
GLASNIK MATEMATIČKI
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ON FINITE INDEX SUBGROUPS OF THE MAPPING
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Abstract. Let M(Nh,n) denote the mapping class group of a
compact nonorientable surface of genus h ≥ 7 and n ≤ 1 boundary
components, and let T (Nh,n) be the subgroup of M(Nh,n) generated by all
Dehn twists. It is known that T (Nh,n) is the unique subgroup of M(Nh,n)
of index 2. We prove that T (Nh,n) (and also M(Nh,n)) contains a unique

subgroup of index 2g−1(2g − 1) up to conjugation, and a unique subgroup
of index 2g−1(2g + 1) up to conjugation, where g = ⌊(h − 1)/2⌋. The
other proper subgroups of T (Nh,n) and M(Nh,n) have index greater than

2g−1(2g + 1). In particular, the minimum index of a proper subgroup of
T (Nh,n) is 2g−1(2g − 1).

1. Introduction

For a compact surface F , its mapping class group M(F ) is the group of
isotopy classes of all, orientation preserving if F is orientable, homeomorph-
isms F → F equal to the identity on the boundary of F . A compact surface of
genus g with n boundary components will be denoted by Sg,n if it is orientable,
or by Ng,n if it is nonorientable.

It is well known that M(Sg,n) is residually finite ([4]), and since M(Ng,n)
embeds in M(Sg−1,2n) for g + 2n ≥ 3 ([2, 17]), it is residually finite as
well. It means that mapping class groups have a rich supply of finite index
subgroups. On the other hand, Berrick, Gebhardt and Paris ([1]) proved
that for g ≥ 3 the minimum index of a proper subgroup of M(Sg,n) is
m−

g = 2g−1(2g − 1) (previously it was known that the minimum index
is greater than 4g + 4 ([12])). More specifically, it is proved in [1] that
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M(Sg,n) contains a unique subgroup of index m−
g up to conjugation, a

unique subgroup of index m+
g = 2g−1(2g + 1) up to conjugation, and all

other proper subgroups of M(Sg,n) have index strictly greater than m+
g .

The subgroups of indices m−
g and m+

g are constructed via the symplectic
representation M(Sg,n) → Sp(2g,Z) induced by the action of M(Sg,n) on
H1(Sg,0,Z) = Z

2g (after gluing a disc along each boundary component of
Sg,n). Passing mod 2 we obtain an epimorphism θg,n : M(Sg,n) → Sp(2g,Z2).
The orthogonal groupsO−(2g,Z2) andO

+(2g,Z2) are subgroups of Sp(2g,Z2)
of indices respectively m−

g and m+
g (see [1] and references therein), and

thus O−
g,n = θ−1

g,n(O
−(2g,Z2)) and O+

g,n = θ−1
g,n(O

+(2g,Z2)) are subgroups

of M(Sg,n) of indices respectively m
−
g and m+

g .
Note that for g ∈ {1, 2} the minimum index of a proper subgroup of

M(Sg,n) is 2. Indeed, the abelianization of M(Sg,n) is Z12 for (g, n) = (1, 0),
Z
n for g = 1 and n > 0, and Z10 for g = 2 (see [7]). On the other hand,

M(Sg,n) is perfect for g ≥ 3. Zimmermann ([19]) proved that for g ∈ {3, 4}
the smallest nontrivial quotient of M(Sg,0) is Sp(2g,Z2). The problem of
determining the smallest nontrivial quotient of M(Sg,n) for g ≥ 5 is open. On
the other hand, Masbaum and Reid ([10]) proved that for fixed g ≥ 1, every
finite group occurs as a quotient of some finite index subgroup of M(Sg,0).

In this paper we consider the case of a nonorientable surface. For h ≥
2 and n ≥ 0, M(Nh,n) contains a subgroup of index 2, namely the twist
subgroup T (Nh,n) generated by all Dehn twists about two-sided curves ([9,
15]). If h ≥ 7, then T (Nh,n) is perfect and equal to the commutator subgroup
[M(Nh,n),M(Nh,n)] (see Theorem 2.5). In particular, for h ≥ 7, T (Nh,n) is
the unique subgroup of M(Nh,n) of index 2. The motivating question for this
paper is as follows.

What is the minimum index of a proper subgroup of T (Nh,n)?

To avoid complication, we restrict our attention to n ≤ 1. The reason is that
for n ≤ 1, M(Nh,n) and T (Nh,n) have particularly simple generators. We
emphasize, however, that finite generating sets for these groups are known for
arbitrary n ([15,16]). It is worth mentioning at this point, that the first finite
generating set for M(Nh,0), h ≥ 3, was obtained by Chillingworth ([3]) using
Lickorish’s results ([8, 9]).

