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Abstract. A normed space E over a rank 1 non-archimedean valued
field K has the metric approximation property (MAP) if the identity on E

can be approximated pointwise by finite rank operators of norm 1.
Characterizations and hereditary properties of the MAP are obtained.

For Banach spaces E of countable type the following main result is derived:

E has the MAP if and only if E is the orthogonal direct sum of finite-
dimensional spaces (Theorem 4.9). Examples of the MAP are also given.
Among them, Example 3.3 provides a solution to the following problem,
posed by the first author in [8, 4.5]. Does every Banach space of countable
type over K have the MAP?

1. Introduction

The study of Grothendieck’s approximation in non-archimedean Banach
spaces was initiated in [8]. In the present paper we derive new results leading
to improvements of [8] (see e.g. Theorem 3.2). Also, we give (Example 3.3)
a negative answer to the following problem, posed in [8, 4.5]. Does every
Banach space of countable type over K have the MAP? As an application of
Example 3.3 we additionally prove that the problem raised in [9, p. 95] has
an affirmative answer, even for locally convex spaces of countable type.

In Section 5 we compare the results given in this paper with their classical
versions, for Banach spaces over the real or complex field. This comparison,
together with the one carried out in [8, Section 6], reveals sharp and interesting
contrasts between the classical MAP and its non-archimedean counterpart.
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For explanation of terminology and symbols, see Section 2.
We recall the following fundamental notion from [8], where, for convenience

(see Theorem 4.4 and Corollary 4.5), we include also non-complete spaces.

Definition 1.1. Let λ ∈ R, λ ≥ 1. A normed space E over K has the
λ-bounded approximation property (λ-BAP) if for each ε > 0 and each finite
set X ⊂ E there is a finite rank operator T : E → E with ‖T ‖ ≤ λ and
‖T (x) − x‖ ≤ ε for all x ∈ X . E is said to have the metric approximation

property (MAP) if it has the 1-BAP.

2. Preliminaries

By ”classical theory” we mean functional analysis over R or C.
Throughout K := (K, | . |) is a non-archimedean non-trivially valued field

that is complete with respect to the metric induced by the valuation | . | :
K → [0,∞).

For basics on valued fields, see [1, 10, 11, 13]. For background on non-
archimedean functional analysis, see [9, 12, 13].

From now on in this paper E, F are non-archimedean normed spaces
(over K).

For convenience we recall the following.
For a set X ⊂ E, [X ] denotes the linear hull of X . If (Di)i∈I is a family

of subspaces of E, then the linear hull of
⋃

iDi is denoted by
∑

iDi.
By L(E,F ) we mean the K-vector space of all continuous linear maps

(or operators) T : E → F with the norm T 7→ ‖T ‖ := min{M ≥ 0 :
‖T (x)‖ ≤ M ‖x‖ for all x ∈ E}. If F is a Banach space then so is L(E,F ).
If T ∈ L(E,F ) and D is a subspace of E, by T |D we denote the restriction
of T to D. We write E′ := L(E,K), L(E) := L(E,E). By IE we mean the
identity E → E. Also, FR(E,F ) := {T ∈ L(E,F ) : dimT (E) < ∞}, is the
space of the finite rank operators E → F . We put FR(E) := FR(E,E).

E is called pseudoreflexive ([13, p. 60]) if the canonical operator jE :
E → E′′ defined by jE(x)(f) := f(x) (x ∈ E, f ∈ E′) is isometric, i.e. if
(for E 6= {0}) ‖x‖ = sup{|f(x)| /‖f‖ : f ∈ E′, f 6= 0} for all x ∈ E. If
the valuation of K is dense, E is pseudoreflexive if and only if E is norm-

polar, i.e. ‖x‖ = sup{|f(x)| : f ∈ E′, ‖f‖ ≤ 1} for all x ∈ E. If K is
spherically complete every space E is pseudoreflexive ([13, 4.35]). But if K
is not spherically complete the space ℓ∞/c0 is not pseudoreflexive; in fact,
(ℓ∞/c0)

′ = {0} ([13, 4.3]).
Two subspaces D1, D2 of E are called orthogonal (notation D1 ⊥ D2) if

‖d1+d2‖ = max(‖d1‖, ‖d2‖) for all d1 ∈ D1, d2 ∈ D2. If, in addition, D1+D2

= E we say that D1 and D2 are each other’s orthocomplement. For x, y ∈ E
we sometimes write x ⊥ y in place of Kx ⊥ Ky and say that x and y are
orthogonal. By [13, 3.2] this holds if and only if ‖µx+ y‖ ≥ ‖µx‖ (or ≥ ‖y‖)
for all µ ∈ K.
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An operator P ∈ L(E) is called a projection if P 2 = P , an orthoprojection

if, in addition, KerP ⊥ P (E) (which is equivalent to ‖P‖ ≤ 1).
A system (Di)i∈I of subspaces of E is called (an) orthogonal (system) if

