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Short summary:  

  

Systematically analyzing the clustering of clinical endpoints on the HIV-phylogeny at a 

population level gives insight into the syndemic nature of HIV with other coinfections and 

non-communicable diseases, as well as virus traits potentially relevant for certain diseases. 
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Abstract  

 

To systematically test whether coinfections spread along the HIV-1 transmission 

network and whether similarities of HIV-1 genomes predict AIDS-defining illnesses and 

comorbidities, we analyzed the distribution of these variables on the HIV-phylogeny of the 

densely sampled Swiss HIV Cohort Study. By combining different statistical methods, we 

could detect, quantify and explain the clustering of diseases: Infectious conditions such as 

hepatitis C, but also Kaposi’s sarcoma, clustered significantly, suggesting transmission of 

these infections along the HIV-1 transmission network. The clustering of patients with 

neurocognitive complaints, however, could not be completely explained by the clustering of 

patients with similar demographic risk factors, which suggests a potential impact of viral 

genetics. In summary, the consistent and robust signal for infectious conditions highlights the 

strong interaction of HIV-1 and other infections and shows the potential of combining 

phylogenetic methods to identify disease traits that are likely to be related to virus genetic 

factors.  
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 The life expectancy of people with HIV (PWH) under successful antiretroviral therapy 

(ART) is approaching the life expectancy of HIV-1 uninfected individuals (1,2). However, 

several studies have shown that PWH suffer more often from a broad spectrum of 

comorbidities compared to the uninfected population (3–5). The increased risk for 

comorbidities in PWH can possibly be explained by the elevated inflammation due to the 

HIV-1 infection, direct consequences of the HIV-1 infection for the immune system, the long-

term toxicity of ART, as well as social risk factors and lifestyle (6). 

 Managing comorbidities and coinfections in the growing and ageing population of 

PWH remains challenging for infectious disease physicians. In Switzerland, PWH are 

screened regularly and routinely for a broad range of diseases, but factors causing specific 

diseases in PWH are only incompletely understood. In order to improve the targeting of 

screening programs and more detailed examinations, such as in-depth neurological 

screening or bone density measurements, more studies on the distribution of comorbidities in 

PWH are necessary. 

In this project, we systematically analyze all clinically relevant coinfections, non-

communicable and opportunistic diseases reported in the Swiss HIV Cohort Study (SHCS). 

We use a phylogenetic tree to infer the HIV-1 transmission network based on clusters of 

sequences within the tree. We study the distribution of clinical endpoints across the clusters. 

A non-random distribution of patients suffering from similar diseases can have several 

implications: 1) Coinfections could share transmission routes with HIV, 2) Patients could 

have similar underlying social networks 3) Direct influence of viral genetic factors. By 

including possible clinical, behavioral and lifestyle factors for each disease, we aim to 

disentangle the effects of these three causes (see Figure 1 for the work flow). This approach 

of using the HIV-phylogeny to understand viral traits was so far mainly applied to study the 

heritability of set-point viral load and CD4 decline (7–9) and for studying imprinting of 

neutralization responses against HIV-1 by similar viruses (10). Transmission of coinfections 

along the HIV-1 transmission network was to date only studied for hepatitis C (HCV) (11,12). 

Background 
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In this work, we expand this type of analysis in a systematic manner to all clinically relevant 

coinfections, non-communicable and opportunistic diseases collected in the SHCS.  

 

Methods 

Swiss HIV Cohort Study 

 The SHCS, launched in 1988, is a prospective multi-center cohort study enrolling 

diagnosed HIV-infected adults in Switzerland ([http://www.shcs.ch]) (13). For all participants, 

demographic information is collected at baseline, laboratory and behavioral information in 

half-yearly follow-up visits. The SHCS was approved by the ethics committees of the 

participating institutions and written informed consent was obtained from all participants. 

 

Definitions 

  In Table 1, we define all analyzed coinfections and non-communicable diseases.  

HIV-related opportunistic diseases were defined, according to the Center for Disease 

Control, as stage B or stage C infections. See S3 for more detailed information about all 

studied clinical endpoints. We included four demographic variables: transmission group, sex, 

age and ethnicity, three clinical variables: time on ART, CD4 nadir and HCV coinfection and 

four lifestyle variables: smoking, body mass index (BMI), hypertension and condom use (S1). 