Our starting observation is that M(Nh,n) and T (Nh,n) admit epimorph-
isms onto Sp(2g,Z2), where g = ⌊(h− 1)/2⌋, hence they contain subgroups of
indices m−

g and m+
g . Here is the construction. Set Vh = H1(Nh,0,Z2). It is

a Z2-module of rank h. It was proved by McCarthy and Pinkall ([11]) that if
ϕ is an automorphism of Vh which preserves the mod 2 intersection pairing,
then ϕ is induced by a homeomorphism which is a product of Dehn twists.
In other words the natural maps M(Nh,0) → Aut(Vh, ι) and T (Nh,0) →
Aut(Vh, ι) are epimorphisms, where ι is the mod 2 intersection pairing on Vh
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and Aut(Vh, ι) is the group of automorphisms preserving ι. By pre-composing
these epimorphisms with those induced by gluing a disc along the boundary of
Nh,1, respectively M(Nh,1) → M(Nh,0) and T (Nh,1) → T (Nh,0), we obtain
epimorphisms from M(Nh,1) and T (Nh,1) onto Aut(Vh, ι). By [6, Section 3]
and [18, Lemma 8.1] we have isomorphisms

Aut(Vh, ι) ∼=

{
Sp(2g,Z2) if h = 2g + 1

Sp(2g,Z2)⋉ Z
2g+1

2 if h = 2g + 2

In either case there is an epimorphism Aut(Vh, ι) → Sp(2g,Z2). By pre-
composing this epimorphism with the map from M(Nh,n) (resp. T (Nh,n))
onto Aut(Vh, ι), we obtain for n ∈ {0, 1} epimorphisms

ε̃h,n : M(Nh,n) → Sp(2g,Z2) (resp. εh,n : T (Nh,n) → Sp(2g,Z2)).

Set

H̃−
h,n = ε̃−1

h,n(O
−(2g,Z2)), H̃+

h,n = ε̃−1
h,n(O

+(2g,Z2)),

H−
h,n = ε−1

h,n(O
−(2g,Z2)), H+

h,n = ε−1

h,n(O
+(2g,Z2)).

Here is our main result.

Theorem 1.1. Let h = 2g + r for g ≥ 3, r ∈ {1, 2} and n ∈ {0, 1}.

(1) T (Nh,n) is the unique subgroup of M(Nh,n) of index 2.

(2) H̃−
h,n (resp. H−

h,n) is the unique subgroup of M(Nh,n) (resp. T (Nh,n))

of index m−
g , up to conjugation.

(3) H̃+
h,n (resp. H+

h,n) is the unique subgroup of M(Nh,n) (resp. T (Nh,n))

of index m+
g , up to conjugation.

(4) All other proper subgroups of M(Nh,n) or T (Nh,n) have index strictly

greater then m+
g , and at least 5m−

g−1 > m+
g if g ≥ 4.

The nontrivial content of Theorem 1.1 consists in points (2), (3), (4).
The idea of the proof is as follows. Suppose that H is a proper subgroup of
T (Nh,1) (for definiteness) of index m ≤ m+

g . The group T (Nh,1) contains an
isomorphic copy of M(Sg,1) and we prove in Lemma 4.3 that H ∩ M(Sg,1)
has index m in M(Sg,1). Therefore, by [1], H ∩M(Sg,1) is conjugate either

to O−
g,1 or to O+

g,1. Then we prove in Theorem 4.2 that H−
h,1 (resp. H+

h,1)

is the unique up to conjugacy subgroup of T (Nh,1) of index m
−
g (resp. m+

g )

such that H−
h,1 ∩M(Sg,1) = O−

g,1 (resp. H+

h,1 ∩M(Sg,1) = O+
g,1 ).

For h ∈ {5, 6} the abelianization of T (Nh,n) is Z2, hence the minimum
index of a proper subgroup is 2. We prove in Theorem 4.1 that for h ∈ {5, 6}
and n ∈ {0, 1}, there are 4 conjugacy classes of proper subgroups of T (Nh,n)

of index at most m+
2 = 10. By [15], the abelianization of T (Nh,n) is Z12

for (h, n) = (3, 0), Z24 for (h, n) = (3, 1), and Z2 × Z for (h, n) = (4, 0). In
particular, every positive integer occurs as an index of a subgroup of T (N4,0).
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2. Preliminaries

2.1. Permutations. Let Sm denote the full permutation group of {1, . . . ,
m}. The main tool used in this paper is the following well known relationship
between index m subgroups and maps to Sm. A group homomorphism
ϕ : G → Sm is transitive if the image acts transitively on {1, . . . ,m}. If
ϕ : G → Sm is transitive, then Stabϕ(1) = {x ∈ G |ϕ(x)(1) = 1} is a
subgroup of G of index m. Conversely, if H is a subgroup of G of index
m, then the action of G on the right cosets of H gives rise to a transitive
homomorphism ϕ : G → Sm such that H = Stabϕ(1). Such ϕ will be called
permutation representation associated with H .

We say that two homomorphisms ϕ and ψ from G1 to G2 are conjugate
if there exists y ∈ G2 such that ϕ(x) = yψ(x)y−1 for all x ∈ G1. It is easy
to see that two subgroups of G are conjugate if and only if the associated
permutation representations are conjugate.

