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Availability of Swarm Gravity Field Solutions
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Analysis Centers (AC) are computing monthly Swarm Gravity Field Solutions using 
different approaches and different GPS-based kinematic orbit solutions. Gravity 
Field Solutions from additional AC are expected in the near future.
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Improving Gravity Field Solutions by Combination

• Only one 
product for the 
user

• Reduced noise

Combination Service of 
Time-variable Gravity 
Field Solutions (COST-G)
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Improving Gravity Field Solutions by Combination

 in particular also 
the reduction of 
systematic errors 
(final slides)

 not only the 
noise reduction 
is relevant 
(next 4 slides)

For Swarm 

funded by contract SD-ITT-1.1, 
part of contract 000109587/13/I-NB
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Variance Component Estimation

The framework of Variance Component Estimation (VCE) is adopted to the 
individual gravity field solutions to compute combined solutions by a simple 
weighted average from n individual input solutions. The following explicit 
formulas result:
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Note that iteration 0 is equivalent to a simple average, iteration 1 is equivalent to 
the simple weighted average. Further iterations are required until the procedure 
converges.
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Combination: use of the same orbits

 Combined solutions show lower noise than individual solutions
 Almost no difference between simple average and weighted average

 Weights suggest best performance of IfG approach 

Test case: all solutions based on AIUB orbits:
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Combination: use of the same approach

 Orbit quality highly impacts the quality of the gravity field solutions
 Weighted average may compensate this to a certain extent

 Weights generally suggest best performance of AIUB orbits 

Test case: all solutions based on ASU approach:
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Combination: all input is independent

 Situation is a mixture of previous slides
 Combination generally performs best

 Weights suggest best performances of 
IfG and AIUB solutions

All solutions completely independent: More information in the talk by 
Encarnação et al.: 
Signal contents of combined 
monthly gravity field models derived 
from Swarm GPS data, Fri 13 Apr, 
09:45 – 10:00, Room D1
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Mitigation of Systematic Errors: test cases

ROTI = Rate of

TEC Index
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High Ionospheric Activity (2015/03)

High ionospheric activity,
prior to tracking loop updates

 d2Lgf/dt2 criterion slightly 
better than dLgf/dt criterion

 ROTI-based weighting not 
as efficient to remove arte-
facts along geomagnetic 
equator
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Intermediate Ionospheric Activity (2016/02)

 d2Lgf/dt2 criterion slightly 
better than dLgf/dt criterion

 ROTI-based weighting is 
advantageous to reduce 
the noise for periods of 
lower ionospheric activity

Intermediate ionospheric activity,
after tracking loop updates
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Low Ionospheric Activity (2016/08)

Low ionospheric activity,
after tracking loop updates

 d2Lgf/dt2 criterion is here 
slightly worse than dLgf/dt
criterion

 ROTI-based weighting is 
very helpful to reduce the 
noise for periods of low 
ionospheric activity
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Impact on Ionosphere/Plasmasphere Reconstruction

Original GPS Data Weighted GPS Data

 Swarm GPS data issues are significant for reconstruction of upper ionosphere

 Difference pattern may be related to data that were problematic for POD

More Information on the poster X4.262 by Schreiter et al.:
Imaging the topside ionosphere and the plasmasphere using Swarm GPS 
observations, Mon 09 Apr, 17:30 – 19:00, Hall X4
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Conclusion

 Several analysis centers are computing Swarm monthly gravity 
field solutions on a regular basis.

 Combining independent gravity field solutions reduces the 
noise of the individual solutions.

 Systematic errors along the geomagnetic equator are affecting 
the Swarm solutions, especially during periods of high 
ionospheric activity and before the tracking loop updates.

 To remove artifacts around geomagnetic equator the ROTI-
based weighting is not as efficient as the standard screening or 
the weighting based on d2Lgf/dt2 criterion.

 ROTI-based weighting significantly reduces, however, the 
noise, also for time periods of low ionospheric activity.

 A combination of ROTI and d2Lgf/dt2 based weighting seems 
promising to efficiently mitigate artifacts and reduce the noise.
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Difference Degree Amplitudes

High ionospheric activity (2015/03)

 dLgf/dt slightly better for low degrees 
d2Lgf/dt2 slightly better for higher degrees

Low ionospheric activity (2016/08)

 ROTI-based weighting is well 
suited to reduce the noise

Combination of ROTI-based weighting with dLgf/dt or d2Lgf/dt2

criterion might be optimal.
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Scenario Red.-dynamic Kinematic
Mean 
(mm)

Std. dev.
(mm)

Mean 
(mm)

Std. dev. 
(mm)

Original 4.6 27.3 2.4 31.1
Std. 

screening
3.7 26.9 0.7 31.4

4.6 27.3 1.9 32.5
ROTI 1 4.9 26.5 1.0 28.8
ROTI 2 5.0 25.8 0.9 28.7

SLR Validation (Swarm-A, 2015/03)

SLR observations of Graz, Greenbelt, Haleakala, Hartebeesthoek, Herstmonceux, 
Matera, Mount Stromlo, Potsdam, Wettzell (SOSW), Wettzell (WLRS), Yarragadee, 
and Zimmerwald, 20cm outlier threshold, 10°elevation cutoff.
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Scenario Red.-dynamic Kinematic
Mean 
(mm)

Std. dev.
(mm)

Mean 
(mm)

Std. dev. 
(mm)

Original 8.4 12.1 6.4 16.5
Std. 

screening
8.1 13.1 6.3 22.9

8.4 12.1 6.1 16.0
ROTI 1 8.5 12.5 5.7 15.4
ROTI 2 8.5 12.6 5.9 15.5

SLR Validation (Swarm-A, 2016/02)

SLR observations of Graz, Greenbelt, Haleakala, Hartebeesthoek, Herstmonceux, 
Matera, Mount Stromlo, Potsdam, Wettzell (SOSW), Wettzell (WLRS), Yarragadee, 
and Zimmerwald, 20cm outlier threshold, 10°elevation cutoff.
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Scenario Red.-dynamic Kinematic
Mean 
(mm)

Std. dev.
(mm)

Mean 
(mm)

Std. dev. 
(mm)

Original 4.9 14.2 3.9 16.6
Std. 

screening
5.0 14.3 3.9 16.7

4.9 14.2 3.9 16.8
ROTI 1 4.7 14.7 3.8 17.0
ROTI 2 4.7 14.7 3.8 16.9

SLR Validation (Swarm-A, 2016/08)

SLR observations of Graz, Greenbelt, Haleakala, Hartebeesthoek, Herstmonceux, 
Matera, Mount Stromlo, Potsdam, Wettzell (SOSW), Wettzell (WLRS), Yarragadee, 
and Zimmerwald, 20cm outlier threshold, 10°elevation cutoff.
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