To correct for a potential calendar time bias, all time-dependent variables were taken either 

at the time of diagnosis of the disease of interest, or at a systematically elaborated reference 

date for patients not having the disease (S2.1). Variable inclusion for the different diseases 

was performed by a systematic algorithm (S2.2). 
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The population at risk is defined as the subset of patients for whom the disease of 

interest was either clearly diagnosed, or clearly not present. Therefore, the size of the study 

population changes for every condition (see Table 1). For opportunistic diseases, the study 

population is the set of patients who had at least one opportunistic disease. All diseases 

were studied separately, not including information on the co-occurrence of several diseases 

in the same patient: A preliminary analysis did not reveal high correlations between any two 

conditions (S2.5).  

 

Phylogenetic tree, clusters and cherries 

 Phylogenetic tree: A maximum-likelihood phylogenetic tree was built using sequences 

of 11,915 patients from the genotypic-resistance-test database of the SHCS and non-Swiss 

background sequences from the Los Alamos database. See S2.6 for details on the tree 

construction and earlier SHCS projects using this approach (7,14). 

Clusters: All clusters with at least 80% SHCS sequences were extracted from the 

tree, called Swiss clusters. We concentrated on Swiss clusters having a maximal pairwise 

cophenetic distance of 0.045. Since distance cut-offs for inclusion of clusters used in HIV-1 

phylogenetic studies range between 0.01 and 0.045 (15), we performed extensive sensitivity 

analyses on this threshold (S3). 

Cherries: In addition to the analysis of clusters of any size, we concentrated on 

clusters of size 2, i.e., pairs of SHCS sequences that share a direct common ancestor and 

are potential transmission pairs, called cherries. Again, only pairs with a maximal cophenetic 

distance of 0.045 were considered (see S3 for sensitivity analyses). 

In S2.3, we report the size and number of clusters and cherries by distance threshold 

(S2.3.1), as well as the distribution of different transmission groups (S2.3.2) and subtypes 

(S2.3.3) across clusters and cherries. 

Study population 
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Statistical analysis  

For the analysis of each disease, only patients in the respective study population 

were included (see Table 1). We used two different methods to understand the distribution of 

patients suffering from similar diseases on the tree. Method 1: A mixed effects logistic 

regression model (16) was used to analyze whether patients suffering from a particular 

disease are randomly distributed across the clusters or not, i.e., whether they cluster on the 

tree. The dependent variable describes whether the disease of interest was present or not, 

the phylogenetic clusters were included as random effect. With a likelihood ratio test we 

could test whether including this random effect significantly improved the model fit. Method 2: 

A parent-offspring regression was applied on the cherries to quantify the odds of having a 

disease if the other patient in the cherry has the disease as well. See S2.4 for a detailed 

explanation of the models used. We performed univariable and multivariable analyses for 

both methods: Several demographic and clinical factors associated with the disease of 

interest were included as fixed effects in the mixed effects model as well as the parent-

offspring model (7). Risk factors were included according to a systematic algorithm (S2.2). 

See Figure 1 for a summary of the work flow. All analyses were performed with R (version 

3.4.4). 

 

Results 

Study population 

 The phylogenetic tree consists of sequences of 11,915 SHCS patients and 11,390 

Los Alamos background sequences. The phylogenetic cluster analysis revealed that 7,195 

(60%) patients were in Swiss clusters with cophenetic distance of less than 0.045. Moreover, 

5,244 (44%) patients were in a cherry with cophenetic distance less than 0.045. Table 1 

displays the numbers of patients at risk for each studied condition. Table 2 summarizes 
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information about the variables included in the multivariable analyses, i.e., the factors 

potentially associated with different diseases.  

 In the following, we analyze three types of conditions: Coinfections, non-

communicable diseases, and opportunistic diseases. The results of the first method (mixed 

effects model) are reported by the p values of the likelihood ratio test performed using 

clusters with distance threshold 0.045. The quantitative results of the second method 

(parent-offspring regression) are reported by the odds ratios (OR) and 95% confidence 

intervals (CI) obtained for the analysis of cherries with distance threshold 0.045 (see S3 for 

alternative distance thresholds). 

 

 

 

Coinfections 

 The coinfections HCV, hepatitis B (HBV), syphilis, cytomegalovirus (CMV) and latent 

tuberculosis were analyzed. Of the patients included in the corresponding analyses, 19.9% 

were HCV coinfected, 32.8% HBV coinfected, 24.0% had at least once syphilis, 85.6% were 

coinfected with CMV and 9.0% were coinfected with latent tuberculosis (see Table 1). All five 

infections clustered significantly on the phylogenetic tree when applying the mixed effect 

model (p < 0.001 for HCV, HBV, syphilis and CMV; p = 0.011 for latent tuberculosis). In the 

parent-offspring regression, the impact of the neighbor in the cherry being coinfected or not 

was highest for HCV (OR = 9.5, CI: [7.3, 12.5]), followed by syphilis (OR = 3.0, CI: [2.4, 3.7]), 

latent tuberculosis (OR = 2.2, CI: [1.3, 3.5]), CMV (OR = 2.0, CI: [1.5, 2.6]) and HBV (OR = 

1.4, CI: [1.1, 1.8]). After adjusting for risk factors, all coinfections except latent tuberculosis 

remained significant in the mixed effects approach. See Figure 2 for a summary and S3.1 for 

detailed information on the selection of confounders and sensitivity analysis. 
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Non-communicable diseases 

 Chronic kidney disease (CKD): CKD was diagnosed in 15.1% of the study population. 

