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Short summary: 

With mean absolute error below one year HIV genetic diversity derived from NGS sequencing is both superior 

estimator of time since infection and superior classifier of infection recency compared to the genetic diversity 

calculated from Sanger sequencing. 
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Abstract 

Background  

HIV-1 genetic diversity increases over the course of infection, and can be used to infer time since infection 

(TSI) and consequently also infection recency, crucial quantities for HIV-1 surveillance and the understanding 

of viral pathogenesis.  

 

Methods  

We considered 313 HIV-infected individuals for whom reliable estimates of infection dates and next-

generation sequencing (NGS)-derived nucleotide frequency data were available. Fraction of ambiguous 

nucleotides (FAN) obtained by population sequencing were available for 207 samples. We assessed whether 

average pairwise diversity (APD) calculated using NGS sequences provided a more exact prediction of TSI and 

classification of infection recency (<1 year post-infection) compared to FAN.  

 

Results  

NGS-derived APD classifies an infection as recent with a sensitivity of 88% and specificity of 85%. When 

considering only the 207 samples for which FAN were available, NGS-derived APD exhibited a higher sensitivity 

(90% vs 78%) and specificity (95% vs 67%) than FAN. Additionally, APD can estimate TSI with a mean absolute 

error of 0.84 years, compared to 1.03 years for FAN.  

 

Conclusions 

Viral diversity from NGS data is more precise than that from population sequencing in its ability to predict 

infection recency, and provides an estimated TSI with a mean absolute error of below one year. 

 

Keywords: HIV-1, next-generation sequencing, diversity, infection recency, time since infection  
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Introduction 

The time since infection (TSI) of HIV-positive patients is of key importance for the study of viral pathogenesis 

and epidemiology as well as for clinical purposes, yet is often unknown. At least 10% of people infected with 

HIV-1 do not experience clear symptoms during primary infection [1], and symptoms are not specific to HIV-1 

so can be misidentified [2–4]. For chronically-infected patients presenting later in infection, identifying the 

likely transmission event is mostly infeasible. A related unknown is whether a patient has a recent infection, 

defined as a TSI below one year. These patients are important to identify for both research and public health 

purposes, as they show increased transmission rates [5–7], and recent infections inform incidence assays. 

Identifying recent infections may also be useful for targeting key groups in prevention strategies [8], specific 

populations of patients for cure research [9], and for treatment simplification [10]. 

 

It is well established that HIV-1 viral diversity increases over time within an infected individual [11–14], and 

thus it should be possible to use diversity as a measure for TSI. We previously studied data from Sanger 

population sequencing [15], which is typically used for genotypic drug resistance testing. The fraction of 

ambiguous nucleotide calls in these sequences was used as a measure for diversity and established as a 

predictor of recent infection, and has been subsequently validated [16,17]. However, population sequencing 

can only detect minor variants at frequencies above 20% [18], limiting its precision. Additionally, defining a 

nucleotide call as ambiguous depends on the interpretation of the semi-quantitative chromatogram data and 

individual laboratory set-up, which may introduce biases or inconsistencies [19]. 

 

Next-generation sequencing (NGS) is steadily replacing Sanger sequencing for genotypic resistance testing, and 

as such we can expect an increase in the availability of HIV NGS sequences from many patients in the coming 

years. NGS can detect variants down to a frequency of around 1% [20], and hence potentially provide more 

precise information on infection dates. Variants are reported along with their frequency in the sample, rather 

than a position simply being marked as ambiguous, which increases the amount of quantitative information 

returned from NGS sequencing compared to Sanger population sequencing. Puller et al. [21] present a simple 

method based on NGS sequences for predicting TSI from viral diversity, using average pairwise diversity (APD) 

as a predictor, and showed a good correlation of NGS-diversity with TSI.  
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Here, we analyse 331 NGS-sequenced samples from two Swiss HIV cohorts and assess the utility of the APD to 

estimate infection recency and TSI. In particular, we aim to compare the accuracy of these estimates with 

those derived from population sequencing data.  