For u ∈ Sm we have the partition of {1, . . . ,m} into the fixed set F (u)
and the support S(u) of u. We will repeatedly use the fact that if u, v ∈ Sm

commute, then v preserves F (u) and S(u).

1

. . .

i

. . .

j

. . .

h

Figure 1. The surface Nh,1 and the curve γi,j .

2.2. Mapping class group of a nonorientable surface. Fix h = 2g + r,
where g ≥ 2, r ∈ {1, 2}. Let us represent Nh,1 as a disc with h crosscaps.
This means that interiors of h small pairwise disjoint discs should be removed
from the disc, and then antipodal points in each of the resulting boundary
components should be identified. Let us arrange the crosscaps as shown on
Figure 1 and number them from 1 to h. The closed surface Nh,0 is obtained
by gluing a disc along the boundary of Nh,1. The inclusion of Nh,1 in Nh,0

induces epimorphisms M(Nh,1) → M(Nh,0) and T (Nh,1) → T (Nh,0). For
i ≤ j let γi,j denote the simple closed curve on Nh,1 from Figure 1. If j − i is
odd then γi,j is two-sided and we will denote by Tγi,j

the Dehn twist about
γi,j in the direction indicated by arrows on Figure 1. For 1 ≤ i ≤ h − 1
set αi = γi,i+1, α0 = γ1,4 and α2g+2 = γ1,2g (if g = 2 then α0 = α6).
We can alter the curves αi by an isotopy, so that they intersect each other
minimally. Let Σ (resp. Σ′) be a regular neighbourhood of the union of αi

for 1 ≤ i ≤ 2g (resp. 1 ≤ i ≤ 2g − 2). These neighbourhoods may be chosen
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so that Σ′ ⊂ Σ, α2g+2 ⊂ Σ, and α0 ⊂ Σ′ if g ≥ 3. Note that Σ and Σ′

are homeomorphic to, and hence will be identified with, respectively Sg,1 and
Sg−1,1. Figure 2 shows the configuration of the curves αi on Sg,1. Observe

α1
α2

α3
α4

α0

α5
α6

α2g+2

α2g

Figure 2. The surface Sg,1.

that the closure of Nh,1\Σ is homeomorphic to Nr,2. By [14, Cor. 3.8] the
inclusions Sg−1,1 ⊂ Sg,1 ⊂ Nh,1 induce injective homomorphisms

M(Sg−1,1) →֒ M(Sg,1) →֒ T (Nh,1).

We treat M(Sg−1,1) and M(Sg,1) as subgroups of T (Nh,1). Set Ti = Tαi
. It

is well known that M(Sg,1) is generated by Ti for 0 ≤ i ≤ 2g (originally it was
proved by Humphries ([5]) that these 2g + 1 twists generate M(Sg,0), if Sg,0

is obtained by gluing a disc along the boundary of Sg,1). We define crosscap
transposition U to be the isotopy class of the homeomorphism interchanging
the two rightmost crosscaps as shown on Figure 3, and equal to the identity
outside a disc containing these crosscaps. The composition Th−1U is the Y-
homeomorphism defined in [8]. In particular U ∈ M(Nh,n)\T (Nh,n). The

h− 1 h

U−→

Figure 3. The crosscap transposition U .

next theorem can be deduced from the main result of [13].

Theorem 2.1. For h ≥ 4 and n ≤ 1, M(Nh,n) is generated by U and Ti
for 0 ≤ i ≤ h− 1.

For i 6= j we either have TiTj = TjTi if αi ∩αj = ∅, or TiTjTi = TjTiTj if
|αi∩αj | = 1. The last equality is called braid relation. Evidently U commutes
with Ti for 1 ≤ i ≤ h − 3, and if h ≥ 6 then also with T0. Observe that U
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preserves (up to isotopy) the curve αh−1 and reverses orientation of its regular
neighbourhood. Hence

(2.1) UTh−1U
−1 = T−1

h−1

There is no similarly short relation between U and Th−2. Observe, however,
that up to isotopy, U(αh−2) intersects αh−2 in a single point. Because the
local orientation used to define Th−2 and that induced by U do not match
at the point of intersection, UTh−2U

−1 satisfies the braid relation with T−1
h−2

.

Similarly, if g = 5 then UT0U
−1 satisfies the braid relation with T−1

0 .

Corollary 2.2. For h ≥ 4 and n ≤ 1, T (Nh,n) is generated by Ti for
0 ≤ i ≤ h− 1, U2, UTh−2U

−1, and if h ≤ 5 then also UT0U
−1 .

Proof. Set X = {Ti}0≤i≤h−1. By Theorem 2.1, M(Nh,1) is generated
by X and U . Since T (Nh,1) is an index 2 subgroup of M(Nh,1), X ⊂ T (Nh,1)
and U ∈ M(Nh,1)\T (Nh,1), thus T (Nh,1) is generated by X , UXU−1 and
U2. By the remarks preceding the corollary we have UXU−1 ⊂ X ∪X−1 ∪
{UTh−2U

−1} if h > 5, and UXU−1 ⊂ X ∪ X−1 ∪ {UTh−2U
−1, UT0U

−1} if
h ≤ 5.