Patients with CKD clustered significantly on the tree (p < 0.001), even after adjustment for 

age, time on ART, CD4 nadir, HCV coinfection and hypertension. The odds of having CDK if 

the other patient in the cherry has CKD were significantly increased (OR = 1.4, CI: [1.0, 2.0]), 

however, not after adjusting for risk factors. As a sensitivity analysis, we included tenofovir 

(TDF) as a potential risk factor, which is known to be associated with lower eGFR (17), but 

this did not change the results (see S3.2). 

Cardiovascular diseases: There were 1,778 cardiovascular events of 961 patients in 

the study population (S3.2) which is 6.3% of the study population. The mixed effects model 

showed that patients with cardiovascular diseases were not randomly distributed on the tree 

(p < 0.001), the clustering however disappeared when correcting for sex and transmission 

group, age, smoking and hypertension. No increased odds were observed in the parent-

offspring regression (OR = 1.3, CI = [0.6,2.4]).  

 Diabetes mellitus: Patients with diabetes, which constituted 6.1% of the study 

population, clustered significantly on the phylogenetic tree (p < 0.001), again with no 

significant clustering when correcting for sex and transmission group, age, years on ART, 

CD4 nadir, BMI and hypertension. We did not find increased odds for having diabetes in the 

case the other patient in the cherry had diabetes (OR = 1.5, CI = [0.7, 2.9]).  

 Osteoporosis: A total of 14.4% of the study population had osteoporosis. Neither the 

mixed effects model nor the parent-offspring regression revealed significant clustering. In the 

selection algorithm for the multivariable analysis, only low BMI was selected as a risk factor, 

possibly due to the small sample size (see Table 1).  

 Neurocognitive complaints: Neurocognitive questions about frequent memory loss, 

concentration problems and slowing down in reasoning revealed that 9.8% of the study 
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population had neurocognitive complaints. Patients with complaints clustered significantly on 

the phylogenetic tree (p < 0.001) with increased odds of having complaints if the other 

patient in the cherry had complaints (OR: 2.0, CI: [1.2, 3.4]). After adjusting for sex and 

transmission group, age, years on ART, smoking and BMI, we still observed significant 

clustering (p = 0.004) and increased odds (OR: 1.9, CI: [1.1, 3.3]).  

 Psychiatric events: Psychiatric events were recorded for 38.5% of the study 

population. Patients with psychiatric events clustered significantly on the tree (p < 0.001), 

however not after adjustment for sex and transmission group, age, years on ART, HCV 

coinfection, smoking, BMI, hypertension and condom use. The parent-offspring regression 

revealed significant results both in the univariable model (OR: 1.6, CI: [1.3, 1.9]) as well as 

multivariable model (OR: 1.4, CI: [1.1, 1.7]).  

 Non-HIV associated neoplasms: Patients with neoplasms, which constituted 5.8% of 

the study population, clustered significantly on the tree (p < 0.001), even after adjusting for 

age, years on ART, CD4 nadir and smoking. The odds of having a neoplasm if the other 

patient in the cherry had a neoplasm were increased (OR: 2.0, CI: [1.1, 3.4]), however not 

after adjustment for risk factors (OR: 1.5, CI: [0.8, 2.7]). 

 More information on all non-communicable diseases, including details on the variable 

selection and sensitivity analysis on the distance threshold, can be found in S3.2. Figure 2 

summarizes the results on non-communicable diseases. 

 

Opportunistic diseases 

 There were 4,528 patients in the SHCS phylogeny with at least one opportunistic 

disease. Due to a small number of patients in clusters and even fewer in cherries (see Table 

1), we could only use the mixed effects method for analyzing phylogenetic clustering of 

patients with frequently observed opportunistic diseases. In addition, we corrected for the 

potential risk factors age, ethnicity, ART and CD4 nadir only one by one. See Table 3 for a 
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summary of the analysis. Patients who suffered from candida stomatitis (p = 0.025), weight 

loss (p = 0.001), HIV-related encephalopathy (p = 0.004), Kaposi’s sarcoma (p < 0.001), 

bacterial pneumonia (p < 0.001) and cervical dysplasia (p < 0.001) were not randomly 

distributed across the clusters. After correcting for age, ethnicity, ART and CD4 nadir, 

respectively, the clustering remained significant for some of these conditions. In particular, 

patients who suffered from candida stomatitis, weight loss, Kaposi’s sarcoma, bacterial 

pneumonia, and cervical dysplasia still clustered significantly on the tree. For HIV-related 

encephalopathy, the clustering remained significant after correcting for age and ethnicity, 

respectively, but not for the intake of ART and CD4 nadir. 

