10,16], so it is worthwhile to note that the aged IrCl3
solution reported elsewhere [10] has a spectrum which suggests that aged IrCl3
solutions contained a mixture of [IrCl6]

3–
, [IrCl6]

2–
and [Ir(OH)6]

2–
.
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Fig. 1 UV visible spectra for the solutions prior to (a) and after deposition (c). Note that
in (a) the absorbance of solution C is multiplied by 10

After 2 hours of deposition, significant changes to the solutions initially
containing H2IrCl6 were observed, with the complete loss of the [IrCl6]

2–
peaks

and the development of a spectra similar to the initial IrCl3 solution (Figure
1b). As the absorbance of solution B after deposition is significantly lower
(relative to the background absorbance between 550 and 800 nm) than both
the other precursor solutions, it is concluded that much more Ir is deposited
onto the Ni substrate from solution B. For solutions A and B, the loss of
[IrCl6]

2– supports the general proposal that the deposition process involves

the reduction of [IrCl6]
2–

to Ir:

[IrCl6]
2−

+ 2Ni −−⇀↽−− Ir + 2Ni2+ + 6Cl− (1)

which is spontaneous as calculated from standard reduction potentials. The
development of peaks at 330-340 nm and 390-400 nm suggests the formation
of either [IrCl6]

3–
(peaks at 360 and 415 nm [17]), [Ir(OH)6]

3–
(320 nm [24])

or Ni2+ (394 nm [25]) via:

2 [IrCl6]
2−

+Ni −−⇀↽−− 2 [IrCl6]
3−

+Ni2+ (2)

2 [IrCl6]
2− + 12H2O+Ni −−⇀↽−− 2 [Ir(OH)6]

3− +Ni2+ + 12HCl (3)

[IrCl6]
3−

+ 6H2O −−⇀↽−− [Ir(OH)6]
3−

+ 6HCl (4)

It is also possible that the formation of metallic iridium occurs from the re-
duction of the [IrCl6]

3–
complex rather than directly from [IrCl6]

2–
:

2 [IrCl6]
3−

+ 3Ni −−⇀↽−− 2 Ir + 3Ni2+ + 12Cl− (5)
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The presence of Ni2+ which absorbs at 394 nm is difficult to confirm by UV/Vis
spectroscopy as this absorbs at similar wavelengths to the various Ir species
which are also present in the solution. Others have identified Ni2+ either di-
rectly by UV/Vis spectroscopy [6] or by forming the Ni-dimethylglyoxime
complex [7] when depositing Ru onto Ni substrates, and as thermodynam-

ics suggest that Ni oxidation will occur in the presence of either [IrCl6]
2–

or

[IrCl6]
3–

it is very likely that the solutions after deposition will contain Ni2+.
For solution C, while very little difference in the UV/Vis spectra before and af-
ter deposition was observed, the increase in absorbance (particularly the peak
at 390 nm relative to the peak at 327 nm), is most likely due to the presence
of Ni2+ and may suggest that some Ir deposition has also occurred in this
solution.

For solution B, it was observed that the background absorption (e.g. that
between 550 and 800 nm) increased considerably during the deposition process,
most likely due to the formation of IrOx nanoparticles within the solution
(which exhibit a broad absorption peak around 570-580 nm [21,24,26]). In
some cases, a faint blue precipitate was observed in solution B after deposition
which is likely to be IrOx. This blue IrOx precipitate was never found in
solution B in absence of the Ni substrate, with no changes in the UV/Vis
spectra of solution B observed over a 15 day period at room temperature.
This precipitate was not observed in solution A and C, and suggests that this
may occur due to the localised pH changes near the Ni substrate due to proton
consumption:

2H+ +Ni −−⇀↽−− H2 +Ni2+ (6)

As solution B did not contain HCl like solutions A and C, this proton con-
sumption would increase the pH near the Ni surface, which would hydrolyse
the [IrCl6]

2–
or [IrCl6]