Di ⊥
∑

j 6=i Dj for all i ∈ I. Analogously, a collection (xi)i∈I of vectors in

E is called orthogonal if (Kxi)i∈I is orthogonal. If, in addition, ‖xi‖ = 1 for
all i ∈ I, it is called orthonormal. An orthogonal system (xi)i∈I ⊂ E \ {0}
is called an orthogonal base (of E) if each x ∈ E has a (unique) expansion
x =

∑

i λi xi, where λi ∈ K for all i. In the same spirit we have the notion of
an orthonormal base. For example, in the Banach space c0 of all null sequences
in K (with the maximum norm), the unit vectors form an orthonormal base.

We also will need the following extension of the notion of orthogonality.
Let 0 < t ≤ 1. A system (xi)i∈I of vectors in E is called t-orthogonal if
‖
∑

j∈J λj xj‖ ≥ t maxj∈J ‖λj xj‖ for all finite sets J ⊂ I and λj ∈ K (j ∈ J).

A t-orthogonal system (xi)i∈I ⊂ E \ {0} is called a t-orthogonal base (of E)
if each x ∈ E has a (unique) expansion x =

∑

i λi xi, where λi ∈ K for all
i. Notice that 1-orthogonal systems and bases are nothing but orthogonal
systems and bases.

E is said to be of countable type if there is a countable set in E whose
linear hull is dense. We quote the following result.

Theorem 2.1. ([9, 2.3.7, 2.3.25]) A space of countable type has, for each

t ∈ (0, 1), a t-orthogonal base. It has an orthogonal base if K is spherically

complete.

Let (Ei)i∈I be a system of normed spaces. Its orthogonal direct sum
⊕

i Ei is the space of all (xi)i∈I ∈
∏

iEi for which limi ‖xi‖ = 0, normed
by (xi)i∈I 7−→ maxi ‖xi‖. The subspace of all (xi)i∈I ∈

⊕

iEi for which
{i ∈ I : xi 6= 0} is finite, is called the algebraic orthogonal direct sum

⊕a
i Ei.

It is a dense subspace of
⊕

i Ei. If each Ei is a Banach space then so is
⊕

iEi.
In classical Grothendieck’s approximation theory the notion of the finite-

dimensional decomposition property plays a role (see e.g. [2, 6.1]). In our
theory we modify this concept as follows.

A Banach space E has the finite-dimensional decomposition property

(FDDP) if it is the orthogonal direct sum of a system of finite-dimensional
spaces. If K is spherically complete, every finite-dimensional space has an
orthogonal base (Theorem 2.1), so E has the FDDP if and only if E has an
orthogonal base. However, if K is not spherically complete there exist various
kinds of finite-dimensional spaces without orthogonal base (see [6]); for these
K the class of Banach spaces with the FDDP can be viewed as a natural
proper generalization of the class of Banach spaces with an orthogonal base.

3. Examples and characterizations of the MAP

It was shown in [8] that a large amount of non-archimedean normed spaces
have the λ-BAP (λ > 1) and the MAP. In fact, the following result holds.
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Theorem 3.1 ([8, 3.3]).

(i) Every norm-polar space E has the λ-BAP for all λ > 1.
(ii) Suppose either K is spherically complete or E has an orthogonal base.

Then E has the MAP.

For examples of Banach spaces (e.g. valued field extensions; spaces of
continuous (analytic, differentiable) functions) with an orthogonal base and
hence with the MAP (Theorem 3.1.(ii)) see [9, Section 2.5].

We now extend Theorem 3.1.(i) by proving that pseudoreflexivity is
equivalent to having the λ-BAP for all λ > 1.

Theorem 3.2. E is pseudoreflexive if and only if E has λ-BAP for all

λ > 1.

Proof. The ”only if” follows directly from Theorem 3.1. To prove the
”if”, let x ∈ E, x 6= 0, let 0 < t < 1; we construct an f ∈ E′\{0} with |f(x)| ≥
t ‖f‖ ‖x‖. By assumption there is a T ∈ FR(E) with ‖T ‖ ≤ t−1/2 and
‖T (x)− x‖ < ‖x‖. Then ‖T (x)‖ = ‖x‖. Now T (E), being finite-dimensional,
is pseudoreflexive ([13, 3.16(iv)]), so there is a g ∈ (T (E))′, g 6= 0 such that
|g(T (x))| ≥ t1/2 ‖g‖ ‖T (x)‖. Then f := g ◦ T is in E′ \ {0} and ‖f‖ ≤
‖g‖ ‖T ‖ ≤ t−1/2 ‖g‖. Thus, |f(x)| = |g(T (x))| ≥ t ‖f‖ ‖T (x)‖ = t ‖f‖ ‖x‖,
and we are done.