 

Discussion 

 In this study, we used the HIV-phylogeny of the SHCS to study patterns of the 

occurrence of comorbidities, coinfections, and HIV-related illnesses. Proximity of patients on 

the phylogeny can have several implications: First, these patients are close in the HIV-1 

transmission network and hence similar transmission routes are likely. Second, patients who 

are close on the phylogeny might in addition share a social network and are therefore more 

likely to have a similar lifestyle. Third, proximity of patients translates to proximity of the viral 

genome. 

The coinfections HCV, HBV, syphilis, CMV and latent tuberculosis all clustered 

significantly on the tree. The odds of being HCV-coinfected was, e.g., 9.5-times higher if the 

other patient in the cherry was HCV-coinfected. A slightly higher odds ratio was found by 

Kouyos et al (11), who used a similar parent-offspring approach in the SHCS, however, 

without restrictions on cophenetic distance. This suggests a syndemic nature of these five 

infections and HIV-1. Interestingly, clustering of patients coinfected with latent tuberculosis 

could be explained by demographic confounding, meaning that patients originating from high 

prevalence countries for tuberculosis also more likely shared similar HIV strains. This is in 

line with Fenner et al (18), who showed that HIV infection disrupts the sympatric host-
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pathogen relationship (adaptation of a pathogen to a host population resulting in co-

evolution) in human tuberculosis in Switzerland, meaning that in the HIV population in 

Switzerland, allopatric tuberculosis strains are mainly found. Contrariwise, Koch et al (19) 

found evidence for an impact of HIV on the evolution of tuberculosis in South Africa. This 

difference highlights that our results on coinfections are setting specific: Tuberculosis is a 

rare disease in Switzerland and the main risk group are PWH coming from countries with a 

high tuberculosis prevalence (20) or intravenous drug users (IDU) (21). Accordingly, 

tuberculosis transmission in Switzerland is rare (in contrast to other coinfections including 

syphilis and hepatitis C), which is in line with the weak clustering observed in our study. 

Tuberculosis prevalence is however high in South Africa, with frequent community and 

household transmission and the HIV-negative population being possibly disproportionally 

responsible for onward transmission (22). 

 Several opportunistic diseases clustered significantly on the phylogeny: The 

clustering of patients with Kaposi’s sarcoma may indicate shared transmission routes of HIV-

1 and human herpesvirus-8, the pathogen causing Kaposi’s sarcoma (23). Although patients 

with HIV-related encephalopathy clustered not any more when correcting for CD4 nadir and 

intake of ART, clustering was significant when correcting for age and ethnicity, respectively. 

CD4 nadir and intake of ART can, from a clinical perspective, not completely explain the 

clustering of patients suffering from HIV-related encephalopathy among AIDS-patients, as a 

low CD4 nadir and no treatment are risk factors for all AIDS-related diseases. Thus, this 

result is a tentative indicator of neuropathogenic traits of some HIV-1 strains. This supports 

previous suggestions that more neuropathogenic HIV-1 strains may exist (24). Our results 

could be viewed as indicators of additional pathogenesis traits, but more evidence is needed 

to strengthen this hypothesis. 

 For most non-communicable diseases analyzed, patients were likewise not 

distributed randomly on the phylogeny. In most cases, however, the clustering was not 

significant in the multivariable analysis, which means that most of the variables we corrected 
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for are likewise not distributed randomly on the tree. This is expected for variables such as 

the transmission group, as HIV-1 is most often transmitted among risk groups (25). 

Clustering of behavioral factors such as smoking or condom use highlights that the HIV-

phylogeny does not only represent the HIV-1 transmission network but also the underlying 

social network. Correcting for age, BMI, hypertension and smoking could explain the 

clustering of, e.g., patients with cardiovascular events or diabetes. The fact that clustering 

vanished for most analyzed non-communicable diseases in the multivariable model reflects 

the rich and detailed data on potential confounders available in the SHCS. It suggests that 

this data can capture the clustering of diseases caused by clustering of socio-demographic 

and behavioral factors.  In addition, adjustment for confounding suggests that these non-

communicable diseases are not influenced much by viral genetic traits. 