 

Materials and Methods 

Patients 

We considered samples from the Swiss HIV Cohort Study (SHCS) [22] and Zurich Primary HIV Infection Study 

(ZPHI). The SHCS is highly representative of the HIV-1 epidemic in Switzerland and includes broad, in-depth 

and high quality genetic, biological, clinical and demographic data. The ZPHI is a largely overlapping, smaller 

cohort comprising patients diagnosed during primary infection, providing us with well-characterised dates of 

infection. Blood samples are collected at HIV diagnosis and on occasion at later time points. Our full sample set 

consisted of 331 samples from 313 HIV-positive individuals from the SHCS and ZPHI cohorts, who fulfilled the 

following criteria: had at least one ART-naïve NGS sequenced sample, with coverage above 100 reads per base 

over at least 50% of both gag and pol third codon positions; and had a precise date of infection, defined as 

being one of the following (see also table 1 and supplementary materials 1): 

 Patients enlisted in the ZPHI predominantly have an estimated date of infection recorded, which has a 

high degree of certainty. Those with some uncertainty were required to have no more than one year 

between the recorded date of infection and the earliest or latest possible infection dates, as 

estimated by the physician. 

 Within the SHCS, a recorded primary infection indicates that a patient became infected within three 

months prior to the recorded date of diagnosis. For these patients, we therefore estimated the date 

of infection as the date of diagnosis minus 45 days. 

 The remaining patients were required to have maximally 2 years between the last negative and first 

positive HIV-1 test, and the date of infection was taken as the midpoint between these dates, as used 

by [21]. 
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We identified a subset of 207 samples from 206 individuals for which ambiguous-nucleotide scores [15] were 

available from the same sample times, to allow the two methods to be compared. 

 

Sequencing 

Next-generation sequencing using Illumina technology 

Whole genome sequencing was performed in the context of previous studies, using the following protocol: 

HIV-1 RNA from patient plasma was isolated, reverse transcribed, amplified, and sequenced as described 

previously [20,23]. When the first pan-PCR was unsuccessful, semi-/nested PCRs were performed using the 

primers listed in supplementary table 1. Samples were sequenced using the MiSeq Reagent Kit v2 (500 cycles) 

(Illumina). 

 

Frequencies of minority variants were obtained from V-pipe [24], which filtered and aligned the reads against 

the HIV-1 HXB2 genome (GenBank accession number K03455) using the BWA-MEM aligner. Default options 

were used except for running the additional rule "minor_variants". This returns the frequency of any minority 

variants detected in the sample, at all positions with a minimum coverage of 100 reads, along with the 

coverage at each position. 

 

Population sequencing using the Sanger technology 

We used previously calculated ambiguous nucleotide scores, which had been derived from routine genotypic 

HIV-1 drug resistance testing performed by population sequencing, as previously described [15]. Sequences 

covered the partial pol region, namely, protease and a minimum of codons 28-225 of reverse transcriptase. 

 

Diversity score calculation 

We calculated the APD over the third codon positions of the gag or pol regions using equation 1 (from [21]). 

We focussed on these regions based on the findings from [21] and preliminary analyses, which indicated that 

the steadiest accumulation of mutations occurs over gag and pol third codon positions. 
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Equation 1 first determines whether sequence position   has any diversity, namely if the sum of the frequency 

of minor variants      
   is above the cut-off   . If this is the case, it sums the diversity contribution 

           of each variant   {                } at that position, where      denotes the frequency of 

variant   at position  . Otherwise, i.e., if the sum of minority variants is below the cut-off   , position   is 

assigned zero diversity by function  .  Finally, the diversity over all positions from 1 to the sequence length   is 

averaged. The cut-off    is necessary to remove sequencing errors from the calculation, so was set to 1% as 

this is the approximate detection limit of Illumina. This calculation is functionally equivalent to the average 

fraction of positions at which two randomly drawn sequences differ.  

 

In total, we assessed the following three diversity scores: 

APD gag  Average pairwise diversity calculated over third codon positions in gag using Illumina 

sequence data. 

APD pol   Average pairwise diversity calculated over third codon positions in pol using Illumina 

sequence data. 

FAN Fraction of ambiguous nucleotides calculated from Sanger population sequencing data of 

partial pol regions [15]. 

 

Data analysis 

Analysis of the data was performed in R 3.3.2 [25], using the packages data.table [26], pROC [27], readstata13 

[28], RColorBrewer [29], inctools [30], and DescTools [31]. We evaluated the predictability of an infection as 

being recent (infected for <1 year) or chronic based on viral diversity, using receiver operator characteristics 

(ROC) analyses and mean duration of recent infection (MDRI) [32] with recent infection as the positive 

outcome. For this recency analysis, we restricted our sample set to the 317 samples from 299 patients that 

could be clearly classified as recent or chronic due to their window of uncertainty being entirely below or 

above the 1 year definition of recency. We compared the classification abilities of our two NGS-derived 

diversity scores, and that of the ambiguous nucleotides score.  
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We estimated TSI using a linear model (equation 2), with the model coefficients β and α calculated via linear 

regression. 

