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ABSTRACT. A normed space E over a rank 1 non-archimedean valued
field K has the metric approzimation property (MAP) if the identity on E
can be approximated pointwise by finite rank operators of norm 1.

Characterizations and hereditary properties of the MAP are obtained.
For Banach spaces E of countable type the following main result is derived:
E has the MAP if and only if E is the orthogonal direct sum of finite-
dimensional spaces (Theorem 4.9). Examples of the MAP are also given.
Among them, Example 3.3 provides a solution to the following problem,
posed by the first author in [8, 4.5]. Does every Banach space of countable
type over K have the MAP?

1. INTRODUCTION

The study of Grothendieck’s approximation in non-archimedean Banach
spaces was initiated in [8]. In the present paper we derive new results leading
to improvements of [8] (see e.g. Theorem 3.2). Also, we give (Example 3.3)
a negative answer to the following problem, posed in [8, 4.5]. Does every
Banach space of countable type over K have the MAP? As an application of
Example 3.3 we additionally prove that the problem raised in [9, p. 95| has
an affirmative answer, even for locally convex spaces of countable type.

In Section 5 we compare the results given in this paper with their classical
versions, for Banach spaces over the real or complex field. This comparison,
together with the one carried out in [8, Section 6], reveals sharp and interesting
contrasts between the classical MAP and its non-archimedean counterpart.
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For explanation of terminology and symbols, see Section 2.
We recall the following fundamental notion from [8], where, for convenience
(see Theorem 4.4 and Corollary 4.5), we include also non-complete spaces.

DEFINITION 1.1. Let A € R, A > 1. A normed space E over K has the
A-bounded approzimation property (A-BAP) if for each € > 0 and each finite
set X C FE there is a finite rank operator T : E — E with ||| < A and
|IT(x) —z|| < e forall x € X. E is said to have the metric approzimation
property (MAP) if it has the 1-BAP.

2. PRELIMINARIES

By ”classical theory” we mean functional analysis over R or C.

Throughout K := (K, |.|) is a non-archimedean non-trivially valued field
that is complete with respect to the metric induced by the valuation |.| :
K — [0,00).

For basics on valued fields, see [1,10,11,13]. For background on non-
archimedean functional analysis, see [9,12,13].

From now on in this paper E, F' are non-archimedean normed spaces
(over K).

For convenience we recall the following.

For a set X C E, [X] denotes the linear hull of X. If (D;);cs is a family
of subspaces of E, then the linear hull of | J; D; is denoted by >, D;.

By L(E,F) we mean the K-vector space of all continuous linear maps
(or operators) T' : E — F with the norm T — |[|T| := min{M > 0 :
IT(x)|| < M |jz|| for all z € E}. If F is a Banach space then so is L(E, F).
If T € L(E,F) and D is a subspace of E, by T|D we denote the restriction
of T to D. We write E' :== L(E,K), L(E) := L(E,E). By Ig we mean the
identity E — E. Also, FR(E,F) :={T € L(E,F) : dimT(F) < oo}, is the
space of the finite rank operators E — F. We put FR(F) := FR(E, E).

E is called pseudoreflexive ([13, p. 60]) if the canonical operator jg :
E — E” defined by jr(z)(f) :== f(z) (x € E, f € E’) is isometric, i.e. if
(for B # {0}) o]l = sup{if@)|/If]l : f € E',f # 0} forall w € E. If
the valuation of K is dense, F is pseudoreflexive if and only if F is norm-
polar, ie. ||z|| = sup{|f(z)| : f € E', ||f|| < 1} for all x € E. If K is
spherically complete every space E is pseudoreflexive ([13, 4.35]). But if K
is not spherically complete the space £>°/cq is not pseudoreflexive; in fact,
(¢ /co)' = {0} (113, 4.3)).

Two subspaces D1, Do of E are called orthogonal (notation Dy L Do) if
ld1+dz|| = max(||d1]], ||dz2]]) for all d; € Dy, da € Dso. If, in addition, Dy + Dy
= F we say that D; and D, are each other’s orthocomplement. For z,y € E
we sometimes write L y in place of Ko | Ky and say that x and y are
orthogonal. By [13, 3.2] this holds if and only if ||pz +y|| > [|p x| (or > |ly]])
for all p € K.
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An operator P € L(E) is called a projection if P? = P, an orthoprojection
if, in addition, KerP 1 P(FE) (which is equivalent to ||P|| < 1).