Clustering of patients with psychiatric problems and neurocognitive complaints 

disappeared in the multivariable model, but the odds of having psychiatric problems and 

neurocognitive complaints if the other patient in the cherry had these problems remained 

significantly increased (see Figure 2). We used patients’ self-reported neurocognitive 

complaints as a proxy for neurocognitive problems. Simioni et al (26) showed that these 

complaints correlate well with symptomatic forms of HIV-associated neurocognitive disorders 

(HAND), but asymptomatic forms might not be detected. The results obtained in our analysis 

might therefore become stronger when looking at in-depth neurocognitive screening for both 

asymptomatic and symptomatic forms of HAND. Similar to the clustering of patients with HIV-

related encephalopathy, the clustering of neurocognitive complaints could hence be seen as 

a tentative indicator that certain HIV-1 strains are more prone to damage the brain.  

Our results could be used for developing more targeted screening programs, e.g., in-

depth neurological screening or testing for syphilis. For conditions which were not randomly 

distributed on the phylogeny, clinicians could decide based on the viral sequence whether a 

patient should undergo additional screening: if the patients’ sequence is in a cluster with a 

high prevalence of the disease of interest, screening is advisable. Including viral sequences 
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in selecting patients for in-depth screening programs could thus expand the current approach 

of choosing patients based on demographic, clinical or behavioral aspects. 

Our study has several strengths and limitations. One strength is that HIV-1 sequence 

data was available for 11,915 patients. The SHCS provides in addition to HIV-related clinical 

and laboratory information in-depth information about coinfections and non-communicable 

diseases. Thus, we were able to perform a population-based study systematically 

investigating a variety of diseases and could choose from a selection of different 

epidemiological and clinical risk factors. One drawback is, however, that some of the 

considered phenotypes, e.g., cardiovascular diseases or non-HIV associated neoplasms, 

summarize a heterogeneous spectrum of diseases with different etiologies and different risk 

factors correlated with these conditions. In addition, some of the studied conditions and 

covariables rely on self-reported information given by the patient and others were evaluated 

only on a biased subset of patients, e.g., osteoporosis. In all analyses, we used two different 

approaches to describe the distribution of diseases on the HIV-phylogeny, in addition to 

different cophenetic distance thresholds. In several cases, the different methods and 

thresholds led to slightly different results which makes interpretation difficult (S2.4). However, 

we performed extensive sensitivity analysis to understand the impact of the different 

approaches and thresholds (S3). Based on this sensitivity analysis, we conclude that the 

results presented here are robust and clustering of comorbidities is rather underestimated for 

liberal distance thresholds. This result of obtaining stronger clustering for more conservative 

distance thresholds was also described earlier (27). Moreover, our results proved to be 

robust when restricting the analysis to patients infected with HIV subtype B (S4). 

Nevertheless, we want to emphasize that out results should be viewed as tentative indicators 

of shared transmission routes or viral genetic impact with more evidence and further 

research needed to prove these hypotheses. Our analysis could provide candidates for more 

targeted search of the effect of individuals’ genes or mutations. Moreover, we would like to 

highlight that our results, especially the quantitative results on shared transmission routes of 

HIV with other coinfections, are specific for the Swiss and other western European settings, 
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where white men who have sex with men (MSM) comprise the main risk group for onward 

transmission of HIV.  

In conclusion, this work for the first time presents a systematic analysis interrogating 

the HIV-phylogeny at a population level for the syndemic nature of coinfections and non-

communicable diseases, respectively for virus traits potentially relevant for certain diseases. 

The large variety of conditions tested is a strength of this project, implies however that no 

universal explanation or interpretation of the clustering can be given. There is evidence for 

three different reasons for clustering: shared transmission routes of pathogens, similar social 

networks of patients close in the phylogeny and direct viral genetic impact. Overall, our 

strategy, together with adjustment for numerous known confounding factors, demonstrates 

the potential for a new type of analysis, extending conventional epidemiological analyses. 
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 The content of this work was presented at CROI (Conference on Retroviruses and 

Opportunistic Infections) in March 2018 in Boston (Poster number 169: Phylogenetic clusters 

of HIV-1 reveal potential viral genetic impact on comorbidities). 
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Figures and Tables 

 

Fig 1: Flow chart to visualize the work flow. Step 1: For each disease, only patients with the 

respective information about the disease were included. Step 2: The reference dates for the 

control population, i.e., the patients not suffering from the disease of interest, were selected. 

Step 3: Variables which are potentially correlated with the disease of interest were selected. 