For a subset X of a group G, we denote by CGX the centraliser of X in
G.

Corollary 2.3. Let G = M(Nh,1) or G = T (Nh,1) for h ≥ 6. Then G
is generated by M(Sg,1) ∪ CGM(Sg−1,1).

Proof. Every generator of G from Theorem 2.1 or Corollary 2.2 is either
supported on Sg,1, or restricts to the identity on Sg−1,1.

For x, y ∈ G we write [x, y] = xyx−1y−1. The commutator subgroup of G is
denoted by [G,G], and the abelianization G/[G,G] by Gab.

Lemma 2.4. Let h ≥ 5, n ∈ {0, 1}, N = Nh,n. Suppose that Tα and Tβ are
Dehn twists about two-sided simple closed curves α and β on N , intersecting
at one point. Then [M(N),M(N)] = [T (N), T (N)] is the normal closure in
T (N) of [Tα, Tβ].

Proof. Let K be the normal closure in T (N) of [Tα, Tβ]. Evidently
K ⊆ [T (N), T (N)]. Let F be a regular neighbourhood of α ∪ β. Then
F is homeomorphic to S1,1 and N\F is a nonorientable surface of genus
h − 2 ≥ 3. It follows that there is a homomorphism y : N → N equal to
the identity on F and not isotopic to a product of Dehn twists on N (for
example, y may be taken to be a crosscap transposition supported on N\F ).
Now, for f ∈ M(N)\T (N) we have f [Tα, Tβ]f

−1 = (fy)[Tα, Tβ](fy)
−1 ∈ K.

It follows that K is normal in M(N). By applying [18, Lemma 3.3] to the
canonical projection M(N) → M(N)/K we have that M(N)/K is abelian,
hence [M(N),M(N)] ⊆ K.
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The following theorem is proved in [6] for n = 0 and generalised to n > 0 in
[15, 16].

Theorem 2.5. For h ∈ {5, 6} we have M(Nh,n)
ab = Z2 × Z2 and

T (Nh,n)
ab = Z2. For h ≥ 7 we have M(Nh,n)

ab = Z2 and T (Nh,n)
ab = 0.

3. Some permutation representations of M(Sg,1).

For g ≥ 2 let φ−g,n : M(Sg,n) → Sm
−

g
and φ+g,n : M(Sg,n) → Sm

+
g

be

the representations associated with the subgroups O−
g,n and O+

g,n respectively.
The case g = 2 is special, as M(S2,n) contains another subgroup of index

m−
2 = 6, not conjugate to O−

2,n , which we will now describe (see [1] for

references for the facts used in this paragraph). The group Sp(4,Z2) = S6

has a noninner automorphism α defined by

α :





(1 2) 7→ (1 2)(3 5)(4 6)

(2 3) 7→ (1 3)(2 4)(5 6)

(3 4) 7→ (1 2)(3 6)(4 5)

(4 5) 7→ (1 3)(2 5)(4 6)

(5 6) 7→ (1 2)(3 4)(5 6)

It turns out that α(O−(4,Z2)) is a subgroup of Sp(4,Z2) of index 6, which is
not conjugate to O−(4,Z2) = S5 (on the other hand α(O+(4,Z2)) is conjugate
to O+(4,Z2)). Let φ

α
n : M(S2,n) → S6 be the representation associated with

the subgroup θ−1
2,n(α(O

−(4,Z2))).

Theorem 3.1 ([1]). (1) Suppose that m ≤ 10 and φ : M(S2,n) → Sm

is a nonabelian transitive representation. Then m ∈ {6, 10}. If m = 6
then φ is conjugate either to φ−2,n or to φαn. If m = 10 then φ is

conjugate to φ+2,n.

(2) Suppose g ≥ 3, m ≤ m+
g and m < 5m−

g−1 if g ≥ 4, and φ : M(Sg,n) →

Sm is a non-trivial transitive representation. Then either m = m−
g

and φ is conjugate φ−g,n, or m = m+
g and φ is conjugate to φ+g,n.

(3) For g ≥ 3 and n ≥ 1, φ−g,n is conjugate to an extension of (φ−g−1,n)
3 ⊕

φ+g−1,n from M(Sg−1,n) to M(Sg,n), and φ+g,n is conjugate to an

extension of (φ+g−1,n)
3 ⊕ φ−g−1,n from M(Sg−1,n) to M(Sg,n).

(4) Let g ≥ 3 and suppose that Tα is a Dehn twist about a nonseparating
simple closed curve on Sg,n. Then φ(Tα) is an involution for φ ∈
{φ−g,n, φ

+
g,n}.

