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1 Introduction

Despite the constraints arising from the algebra of the supersymmetry generators, partial

supersymmetry breaking is possible [1, 2]. For N = 2 spontaneously broken to N = 1

there are essentially two possibilities for the supersymmetry breaking sector. Either all

the component fields of the full N = 2 supermultiplets remain in the theory, or, some of

the component fields decouple (by acquiring a large mass for example) and the remaining

components form N = 1 multiplets under the unbroken supersymmetry. In the latter case,

the broken supersymmetry acts non-linearly on the remaining N = 1 components. Models

containing complete N = 2 vector multiplets [3–5], and models with complete N = 2 tensor

multiplets [6, 7] are known to exhibit partial breaking of N = 2 to N = 1. Alternatively,

non-linear realization techniques, including nilpotent Goldstone multiplet analysis, can be

used to describe partial supersymmetry breaking with only one supersymmetry manifestly

preserved and linearly realized [6–15]. Models of this sort can be constructed from N = 1

chiral, vector or linear multiplets. The two approaches for partial supersymmetry breaking

with complete or truncatedN = 2 supermultiplets can in principle be related to one another
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by decoupling heavy N = 1 supermultiplets. The non-linear realization of partial super-

symmetry breaking also naturally takes place in theories with supersymmetric extended

objects (like membranes), which lead to supersymmetric DBI-type actions in the static

gauge [16, 17]. Moreover, partial supersymmetry breaking is motivated from phenomenol-

ogy as it can allow for a breaking of the extended supersymmetries in some high-energy scale

while allowing a single N = 1 supersymmetry in the low energy, see e.g., [18]. Along this

line it is also natural, although non-trivial, to lift partial breaking to supergravity [19–27].

A prerequisite for partial global supersymmetry breaking to occur is the existence of

a deformed extended supersymmetry algebra possessing a spontaneously broken central

charge symmetry (see for example [1, 2, 28, 29]). This property will be a guiding prin-

ciple for the analysis of our work. More specifically, we will focus on theories possessing

partial supersymmetry breaking in four dimensions where the N = 1 Goldstone multiplet

includes a fermion and scalar degrees of freedom. In this case, under the unbroken N = 1

supersymmetry, one scalar would transform as

δǫφ = ǫψ + · · · , (1.1)

where the fermion ψ is the goldstino of the broken supersymmetry, therefore we would have

δρψ = fρ+ · · · , (1.2)

and f the constant supersymmetry breaking scale. In this paper we will denote with the

constant spinor parameter ǫ the first, typically unbroken, supersymmetry while the con-

stant spinor ρ will parametrize the second supersymmetry. With the transformations (1.1)

and (1.2), the closure of the supersymmetry algebra would require φ to be the Goldstone

mode of a broken central charge symmetry generated by a scalar operator Z

[δǫ , δρ]φ = ǫρ f + · · · = Zφ . (1.3)

By analyzing different structures for spontaneously broken N = 2 central charge symme-

tries in supersymmetric multiplets, one could in principle classify different patterns for

partial supersymmetry breaking. This will be the starting point of our work. In particular,

by employing a projective superspace formalism, we will describe 4D N = 2 supersymmetry

and complete N = 2 matter multiplets with central charges.

Projective superspace is a formalism developed to describe theories with eight real

supercharges in a manifestly off-shell supersymmetric way. The main idea is based on

extending the standard N = 2 Minkowski superspace M4|8 to M4|8 × CP 1 where the

auxiliary sphere allows to efficiently organize general supersymmetric multiplets in terms of

so-called projective superfields [30–33].1 These, besides being functions of the coordinates

of M4|8, also depend holomorphically on a complex parameter ζ which is an inhomogeneous

coordinate of CP 1.2 This formalism has been used to study manifestly supersymmetric

1The superspace M4|8 ×CP 1 was introduced for the first time by Rosly [34]. The same superspace is at

the heart of the, closely related, harmonic [35, 36] and projective [30–32] superspace approaches.
2More precisely projective superfields are required in general to be holomorphic over an open domain of

CP 1.
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hyper-Kähler sigma-models, see [37, 38] for reviews, Yang-Mills multiplets [32, 39, 40], and

recently also developed for an off-shell covariant description of general supergravity-matter

couplings with eight real supercharges in various dimensions [41–51].

By employing projective superspace, and focusing on partial supersymmetry breaking

arising from N = 2 hypermultiplets, we will study models based on real O(2) [31, 52–

56] and O(4) [55, 57] hypermultiplets. The bosonic sector of the real O(2) multiplet3 is

described by one complex scalar, one real scalar and one real two-form [56]. These fields

are contained inside two N = 2 superfields Φ and G that lead to a chiral and a real

linear superfield when reducing to N = 1 components. When the partial breaking takes

place they appear with deformed supersymmetry transformations linked to a non-vanishing

central charge. The deformed O(2) multiplet, which we denote with H(ζ), possesses the

following expansion in the parameter ζ

H(ζ) =
Φ

ζ
+G− ζΦ . (1.4)

The main idea of our paper is to parametrize possible deformations of the supersymmetry

by the action of the complex central charge symmetry generator Z on H as follows

ZH(ζ) =
α

ζ
+ β − ζγ , (1.5)

where α, β and γ are real constants. In this way, in the models we will consider, the central

charge symmetry is spontaneously broken and in addition the supersymmetry can be par-

tially broken. By employing a superspace with central charge, the N = 2 supersymmetry

transformations will include additional symmetry breaking terms arising from (1.5). The

complex constants α, β and γ are introduced to parametrize such supersymmetry breaking.

We will show that the case where α = γ = 0 and β 6= 0 is equivalent to the deformation

studied in [6–8, 10, 11] while the other cases are new. In particular, we will first study these

new cases in more detail in an N = 1 setup, since they have not been investigated before,

and subsequently we will introduce the projective superspace formalism. In a similar way

we will then deform the O(4) multiplet obtaining new models for partial supersymmetry

breaking together with reproducing the construction of [10].

Once we have a new manifest N = 2 superspace description we will construct various

actions which exhibit partial supersymmetry breaking. The possibility to have nontrivially

interacting two-derivative models will depend on the Goldstone mode for the central charge

symmetry. We will see that even in cases where the two derivative theory is free due to a

residual shift symmetry of the scalars, supersymmetric higher-derivative interactions can

still be introduced, which are constructed directly from N = 2 superspace. Therefore, the

manifest superspace description we propose here not only paves the way to uncover a variety

of partial supersymmetry breaking patterns, but also for the construction of the possible in-

teractions. In this work we will restrict our study to the O(2) and the O(4) hypermultiplets,

but we believe that our method can also be extended and applied to other multiplets as well.

3The O(2) multiplet is mostly known in the literature as the N = 2 linear or tensor multiplet.
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The paper is organized as follows. In section 2 we review known results for partial

supersymmetry breaking based on tensor multiplets and we introduce new types of defor-

mations and models by using an N = 1 superspace approach. In section 3 we set up a

projective superspace approach where deformed hypermultiplets are linked to patterns of

central charge symmetry breaking in an N = 2 superspace. Within this approach, here we

also describe how to construct actions invariant under the deformed N = 2 supersymmetry.

Section 4 and 5 are devoted to the construction of new models for partial supersymmetry

breaking by starting from O(2) and O(4) multiplets. We will present two derivative and

higher-derivative theories. In section 6 we conclude by discussing our results and possible

future research directions. We accompany the paper with three appendices. In appendix A

we discuss properties of the deformed linear multiplet introduced in [58] which naturally

arise from our discussion in section 2. Appendix B includes some comments about the

structure of supercurrents in the case of one of our models for partial supersymmetry

breaking. Appendix C elaborates on the relation of an O(4) model of section 5 with one

of the O(2) models of section 4.

2 Deformed tensor multiplet and partial supersymmetry breaking

In this section we present a new class of models describing partial supersymmetry breaking

based on a deformed N = 2 tensor, or O(2), multiplet. The models we discuss here

are in some sense complementary to the ones already known in the literature [6–8, 10,

11]. There partial supersymmetry breaking is realized in terms of a Goldstone tensor

multiplet where the goldstino transforms to a real scalar and a two-form field under the

unbroken supersymmetry transformation. Here we will show that in the new model the

goldstino transforms to a complex scalar field belonging to an N = 1 chiral multiplet under

the unbroken supersymmetry. In this section we present our results by using an N = 1

superspace formalism postponing the N = 2 superspace analysis to the second part of the

paper. The purpose of this section is to present in a simple way the physical aspects of

the new tensor multiplet models and clarify the similarities and differences with previously

known constructions. Building on the lessons learned in this section we will generalize and

construct new models in the following sections.

An N = 2 tensor multiplet in N = 1 superspace is given in terms of a chiral superfield

and a real linear superfield [56]. The N = 1 chiral multiplet is described by a superfield Φ

satisfying the differential constraint

Dα̇Φ = 0 . (2.1)

Here Dα̇ is one of the N = 1 superspace covariant derivatives DA = (Dα,Dα̇, ∂αα̇), where

Dα = ∂α +
i

2
θ
α̇
∂αα̇ , Dα̇ = ∂α̇ +

i

2
θα∂αα̇ , (2.2)

satisfying the only non-vanishing (anti)commutator

{Dα,Dα̇} = i ∂αα̇ . (2.3)
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Note that for N = 1 superspace we closely follow the notations and conventions of [59].

The component fields of the chiral multiplet are defined as

Φ| = A , DαΦ| = χα , D2Φ| = F , (2.4)

where a vertical bar next to a superfield indicates the projection to its θ = θ̄ = 0 component,

i.e. U(x, θ, θ̄)| ≡ U(x, θ, θ̄)|θ=θ̄=0.

The N = 1 real linear (N = 1 tensor) superfield is defined by the following constraints

D
2
G = 0 = D2G , G = G . (2.5)

Its component fields are

G| = ϕ , DαG| = ψα ,
1

2
[Dα,Dα̇]G| = hαα̇ , (2.6)

where ϕ is a real scalar, and the field hαα̇ is the Hodge-dual of the field strength of a real

two-form Bab, ha = εabcd∂
bBcd, and as such it satisfies ∂αα̇hαα̇ = 0.

On both the chiral and real linear superfields the first supersymmetry acts in the

standard covariant way, namely4

δǫU = −iǫαQαU − iǫα̇Qα̇U = ǫαDαU + ǫα̇Dα̇U − i
(
ǫαθ

α̇
+ ǫα̇θα

)
∂αα̇U , (2.7)

where

Qα = i∂α +
1

2
θ
α̇
∂αα̇ , Qα̇ = i∂α̇ +

1

2
θα∂αα̇ , (2.8)

are the N = 1 global supersymmetry charges. The second supersymmetry transformations

of the N = 2 tensor multiplet, which mix the N = 1 chiral and real linear multiplets, are

given by [56]

δρΦ = −ρα̇Dα̇G , δρG = ραDαΦ+ ρα̇Dα̇Φ . (2.9)

These supersymmetry transformations close off-shell.

To avoid any possible confusion in indicating the first and the second supersymmetry,

we will follow the convention where the ǫ-supersymmetry is always associated with the

N = 1 superspace and the ρ-supersymmetry is the second supersymmetry transforming

N = 1 multiplets into each other.

The most general N = 1 Lagrangian up to two derivatives which gives an invariant

action under the transformations (2.9) is

LG =

∫
d4θH(Φ,Φ, G) +

[
m̃2

∫
d2θΦ+ c.c.

]
, (2.10)

where the function H(Φ,Φ, G) satisfies the three-dimensional Laplace equation

∂2H

∂G2
+

∂2H

∂Φ∂Φ
= 0 , (2.11)

4In this paper we make a conventional choice in the definition of the N = 1 supersymmetry transforma-

tions with an opposite sign compared to the one of [59].
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and m̃ is a complex constant. On-shell the N = 2 tensor multiplet describes the same

degrees of freedom as the N = 2 hypermultiplet, however, due to the presence of the two-

form gauge field, the former multiplet is always massless. More properties of the N = 2

tensor multiplet can be found in [56]. We will comment on theN = 2 superspace realization

of this model in section 4. It is not difficult to show that, if m̃2 = 0, the vacuum structure

of the model (2.10) preserves the full N = 2 supersymmetry.

Now we turn to describe partial supersymmetry breaking from N = 2 to N = 1. The

way we will approach the partial breaking in this section is by deforming the definitions

of the N = 1 multiplets and their transformation laws (2.9) under the ρ-supersymmetry.

There are two simple possibilities how this can be implemented:

1. We consistently deform the action of the ρ-supersymmetry when it acts on G. This

has been presented in [6, 7], elaborating on the nilpotent Goldstone models of [10, 11].

2. We consistently deform the action of the ρ-supersymmetry when it acts on Φ. This

is a new deformation which we will present here in detail. We will see that there are

two ways to achieve this, both leading to the same physics.

Later, in section 3, we will explain the underlying mechanism behind both of these defor-

mations in a full N = 2 superspace approach.

Before describing the new deformation we review the model presented in [6]. In that

case the deformation is implemented in the ρ-supersymmetry by adding a term to the

transformation of the real linear superfield δdef.G = M̃2(θρ+ θ ρ) where M̃2 is an arbitrary

constant, while leaving the transformation of the chiral superfield untouched (2.9). The

complete deformed ρ-supersymmetry transformations are

δρΦ = −ρα̇Dα̇G , δρG = ραDαΦ+ ρα̇Dα̇Φ+ M̃2(θαρα + θ
α̇
ρα̇) . (2.12)

The ǫ-supersymmetry is then preserved while the ρ-supersymmetry is broken sponta-

neously, and the goldstino is the fermion ψα defined in (2.6). Therefore, together with the

real scalar ϕ and the gauge two-from Bab, the goldstino forms an N = 1 linear multiplet

under the unbroken supersymmetry. The generic Lagrangian with up to two derivatives

which leads to an action invariant under (2.12) is given by [6]

L =

∫
d4θ

[
ΦW (Φ) + ΦW (Φ)−

1

2
G2

(
W ′(Φ) +W

′
(Φ)

)]

+

[∫
d2θ

(
m̃2Φ− M̃2W (Φ)

)
+ c.c.

