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Because effects of climate change and an increase in elements at risk, mountain hazard loss increased throughout
Europe. Yet, factors influencing loss, i.e. vulnerability, have gained less attention to date. Vulnerability is defined
as the degree of loss resulting from the hazard impact on buildings. Recent studies have focused on evaluating
vulnerability to dynamic flooding using proxies from case studies and based on empirical ex-post approaches.
However, the transferability to other case studies and, therefore, the ability of such models to actually predict
future losses is limited. To overcome this gap, we present a beta model based on loss data from the European

Alps, which clearly shows that a single vulnerability function is sufficient to predict losses resulting from dif-
ferent types of torrential hazards and to provide probabilities of destruction under specific scenarios. As a result,
the curves are transferable and may significantly increase the predictive power of risk analyses.

1. Introduction

Throughout Europe, increasing losses due to flood hazards have
been reported (Kreibich et al., 2014), especially for inundation along
large rivers (Barredo, 2007; Di Baldassarre et al., 2018). In contrast,
there is a lack of studies on the effects of mountain river flooding
(Papathoma-Kohle, 2016; Papathoma-Kohle et al., 2017; Zhang et al.,
2018). Increases in overall losses are mainly attributed to the effects of
climate change (Mountain Research Initiative EDW Working Group,
2015), which affect the magnitude and frequency of events, and to
population dynamics in mountain areas (Fuchs et al., 2015, 2017).
However, the vulnerability of communities experiencing the impact of
such hazards is less well known (Jakob et al., 2012; Zimmermann and
Keiler, 2015), which is also articulated by international frameworks for
disaster risk reduction such as the Sendai Framework (UN/ISDR, 2015;
Klein et al., 2019), calling for the need for improved understanding of
disaster risk in all its dimensions of exposure, vulnerability and hazard
characteristics.

Mountain rivers are characterized by dynamic flooding with vari-
able amounts of sediment erosion, deposition and remobilisation
(Sturm et al., 2018); typical hazard processes include fluvial sediment
transport, debris flows and related phenomena (Slaymaker, 2010;
Mazzorana et al., 2014; Karagiorgos et al., 2016; Milanesi et al., 2018).
In Europe, such processes repeatedly result in considerable damage to
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infrastructure and buildings on a local and regional level (Guzzetti
et al., 2005; Hilker et al., 2009; Fuchs et al., 2015; Zhang et al., 2018;
Zischg et al., 2018; Zou et al., 2018; Schlogl et al., 2019). Several stu-
dies used empirical data from past events to assess damage monetarily
by using vulnerability functions (Fuchs et al., 2007; Akbas et al., 2009;
Quan Luna et al., 2011; Papathoma-Kohle et al., 2012; Sterlacchini
et al., 2013), a recent overview is provided in Papathoma-Kohle et al.
(2017).

Vulnerability functions are based on the empirical assessment of
observed damage and describe underlying process magnitudes and re-
lated loss patterns. Consequently, vulnerability ranges from 0 (no da-
mage) to 1 (complete destruction). The use of such vulnerability func-
tions is common in the case of hazards (e.g. river flooding and
earthquakes) that affect larger areas and a considerable amount of
elements at risk. Nevertheless, despite numerous attempts and models
to empirically describe the vulnerability of static flooding along
European rivers (Kreibich et al., 2015), such methods and tools are
hardly available for assessing the effects of dynamic flooding in
mountain watersheds.