                        

                          

(2) 

We used leave-one-out cross-validation to assess the validity of this model, with the mean absolute error 

(MAE) as the primary outcome. Specifically, we cycled through all the samples, assigning one at a time as the 

‘test’ sample and calculated the model coefficients using all the remaining samples. For each test sample, we 

then took the absolute value of the difference between the estimated and the actual TSI, and calculated the 

average of this across all samples. This provided a simple summary statistic that we used to compare different 

diversity measures and models. We also compared the performance of our optimal model coefficients to those 

suggested by Puller et al. [21]. 

 

We conducted an outlier analysis by fitting an asymptotic curve to the data and used it to define potential 

outlier samples with unusually high APD scores. An asymptotic fit was chosen to reflect the eventual saturation 

of viral diversity over time [14], and to provide a clear cut-off above which samples could be considered as 

possible outliers exhibiting a diversity too high to be consistent with within-host evolution. Specifically, we 

fitted the following model: 

                 (3) 

where γ, η, and λ are free parameters. Samples with APD scores above the asymptote were taken as potential 

outliers. 

 

Ethics approval and consent to participate 

The SHCS was approved by the ethics committees of the participating institutions (Kantonale Ethikkommission 

Bern, Ethikkommission des Kantons St. Gallen, Comité Départemental d’Éthique des Spécialités Médicales et 

de Médicine Communataire et de Premier Recours, Kantonale Ethikkommission Zürich, Repubblica et Cantone 

Ticino–Comitato Ethico Cantonale, Commission Cantonale d’Éthique de la Recherche sur l’Être Humain, 
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Ethikkommission beider Basel for the SHCS and Kantonale Ethikkommission Zürich for the ZPHI). Written 

informed consent was obtained from all participants.   
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Results 

We performed ROC analyses to quantify the ability of APD to correctly classify infections as being recent or 

chronic (figure 1). The sensitivity and specificity were evaluated using an a priori-defined APD cut-off of <0.01 

to classify samples as recent. Both APD gag and APD pol resulted in high ROC areas under the curve (AUC), at 

0.92 and 0.93 respectively (figure 1a). Our cut-off of 0.01 gave high sensitivities and specificities over both 

regions: 88% and 85% respectively over gag, and 87% and 85% over pol. Note that by setting a more 

conservative diversity cut-off, a specificity of ≥99% with sensitivity >78% can be achieved for APD calculated 

over pol (figure 1a). To mitigate the effect of the TSI distribution on ROC analysis, we moreover derived the 

MDRI against false recency rate (FRR) profile.  Whereas the pre-defined cut-off of 0.01 yielded MDRI and FRR 

0.81 years and 13% respectively over gag, and 0.82 years and 15% over pol, a cut-off of 0.006 for APD over pol 

reduces the FRR below 2% while keeping the MDRI above the targeted 0.5 years (figure 1c). The NGS-based 

diversity is therefore a strong classifier of infection recency.  

 

We compared the classification ability of APD to the fraction of ambiguous nucleotides (FAN), using the subset 

of 197 samples from patients with NGS and population sequencing data available from the same time-points. 

Consistent with the complete dataset, we found that the AUCs for gag and pol were very high, 0.95 in both 

cases, whilst the AUC for population sequencing was clearly lower at 0.77 (figure 1b). NGS data also provided 

higher specificities and sensitivities than population sequencing (figure 1b; the FAN cut-off of 0.005 ambiguous 

positions was taken from [15]). Results were similar when comparing FAN to APD calculated over the same 

partial pol region (supplementary figure 1), showing that the length of the sequences was not a major 

confounding factor. Additionally, the NGS-derived diversity based recency assays outperformed the FAN-based 

classification with respect to area under the MDRI versus FRR curve (figure 1d). Diversity measured from NGS 

data is thus a superior classifier to diversity measured from population sequencing.  