]
.

(2.13)

Consistent propagation requires ReW ′ > 0. As explained in [6], ǫ-supersymmetric vacua

with partial supersymmetry breaking of the ρ-supersymmetry exist only for both non-

vanishing m̃ and M̃ , and one has to ask that W ′′ 6= 0.

It is worth mentioning that, in the undeformed case with m̃2 = M̃2 = 0, the La-

grangian (2.13), which is a special case of the general self-interacting N = 2 tensor multi-

plet Lagrangian (2.10), was given in [60], where a projective superspace derivation of the

rigid c-map construction [61] was obtained.

– 6 –
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Let us now turn to the new deformations. We deform the transformation of the chiral

superfield under the ρ-supersymmetry keeping untouched the ρ-supersymmetry of the linear

multiplet. There are essentially two ways to introduce a constant deformation of the

transformations of the chiral multiplet. Namely

δdef.1Φ = −f ρα̇θα̇ , δdef.2Φ = −f̃ ραθα , (2.14)

where f and f̃ are constants that, for convenience, we choose to be real.

We start by considering the first deformation in (2.14). The deformed ρ transforma-

tions consequently read
δρΦ = −ρα̇Dα̇L − f ρα̇θα̇ ,

δρL = ραDαΦ+ ρα̇Dα̇Φ ,
(2.15)

whereas the ǫ-supersymmetry transformations of the deformed N = 2 tensor multiplet are

not modified and are given by

δǫΦ = ǫαDαΦ− i
(
ǫαθ

α̇
+ ǫα̇θα

)
∂αα̇Φ ,

δǫL = ǫαDαL+ ǫα̇Dα̇L− i
(
ǫαθ

α̇
+ ǫα̇θα

)
∂αα̇L .

(2.16)

In (2.15) we have deformed the action of the ρ-supersymmetry of the chiral superfield by

an explicit θα̇ term. To preserve the chirality constraint of Φ, eq. (2.1), and therefore

the N = 1 supersymmetry transformations (2.16), one has to deform the linear multiplet

constraint as follows

D
2
L = f = D2L . (2.17)

Note that this constraint was recently introduced in [58] to study linear multiplet models

for N = 1 supersymmetry breaking. In our discussion this constraint naturally appears in

an N = 2 context. It is straightforward to check that, thanks to (2.17), we have

Dβ̇

(
ρα̇Dα̇L + f ρα̇θα̇

)
= 0 , (2.18)

and then δρΦ is chiral, namely Dα̇δρΦ = 0.

The component fields of the deformed real linear multiplet L are defined as in (2.6),

where L is used instead of G, and with the difference that the component D2L| is now a

real constant instead of being zero. To avoid any confusion with the standard real linear

multiplet we will define the components of the deformed real linear multiplet as

L| = l , DαL| = λα , D2L| = f ,
1

2
[Dα,Dα̇]L| = tαα̇ , (2.19)

with tαα̇, as hαα̇ in (2.6), being the Hodge-dual of the field strength of a real two-form. We

refer the reader to [58] and appendix A of our paper for more properties of the deformed

real linear multiplet.

We can now write down the supersymmetry transformations of the component fields.

The component fields of the N = 1 chiral superfield transform under the ǫ-supersymmetry

as

δǫA = ǫαχα , δǫχα = −ǫαF + iǫα̇∂αα̇A , δǫF = −iǫα̇∂αα̇χ
α , (2.20)

– 7 –
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while for the components of the deformed real linear multiplet we have

δǫl = ǫαλα+ǫα̇λα̇, δǫλα = −ǫαf−ǫα̇
(
tαα̇ −

i

2
∂αα̇l

)
, δǫtαα̇ =

i

2
ǫ(α∂

β
α̇λβ)+c.c. (2.21)

From (2.21) we see that, assuming that in the vacuum 〈F 〉 = 0, the theory contains the

goldstino fermion in the deformed N = 1 real linear superfield, and it transforms under

the broken ǫ-supersymmetry to the real scalar l and the (Hodge-dual of the) two-form. In

agreement with the discussion in [58], we see that it is the manifest ǫ-supersymmetry which

is broken in this setup. However, in components the discussion about which supersymmetry

is manifest or not becomes rather academic since we are free to choose which of the two

supersymmetries will be represented with N = 1 superfields. With respect to the ρ-

supersymmetry we find the transformations

δρA = −ρα̇λα̇ , δρλα = −ραF − iρβ̇∂αβ̇A , δρF = −iρα̇∂αα̇λ
α , (2.22)

and

δρl = ραχα + ρα̇χα̇ , δρχα = ρα̇
(
tαα̇ +

i

2
∂αα̇l

)
, δρtαα̇ = −

i

2
ρ(α∂

β
α̇χβ) + c.c. , (2.23)

and, again assuming 〈F 〉 = 0, we see that the ρ-supersymmetry is preserved. Notice that

under the preserved supersymmetry the goldstino forms an N = 1 chiral multiplet. This

shows that the new deformation is indeed different from the one discussed in [6], where the

goldstino forms a real linear multiplet under the preserved supersymmetry.

The observation that the goldstino, under the preserved supersymmetry, sits in the

same multiplet as the complex scalar A has a strong impact on the possible Lagrangians

one can write down using this deformation of the N = 2 tensor multiplet. We will elaborate

more on this in section 3 and 4 but the basic argument is very simple. The goldstino

is massless in global supersymmetry and because it forms a multiplet with the complex

scalar under the preserved ρ-supersymmetry, the full supersymmetric scalar multiplet which

contains the goldstino has to be massless too. Indeed, the complex scalar A has to possess

a shift symmetry, which forces it to be massless, and ultimately is related to the fact that

A is a goldstone mode of a spontaneously broken central charge symmetry. We can verify

this by calculating the commutators of the supersymmetry transformations on the various

fields. The two supersymmetries generically commute

[δǫ, δρ] (all fields exceptA) = 0 , (2.24)

except for when they act on the complex scalar A, where it holds

[δǫ, δρ]A = ǫα̇ρ
α̇f . (2.25)

The reason this is happening is that by breaking the ρ-supersymmetry, we have also broken

the central charge symmetry associated to the generator Z which arises from the super-

charge algebra as

{Q1α,Q2β} ∼ CαβZ . (2.26)

– 8 –
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The goldstone mode for this breaking associated to Z is the complex scalar A which trans-

forms as [28]

ZA = f . (2.27)

This result will be the guiding principle to set up our analysis of partial supersymmetry

breaking in the rest of the paper.

From the previous discussion it is clear that in order for the deformed supersymmetry

transformation to be a symmetry of a specific model we have to take into account the

requirement that the theory has to possess a shift symmetry for the chiral superfield

Φ → Φ+ const. (2.28)

The restrictions that a shift symmetry (2.28) imposes on the scalar manifold for the N = 2

single tensor multiplets were studied, e.g., in [62]. By also taking into account the invariance

under the ρ-supersymmetry, it turns out that for a two derivative theory the function

H(Φ,Φ, G) in the model (2.10) is constrained to be quadratic in fields. Moreover, to

ensure the ǫ-supersymmetry is not spontaneously broken on the vacuum by the linear

superpotential, it is necessary to impose m̃2 = 0. The resulting model is described by the

following simple Lagrangian

L =

∫
d4θΦΦ+

(
1

4

∫
d2θDα̇LD

α̇
L+ c.c.

)
. (2.29)

In components, up to total spacetime derivatives, this reduces to

L =
1

2
A∂αα̇∂αα̇A+ iχα∂ α̇

α χα̇ + FF +
1

2
tαα̇tαα̇ +

1

8
l∂αα̇∂αα̇l + iλα∂ α̇

α λα̇ . (2.30)

This model is invariant under the supersymmetry transformations (2.20)–(2.23), but it is

a non-interacting theory.5 Moreover, the invariance holds for any value of the parameter

f , which is not an observable in the action (2.30). This is in sharp contrast compared to

the model described by the action (2.13) which is invariant under (2.12). However, higher-

order interactions that do not alter the vacuum structure of the free theory (2.29), namely

〈F 〉 = 0, can be introduced.6 Therefore, for this model, we should consider a Lagrangian

describing an effective theory of the form

L =

∫
d4θΦΦ+

(
1

4

∫
d2θDα̇LD

α̇
L+ c.c.

)
+ Lint. . (2.31)

Here Lint. is invariant under the deformed susy transformations (2.20)–(2.23) and may in-

clude interaction terms dependent on the parameter f . As we will see later, higher-order

interactions, that in general might include higher-derivative terms, can be constructed with

these properties. Their construction becomes straightforward by using the N = 2 super-

space approach — the framework to construct these actions is one of the main result of

our paper. Of course the Lagrangian (2.31) will have to be treated as an effective theory

5In appendix B we have also explicitly calculated the supercurrents arising from (2.30).
6An example of such an interaction term is given by (4.32).
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because the higher-order terms will be introduced with a suppression scale Λ. From this

point of view, and according to our analysis of the deformed supersymmetry algebra, the

action (2.13) is the only self-interacting, two-derivative QFT model for partial supersym-

metry breaking based on deformed tensor multiplets.

Let us now elaborate on the possibility of introducing mass terms in the self-interacting

Lagrangian (2.31), or if mass deformations can arise from perturbative quantum correc-

tions. In particular we would like to discuss the possibility of introducing mass deforma-

tions within any action invariant under (2.20)–(2.23), assuming that the vacuum preserves

〈F 〉 = 0. From the Goldstone theorem it is known that the goldstino (λ) is massless, but

we would like to clarify what symmetries protect the other fields from getting a non-trivial

mass on the vacuum. We will discuss the complex scalar A, the real scalar l, and the

fermion χ, and, as we will see, there is a tight web of symmetries that keep all of the

matter fields massless. Starting from the complex scalar A, we have already explained that

under the preserved ρ-supersymmetry (2.22) it will form a chiral multiplet together with

the goldstino. Given that the goldstino is massless on the vacuum, supersymmetry dictates

that the complex scalar has to share this property. Therefore, not only can we not add mass

terms for A, but in addition it has to remain massless at any order in perturbation theory,

as does the goldstino. Now we turn to the real scalar l and the fermion χ. The two afore-

mentioned fields form a real linear multiplet under the preserved ρ-supersymmetry (2.23),

together with a physical two-form gauge field (ta is the Hodge-dual of the field strength of

the gauge two-form). Since the gauge two-form is always massless the same has to hold

for the real scalar l and the fermion χ. This of course holds at any order in perturbation

theory as well. The only way the gauge two-form could become massive is if it would

combine via a “BF” term with a gauge abelian vector. However, this would require new

degrees of freedom to be introduced, which are not available unless one explicitly includes

them in the theory, and in addition can not arise within perturbation theory. We therefore

conclude that, in the new model, gauge invariance and supersymmetry protect all physical

fields in (2.30) and (2.31) from receiving a mass.

We now turn to the second possibility in (2.14) for deforming the ρ-supersymmetry on

Φ. In this case we have

δρΦ = −ρα̇Dα̇G − f̃ ραθα ,

δρG = ραDαΦ+ ρα̇Dα̇Φ .
(2.32)

Here the real linear multiplet is not modified and the deformation of the ρ-supersymmetry

of Φ preserves its chirality, Dα̇δρΦ = 0.7

It is not difficult to prove that the transformations (2.32) leave the action (2.10) in-

variant only for

H = ΦΦ−G2/2 , (2.33)

and one has to set m̃2 = 0 to avoid spontaneous breaking of the ǫ-supersymmetry. Therefore

7If instead of (2.32) we consider the transformations δρΦ and δρW̃α̇, with W̃α̇ := Dα̇G, the resulting

variations reproduce the supersymmetry transformations of a deformed N = 2 vector multiplet in N = 1

superfields. These were already considered for example in one of the Goldstone models of [9].
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in components this theory has a Lagrangian of the form

L =
1

2
A∂αα̇∂αα̇A+ iχα∂ α̇

α χα̇ + FF +
1

2
hαα̇hαα̇ +

1

8
ϕ∂αα̇∂αα̇ϕ+ iψα∂ α̇

α ψα̇ . (2.34)

Once we write the transformation (2.32) in components we obtain for the chiral multiplet

δρA = ραψα , δρχα = −ραf̃ − ρα̇
(
hαα̇ −

i

2
∂αα̇ϕ

)
, δρF = −iρα̇∂αα̇ψ

α , (2.35)

and for the component fields of the real linear multiplet we find

δρϕ = ραχα + ρα̇χα̇ , δρψα = −ραF + iρα̇∂αα̇A , δρhαα̇ =
i

2
ρ(α∂

β
α̇χβ) + c.c. (2.36)

Clearly these transformations are the same as (2.20) and (2.21) with the fields of the

multiplets interchanged, since (2.35) and (2.36) concerns the ρ-supersymmetry while (2.20)

and (2.21) concerns the ǫ-supersymmetry. The ǫ-supersymmetry transformations of Φ and

G can be evaluated from (2.7), and one can see that they match (2.22) and (2.23) after

appropriately interchanging the component fields. Therefore, we conclude that the two

deformations in (2.14) are equivalent, with the only difference being the interchange of the

labeling of the two supersymmetries.