3–
, leading to IrOx formation [21,24,26] and possibly

IrOx deposition directly onto the Ni substrate through a surface assisted nu-
cleation process. This mechanism of oxide layer formation is very similar to
cathodic deposition of oxides such as CoOx [27], which uses cathodic hydrogen
evolution to increase the surface pH thereby initiating localised oxide nucle-
ation. To confirm that the hydrogen evolution reaction could be occurring in
parallel with the Ir deposition process, the potential of the Ni substrate was
measured and found to be around -0.22 to -0.2 V vs. AgAgCl (i.e. close to
the hydrogen evolution potential). This supports our proposed mechanism of
iridium oxide deposition via a localised pH increase brought about by the hy-
drogen evolution reaction, and the measured potential is consistent with that
report by Duca et al. [10] where solution C was used. While this potential
value and the observation of a blue IrO2 precipitate is consistent with this
proposed mechanism, the measured potential still allows direct deposition of
metallic iridium to occur via reactions 1 or 5 and may be occurring in parallel
with localised IrO2 precipitation.

To confirm that the deposition procedure did modify the surface of the Ni
substrates, cyclic voltammetry was performed before and after galvanostatic
OER (Figure 2). For an uncoated Ni substrate, a set of peaks correspond-
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ing to the α−Ni(OH)2/γ−NiOOH transition are located at 0.41 (anodic) and
0.33 (cathodic) V along with a smaller anodic peak at 0.47 V which most
believe corresponds to the β−Ni(OH)2/β−NiOOH transition [28]. These Ni
redox peaks are seen on all the Ir modified electrodes indicating that if any
Ir or IrO2 layer had formed on these electrodes, it must be porous enough to
allow electrolyte penetration to the substrate. This is consistent with other
investigations where the Ni redox behaviour is observed by cyclic voltamme-
try after Ir deposition [8,14]. Based on the Pourbaix diagram for Ir [29], an
anodic peak at approximately 0.09 V vs. Hg/HgO relating to the oxidation of
Ir to IrO2 is expected. Alternatively, for anodically formed IrOx films, anodic
solid-state redox peaks corresponding to the Ir3+/Ir4+ and Ir4+/Ir5+ transi-
tions are expected to range from -0.17 to -0.03 V and from 0.14 to 0.26 V vs.

Hg/HgO respectively. [30–33]. The corresponding cathodic solid-state redox
peaks for the Ir4+/Ir3+ and Ir5+/Ir4+ transitions are expected to range from
-0.3 to -0.11 V and from 0.10 to 0.12 V vs. Hg/HgO respectively. While any

residual [IrCl6]
3– or [IrCl6]

4– species are unlikely to be stable in the concen-
trated KOH electrolyte used for the cyclic voltammetry measurements (these
are both rapidly hydrolysed in KOH solutions), the redox potentials associated

with either the [IrCl6]
3–

/Ir or [IrCl6]
3–
/[IrCl6]

4–
redox processes are expected

at 0.76 and 0.86 V vs. HgHgO respectively and thus outside of the potential
range used in these measurements.

Evidence for the Ir4+/Ir3+ transition (within iridium oxide) is found for
the electrode prepared by solution B, with a large cathodic feature starting
at about 0 V (Figure 2B), although no corresponding anodic peak was found,
possibly because of the lower potential limit used for these cyclic voltammo-
grams. An additional set of peaks at 0.35 V (anodic) and 0.3 V (cathodic)
not seen on the Ni substrate, were also found on the electrode prepared from
solution B. While the redox behaviour of Ni can undergo significant changes
during both cyclic voltammetry and OER [28], such peaks are not normally
seen on pure Ni electrodes, suggesting that the Ir has indeed modified the
Ni surface. One possibility is that Ir has been incorporated into the Ni oxy-
hydroxide film which is present on Ni substrates in KOH electrolyte, thereby
altering the redox behaviour of the Ni(OH)2/NiOOH redox couple. It seems
unlikely that this peak pair comes from the Ir4+/Ir5+ transition which is re-
ported at 0.14 to 0.26 V (anodic) and 0.10 to 0.12 V (cathodic) and upon
close inspection of the voltammograms for this electrode, broad peaks at 0.26
V (anodic) and 0.18 V (cathodic) are found (Figure 7B shows are enlargement
of the voltammograms to highlight these peaks) which are a better match to
the reported potentials for the Ir4+/Ir5+ transition. It is also noted that the
background current related to the double layer charging at 0.1 V is significantly
larger on the electrode prepared by solution B compared to the uncoated Ni
substrate, suggesting that the deposition process has increased the electrode
surface area. However, it is difficult to confirm that this increased current den-
sity is solely related to double layer charging effects as the potential range
where the current density is constant is rather limited. It is also found that
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the onset potential for the OER (defined as the potential at 1 mA cm−2) is
found to decrease following Ir deposition (0.64 → 0.5 V, Figure 2B) which is
not surprising given that Ir is considerably more active than Ni for the OER.
These findings lead to the conclusion that a stable Ir or IrO2 porous layer was
successfully deposited onto the Ni substrate when using solution B.