 

We used linear regression to determine the association of APD and TSI and to find the optimal coefficients for 

estimating TSI (table 2). R
2
 was 0.38 for APD gag, and 0.27 for APD pol. The same trends were seen in the 

subset of samples that we could compare to the ambiguous nucleotides method, with R
2 

 values being 0.31 for 
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APD gag, 0.26 for APD pol, and lower (0.18) for FAN. We proceeded to study the predictive power of APD in a 

linear model. Leave-one-out cross validation was used to calculate the MAE across all samples, and so 

compare different diversity measures and models. We found that the MAE in the estimated TSI was less than 

one year, being 0.84 years for APD gag and 0.92 years for APD pol. The solid lines in figure 2 show the resulting 

linear models. We also compared our model coefficients to those suggested by [21] (figure 2, dashed lines), 

which resulted in higher errors than our models did (MAE of 1.31 years for APD gag and 1.40 years for APD 

pol). 

 

Prediction strength of NGS data can be contrasted with that of population sequencing data. In doing so, we 

found that APD predicts TSI more precisely than the fraction of ambiguous nucleotides. We repeated our 

regression analyses on the ambiguous nucleotide comparison sample subset (figure 3). The MAE remained 

strongly below one year for the NGS-derived diversity scores (0.85 years for APD gag and 0.91 years for APD 

pol), whilst the population sequencing-derived scores gave a MAE of 1.03 years, showing a marginally lower 

ability to predict TSI.  

 

We observed a few potential outliers that have very high diversity scores, which is inconsistent with them 

being the result of purely within-host diversification, and is suggestive of superinfection [33]. We identified 

samples that could be considered as suspected outliers by fitting the asymptotic curve from Equation 3 to the 

data. We found that for APD gag and pol respectively, six and 14 samples lay above the diversity saturation 

point as defined by the asymptote   of the fitted curve (figure 4). We then defined the intersecting five 

samples that lay above the asymptotes for both gag and pol as the outlier samples. Removing them increased 

the R
2
 for APD gag to 0.44, but the R

2
 of APD pol remained at 0.27. The MAEs for both gag and pol were 

reduced, to 0.76 years and 0.85 years respectively. Samples with unusually high diversity scores therefore have 

a negative effect on the accuracy of this method. 
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We studied the predictability of an HIV-1 infection as being recent or chronic based on viral genetic diversity 

using NGS sequences, and compared this to the predictability based on the fraction of ambiguous nucleotides 

based on Sanger population sequencing. We find that APD over either gag or pol third codon positions yields a 

higher precision for predicting recent infections. We primarily attribute this to the increased information 

available from NGS over population sequencing, due to more sensitive detection and quantification of single 

minority variants.  

 

We applied a linear model to estimate the TSI from diversity scores, comparing the performance of APD 

calculated over gag and pol, and fraction of ambiguous nucleotides. We found the smallest MAE in TSI 

estimation for APD calculated over gag. Estimation of TSI from the fraction of ambiguous nucleotides showed 

a lower precision. We also compared our linear models to those identified by [21]. Although the latter do not 

perform as well as ours, they yielded good estimates of TSI. Thus, given that our samples extend to almost 19 

years post-infection, this is an impressive external validation of [21] on a larger and broader independent 

sample set. The ability to infer a date of infection long beyond the first year makes this technique stand out 

among the multiple studies and methods that primarily look at inferring infection recency, and is information 

that is applicable to many research and epidemiological methods beyond incidence assays.  

 

Noting that a few samples had very high diversity scores, we applied an outlier analysis to investigate the 

effect of removing these samples. This was based on the premise that such high scores were biologically 

implausible for a single viral population undergoing within-host diversification, and as such, these samples may 

reflect superinfection occurrences [33]. Moreover, although we lack detailed information for four of these five 

samples, one of them originates from a patient who had superinfection confirmed by other methods [34], 

supporting this hypothesis. The MAE decreased by almost 0.1 years for both APD gag and APD pol. These 

findings therefore suggest that samples with unusually high diversity, i.e. APD scores above approximately 

0.04, should be considered for removal from such analyses as they may reflect a superinfection and reduce the 

accuracy of this method. Further work should include an analysis of these outliers to verify potential 

superinfection or identify alternative confounding factors. 