3 Projective superspace, central charge and partial breaking

In this section we will present in detail the properties of the N = 2 supersymmetry algebra

with central charge and discuss deformed O(2p) multiplets in projective superspace. We

will treat the explicit examples of O(2) and O(4) multiplets in the next sections.

The N = 2 superspace with central charge is parameterized by the coordinates zM =

(xm, θaα, θ
α̇

a , z, z). The xm and θaα, θ
α̇

a are the standard N = 2 superspace coordinates,

while z and z are bosonic complex coordinates which we add to represent the action of the

central charge [63]. Within this setup, the central charge can be written as

{D1α,D2β} ∼ ∂z , {D
1
α̇,D

2

β̇
} ∼ ∂z . (3.1)

In this case a general superfield depends also on z and z. In contrast to the finite expansion

in θaα, θ
α̇

a , the z dependence has to be fixed by appropriate constraints. Here we will utilize

such constraints to deform a given 4D projective multiplet and achieve spontaneous partial

breaking. Generic Lagrangians of the deformed multiplets would however explicitly break

theN = 2 invariance and therefore one has to search for specific classes of theories that keep

theN = 2 invariance intact and break it only spontaneously. To eliminate the z dependence

of the final Lagrangians we always set z and z to zero at the end of the computations.

The procedure that we propose for finding partial supersymmetry breaking models

within a central charge superspace is then the following:

1. Introduce all possible central charge deformations for a given projective supermulti-

plet. This is the most important aspect of our work since in this way all possibilities

for partial breaking can be systematically uncovered. We will focus on constant

deformations.
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2. Given a specified deformation, look for the most generic invariant action up to two

derivatives. At this stage the problem is that for several deformations it is not possible

to introduce interactions. When two-derivative interactions are possible, we give an

intuitive method in N = 1 superspace, and a general method based on projective

superspace techniques is presented in subsection 3.2.

3. Introduce higher-derivative interaction terms invariant under the central charge sym-

metry and therefore invariant under the fullN = 2 deformed supersymmetry transfor-

mations. For every deformation, higher-derivative interactions can be systematically

constructed introducing a wealth of new interacting models with partial supersym-

metry breaking.

3.1 Projective superspace with central charge

In this section we present the technical setup for our approach and also explain the general

strategy proposed for systematically constructing multiplets exhibiting partial supersym-

metry breaking.

The N = 2 superspace derivatives with a central charge realize the following algebra8

{Daα,D
b
β̇} = iδba ∂αβ̇ ,

{Daα,Db β} = ǫab Cαβ ∂z ,

{D
a
α̇,D

b
β̇} = ǫab Cα̇β̇ ∂z .

(3.2)

An explicit representation of the covariant derivatives is given by

Daα = ∂aα +
i

2
θ
α̇

a∂αα̇ +
1

2
ǫbaCβαθ

b β∂z , D
a
α̇ = ∂a

α̇ +
i

2
θaα∂αα̇ +

1

2
ǫbaC β̇α̇θ

β̇

b ∂z , (3.3)

and a representation of the supersymmetry generators is

Qaα = i∂aα +
1

2
θ
α̇

a∂αα̇ −
i

2
ǫbaCβαθ

b β∂z , Q
a
α̇ = i∂a

α̇ +
1

2
θaα∂αα̇ −

i

2
ǫbaC β̇α̇θ

β̇

b ∂z , (3.4)

where the supercovariant derivatives anti-commute with the supersymmetry generators as

usual. The N = 2 supersymmetry transformations are defined as

δ U = −iǫaαQaα U − iǫα̇a Q
a
α̇ U , (3.5)

for some generic superfield U = U(zM ).

In contrast to N = 1 superspace, a simple integration over the full N = 2 superspace

generically leads to theories with higher derivatives, as can be seen from dimensionality

arguments. Therefore one has to find ways to construct invariants by integrating over only

four out of the total of eight theta coordinates. One method to do this is with the use of

projective superspace [30–33]; see [37, 38] for reviews. In the case of projective superspace

with central charge and unbroken 4D N = 2 supersymmetry the reader might look at the

8Our conventions for the ǫab can be summarized as: ǫ12 = 1 , ǫab = −ǫba , (ǫab) = ǫab and ǫabǫbd =

−δad , a, b ∈ 1, 2.
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following papers [64, 65] and, in the related cases of a 4D description with central charges

of 5D and 6D multiplets, the papers [66–68].9

It is convenient to first break the SU(2) covariant notation of the N = 2 superspace

derivatives by defining

D1α ≡ Dα , D2α ≡ Qα . (3.6)

Following the notation of [33], the projective covariant derivatives are defined as10

∇α(ζ) = Dα + ζQα ,

∇α̇(ζ) = Qα̇ − ζ Dα̇ ,

∆α(ζ) = −Qα + ζ−1Dα ,

∆α̇(ζ) = Dα̇ + ζ−1Qα̇ ,

(3.7)

where ζ is a complex (inhomogeneous) coordinate on the north chart of CP 1 (see [38]

for more details about a description in terms of homogeneous, isotwistor, coordinates of

CP 1). The projective covariant derivatives realize the following vanishing anti-commutator

relations

{∇α,∇β} = {∇α,∇β̇} = {∇α̇,∇β̇} = 0 , {∆α,∆β} = {∆α,∆β̇} = {∆α̇,∆β̇} = 0 , (3.8)

whereas the non-vanishing anti-commutators are given by

{∇α,∆β} = −2Cαβ ∂z ,

{∇α̇,∆β̇} = −2Cα̇β̇ ∂z ,

{∇α,∆α̇} = −{∇α̇,∆α} = 2i ∂αα̇ .

(3.9)

The properties of the projective superspace derivatives under complex conjugation are

∇α̇(ζ) = −ζ ˜(∇α(ζ)) , ∇α(ζ) = ζ ˜(∇α̇(ζ)
)
, (3.10a)

∆α̇(ζ) = −
1

ζ
˜(∆α(ζ)) , ∆α(ζ) =

1

ζ
˜(∆α̇(ζ)

)
. (3.10b)

Here the tilde conjugation is complex conjugation composed with the antipodal map on

CP 1, which is such that (̃ζ) → −1/ζ, and (̃Daα) = (Daα) = D
a
α̇. This conjugation allows

to preserve holomorphicity on the north chart of CP 1. For convenience, in the rest of the

paper we will always indicate the tilde conjugation simply with an overline.

By introducing the projective covariant derivatives we get two anti-commuting subal-

gebras which can be used to define invariant subspaces and supermultiplets. A projective

9The literature on superspace techniques for unbroken N = 2 supersymmetry with central charge is

quite ample. See for instance [69] and references therein also for an harmonic superspace description.
10Depending on SU(2) notations, different papers use different, though equivalent, definitions for the

projective superspace derivatives which, up to complex conjugations, affect the structure of the multiplets.

The reader should use some care comparing results in the literature. For example, in the notations used

in [38] an O(2) multiplet have a chiral Φ, instead of an antichiral Φ as in (1.4), N = 1 superfield as the

first term in its ζ expansion.
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superfield Ξ = Ξ(zM , ζ), is an N = 2 superfield which is further constrained to be a holo-

morphic function of ζ (on an open domain of CP 1) and to satisfy the following conditions

∇αΞ = 0 , ∇α̇Ξ = 0 . (3.11)

The consistency of the previous constraints is guaranteed by the integrability condi-

tions (3.8). It is convenient to represent the superfield Ξ(zM , ζ) by a power series in

ζ

Ξ(zM , ζ) =
+∞∑

k=−∞

ζk Ξk(z
M ) , (3.12)

where Ξk(z
M ) are N = 2 superfields which in general might also have a dependence on

the z, z̄ central charge superspace coordinates.

It is simple to prove that, given a projective superfield Ξ(zM , ζ) and having defined

its conjugate as

Ξ(ζ) := (̃Ξ(ζ)) , Ξ(ζ) =
+∞∑

k=−∞

(
−

1

ζ

)k

Ξk , (3.13)

with Ξk(z
M ) the complex conjugates of the N = 2 superfields Ξk(z

M ), then Ξ(ζ) is also

projective: ∇αΞ = ∇α̇Ξ = 0.

Note that the analyticity constraints (3.11), rewritten in terms of the (Dα,Dα̇) and

(Qα,Qα̇) derivatives, read

QαΞ(ζ) = −
1

ζ
DαΞ(ζ) ⇐⇒ QαΞk = −DαΞk+1 , (3.14a)

Qα̇Ξ(ζ) = ζDα̇Ξ(ζ) ⇐⇒ Qα̇Ξk = Dα̇Ξk−1 . (3.14b)

The right hand side of the previous equations can be interpreted by thinking that the

dependence of a projective superfield upon the second superspace coordinates (θ2α, θ̄α̇2 ) is

completely determined in terms of the (θ1α, θ̄α̇1 ) ones. This property is the main reason

why projective superspace leads to a natural description of N = 2 supersymmetry in terms

of N = 1 superfields and, as already shown in [7, 10, 11] and as we will further see in

our work, partial N = 2 → N = 1 supersymmetry breaking. To elaborate more on

this property it is worth describing the supersymmetry transformations of Ξ once reduced

to N = 1 superspace. In this paper, given an N = 2 superfield U(zM ), we denote with

U|| := U|θ2=θ̄2=z=z=0 its reduction to theN = 1 superspace parametrized by the coordinates

(xm, θα, θ
α̇
) ≡ (xm, θ1α, θ

α̇

1 ). Then the supersymmetry transformations (3.5) imply11

δǫ,ρU|| = −i
(
ǫαQα+ǫα̇Qα̇

)
U||+ρα

(
D2αU −θα∂zU

)
||+ρα̇

(
D

2
α̇U −θα̇∂zU

)
||

= δǫU||+
(
ραQαU+ρα̇Qα̇U

)
||−

(
ραθα∂zU+ρα̇θα̇∂zU

)
|| , (3.15)

where we have used (3.3) and (3.4), introduced the N = 1 supercharges (2.8), and defined

ǫα := ǫ1α , ǫα̇ := ǫα̇1 , ρα := ǫ2α , ρα̇ := ǫα̇2 . (3.16)

11The reader should keep in mind that, with the definition we use for the N = 1 projection ||, in general

(QαU)|| 6= Qα(U||) and (Qα̇U)|| 6= Qα̇(U||) as well as (∂zU)|| 6= ∂z(U)|| and (∂zU)|| 6= ∂z(U)||.
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It is clear that the first term in (3.15) is an N = 1 supersymmetry transformation of U||.

Note also that the central charge contribution disappears from the derivatives D1α = Dα

and D
1
α̇ = Dα̇ once projected to N = 1 superspace, which become precisely the standard

N = 1 superspace derivatives (Dα,Dα̇) defined in eq. (2.2). The same holds for the super-

charges Q1α and Q
1
α̇ which become precisely the standard N = 1 supercharges (Qα,Qα̇)

defined in eq. (2.8). On the other hand, the (ρ, ρ) terms in (3.15) describe the second su-

persymmetry, which in general has central charge dependent contributions. In the case of a

projective superfield Ξ, the transformations of Ξ|| largely simplify. In fact, by using (3.14)

in (3.15) one obtains

δǫ,ρΞ(ζ)|| = δǫΞ(ζ)|| −
1

ζ
ραDαΞ(ζ)||+ ζρα̇Dα̇Ξ(ζ)|| − ραθα∂zΞ(ζ)|| − ρα̇θα̇∂zΞ(ζ)|| , (3.17a)

δǫ,ρ Ξk = δǫΞk − ραDαΞk+1 + ρα̇Dα̇Ξk−1 − ραθαZΞk − ρα̇θα̇ZΞk , (3.17b)

where for simplicity we have started to use the notation Ξk := Ξk||. We have also defined

the action of the central charge generators Z and Z on an N = 1 superfield U := U|| reduced

from an N = 2 superfield U(zM ) as

ZU := (∂zU)|| , ZU := (∂zU)|| . (3.18)

Differently from the general case, (3.17b) defines a closed set of transformations among

the N = 1 superfield components Ξk of a projective superfield Ξ(ζ). The supersymmetry

transformation (3.15) including the central charge contributions will be the starting point

when we describe partial supersymmetry breaking with the central charge terms producing

the necessary deformations of the N = 2 supersymmetry algebra.

In particular, we will focus on models constructed from the so-called real O(2p) multi-

plets [33, 70–72]. These are described by a projective superfield η(ζ) whose ζ dependence

can be written as

η(ζ) =

p∑

k=−p

ζk ηk , η(ζ) =

p∑

k=−p

(
−

1

ζ

)k

ηk , (3.19)

and the reality condition is implemented as

η = η . (3.20)

In this work we will carefully study two cases: O(2) and O(4) multiplets. We expect

multiplets with higher p to share the same supersymmetry breaking pattern as the O(4)

case since they contain the same physical components. As we have already explained, we

will make use of supermultiplets with non-vanishing central charge that lead to partial

supersymmetry breaking. Therefore we impose

∂zη =

p∑

k=−p

ζk αk , ∂zη =

p∑

k=−p

(−1)kζk α−k , (3.21)

where the αi are complex constants. Equation (3.21) is the source of the partial super-

symmetry breaking. Partial breaking will typically occur when only a single constant αi
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is nonzero, otherwise if we allow for generic configurations of non-vanishing αi supersym-

metry will be generically (but not always) completely broken. A discussion about all the

possibilities of switching on the αi would be very interesting but it is beyond the scope of

our work. We will therefore ask that only a single αi at a time is non-vanishing and using

the phase rotation of the central charge we can choose it to be real,12 namely

αj 6= 0 , αj = αj , αi 6=j = 0 . (3.22)

This procedure is a new proposal that unifies the description of different models of partial

supersymmetry breaking using N = 2 scalar multiplets and it can be used to systematically

construct the required N = 2 deformed supermultiplets. In the next sections we will

apply this philosophy to the O(2) and O(4) cases and see how all known results are indeed

reproduced for the O(2). When we reduce the projective superfields to N = 1 components,

the superfield equations (3.21) will identify the appropriate shifts under the spontaneously

broken central charge symmetry and will uniquely help to identify the goldstone bosons.

