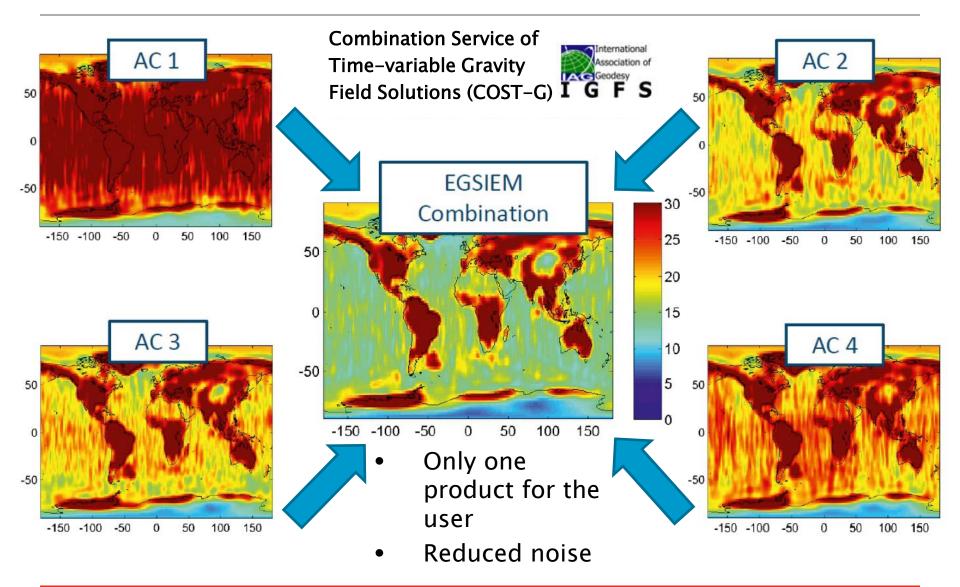
Assessment of individual and combined gravity field solutions from Swarm GPS data and mitigation of systematic errors

A. Jäggi¹, U. Meyer¹, L. Schreiter¹, V. Sterken¹, C. Dahle^{2,1}, D. Arnold¹, J. Encarnação^{3,4}, P. Visser³, E. Doornbos³, J. van den IJssel³, X. Mao³, E. Iorfida³, A. Bezděk⁵, J. Sebera⁵, J. Klokočnik⁵, T. Mayer–Gürr⁶, N. Zehentner⁶, C.K. Shum⁷, Y. Zhang⁷, C. Lück⁸, R. Rietbroek⁸, J. Kusche⁸

¹Astronomical Institute, University of Bern, Bern, Switzerland ²German Research Centre for Geosciences, Potsdam, Germany ³Faculty of Aerospace Engineering of the Delft University of Technology, Delft, The Netherlands ⁴Center for Space Research, University of Texas at Austin, Austin, Texas ⁵Astronomical Institute of the Czech Academy of Sciences, Prague, Czech Republic ⁶Institute of Geodesy of the Graz University of Technology, Graz, Austria ⁷School of Earth Science of the Ohio State University, Columbus, Ohio ⁸Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany

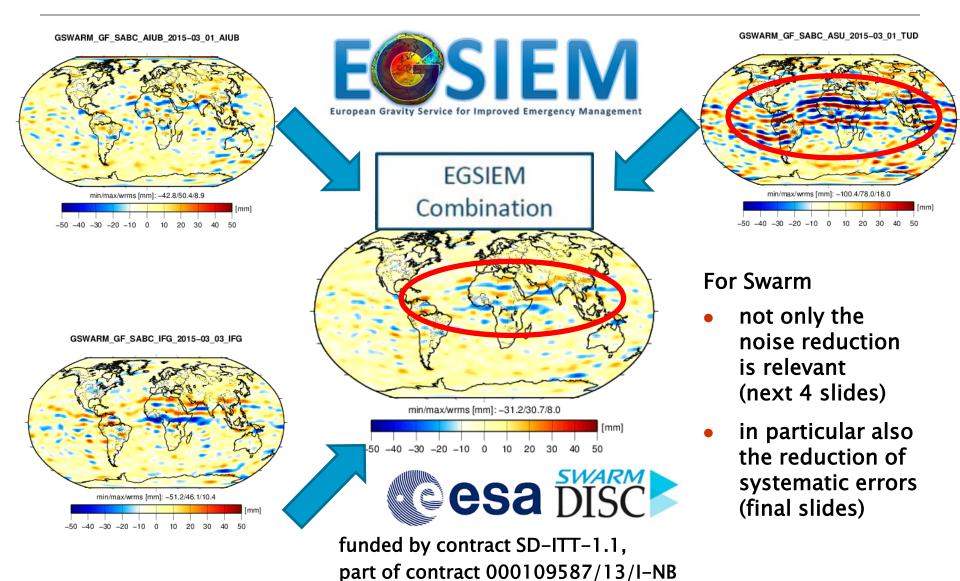
EGU General Assembly, Session ST3.5/EMRP4.33/G4.4, April 8 – 13, 2018, Vienna, Austria