A system (D;);er of subspaces of E is called (an) orthogonal (system) if
D; L Zj# D; for all ¢ € I. Analogously, a collection (x;);cr of vectors in
E is called orthogonal if (Kx;)er is orthogonal. If, in addition, ||z;|| = 1 for
all i € I, it is called orthonormal. An orthogonal system (z;);e;r C E \ {0}
is called an orthogonal base (of E) if each x € E has a (unique) expansion
T = ZZ Ai xq, where \; € K for all i. In the same spirit we have the notion of
an orthonormal base. For example, in the Banach space cq of all null sequences
in K (with the maximum norm), the unit vectors form an orthonormal base.

We also will need the following extension of the notion of orthogonality.
Let 0 < t < 1. A system (z;);er of vectors in E is called t-orthogonal if
[ 225es Ajzjll > t maxjey ||A; ;| for all finite sets J C I'and \; € K (j € J).
A t-orthogonal system (z;)icr C E \ {0} is called a t-orthogonal base (of E)
if each z € E has a (unique) expansion = ) . A\; x;, where \; € K for all
i. Notice that 1-orthogonal systems and bases are nothing but orthogonal
systems and bases.

F is said to be of countable type if there is a countable set in E whose
linear hull is dense. We quote the following result.

THEOREM 2.1. ([9, 2.3.7, 2.3.25]) A space of countable type has, for each
t € (0,1), a t-orthogonal base. It has an orthogonal base if K is spherically
complete.

Let (E;)icr be a system of normed spaces. Its orthogonal direct sum
@, E; is the space of all (x;)icr € [[, £ for which lim; ||z;|| = 0, normed
by (x;)ier + max; ||x;||. The subspace of all (z;)ic; € €, E; for which
{i € I: z; # 0} is finite, is called the algebraic orthogonal direct sum @} E;.
It is a dense subspace of @i FE;. If each E; is a Banach space then so is @i FE;.

In classical Grothendieck’s approximation theory the notion of the finite-
dimensional decomposition property plays a role (see e.g. [2, 6.1]). In our
theory we modify this concept as follows.

A Banach space E has the finite-dimensional decomposition property
(FDDP) if it is the orthogonal direct sum of a system of finite-dimensional
spaces. If K is spherically complete, every finite-dimensional space has an
orthogonal base (Theorem 2.1), so E has the FDDP if and only if E has an
orthogonal base. However, if K is not spherically complete there exist various
kinds of finite-dimensional spaces without orthogonal base (see [6]); for these
K the class of Banach spaces with the FDDP can be viewed as a natural
proper generalization of the class of Banach spaces with an orthogonal base.

3. EXAMPLES AND CHARACTERIZATIONS OF THE MAP

It was shown in [8] that a large amount of non-archimedean normed spaces
have the A-BAP (A > 1) and the MAP. In fact, the following result holds.
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THEOREM 3.1 (8, 3.3]).

(i) Every norm-polar space E has the A-BAP for all A > 1.
(ii) Suppose either K is spherically complete or E has an orthogonal base.
Then E has the MAP.

For examples of Banach spaces (e.g. valued field extensions; spaces of
continuous (analytic, differentiable) functions) with an orthogonal base and
hence with the MAP (Theorem 3.1.(ii)) see [9, Section 2.5].

We now extend Theorem 3.1.(1) by proving that pseudoreflexivity is
equivalent to having the A-BAP for all A > 1.

THEOREM 3.2. E is pseudoreflexive if and only if E has \-BAP for all
A>1.