Implicit in the statement of (3) is the fact that for n ≥ 1, M(Sg−1,n)
naturally embeds in M(Sg,n). Such embedding is defined in [1], and it is
coherent with our identification of M(Sg−1,1) as a subgroup of M(Sg,1).
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For the proof of the next lemma we need explicit expressions of the images
of the generators of M(S2,1) under φ

−
2,1, φ

α
1 and φ+2,1 (see [1, Lemma 3.1]).

φ−2,1 :





T1 7→ (1 2)

T2 7→ (2 3)

T3 7→ (3 4)

T4 7→ (4 5)

T0 7→ (5 6)

φα1 :





T1 7→ (1 2)(3 5)(4 6)

T2 7→ (1 3)(2 4)(5 6)

T3 7→ (1 2)(3 6)(4 5)

T4 7→ (1 3)(2 5)(4 6)

T0 7→ (1 2)(3 4)(5 6)

φ+2,1 :





T1 7→ (3 5)(6 8)(9 10)

T2 7→ (2 3)(4 6)(7 9)

T3 7→ (1 2)(6 10)(8 9)

T4 7→ (2 4)(3 6)(5 8)

T0 7→ (4 7)(6 9)(8 10)

The following lemma will be used in the next section to prove our main result.

Lemma 3.2. Let φ ∈ {φ−g,1, φ
+
g,1 | g ≥ 2} ∪ {φα1 }. Set m = m−

g if φ = φ−g,1,

m = m+
g if φ = φ+g,1, m = 6 if φ = φα1 . For 0 ≤ i ≤ 2g and i = 2g + 2 set

wi = φ(Ti). Then

(a) CSm
{w1, w2, w4} = {1, w4} for g = 2,

(b) CSm
{w0, w1, . . . , w2g−2, w2g−1} = {1, w2g+2} for g ≥ 2,

(c) CSm
{w0, w1, . . . , w2g−2, w2g} = {1, w2g} for g ≥ 3,

(d) CSm
φ(M(Sg,1)) = {1} for g ≥ 2.

Proof. The proof is by induction on g. For g = 2 the assertions (a), (b)
and (d) may be easily verified by using the expressions for wi given above.
Fix g ≥ 3 and assume that the lemma is true for g − 1. By (4) of Theorem
3.1, wi are involutions.

Note that w2g 6= w2g+2. For suppose w2g = w2g+2. Then, from

w2g−1w2g+2 = w2g+2w2g−1 and w2gw2g−1w2g = w2g−1w2gw2g−1,

we have w2g−1 = w2g. By repeating this argument it is easy to show that all
wi are equal. It follows that the image of φ is cyclic of order 2, a contradiction.
Since φ(M(Sg,1)) is generated by {w0, w1, . . . , w2g}, (d) follows immediately
from (b) and (c).

Let G be the subgroup of Sm generated by {w0, w1, . . . , w2g−2} and note
that G = φ(M(Sg−1,1)). By (3) of Theorem 3.1, the restriction of φ−g (resp.

φ+g ) to M(Sg−1,1) is conjugate to (φ−g−1,1)
3⊕φ+g−1,1 (resp. φ−g−1,1⊕(φ+g−1,1)

3).
It follows that there are three orbits of cardinality k of G and one orbit of
cardinality l of G, where k 6= l. The centraliser CSm

G preserves the l-orbit
and permutes the k-orbits, which gives a homomorphism θ : CSm

G→ S3. If
u ∈ CSm

G preserves an orbit X of G, then the restriction of u to X commutes
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with the action of G, and by (d) of the induction hypothesis, u restricts to
the identity on X . It follows that θ is injective.

Set C1 = CSm
{w0, w1, . . . , w2g−2, w2g−1}. We have C1 ⊂ CSm

G and
w2g ∈ (CSm

G)\C1. Indeed, w2g does not commute with w2g−1. For otherwise
we would have w2g = w2g−1 by the braid relation, and we would obtain a
contradiction as above, by arguing that the image of φ is cyclic. It follows
that θ(C1) is a proper subgroup of S3 containing θ(w2g+2), hence θ(C1) =
{1, θ(w2g+2)} and (b) follows by injectivity of θ. Similarly, setting C2 =
CSm

{w0, w1, . . . , w2g−2, w2g} we have that θ(C2) is a proper subgroup of S3,
because θ(w2g+2) /∈ θ(C2), hence θ(C2) = {1, θ(w2g)} and (c) follows.

4. Proofs of the main results

In this section we prove Theorem 1.1, and the analogous result for surfaces
of genera 5 and 6 which we will now state. Let h = 4 + r for r ∈ {1, 2} and

n ∈ {0, 1}. Set H̃α
h,n = ε̃−1

h,n(α(O
−(4,Z2))) and Hα

h,n = ε−1
h,n(α(O

−(4,Z2))).

Recall that α(O−(4,Z2)) is a subgroup of Sp(4,Z2) of index 6 not conjugate
to O−(4,Z2).

Theorem 4.1. Let h = 4 + r for r ∈ {1, 2} and n ∈ {0, 1}.

(1) [M(Nh,n),M(Nh,n)] is the unique subgroup of M(Nh,n) of index 4 and
the unique subgroup of T (Nh,n) of index 2.