Using this setup we also construct O(4) models which exhibit partial breaking and which

have not been constructed before. We will see how they relate to the O(2) models. We

expect that a similar procedure can also be used for other N = 2 multiplets. We comment

more about this in the discussion section and leave such an analysis for future work.

3.2 Action in projective superspace

Generically, for projective superfields one can introduce the invariant action in the form13

S =
1

32πi

∫
d4x

∮

C

dζ ζ∆2∆
2
K(η, ζ)

∣∣∣∣ , (3.23)

where C is a contour in the ζ plane. In standard four-dimensional projective superspace

the central charge vanishes and the action (3.23) can be easily proven to be N = 2 super-

symmetric. Of course in our case this action is not invariant for an arbitrary function K

because of the non-vanishing central charges. Nevertheless, we can still use actions of the

form (3.23) to construct invariants. To see how this can be done, let us first study the form

of the action (3.23) in the presence of a central charge. To this end, it is useful to rewrite

the action in terms of N = 1 superspace derivatives. Using the identities

∆α(ζ) =
1

ζ
(2Dα −∇α) , ∆α̇(ζ) = 2Dα̇ +

1

ζ
∇α̇ , (3.24)

and

{∇α,Dα} = 2ζ ∂z , {∇
α̇
,Dα̇} = 2∂z , (3.25)

12Let us assume that αj = |αj |e
iβ . Then if we perform a phase rotation on the central charge coordinate

z as z′ = e−iβz, (3.21) becomes ∂z′η = ζj |αj |. However, this procedure works if only one of the deformation

parameters is nonzero. In the general case the αi are complex.
13In all subsequent formulas, except otherwise stated, a vertical bar | next to an N = 2 superfield U(zM )

indicates that we are projecting to zero the Grassmann θa and θa together with the central charge z, z

coordinates: U| := U|θa=θa=z=z=0
.
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together with the projectivity of K(η, ζ), namely ∇αK = ∇α̇K = 0, the action (3.23) takes

the form

1

2πi

∫
d4x

∮

C

dζ
1

ζ

{
D2D

2
K(η, ζ) +

1

2ζ
∂z D

2K(η, ζ)−
1

2
ζ∂zD

2
K(η, ζ)−

1

4
∂z∂zK(η, ζ)

}∣∣∣∣ .
(3.26)

The action arising from (3.26) generically explicitly breaks ρ-supersymmetry and, due to

the last three terms, also the ǫ-supersymmetry. To restore the N = 2 invariance of (3.26)

we modify the ansatz (3.23) by introducing explicit theta terms. The new ansatz is given

in terms of a function G and reads

G(η, ζ) = K(η, ζ) + θ2p R(η, ζ) +
1

ζ2
θ
2
p R (η, ζ)

+
1

ζ2
θ2pθ

2
p

[
4∂z∂zK(η, ζ)− 2ζ∂zR(η, ζ) +

2

ζ
∂zR (η, ζ)

]
,

(3.27)

where we have defined

θαp =
ζ

2

(
θ1α −

1

ζ
θ2α

)
, θ

α̇

p =
1

2

(
θ
α̇

1 + ζθ
α̇

2

)
. (3.28)

The reason for giving the θp and θp their specific form (3.28) is that they are both annihi-

lated by ∇ and ∇. Replacing K with G in the action (3.26) we get

S =
1

32πi

∫
d4x

∮

C

dζ ζ∆2∆
2
G(η, ζ)

∣∣∣∣

=
1

2πi

∫
d4x

∮

C

dζ
1

ζ

{
D2D

2
K(η, ζ) + D2A+D

2
A
}∣∣∣∣ ,

(3.29)

where

A =
1

2
ζ−1∂z K(η, ζ) +

1

4ζ2
R (η, ζ) . (3.30)

By performing general N = 2 supersymmetry transformations on the action and re-

quiring them to vanish

δǫ,ρS =
1

2πi

∫
d4x

∮

C

dζ

ζ

{
ǫα̇D2Dα̇A+ ρα̇D2Dα̇

(
ζA− ∂zK(η, ζ)

)

+ ǫαD
2
Dα A+ ραD

2
Dα

(
−
1

ζ
A− ∂zK(η, ζ)

)

− ραDα∂zA− ρα̇Dα̇∂zA

}∣∣∣ = 0 ,

(3.31)

we arrive at a series of conditions on A which once satisfied lead to N = 2 supersymmetric

theories. The conditions read

ǫα :

∮

C

dζ

ζ
D

2
DαA = total derivative =⇒

∮

C

dζ

ζ
A = anti-chiral ,

ρα :

∮

C

dζ

ζ

[
D

2
Dα

(
1

ζ
A+ ∂zK(η, ζ)

)
+Dα∂zA

]
= total derivative .

(3.32)
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Note that in principle A could also be a complex linear superfield but since in that case A

would completely drop out from (3.29) we do not consider this option. When solving the

equations (3.32) it is useful to rewrite them as

∫
d4x

∮

C

dζ

ζ
D2Dα̇

(
1

ζ
∂zK +

1

2ζ2
R

)
= 0 ,

∫
d4x

∮

C

dζ

ζ
D2Dα̇

(
∂zK −

1

2ζ
R

)
= 0 ,

∫
d4x

∮

C

dζ

ζ
Dα

(
1

ζ
∂z∂zK +

1

2ζ2
∂zR

)
= 0 .

(3.33)

One should not expect to find a solution for the previous conditions for all deformations.

However, by using this method, it will be possible to construct the known two derivative

theories, together with new models. In contrast, we will also show that for any deformation

it is straightforward to construct higher-derivative terms based on a projective superspace

approach.

The procedure we described in this subsection is essentially equivalent to writing down

N = 1 terms and then explicitly checking the invariance of the ρ-supersymmetry, while

adding appropriate compensating terms. However, having now an N = 2 superspace de-

scription of this procedure significantly adds to its understanding. Moreover, in some cases

this procedure can help us tell right away which starting Lagrangians are bound to fail

purely from projective superspace arguments. Note that the shift symmetry that is essen-

tial in the N = 1 superspace construction of the deformed theory is not used in the pro-

jective superspace program. Rather it is implied by the supersymmetry conditions (3.32).

The methods are therefore complementary to each other which might be useful in more

complicated situations.

To exemplify the projective superspace procedure we can work on a free theory for the

real O(2p) multiplet (3.19), which is deformed as shown in (3.21). We can for example

start with

S =
(−1)p

64πi

∫
d4x

∮

C

dζ ζ∆2∆
2
η
2

∣∣∣∣ , (3.34)

and using (3.31) we find the variation of the action under N = 2 supersymmetry

δǫ,ρS =
(−1)pαj

2

∫
d4x

{
(−1)j ǫα̇D2Dα̇ηj+1 + (−1)j+1αj ρ

α̇D2Dα̇ηj

+ (−1)j ǫαD
2
Dαη−j−1 + (−1)j+1 ραD

2
Dαη−j

}∣∣∣
∣∣∣ .

(3.35)

In general, the variation (3.35) is not vanishing but one could possibly switch on R terms

in the form of (3.27), to make it vanish. Let us now see under which circumstances it is

possible to find such R functions. The real O(2p) multiplet with p > 1 contains a set of

unconstrained auxilliaryN = 1 superfields ηi for i ∈ 〈−(p−2), (p−2)〉 as well as the physical

chiral and complex linear superfields (we will see this later in more details for the O(4)

cases). If ηj in (3.35) is an unconstrained superfield we cannot find R in order to render the

action N = 2 invariant. In this case we would have to somehow change the ansatz in (3.34).

If on the other hand the ηj appearing in (3.35) are chiral superfields the action is invariant
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under the full deformed supersymmetry without any need for further manipulations. The

most interesting case is when ηi is a (anti-)complex linear superfield, D
2
ηi = 0 (D2ηi = 0).

Since the transformation does not vanish we need to choose an R of the form

Rη2 (η, ζ) = (−1)pζ−1∂z η
2 , for i = −p+ 1 ,

Rη2 (η, ζ) = (−1)(p+1)ζ−1∂z η
2 , for i = p− 1 .

(3.36)

Therefore, the free action is given by (3.29) with

K = (−1)p
η
2

2
, R = Rη2 . (3.37)

For the simpler O(2) multiplet the quadratic action (3.34) is always invariant.

In contrast to Lagrangians for kinetic terms and interaction terms with at most two

derivatives, higher-derivative interactions can be constructed generically. For a real func-

tion F , we can have

Sint. =
1

32πi

∫
d4x

∮

C

dζ ζ∆2∆
2
[
1

ζ2
∇2∇

2
F
(
ηi,(∆)∆ηk,(∇)∇ηl, ζ

)]∣∣∣ (3.38a)

=
1

4πi

∫
d4xd4θ

∮

C

dζ

ζ

(
Q2Q

2
+Q

2
Q2

)
F
(
ηi,(∆)∆ηk,(∇)∇ηl, ζ

)∣∣∣
∣∣∣, i 6=±j . (3.38b)

The Lagrangian density is by construction projective due to the ∇2∇
2
operator. Note that,

the previous action could be written as an integral over all the eight Grassmann variables

of N = 2 superspace. The condition i 6= ±j is chosen so that the component field on which

the central charge generator acts nontrivially does not appear without a derivative in order

for the resulting Lagrangian to have the required shift symmetry, see (3.22). Alternatively,

it is sufficient to have the Lagrangian F to be an N = 2 superfield annihilated by the

central charges. Explicitly we have

∂zηi = ∂zηi = 0, for i 6= ±j , (3.39)

and

∂z∆ηk = ∂z∆ηk = 0 = ∂z∇ηk = ∂z∇ηk, for any k . (3.40)

Note also that, if F̃ = F then the action (3.38) is real and the Q2Q
2
and Q

2
Q2 terms

lead to the same contribution up to total derivatives. It is a well-known fact that higher-

derivative interactions may lead to ghost excitations. We have not investigated this further

in our paper. Instead we will illustrate the general construction given in (3.38) on some

simple examples for the O(2) and O(4) multiplets. A full analysis of the vacuum structure

induced by these terms and a possible classification of ghost-free higher-derivative inter-

actions of models with partial supersymmetry breaking is beyond the scope of this paper.

The presented examples, and possible ghost-free N = 2 models, can be viewed as N = 2

extensions of the models studied in [73–86].
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4 The O(2) multiplet

In this section we revisit the multiplet studied in section 2, namely the O(2) multiplet, and

see how it fits into the general setup presented in section 3. Our method can reproduce all

the deformations we discussed in section 2.

The real O(2) multiplet is constructed by setting

H(x, ζ, z, z) =
Φ

ζ
+G− ζΦ , (4.1)

where Φ and G are N = 2 superfields with G = G. Using the projectivity condition

∇αH = 0 = ∇α̇H , (4.2)

we can derive a series of constraints for the N = 2 superfields, in terms of the N = 2

superspace derivatives. We find chirality constraints on Φ, namely

DαΦ = 0 , Dα̇Φ = 0 , QαΦ = 0 , Qα̇Φ = 0 , (4.3)

which mean that when we reduce to N = 1 superspace Φ will always become a chiral

superfield. We also find constraints that link the superspace derivatives of the N = 2

superfields to each other

QαG = DαΦ , Qα̇G = Dα̇Φ , QαΦ = −DαG , Qα̇Φ = −Dα̇G , (4.4)

which will help when we reduce to N = 1 superspace. However, because of the central

charge the constraint that normally would show that the N = 2 superfield G becomes a

real linear superfield now is deformed by explicit central charge terms. The details depend

on how the central charge acts on H.

Following the discussion in section 3, theO(2) multiplet can be deformed in three differ-

ent ways, depending on how the central charge acts on the projective superfield H. We set

∂zH =
α

ζ
− β − ζγ , ∂zH =

γ

ζ
− β − ζ α , (4.5)

where α, β, γ are real constants. Once we combine (4.5) with the constraints (4.3)

and (4.4), we find the deformed constraints of the N = 2 superfields, namely

D2G = α ,

D2Φ+Q2Φ = β ,

Q2G = γ ,

(4.6)

and their complex conjugates given by

D
2
G = α , D

2
Φ+Q

2
Φ = β , Q

2
G = γ . (4.7)

The simplest way to understand the meaning of the conditions (4.6) is to turn to

component fields as we will do now.
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Having at hand the complete set of defining constraints for the N = 2 superfields

allows us to straightforwardly define their component fields. A consistent definition of a

part of the independent components of H in terms of the components of G is given by

G| = ϕ , DαG| = ψα ,
1

2
[Dα,Dα̇]G| = hαα̇ , D2G| = α , Q

2
G| = γ , (4.8)

while the other independent component fields of H can be defined in terms of components

of Φ, namely

Φ| = A , DαΦ| = χα , D2Φ| = F , Q2Φ| = β − F . (4.9)

In (4.8) the field ϕ is a real scalar and ha is the Hodge-dual of a real two-form, while

in (4.9) the fields A and F are complex scalars. For the component fields in (4.8) the

N = 2 supersymmetry transformations are given by

δǫ,ρϕ = ǫαψα + ραχα + c.c. ,

δǫ,ρψα = −ǫαα− ǫα̇
(
hαα̇ −

i

2
∂αα̇ϕ

)
+ ρα (β − F )− iρα̇∂αα̇A ,

δǫ,ρhαα̇ =
i

2

(
ǫ(α∂

β
α̇ψβ) + ρ(α̇∂

β̇
α χβ̇)

)
+ c.c. ,

(4.10)

while for the ones in (4.9) the supersymmetry transformations are given by

δǫ,ρA = ǫαχα − ρα̇ψα̇ ,

δǫ,ρχα = −ǫαF + iǫα̇∂αα̇A− ραγ + ρα̇
(
hαα̇ +

i

2
∂αα̇ϕ

)
,

δǫ,ρF = −iǫα̇∂αα̇χ
α − iρα̇∂αα̇ψ

α .