In the real and complex theory, the λ-BAP for all λ > 1 implies the MAP
([8, 6.III]), but not in our theory. In fact, it is shown in [8, 4.1] that, for
non-spherically complete K, the Banach space ℓ∞ of all bounded sequences
in K (with the supremum norm), has the λ-BAP for all λ > 1 but does not
have the MAP.

Now ℓ∞ is not of countable type ([9, 2.5.15]) and it was asked in [8,
4.5], whether spaces of countable type automatically had the MAP. The next
example gives a negative answer to this question.

Example 3.3. There exists a reflexive Banach space E of countable type
that does not have the MAP.

Proof. Let K be not-spherically complete, let K∨ be its spherical
completion. Then K∨ is in particular a K-Banach space.

We first prove that no pair of non-zero vectors in K∨ is an orthogonal
system. In fact, let x, y ∈ K∨ \ {0}. To show that Kx is not orthogonal to
Ky we may assume that |x| = |y| = 1 (as |K∨| = |K|). Now the residue class
fields of K∨ and K are isomorphic, so

∣

∣x y−1 − µ
∣

∣ < 1 for some µ ∈ K. It
follows that |x− µ y| < 1, i.e. Kx is not orthogonal to Ky.

Next we show that no infinite-dimensional subspace of K∨ has the MAP.
In fact, suppose there is an infinite-dimensional subspace G of K∨ with the
MAP; we derive a contradiction. Let x ∈ G\{0}. There is a T ∈ FR(G) with
‖T ‖ ≤ 1 and ‖T (x)−x‖ < ‖x‖. Then ‖T (x)‖ = ‖x‖. For each z ∈ KerT \{0}
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we have ‖x − z‖ ≥ ‖T (x) − T (z)‖ = ‖T (x)‖ = ‖x‖, so Kx ⊥ KerT , a
contradiction with the assertion proved above.

Finally, K∨/K is spherically complete ([13, 4.2]), so (K∨/K)′ = {0}
([13, 4.3]). In particular, K∨ is not of countable type as a K-normed space
([13, 3.16]), so certainly admits closed infinite-dimensional subspaces E of
countable type (which are reflexive, [13, 4.18]), finishing the construction.

Application. In [9, p. 95] the following problem was posed: Does there

exist an absolutely convex edged set C in some locally convex space G over K
such that its closure C is not edged?

We shall use Example 3.3 to provide an affirmative answer when K is not
spherically complete and G is even of countable type.

Let ρ be the topology of pointwise convergence on L(E), i.e. the Hausdorff
locally convex topology on L(E) defined by the family of seminorms {px : x ∈
E}, where px(T ) := ‖T (x)‖, x ∈ E, T ∈ L(E). As usual, by pointwise

convergence in L(E) we mean ρ-convergence.
Then we have the following:
Let K be not spherically complete. Let E be a normed space of countable

type without the MAP (e.g. Example 3.3). Then G := (L(E), ρ) is a locally

convex space of countable type and C := {T ∈ FR(E) : ‖T ‖ ≤ 1} is an

absolutely convex edged set in L(E) such that C
ρ
is not edged.

In fact, it suffices to prove that (L(E), ρ) is of countable type; the rest
follows from [8, 5.2]. Observe that the map (L(E), ρ) → EE , T 7→ (T (x))x∈E

is a linear homeomorphism onto the image. Since E is of countable type
then, by the stability properties for locally convex spaces of countable type
([9, 4.2.13]), we get that (L(E), ρ) is of countable type.

We conclude this section by proving a stronger-looking, yet equivalent
formulation of the MAP (Theorem 3.6). To this end we give two preparatory
lemmas.

Lemma 3.4 (Extension lemma). Let E be pseudoreflexive, let D be a

finite-dimensional subspace and let 0 < ε1 < ε2. Then each A ∈ L(D,E)
with ‖A‖ ≤ ε1 can be extended to a B ∈ FR(E) for which ‖B‖ ≤ ε2 and

B(E) = A(D).

Proof. By pseudoreflexivity, there is a projection P of E onto D with
‖P‖ ≤ ε−1

1 ε2 (apply [13, 4.35] in the case when K is spherically complete, and
[9, 4.4.6] for non-spherically completeK). One verifies directly that B := A◦P
satisfies the requirements.