1. There are three subgroups of M(Nh,n) of index 2.

(2) H̃−
h,n and H̃α

h,n (resp. H−
h,n and Hα

h,n) are the only subgroups of

M(Nh,n) (resp. T (Nh,n)) of index 6, up to conjugation.

(3) H̃+

h,n (resp. H+

h,n) is the unique subgroup of M(Nh,n) (resp. T (Nh,n))
of index 10, up to conjugation.

(4) All other proper subgroups of M(Nh,n) or T (Nh,n) have index strictly
greater than 10.

Let G = M(Nh,n) or G = T (Nh,n) for h ≥ 5 and n ∈ {0, 1}, and
g = ⌊(h − 1)/2⌋. Suppose that H is a proper subgroup of G. If H contains
[G,G], then by Theorem 2.5 either H = [G,G], or H is one of the three
subgroups of index 2 of M(Nh,n) for h ∈ {5, 6}. Suppose that H does not
contain [G,G]. Then the associated permutation representation G → Sm is
nonabelian. To prove Theorem 1.1 and Theorem 4.1 it suffices to show that
there are only two (three if g = 2) conjugacy classes of nonabelian transitive
permutation representations G → Sm of degree m ≤ m+

g and m < 5m−
g−1 if

g ≥ 4. Thus, Theorem 1.1 and Theorem 4.1 follow from Theorem 4.2 below
and the fact that M(Nh,0) (resp. T (Nh,0)) is a quotient of M(Nh,1) (resp.
T (Nh,1)).

Theorem 4.2. Suppose h = 2g+r for g ≥ 2 and r ∈ {1, 2}, m ≤ m+
g and

m < 5m−
g−1 if g ≥ 4, G = M(Nh,1) or G = T (Nh,1), and ϕ : G → Sm is a
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nonabelian, transitive representation. Then m ∈ {m−
g ,m

+
g }. If m = m−

g then

ϕ is, up to conjugation, the unique extension of φ−g,1 (or φα1 if g = 2) from

M(Sg,1) to G. If m = m+
g then ϕ is, up to conjugation, the unique extension

of φ+g,1 from M(Sg,1) to G.

For the proof of Theorem 4.2 we need the following lemma.

Lemma 4.3. Suppose that G, g, r, m and ϕ : G→ Sm are as in Theorem
4.2. Then m ∈ {m−

g ,m
+
g } and the restriction of ϕ to M(Sg,1) is transitive.

Proof. Let ϕ′ be the restriction of ϕ to M(Sg,1). The image of ϕ′ is not
abelian, for otherwise ϕ would be abelian (by Lemma 2.4, [G,G] is normally
generated by [T1, T2]). By Theorem 3.1 ((1) and (2)), there is an orbit X of
ϕ(M(Sg,1)) of order m

−
g or m+

g . Since 2m−
g > m+

g and 2m−
g > 5m−

g−1, X is

the unique orbit of ϕ(M(Sg,1)) of order at least m
−
g . We want to show that

m = |X |. By transitivity of ϕ, it suffices to show that ϕ(G) preserves X .
Suppose g ≥ 3 and |X | = m−

g (the proof is completely analogous for |X | =
m+

g ). By (2) of Theorem 3.1, ϕ(M(Sg,1)) acts trivially on the complement of
X in {1, . . . ,m}, and the subrepresentation x 7→ ϕ(x)|X for x ∈ M(Sg,1) is

conjugate to φ−g,1. By (3) of Theorem 3.1, X = Y ∪ Z1 ∪ Z2 ∪ Z3, where Y is

an orbit of ϕ(M(Sg−1,1)) of length m
+
g−1 and Zi are orbits of ϕ(M(Sg−1,1))

of length m−
g−1. All other orbits of ϕ(M(Sg−1,1)) have length one. Since

ϕ(CGM(Sg−1,1)) permutes the orbits of ϕ(M(Sg−1,1)), it preserves X . By
Corollary 2.3, ϕ(G) preserves X .

For the rest of the proof assume g = 2. If |X | = m+
2 then obviously

m = m+
2 . Suppose that |X | = m−

2 = 6. Let X ′ = {1, . . . ,m}\X . By (1) of
Theorem 3.1, the action of ϕ(M(S2,1)) on X

′ is abelian. Since the twists Ti
for 0 ≤ i ≤ 4 are all conjugate in M(S2,1), they induce the same permutation
τ of X ′. Since |X ′| ≤ 4 and M(S2,1)

ab = Z10 (see [7]), thus τ2 = 1. After a
conjugacy in Sm we may suppose that X = {1, . . . , 6} and ϕ(Ti) = φ(Ti)τ for
0 ≤ i ≤ 4, where φ ∈ {φ−2,1, φ

α
1 } and τ ∈ {1, (7 8), (7 8)(9 10)}. We will use

the expressions for φ(Ti) given in Section 3. Set wi = ϕ(Ti) for 0 ≤ i ≤ 3+ r,
v = ϕ(U2), and u = ϕ(U) if G = M(N4+r,1). We will repeatedly use the
following two easy observations.