(4.11)

To study the properties of (4.10) and (4.11) we will refer to the variations ǫα as the ǫ-

supersymmetry and to the variations ρα as the ρ-supersymmetry. Finally, in the notations

of section 2, the condition (4.5) also gives the shifts of the scalars under the central charge

generator

ZA = α , Zϕ = −β , ZA = γ , (4.12)

which translate to shift symmetries in the action.

By a simple inspection of (4.10) and (4.11) we can analyze different supersymmetry

breaking patterns. Let us stress however that it is not the algebra alone that defines the

supersymmetry breaking pattern, rather it is the algebra and the vacuum of the theory

which are needed. Assuming that only one constant from the α, β and γ is non-vanishing

in each case, the three possibilities are:

1. Setting α 6= 0 breaks the ǫ-supersymmetry, and the goldstino is given by ψα. The

goldstino forms a supermultiplet under the unbroken supersymmetry with the com-

plex scalar A, therefore A has to possess a shift symmetry, in agreement with (4.12).

2. Setting β 6= 0 and assuming 〈F 〉 = 0, leads to the breaking of the ρ-supersymmetry

with the goldstino χα. The goldstino forms a supermultiplet under the ǫ-

supersymmetry with ϕ and the two-form. In agreement with (4.12) the real scalar
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ϕ has a shift symmetry. Note that, if 〈F 〉 = β 6= 0 then supersymmetry is partially

broken with the ρ-supersymmetry preserved and the ǫ-supersymmetry broken [6].

3. Setting γ 6= 0 breaks the ρ-supersymmetry, and the goldstino forms a supermulti-

plet under the ǫ-supersymmetry with the complex scalar A, which possess a shift

symmetry in agreement with (4.12).

The cases 1. and 3. above have been studied in detail in section 2, and we have also

explained why they describe the same physics. The case 2. has been studied in detail

in [6] and we only rapidly reviewed it section 2. Therefore we see how the general method

presented here reproduces these results.

For completeness, it is useful to write down how the ρ-supersymmetry acts on the

N = 1 superfields. These N = 1 superfields are defined from the N = 2 superfields as

Φ|| = Φ , G|| = G , (4.13)

and, once we use (3.17b) for an O(2) multiplet, the ρ-supersymmetry transformations then

take the form

δρΦ = −ρα̇Dα̇G− γ ραθα − αρα̇θα̇ ,

δρG = ραDαΦ+ ρα̇Dα̇Φ+ β
(
ραθα + ρα̇θα̇

)
.

(4.14)

We see that these formulas match with the deformations that were conjectured in section 2,

namely (2.12) and (2.14). Moreover, when α is non-vanishing, equation (4.8) naturally gives

rise to the deformed real linear superfield (2.17).

We now turn to the possible actions these deformations allow us to construct. We will

not study the cases α 6= 0 and γ 6= 0 independently, as they describe the same physics up

to exchanging the ǫ- and ρ-supersymmetries, therefore we will only study the γ 6= 0 and

β 6= 0 cases.

We first study the case β 6= 0 (α = 0 = γ). The two-derivative N = 1 action of the

theory is

S =

∫
d4xd4θ

[
ΦW (Φ) + ΦW (Φ)−

1

2
G2

(
W ′(Φ) +W

′
(Φ)

)]

+

[∫
d4xd2θ

(
m̃2Φ− βW (Φ)

)
+ c.c.

]
,

(4.15)

which matches (2.13) for M̃2 = β. Since the goldstino is described by DαG| the action (4.15)

is invariant with respect to G → G+const. A simple way to construct the action (4.15), is

to start with the most general two-derivative action, namely (2.10). The ansatz is restricted

by imposing the aforementioned shift symmetry on G. To make the result invariant under

the deformed supersymmetry one has to introduce N = 1 compensating terms, in this case

(−β
∫
d4xd2θW (Φ) + c.c.), as first appeared in [6].

As we explained in the previous section, methods for constructing Lagrangians within

N = 2 projective superspace can also be used. We will apply these methods to re-derive

the two-derivative terms and then construct higher-derivative interactions.
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For the possible functions K which can be used in (3.27) we consider two simple options.

One choice is to set

K(H, ζ) = −

[
k(H)

ζn
+ (−ζ)nk (H)

]

= −



k
(
G+ Φ

ζ
− ζΦ

)

ζn
+ (−ζ)nk

(
G+

Φ

ζ
− ζΦ

)
 ,

(4.16)

with the function k analytic in its argument. To illustrate the form of the resulting N = 1

Lagrangian derived from (4.16) we perform the contour integral over ζ which gives

∮

C

dζ

ζ
K(H, ζ)|| ∼

∞∑

j=0

k
(2j+n)

(G) Φn+jΦ
j
+ c.c. , (4.17)

where k(n)(X) = ∂nk(X)/∂Xn. Therefore this choice would lead to an N = 1 superspace

Lagrangian starting with a term
∫
d4θ

(
k
(n)

(G)Φn + k(n)(G)Φ
n
)
, and then there would

follow an infinite sum of terms with more derivatives on k(G) of the form shown in (4.17).

However, a careful analysis of (3.32) leads to the conclusion that the quadratic Lagrangian

density provides the only N = 2 invariant theory in (4.16) both for β 6= 0 and γ 6= 0.

An alternative possibility is to have

K(H, ζ) = −

[
k(ζH)

ζn
+ (−ζ)nk

(
−
H

ζ

)]

= −

[
k
(
Φ+ ζG− ζ2Φ

)

ζn
+ (−ζ)nk

(
Φ−

G

ζ
−

Φ

ζ2

)]
.

(4.18)

Performing the contour integral gives
∮

C

dζ

ζ
K(H, ζ)|| ∼

∑

a,b: a+2b=n

k
(a+b)

(Φ) GaΦb + c.c. (4.19)

In this case we would have an N = 1 superspace Lagrangian in terms of the function k(Φ)

and its derivatives, together with appropriate powers of G and Φ, as shown in (4.19). It

can be shown that other choices of K(H, ζ) = −
(
k(ζmH)

ζn
+ c.c.

)
for m 6= −1, 0, 1 can be

treated as special cases of the previous ansatz.

Turning back to the deformations (4.5) for β 6= 0, with the central charge nontrivially

acting on G, the obvious choice for K is (4.18). In the undeformed case, with n = 2, this

was the starting models of [60] and the partial supersymmetry breaking analysis of [7]. To

find the correct power of ζ we use the crucial observation that
∮

C

dζ

ζ
A = chiral . (4.20)

Let us plug (4.18) into (3.30) with R = 0, which gives

∮

C

dζ

ζ
A|R=0 =

∮

C

dζ

ζ

β

2

[
k
′ (
Φ+ ζG− ζ2Φ

)

ζn
+ (−1)nζn−2k′

(
Φ−

G

ζ
−

Φ

ζ2

)]
. (4.21)
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Only if n = 2 the second term is chiral. On the other hand the first term generates a

non-chiral part in (4.21). However, this contribution can be canceled by the appropriate

choice for R. Then the functions

K(H, ζ) = −
k(ζH)

ζ2
− ζ2k

(
−
H

ζ

)
,

R (H, ζ) =
2

ζ
∂z

[
k(ζH)

ζ2
− ζ2k

(
−
H

ζ

)]
,

(4.22)

once inserted into (3.29) give a deformed N = 2 invariant action. The second term in R

makes A chiral and the first term is essential for preserving the ρ supersymmetry. It is

easy to see that we can also add the linear superpotential to R which is always invariant

for any deformation of the N = 2 supersymmetry transformations. Finally, we have

K(H, ζ) = −
k(ζH)

ζ2
− ζ2k

(
−
H

ζ

)
,

R (H, ζ) =
2

ζ
∂z

[
k(ζH)

ζ2
− ζ2k

(
−
H

ζ

)]
+ 4m̃2H

ζ
,

(4.23)

which reproduces the results of [6, 7]. The N = 1 action of the theory is given by (4.15)

with W (Φ) = k′(Φ).

The superspace methods become more important when we want to introduce higher-

derivative interactions. Following the general discussion in the previous section we will

only give one simple example. Using the ansatz (3.38), we can consider the action

Sint. =
1

32πi

1

Λ4

∫
d4x

∮

C

dζ ζ∆2∆
2
[
1

ζ2
∇2∇

2
(
Φ2Φ

2
)] ∣∣∣∣ , (4.24)

for some cut-off scale Λ, which gives rise to a variety of N = 1 interactions when, by

using (3.38b), we expand in N = 1 superspace, namely

Sint.=
1

2Λ4

∫
d4xd4θ

[
∂αα̇Φ∂αα̇ΦΦ

2
+4i∂αα̇ΦDα̇GDαGΦ+2β

(
D

α̇
GDα̇GΦ+DαGDαGΦ

)

−2DαGDαGD
2
ΦΦ−2D

α̇
GDα̇GD2ΦΦ+4β2ΦΦ−4βΦΦD

2
Φ

−4βΦΦD2Φ+4ΦΦD2ΦD
2
Φ+DαGDαGD

α̇
GDα̇G+2Φ�ΦΦ

2

+4iΦΦ∂αα̇Dα̇GDαG
]
+c.c. (4.25)

Notice that the N = 1 action (4.25) is indeed invariant under the shift G → G+ const.

Before turning back to the discussion of deformations with β 6= 0, it is worth comparing

our construction with the N = 2 superspace analysis in [6] and [7]. In [6] the model (2.13)

and (4.15) was shown to arise as a particular action for a so-called “chiral-antichiral” (or

twisted-chiral in the nomenclature used in [7]) N = 2 superfield Z. This is such that

D
1
α̇Z = 0 , D2αZ = 0 , (4.26)

where here we denoted with Daα and D
a
α̇ the N = 2 superspace spinor derivatives without

central charges (which then coincide with Daα and D
a
α̇ in (3.3) once we set ∂z = ∂z ≡ 0).
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As such, Z contains in general 16 + 16 component fields. The superspace integral

∫
d4x d2θ1 d2θ2 F (Z) (4.27)

proves to be manifestly N = 2 supersymmetric for any holomorphic function F (Z). If

Z is further constrained to be a short 8 + 8 multiplet thanks to the extra constraints

D
2
α̇Z|| = Dα̇G, with G = G an N = 1 real linear superfield (D

2
G = D2G = 0), and

(D
2
)2Z|| = −D

2
Φ, with Φ := Z||, then one obtains an equivalent superfield description of

the N = 2 O(2) multiplet together with the action (4.15) for M̃2 = 0 and W (Φ) = F ′(Φ).

The M̃2 term, together with the deformation of the supersymmetry transformation (2.12),

was achieved in [6] by giving a vev to (D̄2)2Z ∝ M̃2 amounting to the redefinition Z →

Z+M̃2θ
2
2 which preserves the constraint (4.26).14 In [7] it was shown that the action (4.27)

arises as a particular case of the N = 2 projective action without central charges. It was

then shown that the model (2.13) derives from a projective Lagrangian given by K(H, ζ) =

−

(
F (ζH)

ζ2
+ζ2F

(
−H

ζ

))
where H possesses a nontrivial θ

2
p vev along the line of the analysis

of [10, 11]. Note that the two descriptions given in [6] and [7] are both equivalent to our

β 6= 0 and α = γ = 0 deformations. On the other hand, it appears that the α 6= 0 or γ 6= 0

deformations of the supersymmetry transformations of an O(2) multiplet cannot be gener-

ated by a simple spurionic θ-dependent shift without either breaking the constraint (4.26)

or the projectivity of H. For this reason, the studies in [6, 7] missed these possible defor-

mations which we achieved by directly analyzing the role of the central charge. It is on the

other hand possible that extending the O(2) multiplets to a relaxed-hypermultiplet [87]

α 6= 0 or γ 6= 0 deformations might be achieved with proper spurionic terms.

Let us now come back to our approach and consider the γ 6= 0 (α = 0 = β) deforma-

tion. In this case we know that the model has to be invariant under the shift symmetry

Φ → Φ + const. Models with undeformed N = 2 tensor multiplets possessing such shift

symmetry were considered in a different context in [62] where it was proven that the

function H(G,Φ,Φ) in (2.10) is constrained to be either quadratic or cubic in its N = 1

superfields. However, invariance under the second γ-deformed supersymmetry only allows

for two-derivative actions of the form

S =

∫
d4xd4θ

[
ΦΦ−

1

2
G2

]
+
[
m̃2

∫
d4xd2θΦ+ c.c.

]
. (4.28)

If we also impose the vacuum to preserve the manifest ǫ-supersymmetry, as already dis-

cussed in section 2, it is necessary to impose m̃2 = 0. N = 2 superspace methods again

become very useful in finding nontrivial higher-derivative interactions. For the setup we

have here we need to introduce interaction terms in the form of (3.38). A simple example is

to have the F function to depend only on G, since G is annihilated by the central charge.

14Another possible deformation preserving (4.26) is given by Z → Z + Ã2(θ1)2 but, up to an exchange

of the first and the second supersymmetries, it proves to be equivalent to the M̃2θ
2

2 deformation [6].