Step 4: Mixed effect models and parent-offspring regression was used to describe the 

distribution of patients on the tree suffering from the same disease. Step 5: Clustering was 

interpreted and studied in more detail in a sensitivity analysis. 
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Table 1: Synopsis of all study populations for all analyzed coinfections, non-communicable diseases and opportunistic infections including the 

respective definitions of the comorbidities. First and second column: The group of diseases and singular diseases studied, respectively, Third 

column: Definitions of the singular diseases studied, Fourth column: The number of SHCS patients included in the phylogenetic tree who 

underwent testing for the respective diseases of interest. Fifth column: The subset of SHCS patients who are in any cluster (distance cut-off 0.045) 

(i.e. patients who underwent testing for the respective comorbidities and are in a phylogenetic cluster). Sixth column: The subset of SHCS patients 

who are in a cherry (distance cut-off 0.045) (i.e. patients who underwent testing for the respective comorbidities and are in a cherry). 

Groups of 

diseases 

studied 

Singular 

diseases 

studied 

Definition Size of the study populations  

All 

SHCS 

patients 

All 

patients 

in a 

cluster 

All 

patients 

in a 

cherry 

Coinfections Hepatitis C A positive HCV antibody test or positive HCV RNA. 9,710 5,417 3,584 

  Hepatitis B A positive anti-HBc antibody test. 8,325 4,462 2,770 

  Syphilis A positive venereal disease research laboratory or rapid plasma reagin 

test confirmed by a treponema specific test. 

9,635 5,411 3,556 

  Cytomegalovirus 

infection 

A positive result of the CMV immunoglobulin G test. 11,506 6,851 4,852 
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 Latent 

tuberculosis 

Latent tuberculosis was defined as a positive tuberculin skin reactivity or 

a positive result of interferon-based screening test. 

9,301 5,223 3,258 

Non-

communica

ble 

diseases 

Chronic kidney 

disease 

An estimated glomerular filtration rate (eGFR) of less than 60 

ml/min/1.73m2 for two consecutive measurements at least three months 

apart (28). The eGFR was calculated with the CKD-EPI formula by Leyer 

et al (29), which considers differences in sex and ethnicity (see 

Supplementary Material, Section 3.2). 

10,248 5,887 3,946 

  Cardio- 

vascular disease 

History of coronary angioplasty, myocardial infarction, procedures on 

other arteries, cerebral infarction and other clinically diagnosed 

cardiovascular diseases (see Supplementary Material, Section 3.2). 

10,933 6,386 4,426 

  Diabetes 

mellitus 

A fasting plasma glucose molarity of at least 7 mmol/l on two consecutive 

occasions or at least 11.1 mmol/l for not fasting (30), where fasting was 

defined as no caloric intake at least eight hours before the blood sample 

was taken, as well as for patients who took antidiabetic agents. 

10,715 6,235 4,292 

  Osteoporosis Bone mineral density was measured with dual-energy X-ray 

absorptiometry (DXA) for a subset of patients. Patients with a test value 

2,295 760 290 
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of less than minus 2.5 times the standard deviation of a comparable 

healthy person of either of the measured sites, namely hip, lumbar and 

neck, were diagnosed with osteoporosis. 

  Neurocognitive 

complaints 

Neurocognitive complaints were assessed using three questions about 

memory loss, concentration problems and slowing down in reasoning in 

the follow-up questionnaire completed semiannually by all patients (26). 

Only problems in all three categories were considered as neurocognitive 

problems. 

8,046 4,272 2,638 

  Psychiatric 

problems 

Hospitalization for psychiatric reasons, suicide, self-reported depression 

that was either diagnosed by a psychiatrist or other physician (31) or self-

reported depression with intake of antidepressants (Supplementary 

Material, Section 3.2.6). 

9,080 5,008 3,236 

  Non-HIV 

associated 

neoplasms 

All non-HIV associated neoplasms recorded in the SHCS. 11,687 7,015 5,046 
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Opportunisti

c infections 

  All stage B and C infections according to the Center for Disease Control. 4,538 2,070 1,010 
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Table 2: Summary of the most important host demographic and laboratory information: The 

second column shows the characteristics of all patients in the phylogenetic tree, the third 

column of all patients who are in a cluster (distance cut-off 0.045) and the fourth column of all 

patients who are in a cherry (distance cut-off 0.045). For time dependent parameters, e.g., 

years on antiretroviral treatment (ART), we present here information at the last follow-up of 

the patients; MSM: men who have sex with men, HET: heterosexuals, IDU: intravenous drug 

users, IQR: interquartile range, BMI: body mass index; 

 

 

All patients in 

the phylogenetic 

tree 

All patients in a 

cluster 

All patients in a 

cherry  

Sex and transmission group      

MSM 4736 (39.7%) 2977 (41.4%) 2108 (40.2%) 