Observation 1. Suppose that a ∈ Sm preserves S(τ) and for some i, j ∈
{0, . . . , 4} we have wia = awi and wjawj = awja. Then the restriction of a
to S(τ) is equal to τ .

Observation 2. Suppose that a ∈ Sm preserves X ∪ S(τ) and for some
i ∈ {0, . . . , 4} we have wiawi = awia. Then S(a) ⊆ X ∪ S(τ).

Case r = 1. Set w′
3 = ϕ(UT3U

−1), w′
0 = ϕ(UT0U

−1). Observe that, up
to isotopy, U(α3) is disjoint from T4(α3) and α1, and it intersects each of the
curves α3 and α2 in a single point. Hence w′

3 commutes with w4w3w4 and
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w1, and satisfies the braid relation with w3 and w2. Similarly, w′
0 commutes

with w1, w2, w
′
3 and satisfies the braid relation with w0 and w4. Note, that

v and u commute with wi for i = 1, 2, and by (2.1) also with w4.
By Theorem 2.1 and Corollary 2.2, to prove that ϕ(G) preserves X it

suffices to show that w′
3, w

′
0 and v preserve X if G = T (N5,1), and u preserves

X if G = M(N5,1).

Subcase 1a: φ = φ−2 . First assume G = T (N5,1). Since w′
3 commutes

with w1 = (1 2)τ and w4w3w4 = (3 5)τ , it follows easily that w′
3 preserves

{1, 2}, {3, 5} and S(τ). Write w′
3 = v1v2v3v4, where S(v1) ⊆ {1, 2}, S(v2) ⊆

{3, 5}, S(v3) ⊆ S(τ) and {1, 2, 3, 5} ∪ S(τ) ⊆ F (v4). Note that vi commute
with each other for i ∈ {1, . . . , 4}. By observation 1 we have v3 = τ . Since
w2 commutes with v4 (disjoint supports), by the braid relation w′

3w2w
′
3 =

w2w
′
3w2 we have v4 = 1. Similarly, from w3w1 = w1w3 and w′

3w3w
′
3 =

w3w
′
3w3, we have v1 = 1 and v2 = (3 5). Hence w′

3 = (3 5)τ .
Since w′

0 commutes with w1, w2, w
′
3, we have {1, 2, 3, 5} ⊆ F (w′

0) and w
′
0

preserves S(τ). By observation 1 and braid relations w′
0wiw

′
0 = wiw

′
0wi for

i = 0, 4, we have w′
0 = (4 6)τ .

Since v commutes with w1, w2 and w4, we have {1, 2, 3} ⊆ F (v) and v
preserves {4, 5} and S(τ). We claim that {4, 5} ⊂ F (v). For suppose v(4) = 5.
Then vw3v

−1 = (3 5)τ ′, where τ ′ = vτv−1. Note that τ ′ commutes with τ ,
and hence [vw3v

−1, w′
3] = 1. This implies, by Lemma 2.4, that the image of ϕ

is abelian, because U2(α3) intersects U(α3) in a single point (up to isotopy),
a contradiction. Hence v(4) = 4 and v(5) = 5. We also have v(6) = 6, for
otherwise vw0v

−1 = (5 i)τ ′ for i /∈ X ∪ S(τ), which contradicts the braid
relation between vw0v

−1 and w′
0.

Suppose that G = M(N5,1). We have to show that u = ϕ(U) preserves
X . Since u commutes with w1, w2 and w4, we have {1, 2, 3} ⊆ F (u) and u
preserves S(τ). We have uw3u

−1 = w′
3 = (3 5)τ and uw0u

−1 = w′
0 = (4 6)τ .

It follows that u(4) = 5, u(5) = 4 and u(6) = 6.
Subcase 1b: φ = φα1 . Because u, v and w′

0 commute with w1 and w2,
they also commute with w2w1 = (1 4 5)(2 3 6). It follows that u, v and w′

0

preserve S(w2w1) = X .
Since w′

3 commutes with w1, it preserves S(w1) = X ∪ S(τ). It also
commutes with w1w4w3w4 = (1 6)(2 4). By observation 2, it follows that
w′

3 can be written as v1v2, where v1 is one of the permutations (1 6)(2 4) or
(1 2)(4 6) or (1 4)(2 6), and S(v2) ⊆ {3, 5} ∪ S(τ). If τ = 1, then we are
done. Suppose that τ 6= 1 and w′

3 does not preserve {3, 5}. Then, up to a
permutation of S(τ), we either have v2 = (3 7)(5 8), or v2 = (3 7)(5 8)(9 10).
It can be checked, that for each of the three possibilities for v1, w

′
3 does not

satisfy the braid relation either with w2 or with w3. Hence v2 = (3 5)τ and
w′

3 preserves X .
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Case r = 2. Set w′
4 = ϕ(UT4U

−1). By Theorem 2.1 and Corollary 2.2,
to prove that ϕ(G) preserves X it suffices to show that w′

4, w5 and v preserve
X if G = T (N6,1), and w5 and u preserve X if G = M(N6,1).