Our β deformation is clearly equivalent to this case too once properly choosing what is the manifest ǫ-

supersymmetry and the ρ-supersymmetry.
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As an illustration of possible interactions we can consider

Sint. =
1

32πi

1

Λ4

∫
d4x

∮

C

dζ ζ∆2∆
2
[
1

ζ2
∇2∇

2
G4

] ∣∣∣∣ , (4.29)

for some cut-off scale Λ. The corresponding N = 1 action that we can compute by us-

ing (3.38b), which gives rise to a variety of interactions, reads

Sint. =
1

2Λ4

∫
d4xd4θ

[
12γ2G2 + 12γG

(
D

α̇
ΦDα̇Φ+DαΦDαΦ

)

+ 6DαΦDαΦD
α̇
ΦDα̇Φ+ 24GDαΦD

α̇
DαGDα̇Φ

+ 12iG2∂ α̇
α DαΦDα̇Φ+ 6G2D

α̇
DαGDα̇D

αG
]
+ c.c.

(4.30)

It is easy to see that there is a shift symmetry Φ → Φ + const. as it should be, since here

it is the chiral superfield Φ which contains the goldstino.

Another example is given by

F =
1

256Λ12
[(∇+ ζ∆)Φ]2

[(
∆− ζ−1∇

)
Φ
]2

[(∇+ ζ∆)G]2
[(
∆− ζ−1∇

)
G
]2

, (4.31)

which can be rewritten as

Lint. =
1

Λ12

∫
d8θ (DΦ)2

(
DΦ

)2
(DG)2

(
DG

)2
, (4.32)

where Λ is again a cut-off scale. The bosonic sector of (4.32) can simply be inferred to

have the following structure

Lbosons
int. =

1

Λ12
F 4F

4
+

3∑

n=0

3∑

m=0

FmF
n
Om,n(∂A, ∂A, ∂φ, ha, γ) . (4.33)

The terms in the sum are quite involved but the main property we want to stress is that it

is a functional at least linear in derivatives of the scalar fields and of ha. This implies that

F can in principle be integrated out algebraically becoming a functional of (∂A, ∂A, ∂φ, ha)

and the deformation parameter γ. It is also simple to show that the model described by

the free theory (2.29) together with the higher-order Lagrangian (4.32) possesses a branch

of solutions for F that preserve the Lorentz invariant vacuum structure, 〈F 〉 = 0, while

introducing non-trivial self-interacting higher-derivative terms.

5 The O(4) multiplet

In this section we study partial supersymmetry breaking by using a real O(4) multiplet,

which comprises an N = 1 complex linear, an N = 1 chiral, and a real unconstrained

auxiliary N = 1 superfield. In component form this multiplet contains two complex scalars

and two Weyl fermions as physical fields. Therefore, in contrast to the models of the

previous sections 2 and 4, the models we present here contain only complex scalars in the

bosonic sector.
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Before we deform the O(4) multiplet and induce the partial supersymmetry breaking

we would like to rapidly present the undeformed N = 2 supersymmetric theory in terms

of the constituent N = 1 superfields. These are the chiral superfield

Dα̇Φ = 0 , (5.1)

the complex linear superfield

D
2
Σ = 0 , (5.2)

and the real unconstrained superfield

X = X . (5.3)

Under N = 1 they transform in the standard way as shown in formula (2.7). The ρ-

supersymmetry transformations read

δρΣ = ραDαΦ− ρα̇Dα̇X ,

δρΦ = −ρα̇Dα̇Σ ,

δρX = ραDαΣ+ ρα̇Dα̇Σ ,

(5.4)

and they close off-shell. An example of a possible N = 2 supersymmetric model which will

be important for later discussion takes the form15

S =

∫
d4xd4θ

[
f(Φ)Φ + f(Φ)Φ +

(
f ′(Φ) + f

′
(Φ)

)(
1

2
X2 − ΣΣ

)

+
1

2
X

(
f ′′(Φ)Σ2 + f

′′
(Φ)Σ

2
)
+

1

4!
Σ4f ′′′(Φ) +

1

4!
Σ
4
f
′′′
(Φ)

+
1

2
W ′(Φ)Σ2 +

1

2
W

′
(Φ)Σ

2
+X

(
W (Φ) +W (Φ)

) ]
,

(5.5)

where W (Φ) and f(Φ) are holomorphic functions of the chiral superfield Φ. One can easily

check that (5.5) is indeed invariant under (5.4). From (5.5) we see that the superfield X has

an algebraic equation of motion which allows us to integrate it out and the resultant theory

will contain only a chiral and a complex linear superfield possessing N = 2 supersymmetry

on-shell.

5.1 The deformed O(4) multiplet

To find consistent deformations of the supersymmetry transformations and the appropriate

modifications of the multiplets, we will turn to projective superspace and follow the general

method developed in section 3.

In projective superspace the O(4) multiplet has the form

P(ζ) =
Φ

ζ2
+

Σ

ζ
+X− ζΣ+ ζ2Φ , (5.6)

15Notice that, in contrast to the O(2) multiplet, here a linear superpotential term m̃2
∫
d2θΦ is not

allowed because it is not invariant under (5.4).
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where Φ, X and Σ are N = 2 superfields. The projectivity and the reality conditions on

P read

∇αP(ζ) = 0 , ∇α̇P(ζ) = 0 , P(ζ) = P(ζ) . (5.7)

Once we write these conditions in terms of the N = 2 superspace derivatives and the

constituent N = 2 superfields we find a series of constraints. We find as usual the chirality

conditions

Dα̇Φ = 0 , QαΦ = 0 , (5.8)

a reality condition

X = X , (5.9)

which makes X a real but otherwise unconstrained superfield, and a series of equations

linking the various N = 2 superfields through their superspace derivatives

DαΣ+QαΦ = 0 ,

DαX+QαΣ = 0 ,

DαΣ−QαX = 0 ,

DαΦ−QαΣ = 0 .

(5.10)

Partial supersymmetry breaking is switched on, together with the deformations, by simply

imposing the central charge to act as follows

∂zP =
α

ζ2
−

β

ζ
+ ζγ + ζ2µ , (5.11)

where α, β, γ and µ are real constants.16 Using the supersymmetry algebra including the

central charge together with the deformation (5.11) and the previously derived constraints,

we find that Σ has to satisfy the following deformed linearity conditions

D
2
Σ = α , Q2Σ = µ , (5.12)

and that X and Φ are further related to each other through the following equations

D2Φ = γ +Q2X ,

Q2Φ = β +D2X .
(5.13)

Now we want to see exactly how the partial supersymmetry breaking arises from the

supersymmetry transformations of the constituent multiplets. From the N = 2 multiplets

we can reduce to the N = 1 multiplets

Φ = Φ|| , Σ = Σ|| , X = X|| , (5.14)

which satisfy the following N = 1 constraints

Dα̇Φ = 0 , D
2
Σ = α , X = X . (5.15)

16We could have also assumed a deformation of the form ∂zP = const. But, as we have seen in subsec-

tion 3.2, such deformation does not have an N = 2 invariant free theory. Therefore we do not consider this

possibility further in this article.
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We see that from our procedure a deformed complex linear superfield [88] has naturally

appeared.17 The ǫ-supersymmetry transformations are as usual calculated for each com-

ponent field of the N = 1 superfields from the formula (2.7), while the ρ-supersymmetry

acts on the N = 1 superfields as follows

δρΦ = −ρα̇Dα̇Σ− µραθα − αρα̇θα̇ ,

δρΣ = ραDαΦ− ρα̇Dα̇X + γ ραθα + β ρα̇θα̇ ,

δρX = ραDαΣ+ ρα̇Dα̇Σ .

(5.16)

The central charge operator, which we interpret as a generator of a shift symmetry on the

N = 1 Lagrangians, acts on the N = 1 superfields as

ZΦ = µ , ZΦ = α , ZX = 0 , ZΣ = −γ , ZΣ = −β . (5.17)

We remind the reader that we will assume that only one of the constant parameters α,

β, γ or µ is switched on at a time. To find the supersymmetry breaking patterns, one

could further reduce the full N = 2 supersymmetry transformations to component fields.

However, using the understanding we have about partial breaking and the implications on

the central charge, we can readily deduce the supersymmetry breaking patterns.

By inspection of (5.15), (2.7), (5.16) and (5.17), we see that the possible partial su-

persymmetry breaking patterns are the following:

1. Setting α 6= 0 breaks the ǫ-supersymmetry and the goldstino is described by the

component field DαΣ|. The goldstino forms a multiplet under the preserved super-

symmetry with the complex scalar Φ|. Therefore in this setup the superfield Φ has

to possess the shift symmetry.

2. Setting β 6= 0 and assuming 〈D2X|〉 = 0 breaks the ρ-supersymmetry with the

goldstino described by DαΣ|. The goldstino forms a complex linear supermultiplet

under the preserved supersymmetry with the complex scalar Σ|, and therefore Σ has

to possess a shift symmetry.

3. Setting γ 6= 0 and assuming that 〈D2Φ|〉 = γ breaks the ǫ-supersymmetry with the

goldstino described by DαΦ|. The goldstino forms a multiplet with the complex scalar

Σ|, and therefore Σ has to possess a shift symmetry.

4. Setting γ 6= 0 and assuming that 〈D2Φ|〉 = 0 breaks the ρ-supersymmetry with

the goldstino described by DαΣ|, which is an auxiliary fermion in the two-derivative

undeformed theory. The goldstino forms a multiplet with the complex scalar Σ|, and

therefore Σ has to possess a shift symmetry.

17Note that the deformed complex linear constraint in (5.15) is a natural limit of the constraint D
2

Σ = T

first introduced in [89], see also [90], and that is ubiquitous when one considers off-shell N = 2 sigma-models

with central charge, see [65]. Here T = T (ΦI) is typically a holomorphic function of dynamical chiral

superfields ΦI . If 〈T 〉 = const. 6= 0, N = 1 supersymmetry is typically broken on the vacuum as for (5.15).
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5. Setting µ 6= 0 breaks the ρ-supersymmetry, with the goldstino described by DαΦ|.

The goldstino forms a chiral supermultiplet under the preserved supersymmetry with

the complex scalar Φ|. The N = 1 superfield Φ has to possess a shift symmetry.

We have to stress that in the above classification we are assuming that the vacuum does

indeed preserve one of the two supersymmetries. This is not trivial and it is model-

dependent, as there might be auxiliary fields that get a vev in the vacuum and break

supersymmetry completely or change the supersymmetry breaking pattern provided by

the deformations introduced by the central charges.

In the next two subsections we will discuss in more detail the cases 2. and 5. We do

not need to discuss the case 1. and 3. in full detail since they describe the same physics

as the cases 5. and 2. respectively and they simply correspond to exchanging the ǫ- with

the ρ-supersymmetry. We will not discuss the case 4. in detail since it requires the fermion

DαΣ| to become propagating, which is typically an auxiliary fermion in the undeformed

two-derivative theory.

Before we discuss each deformation of P in detail, it is instructive to look at possible

candidates for the function K in (3.29). Given an analytic function k(x), we can consider

the following three simple possibilities:

i. An expansion of K around X, namely

K(P, ζ) =
k(P)

ζn
+ (−ζ)nk (P) (5.18)

=
k
(
X+ Φ

ζ2
+ Σ

ζ
− ζΣ+ ζ2Φ

)

ζn
+ (−ζ)nk

(
X+

Φ

ζ2
+

Σ

ζ
− ζΣ+ ζ2Φ

)
.

ii. An expansion of K around Σ,Σ, namely

K(P, ζ) =
k(ζP)

ζn
+ (−ζ)nk

(
−
P

ζ

)
(5.19)

=
k
(
Σ+ Φ

ζ
+ ζX− ζ2Σ+ ζ3Φ

)

ζn
+ (−ζ)nk

(
Σ−

Φ

ζ3
−

Σ

ζ2
−

X

ζ
− ζΦ

)
.

iii. An expansion of K around Φ,Φ, namely

K(P, ζ) =
k(ζ2P)

ζn
+ (−ζ)nk

(
P

ζ2

)
(5.20)

=
k
(
Φ+ ζΣ+ ζ2X− ζ3Σ+ ζ4Φ

)

ζn
+ (−ζ)nk

(
Φ+

Φ

ζ4
+

Σ

ζ3
+

X

ζ2
−

Σ

ζ

)
.

It turns out that the options i. and ii. do not give an interacting theory once plugged

in (3.27). Therefore, the only option iii. is interesting for our discussion. It is worth

mentioning that the action (5.5) can be written in terms of the projective superspace action

S =
1

32πi

∫
d4x

∮

C

dζ ζ∆2∆
2
[
k(ζ2P)

ζ4
+ ζ4k

(
P

ζ2

)
+

v(ζ2P)

ζ2
+ ζ2v

(
P

ζ2

)]
, (5.21)
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where f(Φ) = k′(Φ), W (Φ) = v′(Φ) and α = β = γ = µ = 0. The case parametrized by

the first two terms was introduced in the undeformed case in [60] while the last two terms

are new. From now on we will restrict to models described by (5.21).

