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Availability of Swarm Gravity Field Solutions
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Analysis Centers (AC) are computing monthly Swarm Gravity Field Solutions using
different approaches and different GPS-based kinematic orbit solutions. Gravity
Field Solutions from additional AC are expected in the near future.
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Improving Gravity Field Solutions by Combination
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Improving Gravity Field Solutions by Combination
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Variance Component Estimation

The framework of Variance Component Estimation (VCE) is adopted to the
individual gravity field solutions to compute combined solutions by a simple
weighted average from n individual input solutions. The following explicit
formulas result:

1
Iteration O: X, = H X, with w, ,=— Vk, k=1,...,n
K . n

W .
lteration 1 >0: X ZLZW“XK with Wk,i — (1_L)/RMS(dk,i—1),2
ik

Zwk,i—l

K

dk i =X =X Differences to the combined solution X;_;
’ from the previous iteration

Note that iteration O is equivalent to a simple average, iteration 1 is equivalent to
the simple weighted average. Further iterations are required until the procedure
converges.
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Combination: use of the same orbits
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Test case: all solutions based on AIUB orbits:
e Combined solutions show lower noise than individual solutions
e Almost no difference between and weighted average

e Weights suggest best performance of |fG approach
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Combination: use of the same approach
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Test case: all solutions based on ASU approach:

e Orbit quality highly impacts the quality of the gravity field solutions
e Weighted average may compensate this to a certain extent

e Weights generally suggest best performance of AIUB orbits
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Combination: all input is independent
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All solutions completely independent:
e Situation is a mixture of previous slides
e Combination generally performs best

e Weights suggest best performances of
IfG and AIUB solutions
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More information in the talk by
Encarnacao et al.:

Signal contents of combined

monthly gravity field models derived
from Swarm GPS data, Fri 13 Apr,
09:45 - 10:00, Room D1
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Mitigation of Systematic Errors: test cases

e Original GPS data

o ,Standard screening”:|dL,¢/dt| > 2 cm/s =¥ discard GPS
observation (L,¢: geometry-free linear combination)

o |d?Lys/dt*| > 0.025 cm/s?, |¢p| < 50° 2 weight down obs. with
o = 21, as opposed to nominal ¢ = 1 (¢: geographical latitude)

e ROTI 1: Downweight data with ¢ = max(ROTI - 60,1) ROTI =
e ROTI 2: Downweight data with o = exp(ROTI - 20)

Rate of

TEC Index

2\ _ 2
ROTI = J<ATEC )—{ATEC) , At = 1s, (x) = average of x over31 s

At?
2 £2
— Lys f2f, G TECU
40.3m3s2(f2 — f7) e/m?
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High lonospheric Activity (2015/03)
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Intermediate lonospheric Activity (2016/02)
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Intermediate ionospheric activity,
after tracking loop updates

d2Ly/dt? criterion slightly
better than dL/dt criterion

e ROTI-based weighting is

advantageous to reduce
the noise for periods of
lower ionospheric activity
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Low lonospheric Activity (2016/08)

WRMS ocean [mm]: Low ionospheric activity,
after tracking loop updates
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Impact on lonosphere/Plasmasphere Reconstruction
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e Swarm GPS data issues are significant for reconstruction of upper ionosphere
o Difference pattern may be related to data that were problematic for POD

More Information on the poster X4.262 by Schreiter et al.:
Imaging the topside ionosphere and the plasmasphere using Swarm GPS

observations, Mon 09 Apr, 17:30 - 19:00, Hall X4
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Conclusion

e Several analysis centers are computing Swarm monthly gravity
field solutions on a regular basis.

e Combining independent gravity field solutions reduces the
noise of the individual solutions.

e Systematic errors along the geomagnetic equator are affecting
the Swarm solutions, especially during periods of high
ionospheric activity and before the tracking loop updates.

e To remove artifacts around geomagnetic equator the ROTI-
based weighting is not as efficient as the standard screening or
the weighting based on d?L/dt° criterion.

e ROTI-based weighting significantly reduces, however, the
noise, also for time periods of low ionospheric activity.

e A combination of ROTI and d°L/dt? based weighting seems
promising to efficiently mitigate artifacts and reduce the noise.
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Difference Degree Amplitudes

High ionospheric activity (2015/03)
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Low ionospheric activity (2016/08)
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e ROTI-based weighting is well
suited to reduce the noise

Combination of ROTI-based weighting with dL/dt or d2L/dt?
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SLR Validation (Swarm-A, 2015/03)

Mean Std. dev. Mean Std. dev.

(mm) (mm) (mm) (mm)

Original 4.6 27.3 2.4 31.1

Std. 3.7 26.9 0.7 31.4
screening

d?Lg¢/dt? 4.6 27.3 1.9 32.5

ROTI 1 4.9 26.5 1.0 28.8

ROTI 2 5.0 25.8 0.9 28.7

SLR observations of Graz, Greenbelt, Haleakala, Hartebeesthoek, Herstmonceux,
Matera, Mount Stromlo, Potsdam, Wettzell (SOSW), Wettzell (WLRS), Yarragadee,
and Zimmerwald, 20cm outlier threshold, 10°elevation cutoff.
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SLR Validation (Swarm-A, 2016/02)

Mean Std. dev. Mean Std. dev.

(mm) (mm) (mm) (mm)

Original 8.4 12.1 6.4 16.5

Std. 8.1 13.1 6.3 22.9
screening

d?Lg¢/dt? 3.4 12.1 6.1 16.0

ROTI 1 8.5 12.5 5.7 15.4

ROTI 2 3.5 12.6 5.9 15.5

SLR observations of Graz, Greenbelt, Haleakala, Hartebeesthoek, Herstmonceux,
Matera, Mount Stromlo, Potsdam, Wettzell (SOSW), Wettzell (WLRS), Yarragadee,
and Zimmerwald, 20cm outlier threshold, 10°elevation cutoff.
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SLR Validation (Swarm-A, 2016/08)

Mean Std. dev. Mean Std. dev.

(mm) (mm) (mm) (mm)

Original 4.9 14.2 3.9 16.6

Std. 5.0 14.3 3.9 16.7
screening

d%Lgp/dt? 4.9 14.2 3.9 16.8

ROTI 1 4.7 14.7 3.8 17.0

ROTI 2 4.7 14.7 3.8 16.9

SLR observations of Graz, Greenbelt, Haleakala, Hartebeesthoek, Herstmonceux,
Matera, Mount Stromlo, Potsdam, Wettzell (SOSW), Wettzell (WLRS), Yarragadee,
and Zimmerwald, 20cm outlier threshold, 10°elevation cutoff.
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