PrROOF. The "only if” follows directly from Theorem 3.1. To prove the
Pif? letx € B, x # 0,let 0 < t < 1; we construct an f € E'\ {0} with |f(z)| >
t][f]lllz|]. By assumption there is a T € FR(E) with |T|| < t~/? and
IT(x) — z|| < ||z||. Then ||T'(x)| = ||z||. Now T'(E), being finite-dimensional,
is pseudoreflexive ([13, 3.16(iv)]), so there is a g € (T'(E))’, g # 0 such that
g(T@)| > 12 g IT@)]. Then f = goT is in B'\ {0} and [/ <
gl T < /2 gl Thus, |f@)] = lgT(@)] > tIFIIT@) = tI£] I,
and we are done. O

In the real and complex theory, the A-BAP for all A > 1 implies the MAP
([8, 6.III}), but not in our theory. In fact, it is shown in [8, 4.1] that, for
non-spherically complete K, the Banach space £°° of all bounded sequences
in K (with the supremum norm), has the A-BAP for all A > 1 but does not
have the MAP.

Now £ is not of countable type ([9, 2.5.15]) and it was asked in [8,
4.5], whether spaces of countable type automatically had the MAP. The next
example gives a negative answer to this question.

ExaMPLE 3.3. There exists a reflexive Banach space E of countable type
that does not have the MAP.

ProOF. Let K be not-spherically complete, let KV be its spherical
completion. Then KV is in particular a K-Banach space.

We first prove that no pair of non-zero vectors in KV is an orthogonal
system. In fact, let z,y € K \ {0}. To show that Kz is not orthogonal to
Ky we may assume that |z| = |y| = 1 (as |KV| = |K|). Now the residue class
fields of KV and K are isomorphic, so |£L' y~t— u‘ < 1 for some p € K. It
follows that | — py| < 1, i.e. Kz is not orthogonal to Ky.

Next we show that no infinite-dimensional subspace of KV has the MAP.
In fact, suppose there is an infinite-dimensional subspace G of KV with the
MAP; we derive a contradiction. Let x € G\ {0}. There is a T € FR(G) with
IT|| < 1and ||T(x) —z| < ||z||. Then | T(x)| = ||z||. For each z € KerT'\ {0}
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we have ||z — z|| > ||[T(x) — T(2)|| = |T(@)| = ||z|, so Kz L KerT, a
contradiction with the assertion proved above.

Finally, KV/K is spherically complete ([13, 4.2]), so (KY/K) = {0}
([13, 4.3]). In particular, KV is not of countable type as a K-normed space
([13, 3.16]), so certainly admits closed infinite-dimensional subspaces E of
countable type (which are reflexive, [13, 4.18]), finishing the construction. 0O

APPLICATION. In [9, p. 95] the following problem was posed: Does there
exist an absolutely convex edged set C in some locally convex space G over K
such that its closure C is not edged?

We shall use Example 3.3 to provide an affirmative answer when K is not
spherically complete and G is even of countable type.

Let p be the topology of pointwise convergence on L(E), i.e. the Hausdorff
locally convex topology on L(F) defined by the family of seminorms {p, : « €
E}, where p,(T) = |T(x)||, x € E, T € L(E). As usual, by pointwise
convergence in L(E) we mean p-convergence.

Then we have the following:

Let K be not spherically complete. Let E be a normed space of countable
type without the MAP (e.g. Fzxample 3.3). Then G := (L(E), p) is a locally
convex space of countable type and C = {T € FR(E) : ||[T| < 1} is an
absolutely convex edged set in L(E) such that C” is not edged.

In fact, it suffices to prove that (L(E), p) is of countable type; the rest
follows from [8, 5.2]. Observe that the map (L(E), p) — E¥, T — (T(2))zer
is a linear homeomorphism onto the image. Since E is of countable type
then, by the stability properties for locally convex spaces of countable type
([9, 4.2.13]), we get that (L(E), p) is of countable type.

We conclude this section by proving a stronger-looking, yet equivalent
formulation of the MAP (Theorem 3.6). To this end we give two preparatory
lemmas.

LEMMA 3.4 (Extension lemma). Let E be pseudoreflexive, let D be a
finite-dimensional subspace and let 0 < €1 < e2. Then each A € L(D,E)
with ||Al] < &1 can be extended to a B € FR(E) for which ||B|| < &2 and
B(E) = A(D).