5.2 The goldstino in the complex linear superfield

In this subsection we work with the deformation of the form

β 6= 0 , α = γ = µ = 0 . (5.22)

Within this setup the superfields Φ, Σ and X are standard N = 1 superfields defined by

the constraints (5.1), (5.2) and (5.3) respectively, and the ρ-supersymmetry is

δρΦ = −ρα̇Dα̇Σ , δρΣ = ραDαΦ− ρα̇Dα̇X + β ρα̇θα̇ , δρX = ραDαΣ+ ρα̇Dα̇Σ . (5.23)

The ǫ-supersymmetry is preserved while the ρ-supersymmetry is broken and the goldstino

belongs to the complex linear superfield. The lowest scalar component field of the complex

linear multiplet has to possess a shift symmetry, therefore we require that the Lagrangians

we write down have a shift symmetry on the superfield level, namely

Σ → Σ+ const. (5.24)

Let us now construct Lagrangians with two derivatives. First we consider the ac-

tion (5.5) of the undeformed theory, which is clearly not invariant under (5.23), and we

impose the shift symmetry (5.24), which we know has to be respected by the deformed

theory. This requirement implies

f(Φ) =
1

2
Φ . (5.25)

The second step is to perform a supersymmetry transformation (5.23) on (5.5) (with f ′ =

1/2), which gives

δρS = β [· · · ] + c.c. (5.26)

Then we have to find a suitable compensating term which is both N = 1 supersymmetric

and also cancels the β terms in (5.26). Indeed, it turns out that a compensating term

does exist and it comes in the form of a superpotential: βW (Φ). Once we put everything

together we have the N = 1 action of the deformed theory

S =

∫
d4xd4θ

[
ΦΦ+

1

2
X2 − ΣΣ

]
+

[
β

∫
d4xd2θW (Φ) + c.c.

]

+

∫
d4xd4θ

[
1

2
W ′(Φ)Σ2 +

1

2
W

′
(Φ)Σ

2
+X

(
W (Φ) +W (Φ)

) ]
.

(5.27)

The action (5.27) describes partial supersymmetry breaking with a complete N = 2 mul-

tiplet. Note that the above action is well-defined only for W (Φ) 6= Φ.

An interesting application which we can consider right away is to derive the model

of [10] which contains only an N = 1 complex linear multiplet. In [10] the broken su-

persymmetry is non-linearly realized and described by a nilpotent Goldstone multiplet,
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therefore to reduce to that model our N = 2 multiplet has to be appropriately truncated

to an N = 1 complex linear superfield. This can be done by introducing a large mass for

the chiral multiplet Φ and then decoupling it from our action (5.27). To achieve this we set

W = mΦ2 , (5.28)

for a real constant m, which then brings (5.27) to the form

S =

∫
d4xd4θ

[
ΦΦ+

1

2
X2 − ΣΣ

]
+

[
β

∫
d4xd2θmΦ2 + c.c.

]

+

∫
d4xd4θ

[
mΦΣ2 +mΦΣ

2
+X

(
mΦ2 +mΦ

2
) ]

.

(5.29)

We see that m is related to the mass of the chiral superfield. From (5.29) we derive the

superspace equations of motion of Φ which read

D
2
Φ+ 2βmΦ+mD

2
Σ2 + 2mΦD

2
X = 0 , (5.30)

and, assuming that 〈D
2
X〉 6= −β, we can recast them in the form

Φ =
−D

α̇
ΣDα̇Σ−m−1D

2
Φ

2 (β +D
2
X)

. (5.31)

We then consider the formal limit

m → ∞ , (5.32)

which essentially gives an infinite mass to the full chiral multiplet Φ and therefore decouples

it. With this procedure the superspace equation of motion (5.31) turns into a constraint and

a non-linear realization described by a nilpotent chiral superfield can emerge. Indeed, in the

formal limit (5.32), the superfield Φ will decouple and its equations of motion (5.31) become

Φ = −
1

2

D
α̇
ΣDα̇Σ

β +D
2
X

. (5.33)

Equation (5.33) is exactly the constraint arising in [10] for the study of partial supersym-

metry breaking with the ρ-supersymmetry non-linearly realized and it implies Φ2 = 0.

To further study the properties of (5.27) we can integrate out X directly from super-

space which gives

X = −W (Φ)−W (Φ) , (5.34)

and results in an action in terms of the chiral and the complex linear superfields only

S =

∫
d4xd4θ

[
ΦΦ− |W (Φ)|2 − ΣΣ+

1

2
W ′(Φ)Σ2 +

1

2
W

′
(Φ)Σ

2
]

+

[
β

∫
d4xd2θW (Φ) + c.c.

]
.

(5.35)

The ρ-supersymmetry of (5.35) is

δρΦ = −ρα̇Dα̇Σ , δρΣ = ραDαΦ+W ′(Φ) ρα̇Dα̇Φ+ β ρα̇θα̇ . (5.36)
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By defining the components of the chiral superfield as in (2.4) and for the complex linear as

Σ| = B , D2Σ| = C , Dα̇DαΣ| = Pαα̇ ,

Dα̇Σ| = τ α̇ , DαΣ| = να ,
1

2
DγDα̇DγΣ| = σα̇ ,

(5.37)

one can write down the action (5.35) in component form and verify that indeed there are

two complex scalars A and B and two Weyl fermions propagating. It is easier however

to study the theory in the dual form in terms of two chiral superfields. The details of this

analysis are given in appendix B. The vacuum structure of the theory and the preserved

supersymmetry can be easily studied directly from (5.35) by simply calculating the scalar

potential which reads

V = β2 W ′(A)W
′
(A)

1−W ′(A)W
′
(A)

. (5.38)

From the form of the scalar potential we can see that the vacua of the theory are always

given by

〈W ′〉 = 0 . (5.39)

The supersymmetry transformations of the fermions are given by

δχα = β
W

′

1− |W ′|2
ǫα + terms with derivatives ,

δτ α̇ = −β ρα̇

(
1−

|W ′|2

1− |W ′|2

)
+ terms with derivatives ,

δνα = β
W

′

1− |W ′|2
ρα + terms with derivatives ,

δσα̇ = only terms with derivatives .

(5.40)

From the transformations of the fermions (5.40) we conclude that the theory always

breaks supersymmetry partially, because of the vacuum condition (5.39). Notice that if

W ′ was a constant both supersymmetries would be spontaneously broken. On the other

hand, thanks to (5.39), the pattern of partial breaking is the same as the one induced by

the β-deformation of the N = 2 supersymmetry.

In parallel to the previous N = 1 discussion, our projective superspace method applies

as follows. Due to the central charge acting nontrivially on Σ the obvious candidate for K

is (5.20). Repeating the same arguments as in (4.20), (4.21), we find that the functions

K(P, ζ) =
v(ζ2P)

ζ2
+ ζ2v

(
P

ζ2

)
,

R (P, ζ) = 2ζ−1∂z

[
ζ2v

(
P

ζ2

)
−

1

ζ2
v
(
ζ2P

)]
,

(5.41)

give an N = 2 invariant action when inserted into (3.29). However, there is no part in

K(P, ζ) that corresponds to the free kinetic action. Therefore we add a quadratic term to
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K(P, ζ). Due to (3.36) we need to compensate its transformation by adding an appropriate

RP2 . Finally, we have

K(P, ζ) =
P2

2
+

v(ζ2P)

ζ2
+ ζ2v

(
P

ζ2

)
,

R (P, ζ) = 2ζ−1∂z

[
P2

2
+ ζ2v

(
P

ζ2

)
−

1

ζ2
v
(
ζ2P

)]
,

(5.42)

which, once we use (3.38b), leads exactly to (5.27) (for v′(Φ) = W (Φ)), which we de-

rived earlier. Therefore the two methods for finding the two-derivative Lagrangians are

consistent.

Let us finally give some examples for higher-derivative interactions. As we have ex-

plained before, there is a large variety of such interactions one can write down. Moreover,

as we have already explained, here we just construct these terms as a means to exemplify

our method. For a better understanding of their properties a detailed study of their vacuum

structure is required which is however beyond the scope of this work.

As a first example we can consider an interaction term of form

Sint.1 =
1

32πi

1

Λ4

∫
d4x

∮

C

dζ ζ∆2∆
2
[

1

ζ2
∇2∇

2 (
X4

) ]∣∣∣∣ , (5.43)

which, once we use (3.38b), gives the corresponding N = 1 action

Sint.1 =
1

2Λ4

∫
d4xd4θ

[
6DαΣDαΣD

α̇
ΣDα̇Σ+ 12XD2ΦD

α̇
ΣDα̇Σ

+ 24XDαΣD
α̇
DαXDα̇Σ− 12X2D

α̇
D2ΣDα̇Σ (5.44)

+ 6X2D
α̇
DαXDα̇DαX + 12XDαΣDαΣD

2
Φ

+ 12X2D2ΦD
2
Φ− 12X2DαΣD

2
DαΣ+ 4X3D

2
D2X

]
+ c.c.

Another example is

Sint.2 =
1

32πi

1

Λ4

∫
d4x

∮

C

dζ ζ∆2∆
2
[
1

ζ2
∇2∇

2
(
Φ2Φ

2
)]∣∣∣∣ , (5.45)

which in N = 1 superspace takes the form

Sint.2 =
1

2Λ4

∫
d4xd4θ

[
∂αα̇Φ∂αα̇ΦΦ

2
+ 2Φ�ΦΦ

2
+ 4i∂αα̇ΦDα̇ΣDαΣΦ+ 2βD

α̇
ΣD

α̇
ΣΦ

+ 2βDαΣDαΣΦ+ 2D
α̇
ΣDα̇ΣD

2XΦ+ 2DαΣDαΣD
2
XΦ (5.46)

+ 4β2ΦΦ+D
α̇
ΣDα̇ΣD

αΣDαΣ+ 4iΦ∂αα̇Dα̇ΣDαΣΦ

+ 4βΦΦ
(
D

2
X +D2X

)
+ 4ΦΦD

2
XD2X

]
+ c.c.

5.3 The goldstino in the chiral superfield

In this subsection we study the deformation

µ 6= 0 , α = β = γ = 0 . (5.47)
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In this setup the ρ-supersymmetry is

δρΦ = −ρα̇Dα̇Σ− µραθα , δρΣ = ραDαΦ− ρα̇Dα̇X , δρX = ραDαΣ+ ρα̇Dα̇Σ . (5.48)

The ǫ-supersymmetry is preserved while the ρ-supersymmetry is broken and the goldstino

belongs to the N = 1 chiral superfield Φ. The lowest scalar component field of the chiral

multiplet has to possess a shift symmetry, therefore we require that the Lagrangians we

write down have a shift symmetry at the superfield level, namely

Φ → Φ+ const. (5.49)

This restricts the holomorphic functions in (5.5) to the form

f(Φ) =
1

2
Φ , W = c , (5.50)

where c is a complex constant. The two-derivative theory then takes the form

S =

∫
d4xd4θ

(
ΦΦ+

1

2
X2 − ΣΣ

)
. (5.51)

The model breaks supersymmetry partially and the fields form a complete N = 2 multiplet.

This is easily seen by reducing the theory to components and checking the transformations

of the fermions.

The projective superspace method used to find lagrangians with no more than two

derivatives gives (5.51) in agreement with the more intuitive method used to derive it.

Therefore, in order to find nontrivial interaction terms we need to use lagrangians with

higher derivatives as in (3.38). As an example we give

Sint =
1

Λ4

1

32πi

∫
d4x

∮

C

dζ ζ∆2∆
2
[
1

ζ2
∇2∇

2
(
Σ2Σ

2
)]∣∣∣∣ , (5.52)

which in N = 1 superspace, once we use (3.38b), reads

Sint.=
1

2Λ4

∫
d4xd4θ

[
2i∂αα̇DαΦDα̇XΣ

2
+D

α̇
DαΣDα̇D

αΣΣ
2
+4D

α̇
DαΣDα̇XDαXΣ

+2ΣDα̇XD
α̇
XD2Σ+D

α̇
XD

α̇
XDαXDαX+D

α̇
ΦDα̇ΦD

αΦDαΦ

+2µΣD
α̇
ΦDα̇Φ+4ΣDαΦDα̇ΦD

α̇
DαΣ+2Σ2D

α̇
D2XDα̇Φ

+Σ2D
α̇
DαΣDα̇D

αΣ−2µΣ2D2Σ+2Σ
2
DαΦD

2
DαX

+4ΣΣD
2
DαXDαX+4ΣDαΦDαXD

2
Σ+4ΣΣD

2
ΣD2Σ (5.53)

+2ΣDαXDαXD
2
Σ+4µ2ΣΣ+2µΣDαΦDαΦ

+4µΣDαΦD
αX+4µΣD

α̇
XDα̇X+2ΣΣ

2
D

2
D2Σ+2µ2Σ

2

+4DαΦDαXD
α̇
XDα̇Φ+4ΣDαΦDα̇ΦD

α̇
DαΣ+4ΣD2ΣD

α̇
XDα̇Φ

+4ΣDαXD
α̇
ΦDα̇DαΣ+4iΣΣ∂ α̇

α DαΦDα̇Φ+4ΣDαΦD
α̇
XDα̇DαΣ

+4ΣDαXDα̇XD
α̇
DαΣ+4ΣΣD

α̇
DαΣDα̇D

αΣ+4ΣΣDα̇XD
α̇
D2X

]
+c.c.

Another possible higher-derivative interaction for the current setup is given by (5.43).

Again we have not investigated the vacuum structure or the possible presence of ghost-like

excitations introduced by this term.

– 35 –



J
H
E
P
0
3
(
2
0
1
9
)
0
3
7

6 Discussion

In this paper we have introduced new models giving rise to global 4D partial supersymmetry

breaking from N = 2 to N = 1. By considering self-interacting off-shell hypermultiplets,

the main idea of our paper was to characterize the patterns of supersymmetry breaking in

terms of the broken central charge symmetries that lead to deformedN = 2 supersymmetry

algebras. To develop this idea, we used N = 2 projective superspace with central charges

and systematically studied constant deformations of O(2) and O(4) multiplets. Projective

superspace is known to be eminently suited for the purpose of reducing manifestly off-

shell N = 2 theories to an N = 1 superspace description. As such, it has proven to

be a natural setup to describe models for N = 2 to N = 1 supersymmetry breaking.