 

Discussion 
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One shortcoming of the APD method is that a small subset of samples from early infections have high APD 

scores, and so their TSI is overestimated. These samples likely come from infections with multiple founders, 

which increases the mean population diversity score despite the individual sub-populations arising from each 

founder having low diversities. Constructing haplotypes from the NGS data and considering the distribution of 

diversity within samples may help, as Park et al. [35,36] showed using the Hamming distance. However, 

constructing full-length haplotypes from HIV-1 Illumina sequences is highly challenging [37] and not validated 

as a tool to reconstruct HIV-1 diversity within an infected patient. It is therefore not currently clear whether 

such an approach would provide advantages in estimating TSI. Many other approaches that are capable of 

distinguishing multiply-founded infection require specialised or more complicated sequencing processes such 

as single genome amplification [38,39], or samples from multiple time-points [40,41]. As such, they could not 

be applied to NGS sequences generated for routine resistance testing, limiting their wider applicability 

particularly retrospectively on routinely generated clinical data. Conversely, the approach presented here 

provides infection dates and recency estimates as a free by-product of current or near-future routine clinical 

care. We therefore believe that the ability of this method to be applied to such sequences will outweigh the 

limitations of the technique in many settings.  

 

An alternate approach to address this shortcoming would be combining the APD with other serological, 

biomarker and/or epidemiological information into a multi-assay algorithm [42–44]. These are typically 

constructed to provide a binary classification (recently or chronically infected). However, one can imagine an 

approach for estimating TSI either by combining multiple factors into a single equation, or using one factor to 

provide a window of likely TSI and subsequent factors to narrow down the possible TSI further within that 

window. Such assays would have to be evaluated to see not only if they can improve on the accuracy of 

predictions provided, but whether they provide a significant enough increase to justify the additional 

information and calculations required. 

 

APD calculated from standard NGS sequences additionally contains some inherent error from the PCR 

amplification process [45]. Whilst techniques such as the use of primer-IDs have been developed to overcome 

this [40], this requires an additional step which is unlikely to be conducted in the context of a routine clinical 
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setting. Noteworthy, the superior accuracy of the NGS-based diversity estimator over the Sanger sequencing-

based approach indicates that the additional information from NGS sequences outweighs the higher error rate 

at the level of individual reads. 

 

A limitation of this study is that whilst we included a large sample size obtained from well-documented 

cohorts, our true TSI dates are still estimates based on the available data, and so have some inherent error 

that we did not quantify or include in our analyses. However, we found the same trends when restricting the 

sample set to patients who only had a maximum of six months of uncertainty for the date of infection 

(supplementary figures 2 and 3), suggesting that this did not impact our results greatly. A further limitation 

arises from our samples originating from Switzerland-based cohorts, and therefore having fairly homogenous 

patient and viral characteristics. Further studies should therefore be conducted to assess the performance of 

this measure in other populations and other viral subtypes, before we can declare the broader applicability of 

APD as a proxy for TSI. 

 

In conclusion, we have shown the utility of APD as a measure of diversity and tool for estimating TSI. We have 

provided an external validation of the TSI-estimator from Puller et al. [21]; a novelty in over basic recency 

categorisation methods. Additionally, we could show that APD provides accurate estimates of infection 

recency with specificity and sensitivity above 85%, and demonstrated the superiority of this NGS-derived 

diversity measure over the fraction of ambiguous nucleotides detected by Sanger population sequencing. With 

increasing ease of sequencing and decreasing costs NGS sequencing is becoming more commonplace for 

resistance testing to monitor transmitted resistance due to increasing migration (especially from the resource-

limited settings with considerable prevalence of HIV resistance), and thus the data will become readily 

available for uses such as the method presented here.  
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Tables 

Table 1: Sample and patient characteristics 

Measure Samples
a 

Patients 

No. % No. % 

Total 331 
 

313  

Gender of patient Female 27 8 27 9 

Male 304 92 286 91 

Ethnicity of patient 

Asian 4 1 4 1 

Black 13 4 13 4 

Hispano-American 24 7 24 8 

White 284 86 267 85 

Other/unknown 6 2 5 2 

Risk group of patient 

HET 57 17 56 18 

IDU 12 4 12 4 

MSM 240 73 224 72 

Other/unknown 22 7 21 7 

Age of patient when sample taken 

Minimum 19 - 19 - 

1st quartile 30 - 30 - 

Median 35 - 35 - 

3rd quartile 42 - 43 - 

Maximum 79 - 79 - 

Subtype of virus 

A 8 2 8 3 

B 210 63 195 62 

C 6 2 6 2 

D 1 0 1 0 

F 3 1 3 1 

G 4 1 4 1 

01_AE 17 5 17 5 

02_AG 5 2 5 2 

Other/unknown 77 23 74 24 

Time since infection at sample date 

< 6 months 257 78 - - 

6—12 months 15 5 - - 

12—18 months 10 3 - - 

18—24 months 5 2 - - 

24—48 months 22 7 - - 

≥ 48 months 22 7 - - 

Source of TSI information ZPHI 256 77 238 76 

of which, no upper or 

lower bounds given 

134 52 127 41 
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Primary infection in SHCS 16 5 16 5 