PRrROOF. By pseudoreflexivity, there is a projection P of F onto D with
| P|| <eptes (apply [13, 4.35] in the case when K is spherically complete, and
[9, 4.4.6] for non-spherically complete K). One verifies directly that B := AoP
satisfies the requirements. O

LEMMA 3.5 (Taking € = 0 in the definition of the MAP). Let E have the
MAP. Then for each finite set X C E there is a T € FR(E) with |T| <1
and T'(z) = x for all x € X.

PROOF. We may assume that X # (). The space [X] is finite-dimensional,
so it has (Theorem 2.1) a 1/2-orthogonal base z1,...,z,. By scalar
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multiplication we can arrange that ||z;|| > 1 for each i. By assumption there
isaTy € FR(E) with ||T1|| <1 and ||T3(z;) — x;|| < 1/4 for each i. Now put
A= (Ig —T1)|[X]. We next prove that [|A| < 1/2. In fact, let z € [X],
r=Mx1+...+ ATy, where \; € K. Then

1
JA@)I < max Al 1A | = max | flos = T3 ()| < 5 max A <
1 1
max szl < 3203 Nl = 172l

and we are done.

E is pseudoreflexive (Theorem 3.2), so by the extension lemma 3.4, A
can be extended to a B € FR(E) with ||B|| < 1. Now put T := Ty + B.
We see that T € FR(FE) and T'(xz) = « for all x € X. Finally, observe that
|7 < max(||T1]l, | B]]) < 1, which completes the proof. O

Now we arrive at the key result of this section.

THEOREM 3.6. Let E have the MAP. Then every finite-dimensional
subspace is contained in a finite-dimensional orthocomplemented subspace.

PRrROOF. Throughout the proof we fix a finite-dimensional subspace D #
{0} and prove that D is contained in a finite-dimensional orthocomplemented
subspace, using a few steps.

(I) For a finite-dimensional subspace F of E and a T' € FR(FE) we say
that (F,T) is a proper pair if: (i) T(E) C F, (i) |T| =1, (iii) T(z) = z for
all z € D. (Notice that D C F).

Straightforward computation shows:

If (F,T) is a proper pair then so is (T(F),T?).

(IT) A proper pair (F,T) is called minimal if there do not exist proper
pairs (Fy,T7) with dim F} < dim F.

By taking in Lemma 3.5 for X a base of D, we obtain the existence of
proper pairs. Then obviously:

There exist minimal proper pairs.

From now on in this proof we fix a minimal proper pair (F,T); we will
prove that F' is orthocomplemented (completing the proof of Theorem 3.6) as
follows:

(II1) T(F) = F. PROOF. We have T'(FE) C F, so certainly T'(F) C F.
Now by (1), (T'(F),T?) is a proper pair, so by minimality dim T'(F) > dim F,
and we get (III).

(IV) T|F is an isometry. PROOF. Suppose not; we derive a contradiction.
There is an y € F with ||T(y)|| # |lyll. But, as ||T|| = 1, we must have
1T < llyll. We first prove that Ky L D. For that it suffices to see that
ly — || > ||z|| for all x € D. This is clear if ||y|| # ||=]|, so suppose ||y|| = ||=||
G T Then [y~ ] 2 170) =Tl = IT() o] = ], and we ae

one.



THE NON-ARCHIMEDEAN METRIC APPROXIMATION PROPERTY 413

Next, consider the map A : D+ Ky — KT (y) given by A(x+Ay) = AT (y)
(x € D, A € K). Then from orthogonality (i.e. ||z+ Ay| > [[Ay]||) one arrives
easily at || A|| = [|T(y)|l/|lyl]l < 1. Since E is pseudoreflexive (Theorem 3.2),
by the extension lemma (Lemma 3.4) we can extend A to a B € FR(E) with
|IB|| < 1and B(E) = A(D + Ky) = KT (y).

Now define U := T—B. From (i) U(E) C T(E)+B(E) C F+KT(y) C F,
(i) U] = |IT— Bl = max(|IT|, | B) = 1, i) U(x) = T(x) - B(x) = T(x) =
x for all x € D, we infer that (F,U) is a proper pair. Then, by (I), (U(F),U?)
is also a proper pair, so by minimality, dim U (F') > dim F'. On the other hand,
U(y) =T(y) — B(y) = T(y) — A(y) = 0, so by finite-dimension considerations
we have dimU(F) < dim F, a contradiction.