Male HET 1952 (16.4%) 1095 (15.2%) 844 (16.1%) 

Female HET 2292 (19.2%) 1074 (14.9%) 885 (16.9%) 

Male IDU 1579 (13.3%) 1184 (16.5%) 794 (15.1%) 

Female IDU 850 (7.1%) 620 (8.6%) 426 (8.1%) 

Male Other 305 (2.6%) 169 (2.3%) 124 (2.4%) 

Female Other 200 (1.7%) 75 (1%) 62 (1.2%) 

Year of birth (median, IQR) 1965 (1959 - 

1972) 

1965 (1959 - 

1971) 

1965 (1959 - 

1971) 

Ethnicity      

white 9199 (77.2%) 6052 (84.1%) 4325 (82.5%) 
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All patients in 

the phylogenetic 

tree 

All patients in a 

cluster 

All patients in a 

cherry  

non-white 2716 (22.8%) 1143 (15.9%) 919 (17.5%) 

ART naive 811 (6.8%) 508 (7.1%) 363 (6.9%) 

Years on ART      

>5 8308 (69.7%) 5011 (69.6%) 3657 (69.7%) 

3-5 1083 (9.1%) 660 (9.2%) 480 (9.2%) 

1-3 1186 (10%) 700 (9.7%) 515 (9.8%) 

<1 504 (4.2%) 305 (4.2%) 220 (4.2%) 

no 834 (7%) 519 (7.2%) 372 (7.1%) 

CD4 nadir (median, IQR) 181 (71 - 294) 188 (80 - 298) 188 (78 - 299) 

Hepatitis C coinfection 2999 (25.2%) 2161 (30%) 1476 (28.1%) 

Smoking 6746 (56.6%) 4429 (61.6%) 3177 (60.6%) 

BMI (median, IQR) 26 (23 - 28) 26 (23 - 28) 26 (23 - 28) 

Hypertension 4671 (39.2%) 2806 (39%) 2071 (39.5%) 

Condomless anal intercourse 3158 (26.5%) 2088 (29%) 1464 (27.9%) 
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Fig 2: Summary of the analysis for coinfections and non-communicable diseases: “Method 1” displays p values of the likelihood ratio test used in 

the mixed effects model approach (Method 1) on all clusters. We show the result of the univariable model (UV) for the distance (d) cut-off 0.045, as 

well as the results of the multivariable (MV) approach for distance cut-offs 0.045, 0.035, 0.025, 0.015. “Method 2” displays the odds ratios obtained 

in the parent-offspring regression approach on all cherries, again UV with distance 0.045 and MV for distance cut-offs 0.045, 0.035, 0.025, 0.015. 
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Table 3: Summary of the results of the cluster analysis for opportunistic infections: The second column (“Frequency”) denotes the frequency of the 

respective disease among all opportunistic diseases recorded in the SHCS; The third and fourth column display the p values of the likelihood ratio 

test applied to the mixed effects model approach (Method 1) on all clusters, for the univariable analysis (UV) and for the multivariable analysis 

(MV) after adjusting for the factors potentially associated with the clustering. 

Opportunistic disease Frequency  p value (UV) p value (MV) 

Candida stomatitis 44.6% 0.023 Age: 0.017, Ethnicity: 0.033,  

ART naive: 0.02, CD4 nadir: 0.039 

Oral hairy leukoplakia 24.3% 0.046 - 

Candidiasis esophageal 19.0% no sign. - 

HIV-related thrombocytopenia  17.1% no sign. - 

Herpes zoster multidermatomal or relapse 16.0% no sign. - 

Pneumocystis pneumonia 14.6% no sign. - 

Weight loss 9.4% 0.001 Age: < 0.001, Ethnicity: 0.002,  
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Opportunistic disease Frequency  p value (UV) p value (MV) 

ART naive: 0.004, CD4 nadir: 0.005 

HIV-related encephalopathy  9.2% 0.004 Age: < 0.001, Ethnicity: 0.005,  

ART naive: 1, CD4 nadir: 0.432 

Kaposi's sarcoma 8.6% < 0.001 Ethnicity: < 0.001, ART naive: < 0.001,  

Toxoplasmosis of the brain 7.7% no sign. - 

Recurrent bacterial pneumonia 7.6% < 0.001 Age: < 0.001, Ethnicity: < 0.001, ART naive: 

< 0.001, CD4 nadir: < 0.001 

Aids wasting syndrome 6.6% no conv. - 

Mucocutan. Herpes simplex ulceration 6.3% no conv. - 

CMV retinitis 5.3% < 0.001 - 

Non-Hodgkin's lymphoma 4.9% no sign. - 

Disseminated MAC disease 4.7% no sign. - 
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Opportunistic disease Frequency  p value (UV) p value (MV) 