Midpoint positive negative 

tests 

59 18 59 19 

Clearly recent or chronic Yes 317 96 299 96 

No 14 4 14 4 

a Twelve patients had two longitudinal samples available, and three patients had three longitudinal samples 

available   
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Table 2: Optimal coefficients for estimating TSI from APD using equation 2, as found in our analyses 

 Full sample set Subset of samples Full set minus outliers 

 n = 331 n = 207 n = 326 

 APD gag APD pol APD gag APD pol FAN APD gag APD pol 

β 142.8 117.8 136.9 124.8 159.2 188.6 122.9 

α -0.0662 0.0809 -0.0433 -0.0123 0.179 -0.308 0.0554 
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Figure legends 

Figure 1: Average pairwise diversity (APD) provides a good classifier of infection recency. Receiver operator 

characteristics (ROC) curves (upper row) and mean duration of recent infection (MDRI) against false recency rate (FRR) 

curve (lower two panels), with a recent infection defined as being less than one year post infection and being taken as the 

positive outcome. Each line corresponds to the indicated diversity measure. Black dots on the curves show the diversity 

score cut-off for that curve, with corresponding specificities and sensitivities or FRR and MDRI in brackets. AUC = area 

under the curve, FAN = fraction of ambiguous nucleotides. a&c) Classification abilities of APD over gag and pol, with all 317 

samples included for which time since infection could be clearly defined as recent or chronic. b&d) Comparison of the 

classification ability of NGS-derived diversity score with ambiguous nucleotides from population sequencing. Sample size 

was restricted to the 197 NGS-sequenced samples that had a corresponding ambiguous nucleotide score from the same 

time point. 

 

Figure 2: APD correlates well with time since infection (TSI). TSI against APD scores over third codon positions in gag, and 

pol (upper panels) and the same data with log-transformed TSI (lower panels). Upper panels: The calculated linear 

regression models are shown as the solid lines; Puller et al.’s [21] linear models are shown as the dashed lines. These 

models were then used to predict TSI from the diversity score. All 331 samples were included. A further qualitative 

observation is that a large proportion of samples that don’t follow the general trend are those that have relatively high 

APD scores despite being sampled early during infection. These are suspected to be infections founded by multiple virions; 

a phenomenon known to cause problems for inferring TSI from average viral diversity measures [30] (see discussion). 

Another smaller group of potential outlier samples are those with very high APD scores (and varying TSI), which prompted 

the further outlier analysis.  

 

Figure 3: APD correlates more strongly with TSI than the fraction of ambiguous nucleotides (FAN). Upper panels: TSI 

against APD scores over third codon positions in gag and pol, and fraction of ambiguous nucleotide scores in partial pol 

reads. Linear regression models are shown, which were then used to predict TSI from the diversity score. The sample size is 

restricted to the 207 samples that have corresponding ambiguous nucleotide scores, to allow for a more direct comparison 

of the two methods. Lower panels: The same data and models from the upper panels with log-transformed TSI axis. 

 

Figure 4: Outliers with exceptionally high APD scores can be identified and removed. Top: APD gag and APD pol against 

TSI, with an asymptotic curve fitted to define outliers. The pale dashed lines show the asymptote itself (at 0.0408 for APD 
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gag and 0.0336 for APD pol), above which samples may be potential outliers. Samples that are above this line for both APD 

gag and APD pol are highlighted in blue. Note that the axes have been switched, as the asymptotic curve was fitted by 

taking APD as the dependent variable against TSI. This was done because the presence of a singularity makes fitting an 

asymptotic curve to the data with TSI as the dependent variable very challenging. 

Bottom: TSI against APD gag and APD pol, with five outliers removed. Lines show the linear regression models, recalculated 

without the outliers. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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