(V) F is orthocomplemented. PROOF. (i) KerT L F: let x € KerT,
y € F. To show ||z — y|| > |ly|| we may assume ||z|| = ||y||. Then, using (IV),
we obtain [l — yl| > | T(z) - T()| = ITw)] = 1]l

(i) E=KerT+ F: let z€ E. Then T(z) € F = T(F) by (III), so there
isan y € F with T'(z) = T'(y). Therefore, z = (z —y)+y € Ker T + F. O

COROLLARY 3.7. The following are equivalent.

(o) E has the MAP.

(8) Each finite-dimensional subspace is contained in a finite-dimensional
orthocomplemented subspace.

(v) There is a net (P;)icr of finite rank orthoprojections E — E such that,
for each x € E, Pi(x) = x for large i.

(0) There is a net (P;)icr of finite rank operators E — E with ||P;|| < 1
for all i, such that P; — Ig pointwise.

PROOF. (o) = (f) is Theorem 3.6, (y) = (d) is obvious. For (B)
= (7), let I be the set of all finite-dimensional subspaces of E, directed by
inclusion. By () we can choose, for every D € I, an orthoprojection Pp of E
onto some finite-dimensional subspace F' D D. Clearly (Pp)per satisfies (7).

(0) = (). Let £ > 0 and X C E be finite. By (§) there is a j € I such
that ||Pj(z) — z|| < e for all z € X, so E has the MAP. O

4. HEREDITARY ASPECTS OF THE MAP

THEOREM 4.1. The MAP is stable for orthocomplemented subpaces.

PROOF. Let D be an orthocomplemented subspace of a normed space
E with the MAP. Let ¢ > 0 and X C D be finite. By assumption there
isa Ty € FR(E) with [|[T1] < 1 and |[Ti(x) — z|| < € for all z € X. Now
let P be an orthoprojection of E onto D and put T := (P o T1)|D. Then
clearly T € FR(D) and |T|| < 1. Also, for each z € X, ||T(z) — z|| =
[(PoTi)(x) — P(x)|| < ||P] |ITh(x) — z|| < e. Hence D has the MAP. O
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To describe the stability of the MAP for dense subspaces we need a general
lemma.

LEMMA 4.2. Let D be a finite-dimensional subspace of E, let F be a
dense subspace of E. Then, for each ¢ > 0, there is a T € L(D,F) with
|z — T(x)|| <ellz|| for all x € D.

PROOF. Let x1,...,z, be a 1/2-orthogonal base of D (Theorem 2.1).
By density there are y1,...,y, € F such that ||z; — y;|| < (¢/2) ||z;] for all
i. Define T : D — F by T(z;) := y; (i € {1,...,n}) and linearity. Then
T € L(D,F). To get the conclusion, let = ). \jz; € D. Then we have
[l = T(@)| = 122 Ai(zi — o)l < max; [Ail (s = will < (e/2) max; [Nl i),
which by 1/2-orthogonality, is < ¢ ||z||, completing the proof. a

THEOREM 4.3. (Stability of the MAP for dense subspaces and closures)
Let Ey be a dense subspace of a normed space Eo. Then Eqi has the MAP if
and only if E5 has the MAP. In particular, the completion of a normed space
with the MAP has the MAP.

PRrOOF. (i) Suppose E; has the MAP. To prove that Es has the MAP,
let ¢ > 0 and X := {x1,...,2,} C Eo; we construct a Ty € FR(E3) with
IT2|l <1 and ||T2(z;) — xi]| < e for all i. By density there are y1,...,yn € E1
such that ||z; — y;|| < € for each i. By assumption there is a Ty € FR(E})
with ||T1]] < 1 and ||Th(y;) — yil] < e for each i. T; extends uniquely to
a Ty € L(E;). As Ti(F;) is finite-dimensional, hence complete, we have
T5(Es2) C Th(E1) = Ti(Eh), so that Ty € FR(Ez). Clearly ||Tz]| < 1. Finally,
ITo(xi) = will = [[(Ta(2i) — Ta(yi)) + (Ta(yi) = yi) + (yi — @3)|| < max(||z; —
Yills |1 T1(ys) — vills lys — x4|) < € for each 4, showing that Eo has the MAP.