Moreover, available data about the empirical assessment of affected
buildings located on torrential fans are limited (Papathoma-Kohle et al.,
2011, 2017), and were often not found to be transferable to other case
studies (Cammerer et al., 2013). On the contrary, there is an emphasis
on hazard assessment in specific catchments. The magnitude of these
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hazard types pose case-specific threats to elements at risk, depending on
the geology, catchment and channel morphology, as well as meteor-
ological triggers, and interactions among these factors during an in-
dividual event. Recent attempts to derive vulnerability functions using
loss data included curve fitting to a series of data that was recorded
after major incidents with the aim to predict the probability of occur-
rence of a certain degree of loss with respect to different flood levels
(Papathoma-Kohle et al., 2012; Totschnig and Fuchs, 2013; Carisi et al.,
2018). To determine the flood level, deposition height was repeatedly
used as a proxy since data on flow velocities were not available (Jakob
et al., 2012; Papathoma-Kohle et al., 2015; Chow et al., 2018). The
function with the best fit should minimize the squared differences in
data, which is consistent with the classical approach of curve fitting;
this was repeatedly computed with a Weibull distribution function
(Totschnig and Fuchs, 2013; Papathoma-Kdhle et al., 2015). As a result,
the overall relationship between hazard magnitude and the observed
degree of loss can be mirrored. Uncertainties can be expressed by
confidence intervals, which depend on the distribution of errors. These
uncertainties are of aleatory type and are based on the assumption of
symmetrically distributed errors around the mean degree of loss, which
is rarely observed in reality. The data spread of Weibull functions re-
sults in theoretical loss values below zero and above one, which is in-
consistent with the definition of vulnerability. Moreover, the observed
loss pattern (Totschnig and Fuchs, 2013; Papathoma-Kohle et al., 2015)
is characterized by more data with small values (lower degree of loss)
than with high values (larger degree of loss until complete destruction),
and the data showed a right-skewed distribution. The larger loss values
- and, therefore, the larger degree of loss — tended to be farther away
from the mean degree of loss than the smaller values. Hence, a suitable
and stochastically valid probability model must be able to model the
skewness in the degree of loss. This model requires a parametric as-
sumption and the selection of a suitable probability distribution which
enables the statistical treatment of uncertainties. A lack of predictive
power of the degree of loss for future events is evident since the current
approaches were based on spurious error assumptions (Hastie and
Tibshirani, 1990; Fox, 2016).

To overcome this gap, we compiled an integrative dataset that was
used to evaluate a model, and which is able to better explain the ob-
served parameter values and the associated skewness. The dataset
comprises available data from individual studies conducted in the
European Alps (i.e. incidents from Austria and Italy (Fuchs et al., 2007;
Fuchs, 2008; Totschnig et al., 2011; Papathoma-Kohle et al., 2012;
Totschnig and Fuchs, 2013; Papathoma-Kohle et al., 2015)).

2. Methods

We chose a beta distribution as the underlying model for assessing
the vulnerability of buildings. The proposed model assumes that the
variable of interest (degree of loss) is continuous, restricted to the in-
terval between zero and one, and is related to the process magnitude
through a regression structure (Ferrari and Cribari-Neto, 2004).

The final dataset consists of 214 data points that link observed
process magnitudes and the degree of loss for individual buildings da-
maged during torrent hazards in the European Alps. Additional in-
formation about the process subtype (e.g. fluvial sediment transport,
hyperconcentrated flow, debris flow), and the type of building was
collected. For 60 of the 214 cases investigated, damages occurred due to
debris flow hazards, while the remaining 154 damages were caused by
fluvial sediment transport and hyperconcentrated flows. The observa-
tions were equally distributed over Austria and Italy with 107 cases
from each country. Only 10 samples represented commercial buildings
and the remaining 204 samples represented residential buildings. The
degree of loss was treated as a random variable with values between the
interval zero (no loss) and one (complete destruction), hence including
the endpoints [0, 1]. Therefore, we modelled the influence of the pro-
cess magnitude w on the degree of loss with a zero-and-one inflated beta
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distribution, which is a mixture of Bernoulli and beta distributions. The
resultant density function is given as

o if w=0
_ _ _ 1 a-1¢1 -1
f@lu, o,v,7) =11 —my — m) (%(ayﬁ)co“ 1-wftlifo<w<l
m ifw=1
(@)
Where u=al(x+ B), o=(ax+ B+ 112 v = my/m,

T=my/(1 — 1y — m) and #(a, 8) is the beta function. The expected
value of the distribution is given by E(w) = li:i —, see Rigby and
Stasinopoulos (2005) and Stasinopoulos and Rigby (2007). To model
the dependency of the distribution parameters on the process magni-
tude, we used a logit link for y, a log link for v and 7, while o was
assumed to be constant. The model parameters were estimated by
maximizing the log likelihood, using the gamlss package (Stasinopoulos
and Rigby, 2007) for the statistical software R (R Core Team, 2018).

To decide if process magnitude, process type as well as geographical
location and building types influence the behavior of the degree of loss,
we applied two procedures: (1) a stepwise model selection procedure
based on the Generalized Akaike Information Criterion (Akaike, 1974)
as the selection criterion, and (2) bootstrapping (i.e. resampling with
replacement).

For the first, predictive variables for the regression model were se-
lected by applying bidirectional elimination (i.e. a combination of forward
selection and backward elimination) in an iterative process, until the op-
timal model (i.e. the model with minimal information loss) was found.