Lemma 3.5 (Taking ε = 0 in the definition of the MAP). Let E have the

MAP. Then for each finite set X ⊂ E there is a T ∈ FR(E) with ‖T ‖ ≤ 1
and T (x) = x for all x ∈ X.

Proof. We may assume that X 6= ∅. The space [X ] is finite-dimensional,
so it has (Theorem 2.1) a 1/2-orthogonal base x1, . . . , xn. By scalar
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multiplication we can arrange that ‖xi‖ ≥ 1 for each i. By assumption there
is a T1 ∈ FR(E) with ‖T1‖ ≤ 1 and ‖T1(xi)− xi‖ ≤ 1/4 for each i. Now put
A := (IE − T1) | [X ]. We next prove that ‖A‖ ≤ 1/2. In fact, let x ∈ [X ],
x = λ1 x1 + . . .+ λn xn, where λi ∈ K. Then

‖A(x)‖ ≤ max
i

|λi| ‖A(xi)‖ = max
i

|λi| ‖xi − T1(xi)‖ ≤
1

4
max

i
|λi| ≤

1

4
max

i
‖λi xi‖ ≤

1

4
2 ‖

∑

i

λi xi‖ = 1/2 ‖x‖,

and we are done.
E is pseudoreflexive (Theorem 3.2), so by the extension lemma 3.4, A

can be extended to a B ∈ FR(E) with ‖B‖ ≤ 1. Now put T := T1 + B.
We see that T ∈ FR(E) and T (x) = x for all x ∈ X . Finally, observe that
‖T ‖ ≤ max(‖T1‖, ‖B‖) ≤ 1, which completes the proof.

Now we arrive at the key result of this section.

Theorem 3.6. Let E have the MAP. Then every finite-dimensional

subspace is contained in a finite-dimensional orthocomplemented subspace.

Proof. Throughout the proof we fix a finite-dimensional subspace D 6=
{0} and prove that D is contained in a finite-dimensional orthocomplemented
subspace, using a few steps.

(I) For a finite-dimensional subspace F of E and a T ∈ FR(E) we say
that (F, T ) is a proper pair if: (i) T (E) ⊂ F , (ii) ‖T ‖ = 1, (iii) T (x) = x for
all x ∈ D. (Notice that D ⊂ F ).

Straightforward computation shows:
If (F, T ) is a proper pair then so is (T (F ), T 2).
(II) A proper pair (F, T ) is called minimal if there do not exist proper

pairs (F1, T1) with dimF1 < dimF .
By taking in Lemma 3.5 for X a base of D, we obtain the existence of

proper pairs. Then obviously:
There exist minimal proper pairs.

From now on in this proof we fix a minimal proper pair (F, T ); we will
prove that F is orthocomplemented (completing the proof of Theorem 3.6) as
follows:

(III) T (F ) = F . Proof. We have T (E) ⊂ F , so certainly T (F ) ⊂ F .
Now by (I), (T (F ), T 2) is a proper pair, so by minimality dimT (F ) ≥ dimF ,
and we get (III).

(IV) T |F is an isometry. Proof. Suppose not; we derive a contradiction.
There is an y ∈ F with ‖T (y)‖ 6= ‖y‖. But, as ‖T ‖ = 1, we must have
‖T (y)‖ < ‖y‖. We first prove that Ky ⊥ D. For that it suffices to see that
‖y− x‖ ≥ ‖x‖ for all x ∈ D. This is clear if ‖y‖ 6= ‖x‖, so suppose ‖y‖ = ‖x‖
(> ‖T (y)‖). Then ‖y − x‖ ≥ ‖T (y)− T (x)‖ = ‖T (y)− x‖ = ‖x‖, and we are
done.
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Next, consider the map A : D+Ky 7→ KT (y) given by A(x+λ y) = λT (y)
(x ∈ D, λ ∈ K). Then from orthogonality (i.e. ‖x+λ y‖ ≥ ‖λ y‖) one arrives
easily at ‖A‖ = ‖T (y)‖/‖y‖ < 1. Since E is pseudoreflexive (Theorem 3.2),
by the extension lemma (Lemma 3.4) we can extend A to a B ∈ FR(E) with
‖B‖ < 1 and B(E) = A(D +Ky) = KT (y).

Now define U := T−B. From (i) U(E) ⊂ T (E)+B(E) ⊂ F+KT (y) ⊂ F ,
(ii) ‖U‖ = ‖T −B‖ = max(‖T ‖, ‖B‖) = 1, (iii) U(x) = T (x)−B(x) = T (x) =
x for all x ∈ D, we infer that (F,U) is a proper pair. Then, by (I), (U(F ), U2)
is also a proper pair, so by minimality, dimU(F ) ≥ dimF . On the other hand,
U(y) = T (y)−B(y) = T (y)−A(y) = 0, so by finite-dimension considerations
we have dimU(F ) < dimF , a contradiction.