The voltammograms recorded at the electrodes prepared from solutions A
and C are noticeably different to that prepared from solution B and are much
more similar to the Ni voltammogram (Figures 2A and C). While the double
layer charging current on these electrodes is larger relative to the uncoated Ni
substrate, this current (measured at 0.1 V) is only about 25 % of the current
measured at the electrode produced from solution B, suggesting that less Ir
has been deposited, in agreement with the UV/Vis analysis. It is also possible
that this increase in double layer charging is only due to roughening of the
Ni substrate caused by Ni dissolution rather than Ir deposition, however for
the electrodes produced from solutions A and C, additional redox peaks at 0.3
(anodic) and 0.12 (cathodic) V were observed in cyclic voltammetry measure-
ments conducted immediately after Ir deposition (Fig 3). However was also
found that the size of these peaks decrease during the initial cyclic voltam-
mograms (Fig 3) and are completely absent from the electrodes after 6 hours
of OER at 50 mA cm−2 indicating that the surface species which give these
voltammetric peaks (possibly from the Ir4+/Ir5+ transition) are not stable
during cyclic voltammetry or OER. Furthermore, while the voltammograms
measured just prior to the galvanostatic OER measurements have a lower on-
set potential for OER, after 6 hours of OER, unlike the electrode produced
from solution B, this improvement is largely lost from the electrodes produced
from solutions A and C.

In order to confirm the presence and stability of the Ir coating, SEM and
EDS analysis was performed on the anodes after the initial cyclic voltam-
metry measurements and 6 hours of OER at 50 mA cm−2. As expected the
uncoated-etched Ni substrate showed a rather rough surface with the crys-
talline structure of the Ni clearly visible (Figure 4A). Following the deposition
from solution B, a very thin film is observed to coat the Ni substrate (Figure
4B), with EDS analysis confirming that this layer is iridium. In some images,
pores were visible through to the Ni substrate (confirm by EDS mapping)
which accounts for the presence of the Ni redox peaks on the cyclic voltammo-
grams. For the electrodes produced from solutions A and C, no evidence for
any Ir deposits could be found by EDS mapping, confirming the suggestion
that if these solutions did produce any Ir deposits, they were unstable during
the cyclic voltammetry and 6 hours of oxygen evolution at 50 mA cm−2. In
previous work, both solutions B and C have been successfully used to pro-
duce stable coatings for the hydrogen evolution reaction [8,10], however in
our investigation solution C failed to produce a stable layer. The most likely
explanation for this is related to differences in the Ir species present in the
precursor solutions due to precursor ageing [7]. In the investigation by Duca
et al., their IrCl3 was aged prior to deposition and importantly the UV/Vis
spectra of their precursor solution [10] is markedly different to that found in
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Fig. 2 Cyclic voltammograms before (solid lined) and after 6 hours of OER at 50 mA cm−2

(dashed line) on iridium coated nickel electrodes prepared from solutions A, B and C. For
comparison, a typical voltammetry measured at an uncoated Ni substrate is also provide
(red line)
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Fig. 3 Initial cyclic voltammograms of the iridium coated nickel electrode prepared from
solutions C.

this work, with their aged IrCl3 solution more similar to a fresh H2IrCl6 solu-
tion. Thus is seems likely the Ir species in the solutions used by Duca et al. [10]
are actually quite different those in our solution C despite that fact that both
solutions were prepared from IrCl3 and HCl. It was also reported deposition
of Ir from the aged solution C was very sensitive to the pre-treatment and
etching of the Ni substrate [10] (the pre-treatment of the Ni in [10] involved
boiling the Ni in 20% HCl) and thus, it may also be possible that both solution
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A and C failed to produce a stable layer due to the pretreatment of the Ni in
this work (although the SEM analysis does show that the Ni was well etched
prior to the deposition).