Cervical dysplasia 4.7% 0.001 Age: 0.036, Ethnicity: 0.002,  

ART naive: 0.009, CD4 nadir: 0.002 

M. tuberculosis (pulmonary and 

extrapulmonary) 

4.6% no conv. - 

CMV not liver spleen or lymph nodes 3.7% no sign. - 

Cryptosporidiosis 2.8% no sign. - 

Progressive multifocal leukoencephalopathy 2.7% no sign. - 
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Step	1:	Definition	of	the	study	population

Only	patients	with	information	about	the	disease	of	interest,	
e.g.,	available	laboratory	measurements,	are	included.	
Patients	with	ambiguous	results	are	excluded.

Step	2:	Choice	of	reference	dates

Cases:	The	date	the	disease	was	diagnosed	
for	the	first	time.
Controls:	A	date	between	the	first	and	the	
last	time	point	the	disease	was	not	present
is	chosen	such	that	the	distribution	over	
time	is	the	same	for	cases	and	controls.
→	Supplements	S2.1

Step	3:	Variable	selection

Covariables (Sex,	transmission	
group,	age,	ethnicity,	ART,	CD4,	
HCV,	Smoking,	BMI,	
Hypertension,	Condom	use)	are	
selected	based	on	data	
availability	and	significance	in	the	
univariable	and	multivariable	
fixed	model	(without	cluster	
information).
→	Supplements	S2.2

.

Step	4:	Mixed	effects	model	and	parent-offspring	
regression

→	Supplements	S2.4

S2 Methods S2.4 Models

39 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0
43 1 1 1 0 0 0 0 0

Table S3: Number of clusters of a given size, by cophenetic distance

S2.4 Models

1. Mixed e↵ects model

We use a likelihood ratio test (LRT) to compare the multivariate logistic regression model with the
mixed e↵ects logistic regression model. The random e↵ects are the cluster numbers and the fixed e↵ects
are the factors. In particular, we have the following:

H0 : disease ⇠ intercept + �1variable1 + ...+ �NvariableN

HA : disease ⇠ intercept + �1variable1 + ...+ �NvariableN + (1|clusterNR)

The likelihood ratio test then compares the log-likelihoods of these nested models to detect whether
the term (1|clusterNR) is significant.

2. Parent-o↵spring regression

With the LRT above, we can detect whether clustering is significant or not. However, there is no
immediate way of quantifying the cluster e↵ect. Because of that, we used an additional approach to
detect the e↵ect size of the cluster e↵ect. This well-established method is the so-called parent-o↵spring
regression. For this analysis, we concentrated on clusters of size 2. In a first step, the two patients in
a cluster are randomly assigned ’parent’ and ’o↵spring’. With a logistic regression model, we detect
whether the information of the ’parent’ having the disease has an influence on the ’o↵spring’ having
the disease. This information is included in the logistic regression model just as every other variable,
i.e.:

diseaseo↵spring ⇠ intercept + �0diseaseparent + �1variable1 + ...+ �NvariableN

The odds ratios then quantify the influence of the o↵spring having the disease, depending whether the
parent has the disease. For each disease and model, the analysis was repeated 100 times for di↵erent
random assignments of parent and o↵spring. The odds ratios presented in this work then represent
the mean odds ratios of these 100 analyses.

Caution: As only clusters of size 2 can be used for the parent-o↵sping analysis, the sample size is
lower compared to the inclusion of all clusters in the mixed e↵ects model. Because of that, the results
do not necessarily agree. In particular, a significant cluster e↵ect detected with the mixed e↵ects model
does not necessarily imply a significant e↵ect in the parent-o↵spring analysis.
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Step	5:	Interpretation	and	
sensitivity	analysis

Clustering	of	diseases
is	interpreted
based	on	their	
infectious	or	
non-infectious	nature.	
A	sensitivity	analysis	
on	the	cophenetic	
distance	threshold	
is	performed	for	
all	diseases.
→	Supplements	S3

S3 Diseases S3.1 Coinfections

Variables Included Excluded Comment
Sex and transmission group x
Age x n.s. (UV)
Ethnicity x n.s. (MV)
Years on ART x n.s. (MV)
ART naive x Removed
CD4 nadir x
HCV coinfection x Removed
Smoking x n.s. (MV)
Body mass index x n.s. (MV)
Hypertension x n.s. (MV)
Condom use x

4. Sensitivity Analysis

Sensitivity Analysis: Syphilis
UV MV
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Figure S5: Syphilis Analysis
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