(V) F is orthocomplemented. Proof. (i) KerT ⊥ F : let x ∈ KerT ,
y ∈ F . To show ‖x− y‖ ≥ ‖y‖ we may assume ‖x‖ = ‖y‖. Then, using (IV),
we obtain ‖x− y‖ ≥ ‖T (x)− T (y)‖ = ‖T (y)‖ = ‖y‖.

(ii) E = KerT + F : let z ∈ E. Then T (z) ∈ F = T (F ) by (III), so there
is an y ∈ F with T (z) = T (y). Therefore, z = (z − y) + y ∈ KerT + F .

Corollary 3.7. The following are equivalent.

(α) E has the MAP.
(β) Each finite-dimensional subspace is contained in a finite-dimensional

orthocomplemented subspace.

(γ) There is a net (Pi)i∈I of finite rank orthoprojections E → E such that,

for each x ∈ E, Pi(x) = x for large i.
(δ) There is a net (Pi)i∈I of finite rank operators E → E with ‖Pi‖ ≤ 1

for all i, such that Pi → IE pointwise.

Proof. (α) =⇒ (β) is Theorem 3.6, (γ) =⇒ (δ) is obvious. For (β)
=⇒ (γ), let I be the set of all finite-dimensional subspaces of E, directed by
inclusion. By (β) we can choose, for every D ∈ I, an orthoprojection PD of E
onto some finite-dimensional subspace F ⊃ D. Clearly (PD)D∈I satisfies (γ).

(δ) =⇒ (α). Let ε > 0 and X ⊂ E be finite. By (δ) there is a j ∈ I such
that ‖Pj(x)− x‖ ≤ ε for all x ∈ X , so E has the MAP.

4. Hereditary aspects of the MAP

Theorem 4.1. The MAP is stable for orthocomplemented subpaces.

Proof. Let D be an orthocomplemented subspace of a normed space
E with the MAP. Let ε > 0 and X ⊂ D be finite. By assumption there
is a T1 ∈ FR(E) with ‖T1‖ ≤ 1 and ‖T1(x) − x‖ ≤ ε for all x ∈ X . Now
let P be an orthoprojection of E onto D and put T := (P ◦ T1)|D. Then
clearly T ∈ FR(D) and ‖T ‖ ≤ 1. Also, for each x ∈ X , ‖T (x) − x‖ =
‖(P ◦ T1)(x) − P (x)‖ ≤ ‖P‖ ‖T1(x)− x‖ ≤ ε. Hence D has the MAP.
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To describe the stability of the MAP for dense subspaces we need a general
lemma.

Lemma 4.2. Let D be a finite-dimensional subspace of E, let F be a

dense subspace of E. Then, for each ε > 0, there is a T ∈ L(D,F ) with

‖x− T (x)‖ ≤ ε ‖x‖ for all x ∈ D.

Proof. Let x1, . . . , xn be a 1/2-orthogonal base of D (Theorem 2.1).
By density there are y1, . . . , yn ∈ F such that ‖xi − yi‖ ≤ (ε/2) ‖xi‖ for all
i. Define T : D → F by T (xi) := yi (i ∈ {1, . . . , n}) and linearity. Then
T ∈ L(D,F ). To get the conclusion, let x =

∑

i λi xi ∈ D. Then we have
‖x − T (x)‖ = ‖

∑

i λi(xi − yi)‖ ≤ maxi |λi| ‖xi − yi‖ ≤ (ε/2) maxi |λi| ‖xi‖,
which by 1/2-orthogonality, is ≤ ε ‖x‖, completing the proof.

Theorem 4.3. (Stability of the MAP for dense subspaces and closures)
Let E1 be a dense subspace of a normed space E2. Then E1 has the MAP if

and only if E2 has the MAP. In particular, the completion of a normed space

with the MAP has the MAP.

Proof. (i) Suppose E1 has the MAP. To prove that E2 has the MAP,
let ε > 0 and X := {x1, . . . , xn} ⊂ E2; we construct a T2 ∈ FR(E2) with
‖T2‖ ≤ 1 and ‖T2(xi)− xi‖ ≤ ε for all i. By density there are y1, . . . , yn ∈ E1

such that ‖xi − yi‖ ≤ ε for each i. By assumption there is a T1 ∈ FR(E1)
with ‖T1‖ ≤ 1 and ‖T1(yi) − yi‖ ≤ ε for each i. T1 extends uniquely to
a T2 ∈ L(E2). As T1(E1) is finite-dimensional, hence complete, we have

T2(E2) ⊂ T1(E1) = T1(E1), so that T2 ∈ FR(E2). Clearly ‖T2‖ ≤ 1. Finally,
‖T2(xi) − xi‖ = ‖(T2(xi) − T2(yi)) + (T2(yi) − yi) + (yi − xi)‖ ≤ max(‖xi −
yi‖, ‖T1(yi)− yi‖, ‖yi − xi‖) ≤ ε for each i, showing that E2 has the MAP.