For the latter, Eqn. (1) was estimated on 5000 bootstrap samples
from the original dataset. For each bootstrap sample the p-value of the
explanatory variable was estimated. The number of times variable was
significant, hence, the p-value was below 0.05, and was used as a
measure of parameter importance (Gilenko and Mironova, 2017).

Uncertainty for the fitted zero-and-one inflated beta distribution
was assessed by means of non-parametric bootstrapping, by applying
the same analysis steps used for obtaining the final vulnerability
function to 5000 new samples generated from the original dataset.
From these bootstrap samples, confidence intervals for the regression
model were calculated.

3. Results

Bootstrap-based variable selection revealed that there was no need
to distinguish between observations regarding geographical location
and building type, as the p-values were below 0.05 only in 17% and
13% of all models (Fig. 1, upper left and right). In contrast, the process
type was a significant predictor in 58%, and the process magnitude was
significant in 100% of all models (Fig. 1, lower left and right). The clear
rejection of the geographical location and the building type as potential
predictors, the indifferent importance of process type as predictor, and
the clear significance of process magnitude supports the hypothesis that
a single vulnerability function (depending on the process magnitude) is
sufficient to model the degree of loss. This is also mirrored by the large
overlap of the boxplots given in the inlet of Fig. 2. These findings are
consistent with the stepwise model selection procedure, which resulted
in a model featuring process magnitude as the most relevant predictor.

The final model for the mean degree of loss (l;) as a function of
process magnitude is expressed as

0

¢~ 740+2.56Xw |

if w<0
—327+167xw
14 e 327+ 167%w
1+ e 949%w 4 ,—7.40+2.56xw

lg(w) =
if w>0

(2

The results are presented in Fig. 2. In the main panel, the process
magnitude is shown on the x-axis and the degree of loss on the y-axis.
Boxplots were used to indicate the spread in the degree of loss for
different process magnitudes observed. The data were summarized into
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Location Building Type Fig. 1. Upper left and right: The geographical loca-
tion and building type are insignificant predictors
in > 80% of all models, reflected by the large
number of points above the dashed line at a p-value

g of 0.05, shown in grey. Few significant parameter
© values, shown in blue, provide evidence for an am-
>I biguous influence on the degree of loss, ranging from
o positive to negative parameter values. Fig. 1, lower
left and right: The process type is significant in 58%
of all models, with consistently positive parameter
values, indicating an increase in the degree of loss for
debris flows in comparison to fluvial sediment
. transport and hyperconcentrated flows if equal pro-
1 Process Magnitude cess magnitudes are considered. The process magni-
L et r e rorrorrT tude turned out to be a significant predictor in 100%
08 |- 5 - - of the models. (For interpretation of the references to
) o g =4 - colour in this figure legend, the reader is referred to
3 06 |- d‘? -1 - the web version of this article.)
= o4l f JF -
! L ® 4k -
& o2f° 1 ]
iy iy el e Tl gl Tk =
-02 0 02 04 06 08 14 1.6 1.8 2 22
Parameter Value
classes of different widths of process magnitudes to ensure a minimum buildings that are neither fully intact nor totally damaged. The mean
number of five data points for boxplot computation (secondary x-axis). degree of loss as a result of the respective process magnitudes is ob-
Both the median degree of loss and the spread increase with increasing tained by combining these three components into one mixture model
process magnitude. As a result, three functional relationships can be (Eqn. (2)).
established: (1) The dashed line represents the probability of an un- In Fig. 3, the expected value of the modelled distribution (c.f. Eqn.
damaged building (degree of loss = 0) and rapidly decreases with in- (2)) is shown for the entire data range, including no loss and complete
creasing process magnitude, and (2) the dotted line represents the destruction. This model includes the process magnitude as the ex-
probability of a completely damaged building. This probability remains plaining variable and specifically supports the computation of mean
below 0.1 until a process magnitude of around 2m and increases sig- losses for buildings affected by torrent events by accounting for data
nificantly thereafter. This is clearly more advantageous when compared skewness. Consequently, the model shows that once a building is only
to an empirical assessment of vulnerability based on curve fitting. Fi- marginally affected by dynamic flooding, a small degree of loss occurs.
nally, the black line (3) shows the evolution of the degree of loss for Therefore, the model is an extension of an empirical approach that
Process Magnitude Intervals of Boxplots [m] Fig. 2. Three functional relationships based on the zero-
01 035 06 0091 13 17 95 35 and-one inflated beta distribution explain the physical
1 T T T T ——%T—= T 1 vulnerability of buildings exposed to torrential hazards in
" 1 o the European Alps. The black line shows the mean da-
| § . mage of the underlying beta distribution as a result of
% different process magnitudes. Additionally, the prob-
8 o ability of an undamaged building is shown by the dashed
08 @ 08 E’cr)w' line, and the probability for a building being completely
cL = S, — damaged is shown by the dotted line. The underlying
0 E - o o = : : : ;
7 < - & O . % equation (1) is presented in the method section. More-
= over, the variability of the degree of loss is given for
o GE 55 E different process types and building categories in the
8 Yo inlet; ST = fluvial sediment transport, DF = debris flow,
.T_' & AT = Austria, IT = Italy, RB = residential building,
g E % CB = commercial building. The process magnitude is
go § Oo expressed in terms of deposition heights (i.e. sediment
8 04 :,:' _ doa E heights deposited around the affected building).
.': = Ag o
d =R =z
< E - =
7 E <]
xS 3
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Austria l
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Degree of Loss