(ii) Suppose E; has the MAP. To prove that E; has the MAP, let € > 0
and ) # X C E; be finite. By assumption there is a T € FR(E,) with
IT2]] < 1 and [|T2(z) — z|| < e for all z € X. Now let 6 € (0,1) with
dmax{|Tz2(x)|| : ¢ € X} < e. By Lemma 4.2, there is a S € L(T2(E2), E1)
such that ||z —S(z)|| < & ||z|| for all z € To(Es). Finally, put T} := (SoT5)|E;.
Then 77 € FR(E4) and || T1]] <1 (as S is an isometry). Also, for each z € X,

1T (x) — =[] = [[((S o To)(z) — Ta(2)) + (Ta(z) — )| <
max([|S(Ta(z)) = Ta(2)|, [|T2(x) — z[|) < max(§ [ To(z)]], ) <e,

proving that E; has the MAP. O

As a next step we consider algebraic orthogonal direct sums.

THEOREM 4.4. Let (E;)icr be a collection of normed spaces. Then its
algebraic orthogonal direct sum @f E; has the MAP if and only if each E;
has the MAP.
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PrOOF. Each Ej; is orthocomplemented in E := @] E; (we identify each
E; with its image under the natural injection E; — E). Thus, if F has the
MAP then so has each E; (Theorem 4.1).

Now assume that each E; has the MAP. For each i, let P; be the canonical
orthoprojection F — E;, x = (x;)ier — x;. Let ¢ > 0 and X C E be
finite. There is a finite set J C I for which X C >, ; Pj(E;). Then X C
> jes Pj(X). By assumption there is, for each j € J, a Tj € FR(E;) with
IT;]l <1 and ||T;(2) — z|| < e for all z € Pj(X). Now define T : E — E by
the formula (T'(z)); = Ti(Pi(x)) if i € J; (T'(z)); = 0 otherwise. Then T €
FR(E), |T|| < 1and, for eachz € X, we have ||T(z)—z| = max;es ||(T(z))i—
x| = max;e | Ti(x;) — ]| < e, and we are done. O

The step towards orthogonal direct sums is now easy:

COROLLARY 4.5. Let (E;)icr be a collection of normed spaces. Then
D, Ei has the MAP if and only if each E; has the MAP.

PrOOF. Combine Theorem 4.3 and Theorem 4.4. |

As finite-dimensional spaces trivially have the MAP, the next result
follows directly.

COROLLARY 4.6. A Banach space with the FDDP has the MAP.
The converse of Corollary 4.6 does not hold.

EXAMPLE 4.7. There exists a Banach space E having the MAP but not
the FDDP.

PRrROOF. In [7, 3.6], for non-spherically complete K, a closed subspace E of
£°° was constructed that has no orthogonal base but whose finite-dimensional
subspaces are orthocomplemented. Then certainly E has the MAP (e.g.
Corollary 3.7) and it is also easily seen that finite-dimensional subspaces of E
have orthogonal bases. Then F, having no orthogonal base, cannot have the
FDDP. O

However, for spaces of countable type we do have a converse.

LEMMA 4.8. Let E be a normed space of countable type having the
MAP. Then there exists an orthogonal sequence (Dy)nen of finite-dimensional
subspaces such that )", D, is dense in E.

PROOF. Let 21, x2,... € E be such that [x1,x2,...] is dense in E. We will
construct inductively an orthogonal sequence D1, Ds, ... of finite-dimensional
subspaces, and subspaces Hy, Ha, ... such that, for each n, (i) [z1,...,2,] C

Dy+...4+D,, (ii) H, is an orthocomplement of D1+...+D,,. (This will prove
the lemma). To this end, we first apply Corollary 3.7 to conclude that Kz is
contained in an orthocomplemented finite-dimensional subspace, say, D;. Let
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Hy be an orthocomplement of D;. For the step n — n + 1, suppose we have
constructed Dy,...,D, and Hy,..., H, in the above fashion. Then x,,4; has
a unique decomposition x,+1 = y, + hy, wherey, € D1 +...4+ Dy, h, € H,,.
Now by Theorem 4.1 H, has the MAP, so h, lies in a finite-dimensional
subspace D, of H, that is orthocomplemented in H,,. Let H,; be such
an orthocomplement. Then H, ;i is trivially an orthocomplement of D; +
oot Dpt1in E and xpy1 =Yn + hp € D1+ ...+ D, + Dy41, which proves
the stepn — n + 1. O

We can now formulate the following result.