(ii) Suppose E2 has the MAP. To prove that E1 has the MAP, let ε > 0
and ∅ 6= X ⊂ E1 be finite. By assumption there is a T2 ∈ FR(E2) with
‖T2‖ ≤ 1 and ‖T2(x) − x‖ ≤ ε for all x ∈ X . Now let δ ∈ (0, 1) with
δmax{‖T2(x)‖ : x ∈ X} ≤ ε. By Lemma 4.2, there is a S ∈ L(T2(E2), E1)
such that ‖z−S(z)‖ ≤ δ ‖z‖ for all z ∈ T2(E2). Finally, put T1 := (S ◦T2)|E1.
Then T1 ∈ FR(E1) and ‖T1‖ ≤ 1 (as S is an isometry). Also, for each x ∈ X ,

‖T1(x)− x‖ = ‖((S ◦ T2)(x) − T2(x)) + (T2(x) − x)‖ ≤

max(‖S(T2(x)) − T2(x)‖, ‖T2(x)− x‖) ≤ max(δ ‖T2(x)‖, ε) ≤ ε,

proving that E1 has the MAP.

As a next step we consider algebraic orthogonal direct sums.

Theorem 4.4. Let (Ei)i∈I be a collection of normed spaces. Then its

algebraic orthogonal direct sum
⊕a

i Ei has the MAP if and only if each Ei

has the MAP.
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Proof. Each Ei is orthocomplemented in E :=
⊕a

i Ei (we identify each
Ei with its image under the natural injection Ei → E). Thus, if E has the
MAP then so has each Ei (Theorem 4.1).

Now assume that each Ei has the MAP. For each i, let Pi be the canonical
orthoprojection E → Ei, x = (xi)i∈I 7→ xi. Let ε > 0 and X ⊂ E be
finite. There is a finite set J ⊂ I for which X ⊂

∑

j∈J Pj(Ej). Then X ⊂
∑

j∈J Pj(X). By assumption there is, for each j ∈ J , a Tj ∈ FR(Ej) with

‖Tj‖ ≤ 1 and ‖Tj(z) − z‖ ≤ ε for all z ∈ Pj(X). Now define T : E → E by
the formula (T (x))i = Ti(Pi(x)) if i ∈ J ; (T (x))i = 0 otherwise. Then T ∈
FR(E), ‖T ‖ ≤ 1 and, for each x ∈ X , we have ‖T (x)−x‖ = maxi∈J ‖(T (x))i−
xi‖ = maxi∈J ‖Ti(xi)− xi‖ ≤ ε, and we are done.

The step towards orthogonal direct sums is now easy:

Corollary 4.5. Let (Ei)i∈I be a collection of normed spaces. Then
⊕

i Ei has the MAP if and only if each Ei has the MAP.

Proof. Combine Theorem 4.3 and Theorem 4.4.

As finite-dimensional spaces trivially have the MAP, the next result
follows directly.

Corollary 4.6. A Banach space with the FDDP has the MAP.

The converse of Corollary 4.6 does not hold.

Example 4.7. There exists a Banach space E having the MAP but not
the FDDP.

Proof. In [7, 3.6], for non-spherically completeK, a closed subspaceE of
ℓ∞ was constructed that has no orthogonal base but whose finite-dimensional
subspaces are orthocomplemented. Then certainly E has the MAP (e.g.
Corollary 3.7) and it is also easily seen that finite-dimensional subspaces of E
have orthogonal bases. Then E, having no orthogonal base, cannot have the
FDDP.

However, for spaces of countable type we do have a converse.

Lemma 4.8. Let E be a normed space of countable type having the

MAP. Then there exists an orthogonal sequence (Dn)n∈N of finite-dimensional

subspaces such that
∑

n Dn is dense in E.