Fig. 4 SEM micrographs of (A) an uncoated Ni substrate and (B) a Ni substrate coated
by Ir using solution B.

As only the electrode prepared from solution B was stable during cyclic
voltammetry and OER at 50 mA cm−2, the electrocatalytic activity of this
electrode was compared with an uncoated Ni substrate (Figure 5). As discussed
elsewhere, the activity of Ni for OER is strongly dependent on its pretreatment
and can change dramatically when subjected to cyclic voltammetry prior to
measuring the polarisation curve [34] or prolonged OER [27,28,35]. It has also
been shown that the apparent electrocatalytic activity of Ni for the OER can
depend on the scan direction used to measure puesdo-steady-state polarisation
curves and periodic interruptions to galvanostatic OER [35]. This makes direct
comparison to an uncoated Ni substrate quite difficult. Therefore in Figure 5,
the polarisation curve for an uncoated Ni substrate recorded once a stable
potential is reached at 50 mA cm−2, the average potential during the 6 hour
OER pretreatment at 50 mA cm−2 of the two uncoated Ni electrodes (prior
to the polarisation curve measurements) is provided. While there is some un-
certainty of the activity of uncoated Ni, it is clear that Ir deposition improves
the anode for OER with the overpotential decreasing by at least 50 mV (over
the current density range examined) compared with uncoated Ni. Given that
the Ir deposition increased the surface area by approximately 10x (as judged
by the double layer current measured at 0.1 V), the improvement in the OER
performance could be simply due to surface area effects. However between 0.6
and 0.7 V, it is found that the current density increases by between 18x and
29x (at a given potential) and thus it appears that the Ir layer also has higher
specific activity for the OER. It is also observed that the Tafel slope (an intrin-
sic measure of electrocatalytic activity) at low current densities is lower (40 vs.

70 mV) compared to uncoated Ni, although this lower Tafel slope is only found
over a narrow potential window. For the electrodes prepared from solutions A
and C, no clear difference in the OER activity compared to the uncoated Ni
substrate was observed, which again suggested that these precursor solutions
do not produce stable Ir layers by this method.
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Fig. 5 Comparison of the electrocatalytic activity of an Ir coated Ni electrode (prepared
from solution B) and an uncoated Ni electrode in 30 wt % KOH. The polarisation curves
were measured between 0.55 and 1 V vs. HgHgO at 0.2 mV s−1 and corrected for the IR
drop determined by EIS. The average potential during a 6 hour pretreatment at 50 mA
cm−2 is also provided.

3.2 Deposition Time

To establish the optimum deposition time to produce an active Ir coating
from solution, the deposition time was varied to between 30 and 120 minutes.
Within 30 minutes, the UV/Vis absorbance peaks associated with the [IrCl6]

2–

complex (432 and 488 nm) decreased by approximately 1 order of magnitude

suggesting that the initial reaction of [IrCl6]
2–

is quite rapid. For deposition

times of 30-60 min, the [Ir(OH)6]
2–

which was present in the fresh H2IrCl6
solution (peak at 305 nm) was still observed, however after 60 min this peak
is lost suggesting that this undergoes further reactions such as reduction to
[Ir(OH)6]

3– (peak at 330 nm) or hydrolysis/oxidation to IrOx nanoparticles.
We also note that for the samples at 30 and 45 min, a peak at 345 nm is found
which we suggest is a convolution of the [Ir(OH)6]

3–
and [IrCl6]

3–
absorption

peaks located at 330 and 360 nm respectively. It seems reasonable that both
[Ir(OH)6]

3–
and [IrCl6]

3–
will be seen at short deposition times as these are

probably intermediates formed from the reduction of the initial Ir species in
precursor solution. Again it is likely that the peak located at 394 nm after 60
minutes is from Ni2+, but it is not possible to confirm that this is present at
shorter times due to the overlapping absorbance peaks from Ir species. As both
hydrolysis and reduction products from [IrCl6]

2–
are observed, we propose that

the deposition process involves both the reduction of [IrCl6]
2–

coupled with
Ni oxidation, and the hydrolysis of Ir species due to localised pH changes,
although further work is required to gain a complete understanding of the
process.