THEOREM 4.9. A Banach space of countable type has the MAP if and
only if it has the FDDP.

REMARK 4.10. Throughout this remark, let K be not spherically
complete. Let E have the MAP and let D be a subspace of E.

1. (Subspaces) Does D have the MAP?

We know that the answer is yes if D is finite-dimensional, or orthocomple-
mented (Theorem 4.1) or dense (Theorem 4.3), but the general question
remains open. Notice that, for Banach spaces E of countable type, the above
question is by Theorem 4.9 equivalent to:

Let E have the FDDP. Do subspaces have the FDDP?

Observe that the related problem: Let E have an orthogonal base. Do
subspaces have an orthogonal base?, is solved affirmatively ([9, 2.3.22]).

2. (Quotients) Let D be closed. Does E/D have the MAP?

The answer is ”no” in general: it suffices to take a Banach space F' without
the MAP and observe that, thanks to [9, 2.5.6], F' is a quotient of some Banach
space with an orthogonal base (which has the MAP by Theorem 3.1(ii)). If
we choose for F' a space of countable type (see Example 3.3) we can even
conclude by [9, 2.3.28] that F' is a quotient of ¢g.

However, quotients of E by finite-dimensional subspaces have the MAP,
as we show in the next result.

THEOREM 4.11. Let E have the MAP, let D be a finite-dimensional
subspace. Then E/D has the MAP.

PROOF. Let M be a finite-dimensional subspace of E/D. We construct
(Lemma 3.5) a S € FR(E/D) with ||S|| < 1 and S(z) = z for all z € M.
Let 7 : E — E/D be the canonical quotient map. Then 7 (M) is finite-
dimensional, so by assumption and Lemma 3.5, there is a T' € FR(E) with
T <1 and T(z) = z for all z € 7~ }(M), in particular, T'(z) = z for all
x € D,as D C 7= Y(M). Now, let S: E/D — E/D be the map given by
S(w(z)) =n(T(x)) (x € E). Then S is a well-defined finite rank operator with
||S|| < 1. Also, for each z € M there is an x € 7~ (M) for which 7(z) = 2.
Thus, S(z) = S(n(x)) = 7(T'(z)) = 7n(x) = z, so S meets the requirements.

O
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We conclude this section with the following for tensor products.

THEOREM 4.12. Let E, F have the MAP. Then the tensor product E® F
and its completion EQ.F have the MAP.

PRrOOF. By Theorem 4.3 we only need to consider £ ® F'. Let € > 0 and
{0} # Z C E ® F be finite. There are non-empty finite sets {0} # X C E,
{0} # Y C F such that every z € Z can be written as a finite sum, z = ), 2;®
Vi, ; € X, y; €Y. Let Mx := max{||z| : x € X}, My := max{|ly|]| : y € Y}.
By assumption there exist T € FR(E), S € FR(F) with ||[T]| <1, [|S|| € 1
and

1T(x) —z|| < 57 forallz € X, [[S(y) —yl < 3 forally e Y.

Then T® S € FR(E®F) and |T ® S| < 1. Now, for each zeX,yey,

(TS (rey)—reyl = ||T(Z)®S(y)*T(x)®y+T( )®y*x®yll

< max([|T(@)[| S(y) = yll, IT(x) — ] lyl]) < max(Mx +— M M My) =e.
Then it is easily seen that ||(T' ® S)(z) — z|| < € for all z € Z, and we are
done. O

PROBLEM Let E ® F have the MAP, and suppose E # {0}, F # {0}.
Does it follow that E and F' have the MAP?