Proof. Let x1, x2, . . . ∈ E be such that [x1, x2, . . .] is dense in E. We will
construct inductively an orthogonal sequence D1, D2, . . . of finite-dimensional
subspaces, and subspaces H1, H2, . . . such that, for each n, (i) [x1, . . . , xn] ⊂
D1+. . .+Dn, (ii)Hn is an orthocomplement ofD1+. . .+Dn. (This will prove
the lemma). To this end, we first apply Corollary 3.7 to conclude that Kx1 is
contained in an orthocomplemented finite-dimensional subspace, say, D1. Let
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H1 be an orthocomplement of D1. For the step n → n+ 1, suppose we have
constructed D1, . . . , Dn and H1, . . . , Hn in the above fashion. Then xn+1 has
a unique decomposition xn+1 = yn+hn, where yn ∈ D1+ . . .+Dn, hn ∈ Hn.
Now by Theorem 4.1 Hn has the MAP, so hn lies in a finite-dimensional
subspace Dn+1 of Hn that is orthocomplemented in Hn. Let Hn+1 be such
an orthocomplement. Then Hn+1 is trivially an orthocomplement of D1 +
. . .+Dn+1 in E and xn+1 = yn + hn ∈ D1 + . . .+Dn +Dn+1, which proves
the step n → n+ 1.

We can now formulate the following result.

Theorem 4.9. A Banach space of countable type has the MAP if and

only if it has the FDDP.

Remark 4.10. Throughout this remark, let K be not spherically
complete. Let E have the MAP and let D be a subspace of E.

1. (Subspaces) Does D have the MAP?
We know that the answer is yes if D is finite-dimensional, or orthocomple-

mented (Theorem 4.1) or dense (Theorem 4.3), but the general question
remains open. Notice that, for Banach spaces E of countable type, the above
question is by Theorem 4.9 equivalent to:

Let E have the FDDP. Do subspaces have the FDDP?
Observe that the related problem: Let E have an orthogonal base. Do

subspaces have an orthogonal base?, is solved affirmatively ([9, 2.3.22]).
2. (Quotients) Let D be closed. Does E/D have the MAP?
The answer is ”no” in general: it suffices to take a Banach space F without

the MAP and observe that, thanks to [9, 2.5.6], F is a quotient of some Banach
space with an orthogonal base (which has the MAP by Theorem 3.1(ii)). If
we choose for F a space of countable type (see Example 3.3) we can even
conclude by [9, 2.3.28] that F is a quotient of c0.

However, quotients of E by finite-dimensional subspaces have the MAP,
as we show in the next result.

Theorem 4.11. Let E have the MAP, let D be a finite-dimensional

subspace. Then E/D has the MAP.

Proof. Let M be a finite-dimensional subspace of E/D. We construct
(Lemma 3.5) a S ∈ FR(E/D) with ‖S‖ ≤ 1 and S(z) = z for all z ∈ M .
Let π : E → E/D be the canonical quotient map. Then π−1(M) is finite-
dimensional, so by assumption and Lemma 3.5, there is a T ∈ FR(E) with
‖T ‖ ≤ 1 and T (x) = x for all x ∈ π−1(M), in particular, T (x) = x for all
x ∈ D, as D ⊂ π−1(M). Now, let S : E/D → E/D be the map given by
S(π(x)) = π(T (x)) (x ∈ E). Then S is a well-defined finite rank operator with
‖S‖ ≤ 1. Also, for each z ∈ M there is an x ∈ π−1(M) for which π(x) = z.
Thus, S(z) = S(π(x)) = π(T (x)) = π(x) = z, so S meets the requirements.
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We conclude this section with the following for tensor products.

Theorem 4.12. Let E,F have the MAP. Then the tensor product E⊗F
and its completion E⊗̂πF have the MAP.

Proof. By Theorem 4.3 we only need to consider E ⊗F . Let ε > 0 and
{0} 6= Z ⊂ E ⊗ F be finite. There are non-empty finite sets {0} 6= X ⊂ E,
{0} 6= Y ⊂ F such that every z ∈ Z can be written as a finite sum, z =

∑

i xi⊗
yi, xi ∈ X , yi ∈ Y . Let MX := max{‖x‖ : x ∈ X}, MY := max{‖y‖ : y ∈ Y }.
By assumption there exist T ∈ FR(E), S ∈ FR(F ) with ‖T ‖ ≤ 1, ‖S‖ ≤ 1
and

‖T (x)− x‖ ≤ ε
MY

for all x ∈ X , ‖S(y)− y‖ ≤ ε
MX

for all y ∈ Y .

Then T ⊗ S ∈ FR(E ⊗ F ) and ‖T ⊗ S‖ ≤ 1. Now, for each x ∈ X , y ∈ Y ,

‖(T ⊗ S)(x⊗ y)− x⊗ y‖ = ‖T (x)⊗ S(y)− T (x)⊗ y + T (x)⊗ y − x⊗ y‖

≤ max(‖T (x)‖ ‖S(y)− y‖, ‖T (x)− x‖ ‖y‖) ≤ max(MX
ε

MX
,

ε

MY
MY ) = ε.