Subcase 2a: φ = φ−2 . Since w5, u and v commute with w1, w2, w3 and
w0, they preserve X . Furthermore, we have {1, 2, 3, 4} ⊆ F (w5) and it follows
easily from observations 1 and 2 and the braid relation w5w4w5 = w4w5w4

that w5 = (5 6)τ . Observe that, up to isotopy, U(α4) is disjoint from T5(α4).
Hence w′

4 commutes with w5w4w5 = (4 6)τ . As it also commutes with w1,
w2, we have {1, 2, 3} ⊆ F (w′

4) and w′
4 preserves S(τ) and {4, 6}. Let w′

4 =
v1v2, where S(v1) ⊆ {4, 6} ∪ S(τ) and {1, 2, 3, 4, 6} ∪ S(τ) ⊆ F (v2). From
w3v2 = v2w3 and w3w

′
4w3 = w′

4w3w
′
4 we have v2 = 1, hence w′

4 preserves X .
Subcase 2b: φ = φα1 . Since w5, w

′
4, v and u commute with w2w1, they

preserve X = S(w2w1).

Proof of Theorem 4.2. Let φ be the restriction of ϕ to M(Sg,1).
By Lemma 4.3 and Theorem 3.1, up to conjugation we may assume φ ∈
{φ−g,1, φ

+
g,1} or φ = φα1 if g = 2. We will prove that ϕ is determined by φ. Set

wi = φ(Ti) for 0 ≤ i ≤ 2g and i = 2g + 2.
Consider ϕU : G → Sm defined by ϕU (x) = ϕ(UxU−1) for x ∈ G. By

Lemma 4.3, the restriction φU of ϕU to M(Sg,1) is transitive, and by Theorem
3.1, φU is conjugate to φ. Hence, there exist a ∈ Sm, such that φU (x) =
aφ(x)a−1 for x ∈ M(Sg,1).

Suppose that r = 1. If g ≥ 3, then for 0 ≤ i ≤ 2g − 2 we have φU (Ti) =
φ(Ti), and by (2.1) and (4) of Theorem 3.1, also φU (T2g) = φ(T−1

2g ) = φ(T2g).

Hence a ∈ CSm
{w0, w1, . . . , w2g−2, w2g}. Similarly, for g = 2 we have a ∈

CSm
{w1, w2, w4}. By (c) and (a) of Lemma 3.2 we have a ∈ {1, w2g}. We

claim that a = w2g. For suppose a = 1. Then ϕ(UT2g−1U
−1) = φU (T2g−1) =

ϕ(T2g−1). However, since [UT2g−1U
−1, T2g−1] normally generates [G,G] by

Lemma 2.4, ϕ is abelian, a contradiction. Now suppose that r = 2. Then
we have a ∈ CSm

{w0, w1, . . . , w2g−2, w2g−1}. By (b) of Lemma 3.2 we have
a ∈ {1, w2g+2}, and by similar argument as above, we obtain a = w2g+2. We
conclude that ϕ(UT2g−1U

−1) = w2gw2g−1w2g if r = 1 and ϕ(UT2gU
−1) =

w2g+2w2gw2g+2 if r = 2. If (g, r) = (2, 1), then ϕ(UT0U
−1) = w4w0w4.

If G = M(N2g+r) then ϕU (x) = ϕ(U)ϕ(x)ϕ(U)−1 and by above
arguments we obtain ϕ(U) = w2g if r = 1, and ϕ(U) = w2g+2 if
r = 2. In particular ϕ(U2) = 1. We claim that ϕ(U2) = 1 also for
G = T (N2g+r). Set v = ϕ(U2). Suppose that r = 1. If g ≥ 3, then
v ∈ CSm

{w0, w1, . . . , w2g−2, w2g}, and if g = 2 then v ∈ CSm
{w1, w2, w4}.

By (c) and (a) of Lemma 3.2 we have v ∈ {1, w2g}. Suppose v = w2g.
Then ϕ(U2T2g−1U

−2) = w2gw2g−1w2g = ϕ(UT2g−1U
−1). However, since

[U2T2g−1U
−2, UT2g−1U

−1] normally generates [G,G] by Lemma 2.4, ϕ is
abelian, a contradiction. For r = 2 the argument is similar, using (b) of
Lemma 3.2.
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Suppose that r = 2. Then ϕ(T2g+1) ∈ CSm
{w0, w1, . . . , w2g−2, w2g−1}.

By (b) of Lemma 3.2 we have ϕ(T2g+1) ∈ {1, w2g+2}. Since ϕ(T2g+1) is
conjugate to w2g , it is not trivial, and ϕ(T2g+1) = w2g+2.

We have shown that the values of ϕ on the generators of G given in
Theorem 2.1 and Corollary 2.2 are determined by φ. Hence ϕ is the unique
extension of φ from M(Sg,1) to G.
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