For deposition times greater than 30 minutes, cyclic voltammetry clearly
shows that electrodes exhibited both the Ni(OH)2/NiOOH behaviour along
with the additional redox peaks at 0.35 V (anodic) and 0.3 V (cathodic) as
discussed previously (Figure 7a). The cathodic feature at -0.05 V and the broad
redox peak couple at 0.26 V (anodic) and 0.18 V (cathodic shoulder) increases
with deposition time (Figure 7b) as does the double layer charging current
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density (Figure 7c), suggesting that longer deposition times lead to thicker
Ir deposits. It is worth noting that the increased quantity of Ir in the layer
does not decrease the current from the Ni(OH)2/NiOOH transition, which
shows that thicker Ir layers do not alter the accessibility of the electrolyte to
the Ni substrate. The lack of features corresponding to a Ir layer at the 30
minute deposition time suggests that this time is too short to form a stable
and electroactive Ir layer, most likely because the initial intermediates (e.g.

[Ir(OH)6]
3–

and [IrCl6]
3–

) have not had sufficient time to react further to form
the Ir layer.

It is again clear that Ir deposition (for times greater than 30 minutes)
improves the activity towards the OER relative to the uncoated Ni substrate
(Figure 8). However despite the cyclic voltammetry suggesting that increasing
the deposition time increases the quantity of Ir deposited on the Ni substrate,
almost no difference in the electrocatalytic activity is found for deposition
times of 45-120 minutes, suggesting that the activity is improved by a rela-
tively small quantity of Ir. This is somewhat expected given that the OER is an
electrocatalytic reaction which only occurs on the outer surface of the active Ir
layer, and suggests that increasing the Ir deposition time increases the thick-
ness of the Ir layer rather than generating more electrocatalytic surface area
for the OER. Of course, the voltammetry did show an increase in the quantity
of electrochemically active Ir, however it is well-known that unlike the OER,
the solid-state redox transition in noble metal oxide films is not restricted to
the outer-most surface of the oxide layer [36]. As with the cyclic voltammetry
results, it is suggested that a deposition time of 30 minutes is insufficient to
produce an active Ir layer on the Ni substrate, with this electrode exhibiting
almost the same electrocatalytic activity as the uncoated Ni substrate (and
actually even worse performance at high current densities). Interestingly, at
40-50 mAcm −2, the Tafel slope of all the Ir modified electrodes increases from
40 mV to values much greater than 120 mV suggesting that the mechanism or
rate limiting step for the OER changes at this current density. One possibility
is that at these high current densities the active Ir sites become saturated
with a reaction intermediate and thus a limiting current is approached. For
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Fig. 7 Cyclic voltammograms (a) and (b) at 50 mV s–1 on electrodes with coatings de-
posited for 30-120 minutes. Double layer charging current density at 0.1 V vs deposition
time (c)

example if the combination of adsorbed O to form molecular oxygen is rate
limiting, and the surface coverage of O on the Ir sites → 1, the Tafel slope
will approach infinity [37].To increase the current density further, the Ni must
then begin to act as an electrocatalyst and the potential increases more rapidly
with current density. This explanation is similar to that proposed by Duca et

al. [10] when describing the kinetics of the hydrogen evolution reaction on Ir
coated Ni prepared by spontaneous deposition.
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Fig. 8 Linear sweep voltammetry performed at 0.2 mV s–1 Ir modified Ni substrates pre-
pared at different deposition times.
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4 Conclusions

Spontaneous deposition can be utilized as a method for the production of thin
Ir layers on Ni substrates for the electrocatalytic oxygen evolution reaction.
The optimum solution for spontaneous deposition was found to be a dilute
H2IrCl6 solution, which is believed to form the active layer on Ni through
both reduction and hydrolysis / localised precipitation. Cyclic voltammetry
revealed evidence of the active Ir coating and also confirmed that this layer is
porous enough to allow electrolyte penetration to the underlying Ni substrate.
At 60 ◦C, a deposition time of only 45 minutes is required to increase the
activity of a Ni substrate towards the OER in 30 wt% KOH.
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