Fig. 3. Mean vulnerability of buildings affected by dy-
namic flooding from torrential hazards, based on equa-
tion (2) (bold blue line), Blue shaded area indicates the
95% confidence interval based on a zero-and-one inflated
beta regression model fitted to 5000 bootstrap samples
obtained from the original dataset. (For interpretation of
the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

15 2

Process Magnitude [m]

relies on a normal distribution of the degree of loss, and allows for an
ex-ante assessment of damage once potential process magnitudes and
the values of elements at risk are known, e.g. from modelling exercises.
Uncertainty of the fitted zero-and-one inflated beta distribution is as-
sessed by means of non-parametric bootstrapping (i.e. resampling with
replacement). By applying the same analysis steps used for obtaining
the final vulnerability function to 5000 new samples generated from the
original data set, bootstrap confidence intervals can be calculated for
the regression model.

Apart from the uncertainty assessment based on bootstrapping,
model quality is assessed by comparing modelled versus observed va-
lues of degree-of-loss (Fig. 4). As readily seen, no significant bias to-
wards over- or underestimation is observed, as the 95% confidence area
of the regression (blue shaded area) includes the 1:1 line (grey dashed
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Fig. 4. Evaluation of model results showing predicted versus observed degree-
of-loss values. The grey dashed line indicates x =y, i.e. a 1:1 fit. The blue
shaded area shows the 95% confidence interval of the linear regression of ob-
served on predicted values, indicating no systematic deviation from the model
as the intercept is not significantly different from 0, as well as the slope is not
significantly different from 1. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
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line). Hence, neither the intercept is significantly different from 0, nor
the slope is significantly different from 1, even if considerable varia-
bility remains. This is also reflected in corresponding error statistics
concerning mean squared deviation and its components (Kobayashi and
Salam, 2000; Gauch et al., 2003). Based on 5-fold cross validation,
translation (squared bias = 0.0004), rotation (non-unity
slope = 0.0011) and scatter (lack of correlation = 0.0106) between
model-based predictions and observations result in a RMSE of 0.1095
and a MAE of 0.0737.

4. Discussion and conclusion

We extended available studies on the physical vulnerability of
buildings to dynamic flooding due to torrential processes to achieve a
robust prediction of losses. An improved vulnerability function is pre-
sented, derived from a considerable volume of empirical data in com-
parison to available studies; it is capable of predicting torrential hazard
losses in different countries and for various building types. While earlier
attempts were only focused on representing the mean degree of loss for
different process magnitudes observed, our approach allows risk man-
agers to model future losses as a function of possible impacts due to the
deposition of material (and water) on the building envelope.
Additionally, the model considers the probability of no loss and the
complete destruction of affected buildings. Due to its predictive power,
the approach may be applied to operational risk management and also
in areas were empirical data is currently not available. The latter is of
particular importance; due to climate and socioeconomic changes, the
impacts of mountain floods are expected in areas with limited to no
records of such previous events. Knowledge of probabilities supports
decision making and the prioritization of resources for the construction
and implementation of protection measures. Thus, the inclusion of such
predictions into future planning processes will further enhance the re-
liability of vulnerability assessments. Future research may focus on (1)
increasing the overall amount of data that can improve and update
vulnerability functions, and (2) considering other explaining variables
besides deposition height (e.g. flow velocity).
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