5. COMPARISON WITH THE CLASSICAL CASE

Finally we compare the results given in this paper with their classical (or
archimedean) counterparts, for Banach spaces over R or C.

Since every space over a spherically complete K has the MAP (Theorem
3.1(ii)), in this section we assume that E is a non-archimedean Banach space
over a non-spherically complete K. Also, we assume that £ is a Banach space
over R or C.

The notion of the MAP for £ is just a translation of the one given in
Definition 1.1.

I. The classical approximation theory was initiated in the Grothendieck’s
memoir [5], where among other things, he studied the MAP. At that moment
all known classical Banach spaces had the MAP. He conjectured that every
space £ had this property. It was not until 1973, when Enflo proved in [3]
that the conjecture of Grothendieck was false. He gave an example of a
separable reflexive space € without the MAP. For more examples of classical
Banach spaces with and without the MAP see e.g. [2] and its references on
the subject.

In the non-archimedean setting, the space F of Example 3.3 plays the
role of the classical example given by Enflo: it is a reflexive Banach space
of countable type for which the non-archimedean version of the conjecture of
Grothendieck is false.
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II. In the classical case one verifies:

(i) ([2, 3.10]) co has the MAP in every equivalent norm.
(ii) ([4, VL.3]) There exists a closed subspace € of ¢y such that £ has the
8-BAP but fails the MAP.

The non-archimedean counterparts of these classical results are false.
To see that (i) is false, let E be the Banach space of countable
type, without the MAP, constructed in Example 3.3. Then F is linearly

homeomorphic to ¢y ([9, 2.3.9]), i.e. there is an equivalent norm || .|| on ¢y,
such that (co, || . ||) is isometrically isomorphic to E, so (co, | . ||) does not have
the MAP.

Falsity of (ii) follows from the fact that every closed subspace of ¢y has
an orthogonal base (Remark 4.10.1), so it has the MAP (Theorem 3.1(ii)).

IT1. In the archimedean theory we have ([2, 3.6]): If £ is a separable dual
space such that

(*) for everye > 0 and every compact set X C E there exists a T € FR(E)
with ||T'(z) — z|| <€ for all x € X,

then £ has the MAP.

The non-archimedean counterpart of this classical result is false.

Indeed, let E be the reflexive (hence dual) space of countable type of
Example 3.3. We know that E does not have the MAP. Let us see that F
satisfies (*), and we are done. F is reflexive, hence pseudoreflexive, i.e. E has
the \-BAP for all A > 1 (Theorem 3.2). Now, as the finite sets in Definition
1.1 can be replaced by compact sets ([8, 3.2]), we derive that F satisfies (*).

I'V. Let us discuss the situation in IIT when we consider the approximation
properties (in the archimedean and in the non-archimedean case) obtained
from the MAP and (*), by imposing the operator T appearing in their
definitions to be compact, instead of finite rank. Let us call CMAP and (C*),
respectively, the approximation properties obtained after these replacements.
Then, an open problem in the classical theory (]2, 8.7]) is the following:

E is a separable dual space with property (C*) = & has the CMAP?

In the non-archimedean case the answer to this problem is NO.

Indeed, it was proved in [8, 3.2] that E has the MAP if and only if E has
the CMAP. Then the non-archimedean result given in III provides the desired
negative answer.

V. It is well-known (see e.g. [5, 1.5.39]) that & has the MAP if and only
if it has an approximating net, i.e. a net (P;);es of finite rank operators
&€ — & with ||P;|| <1 for all ¢, such that P, — I¢ pointwise (this result is the
archimedean version of () <= (9) of Corollary 3.7). But there exist spaces
E with the MAP and:

(i) having no approzimating nets consisting of finite rank projections,
(ii) having no finite-dimensional decompositions ([2, 6.1]).
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In fact, it is proved in [2, 5.2] (and the comments before it) that there
separable reflexive space £ with property (*), hence with the MAP (see
for which there are not bounded nets of finite rank projections & — &€

converging pointwise to Ig. The non-existence of such bounded nets implies
(i) and (ii).

The assertions (i) and (ii) above show, respectively, that the classical

counterparts of (o) = () of Corollary 3.7 and of the “only if” of Theorem
4.9 are false.
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