Within our approach we reproduced the previously known results for partial supersymmetry

breaking of [6, 7, 10, 11] and we described new models with and without higher-derivative

interactions.

The analysis in our paper opens the venue for various generalizations and new research

that we plan to pursue in the future. In particular, the nontrivial examples of higher-

derivative models we have constructed in this paper deserve a more thorough analysis. For

instance, we have left for the future a detailed study of the vacua, which might modify

the supersymmetry breaking patterns, and the existence of ghost modes in these models.

It is also of interest to describe new higher-derivative actions possessing deformed N = 2

supersymmetry and in particular to look for possible ghost-free models generalizing the

known N = 1 results of [76–78, 80, 83].

In this paper we have focused on real O(2) and O(4) hypermultiplets. A natural

generalization is to extend our analysis to self interacting polar multiplets [33]. Similarly

to the q+ hypermultiplet in harmonic superspace [35, 36], the polar multiplet provides a

fully off-shell formulation of the charged hypermultiplet. The polar multiplet is described in

terms of the so-called arctic superfield, Υ =
∑+∞

k=0 ζ
kΥk, which can be seen as a k → ∞ limit

of a complex O(k) multiplet and as such it contains an infinite number of N = 1 superfield

components. By extending the setup of our paper it might be possible to describe deformed

arctic multiplets with an infinite set of (∂zΥk = αk, ∂z̄Υk = βk) constant deformation

parameters that might describe new nontrivial patters of N = 2 → N = 1 supersymmetry

breaking. It might also be interesting to explore the possibility to start from non-constant

deformed supersymmetry and central charge transformations. In this case the (αk, βk)

might be nontrivial functions of N = 1 superfields and be eventually related to broken

isometries in the target space geometry of N = 2 sigma-models.

Another natural question concerns the extension of our analysis beyond hypermul-

tiplets. As a matter of fact the first model of 4D partial supersymmetry breaking

by Antoniadis-Partouche-Taylor (APT) was based on magnetically deformed interacting

N = 2 vector multiplets [3]. Since an N = 2 vector multiplet is decomposed in an N = 1

chiral scalar and a vector multiplet it is not difficult to realize that the approach pursued

in our paper cannot be applied straightforwardly to reproduce the original APT model.

In fact, the deformed algebra in the APT case includes a vector charge (not only scalar

charges) that extends the standard N = 2 Poincaré superalgebra. In a phase that preserves
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N = 1 supersymmetry, in the deformed N = 2 vector multiplet of the APT model, the

N = 1 vector multiplet is the one possessing the Goldstone modes, see e.g. [4, 5] for a nice

discussion on this subject. It would be interesting to modify our setup to allow for more

general central extensions of the N = 2 Poincaré algebra. In particular, this naturally leads

to the study of 5D and 6D models in terms of 4D superfields as for instance in [66–68].

It would also be interesting to investigate whether the ideas in our paper can be

extended to the case of partially broken local supersymmetry and relate our new models

to the global limit of a specific N = 2 supergravity theory. For example, it is natural to

argue that the new model introduced in section 2 (and the model of subsection 5.3) might

arise from a hypermultiplet sector of one of the supergravity models already discovered in

the past. The supergravity theory we will be interested in is the one studied in [20] and

more recently in [27] where it is shown how the APT model [3] can be recovered in the

global limit. We argue that the partial breaking related to the deformations (2.14) is in

fact dual to the hidden hypermultiplet sector of [20]. Indeed in the global limit in [20] the

hypermultiplet sector decouples from the N = 2 vector multiplet and from supergravity.

The bosonic matter sector of this theory contains the four real scalars of the hypermultiplet

qu (with u = 0, 1, 2, 3), a complex scalar z belonging to the vector multiplet and the abelian

gauge field of the vector multiplet. The scalar potential will depend on z and q0, however

for specific values of the couplings (see [20] and [27]), the complex scalar z gets stabilized

irrespective of the value of q0 such that

V
∣∣∣
z=〈z〉

≡ 0 , (6.1)

yielding N = 1 vacua. The full supergravity scalar potential V can be found in [27] where

its properties are studied in detail. Moreover, in the global limit the hypermultiplet scalars

have kinetic terms

−
M2

P

(MP + q0)2
δuv ∂mqu∂mqu = −δuv ∂mqu∂mqu +O

(
q0/MP

)
, (6.2)

therefore the hyper-Kähler metric is flat. The form of the scalar potential (6.1), the form

of the kinetic terms (6.2), and the fact that supersymmetry is partially broken by the

hypermultiplet sector imply that the new models in section 2 and section 5 might be

related to the global limit of the hidden sector of [20]. Extensions of this setup can be

found in [25], see also the recent analysis of [27], but it is worth to mention that in these

setups the hypers are all in an on-shell formulation. To have a more conclusive answer

about our previous statements, it would be necessary to obtain a fully off-shell extension of

the results of [20] and [27], and then analyze in detail which off-shell hypermultiplets can

support these models. This might be possible by using the covariant projective superspace

approach of [44, 45]. See [7, 14, 91] for recent application of this approach to broken N = 2

supersymmetry both in flat and curved backgrounds. If the extension is only based on

a system of off-shell vector and tensor multiplets, then the results of [95], see also the

rheonomic superspace description of [96], will also be important. Then, by taking a rigid

limit of a fully off-shell extension of [20], we could observe directly which set of auxiliary

fields complete the hypermultiplet sector.
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A The N = 1 deformed real linear multiplet

As we have seen in the bulk of the article, the new model for partial breaking described in

section 2 naturally gives rise to a deformed real linear superfield originally proposed in [58],

which is a real superfield L = L, satisfying the constraint

D2L = f = D
2
L , (A.1)

with f a constant parameter that, for simplicity, we choose to be real. In this section

we describe how to uncover the modified supersymmetry transformations for a real linear

multiplet and discuss some of its properties.

We start from a model with a single N = 1 chiral superfield φ (Dα̇φ = 0) describing

spontaneous supersymmetry breaking, and then we dualize to the real linear multiplet. To

perform the duality the chiral model has to posses an isometry

φ → φ+ ic , (A.2)

where c is a real constant. The simplest model is

L =
1

2

∫
d4θ

(
φ+ φ

)2
−

(
f

∫
d2θ φ+ c.c.

)
. (A.3)

Here f is a constant which we set to be real and it is related to the supersymmetry breaking

scale. Once we write the Lagrangian (A.3) in component form we see that supersymmetry

is broken because 〈D2φ|〉 6= 0, and it gives rise to a goldstino identified with the fermion in

φ. The Lagrangian (A.3) can be written as

Ldual = −
1

2

∫
d4θ L2 +

∫
d4θ

(
φ+ φ

)
L−

(
f

∫
d2θ φ+ c.c.

)
, (A.4)

where now L is a real but otherwise unconstrained superfield (L = L). By integrating out

L from (A.4) we find the Lagrangian (A.3).
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Now we integrate out φ to uncover the dual model. Indeed the variation of φ

gives (A.1), and the Lagrangian (A.4) becomes

L = −
1

2

∫
d4θ L2. (A.5)

Now L has become a deformed real linear superfield, and has component fields (2.19). The

Lagrangian (A.5) in component form reads

L = −f2 +
1

2
tαα̇tαα̇ +

1

8
l∂αα̇∂αα̇l + iλα∂ α̇

α λα̇ . (A.6)

Here supersymmetry is spontaneously broken and the goldstino is given by λα, which

transforms under supersymmetry as

δλα = −ǫαf − ǫα̇
(
tαα̇ −

i

2
∂αα̇l

)
. (A.7)

We see that the deformed real linear superfield arises from dualizing to the chiral superfield

φ model which breaks supersymmetry.

The real linear superfield we just presented has some properties which we would like

to explore further. One could have directly considered a supersymmetric Lagrangian of the

form

L =

(
1

4

∫
d2θDα̇LD

α̇
L+ c.c.

)
, (A.8)

which in component form gives

L =
1

2
tαα̇tαα̇ +

1

8
l∂αα̇∂αα̇l + iλα∂ α̇

α λα̇ . (A.9)

Notice that here the fermion λα is still the goldstino because supersymmetry acts on it

as (A.7), however the vacuum energy in (A.9) is zero. Therefore global supersymmetry

is spontaneously broken with vanishing vacuum energy. Moreover, this model explicitly

violates the R-symmetry due to the defining constraint (A.1). This is in sharp contrast

to the Volkov-Akulov model [92–94] which has an R-symmetry in the leading order terms,

albeit higher order terms can explicitly break the R-symmetry.

The effect of supersymmetry breaking can be made manifest once we mediate the

breaking to the matter sector. For example one can have a chiral multiplet Y and consider

the term

Lmed = −
m2

f4

∫
d4θ

(
Y Y DαLDαLDα̇LD

α̇
L
)
, (A.10)

which leads to

Lmed ∼ −m2Y Y + · · · , (A.11)

where the ellipses indicate terms with goldstini, and therefore this term generates a non-

supersymmetric mass for the complex scalar Y .
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B Supercurrents

Here we derive the supercurrents of the Lagrangian (2.30) under the ρ- and ǫ-

supersymmetries. To identify the supercurrents we preform local supersymmetry variations

on the Lagrangian (2.30), and then up to total derivatives we obtain

δǫL|total derivative = ∂αα̇ǫβ(x) Jαβα̇ 1 ,

δρL|total derivative = ∂αα̇ρβ(x) Jαβα̇ 2 ,
(B.1)

which gives

Jαβα̇ 1 = −if Cαβλα̇ + itβα̇λα −
1

2
λα∂βα̇l − χα∂βα̇A ,

Jαβα̇ 2 = −itβα̇χα −
1

2
χα∂βα̇l + λα∂βα̇A .

(B.2)

Notice that on the mass shell the supercurrents are conserved, ∂αα̇Jαβα̇ 1 = 0 and

∂αα̇Jαβα̇ 2 = 0. For the supersymmetry of the supercurrents we find [1, 2, 28, 97]

〈{
Q

1

β̇
, Jαβα̇ 1

}〉
= iCαβCα̇β̇ f

2 ,
〈{

Q
2

β̇
, Jαβα̇ 2

}〉
= 0 . (B.3)

C Dualities from O(4) to double-chiral and to O(2) multiplets

In this appendix we focus on some further properties of the model we presented in sec-

tion 5.2, by dualizing the complex linear superfield. We will show that such model is

actually equivalent to the deformed O(2) models studied in [6] and in sections 2 and 4.

We first dualize the complex linear Σ to a chiral superfield Y . Therefore we consider

the Lagrangian

L =

∫
d4θ

[
ΦΦ− |W (Φ)|2 − ΣΣ+

1

2
W ′(Φ)Σ2 +

1

2
W

′
(Φ)Σ

2
]

+

∫
d4θ

[
ΣY +ΣY

]
+

[
β

∫
d2θW (Φ) + c.c.

]
,

(C.1)

where Y is a chiral superfield and now Σ is unconstrained. When we vary Y we get

back (5.35) with Σ a complex linear. From (C.1) we can also integrate out the unconstrained

complex Σ which gives

Σ =
Y +W

′
(Φ)Y

1− |W ′(Φ)|2
, (C.2)

and, when inserted back into (C.1), we find

L =

∫
d4θ

[
|Φ|2 − |W (Φ)|2 +

|Y |2 + 1
2W

′
(Φ)Y 2 + 1

2W
′(Φ)Y

2

1− |W ′(Φ)|2

]

+

[
β

∫
d2θW (Φ) + c.c.

]
.

(C.3)

Now we perform the redefinition

Y = S
(
1−W ′(Φ)

)
, (C.4)
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for S a chiral superfield, which brings the Kähler potential to the form

K = |Φ|2 − |W (Φ)|2 −
1

2
(S − S)2

|1−W ′(Φ)|2

1− |W ′(Φ)|2
. (C.5)

Note that the Kähler potential (C.5) has the shift symmetry S → S+ c, for a real constant

c, which essentially originates from the spontaneously broken central charge symmetry.

We can further dualize the chiral superfield S in the model with the Kähler poten-

tial (C.5) and superpotential β
∫
d2θW (Φ) to an equivalent model with a real linear su-

perfield G and of course with the chiral Φ superfield. By performing this duality we get

L =

∫
d4θ

[
|Φ|2 − |W (Φ)|2 −

1

2
G2

(
1

1−W ′(Φ)
+

1

1−W
′
(Φ)

− 1

)]

+

[
β

∫
d2θW (Φ) + c.c.

]
.

(C.6)

The O(2) form of the action can be found after performing a final field redefinition

Ψ = Φ−W (Φ) , (C.7)

where Ψ is a chiral superfield. In principle, we would have to invert (C.7) to find Φ = F(Ψ)

and replace in (C.6). However, we do not really have to find the inverse function F(Ψ),

but by just assuming it exists we have

Φ = F(Ψ) , W (Φ) = F(Ψ)−Ψ , (C.8)

and

F ′(Ψ) =
∂Φ

∂Ψ
≡

(
∂Ψ

∂Φ

)−1

=
1

1−W ′(Φ)
. (C.9)

Once we insert these equations into (C.6) it takes the standard O(2) form

L =

∫
d4θ

[
ΨF(Ψ) + ΨF(Ψ)−ΨΨ−

1

2
G2

(
F ′(Ψ) + F

′
(Ψ)− 1

)]

+

[
β

∫
d2θ (F(Ψ)−Ψ) + c.c.

]
,

(C.10)

which is of the type of models studied in [6] and in sections 2 and 4.
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[59] S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace or one thousand and one

lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].
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