Then it is easily seen that ‖(T ⊗ S)(z) − z‖ ≤ ε for all z ∈ Z, and we are
done.

Problem Let E ⊗ F have the MAP, and suppose E 6= {0}, F 6= {0}.
Does it follow that E and F have the MAP?

5. Comparison with the classical case

Finally we compare the results given in this paper with their classical (or
archimedean) counterparts, for Banach spaces over R or C.

Since every space over a spherically complete K has the MAP (Theorem
3.1(ii)), in this section we assume that E is a non-archimedean Banach space
over a non-spherically complete K. Also, we assume that E is a Banach space
over R or C.

The notion of the MAP for E is just a translation of the one given in
Definition 1.1.

I. The classical approximation theory was initiated in the Grothendieck’s
memoir [5], where among other things, he studied the MAP. At that moment
all known classical Banach spaces had the MAP. He conjectured that every
space E had this property. It was not until 1973, when Enflo proved in [3]
that the conjecture of Grothendieck was false. He gave an example of a

separable reflexive space E without the MAP. For more examples of classical
Banach spaces with and without the MAP see e.g. [2] and its references on
the subject.

In the non-archimedean setting, the space E of Example 3.3 plays the
role of the classical example given by Enflo: it is a reflexive Banach space
of countable type for which the non-archimedean version of the conjecture of
Grothendieck is false.



418 C. PEREZ-GARCIA AND W. H. SCHIKHOF

II. In the classical case one verifies:

(i) ([2, 3.10]) c0 has the MAP in every equivalent norm.
(ii) ([4, VI.3]) There exists a closed subspace E of c0 such that E has the

8-BAP but fails the MAP.

The non-archimedean counterparts of these classical results are false.
To see that (i) is false, let E be the Banach space of countable

type, without the MAP, constructed in Example 3.3. Then E is linearly
homeomorphic to c0 ([9, 2.3.9]), i.e. there is an equivalent norm ‖ . ‖ on c0,
such that (c0, ‖ . ‖) is isometrically isomorphic to E, so (c0, ‖ . ‖) does not have
the MAP.

Falsity of (ii) follows from the fact that every closed subspace of c0 has
an orthogonal base (Remark 4.10.1), so it has the MAP (Theorem 3.1(ii)).

III. In the archimedean theory we have ([2, 3.6]): If E is a separable dual

space such that

(*) for every ε > 0 and every compact set X ⊂ E there exists a T ∈ FR(E)
with ‖T (x)− x‖ ≤ ε for all x ∈ X,

then E has the MAP.
The non-archimedean counterpart of this classical result is false.
Indeed, let E be the reflexive (hence dual) space of countable type of

Example 3.3. We know that E does not have the MAP. Let us see that E
satisfies (*), and we are done. E is reflexive, hence pseudoreflexive, i.e. E has
the λ-BAP for all λ > 1 (Theorem 3.2). Now, as the finite sets in Definition
1.1 can be replaced by compact sets ([8, 3.2]), we derive that E satisfies (*).

IV. Let us discuss the situation in III when we consider the approximation
properties (in the archimedean and in the non-archimedean case) obtained
from the MAP and (*), by imposing the operator T appearing in their
definitions to be compact, instead of finite rank. Let us call CMAP and (C*),
respectively, the approximation properties obtained after these replacements.
Then, an open problem in the classical theory ([2, 8.7]) is the following:

E is a separable dual space with property (C*) =⇒ E has the CMAP?
In the non-archimedean case the answer to this problem is NO.
Indeed, it was proved in [8, 3.2] that E has the MAP if and only if E has

the CMAP. Then the non-archimedean result given in III provides the desired
negative answer.

V. It is well-known (see e.g. [5, I.5.39]) that E has the MAP if and only
if it has an approximating net, i.e. a net (Pi)i∈I of finite rank operators
E → E with ‖Pi‖ ≤ 1 for all i, such that Pi → IE pointwise (this result is the
archimedean version of (α) ⇐⇒ (δ) of Corollary 3.7). But there exist spaces

E with the MAP and:

(i) having no approximating nets consisting of finite rank projections,
(ii) having no finite-dimensional decompositions ([2, 6.1]).
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In fact, it is proved in [2, 5.2] (and the comments before it) that there
is a separable reflexive space E with property (*), hence with the MAP (see
III), for which there are not bounded nets of finite rank projections E → E
converging pointwise to IE . The non-existence of such bounded nets implies
(i) and (ii).

The assertions (i) and (ii) above show, respectively, that the classical

counterparts of (α) =⇒ (γ) of Corollary 3.7 and of the ”only if” of Theorem

4.9 are false.
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