Availability of Swarm Gravity Field Solutions

Analysis Center	Gravity Field Solutions		
Astronomical Institute, University of Bern AIUB	Celestial Mechanics Approach	– AIUB KIN Orbits	
Astronomical Institute Czech Academy of Science ASU	Accceleration Approach	– AIUB KIN Orbits – IFG KIN Orbits – TU Delft KIN Orbits	
Institute of Geodesy TU Graz IFG	Short-Arc Approach	AIUB OrbitsIFG OrbitsTU Delft Orbits	
Institute of Geodesy and Geoinformation University of Bonn IGG	Short-Arc Approach	– TU Delft Orbits	

Analysis Centers (AC) are computing monthly Swarm Gravity Field Solutions using different approaches and different GPS-based kinematic orbit solutions. Gravity Field Solutions from additional AC are expected in the near future.


Improving Gravity Field Solutions by Combination

Astronomical Institute University of Bern

AIUB

Improving Gravity Field Solutions by Combination

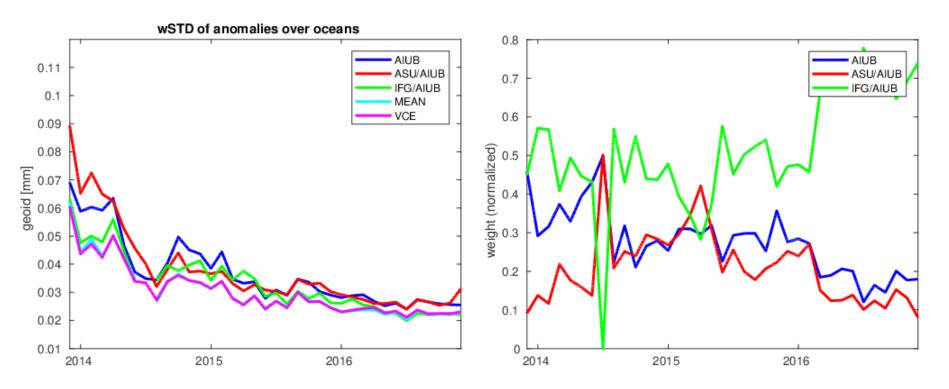
The framework of Variance Component Estimation (VCE) is adopted to the individual gravity field solutions to compute combined solutions by a simple weighted average from *n* individual input solutions. The following explicit formulas result:

Iteration 0:

Iteration i > 0: $\hat{\mathbf{x}}_i = \frac{1}{\sum_k w_{k,i}} \sum_k w_{k,i} \mathbf{x}_k$

 $\hat{\mathbf{x}}_0 = \frac{1}{n} \sum_{k} \mathbf{x}_k$

 $\mathbf{d}_{k \mid i-1} = \mathbf{x}_k - \hat{\mathbf{x}}_{i-1}$

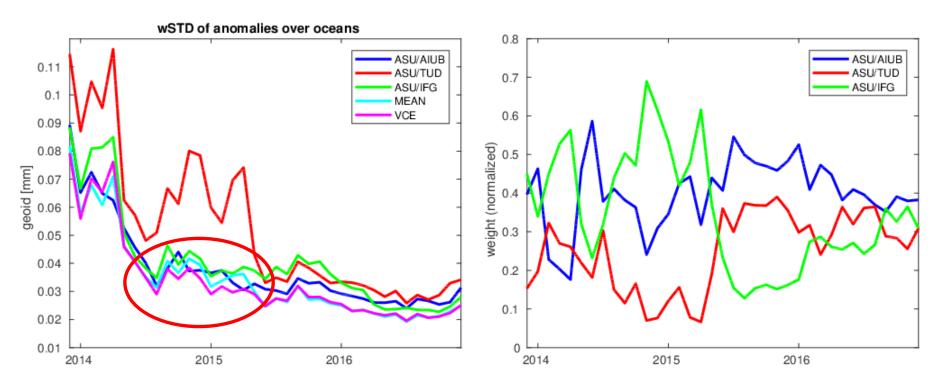

with
$$W_{k,0} = \frac{1}{n} \quad \forall k, \ k = 1, ..., n$$

with
$$W_{k,i} = (1 - \frac{W_{k,i-1}}{\sum_{k} W_{k,i-1}}) / \text{RMS}(\mathbf{d}_{k,i-1})^2$$

Differences to the combined solution $\hat{\mathbf{X}}_{i-1}$ from the previous iteration

Note that iteration 0 is equivalent to a simple average, iteration 1 is equivalent to the simple weighted average. Further iterations are required until the procedure converges.

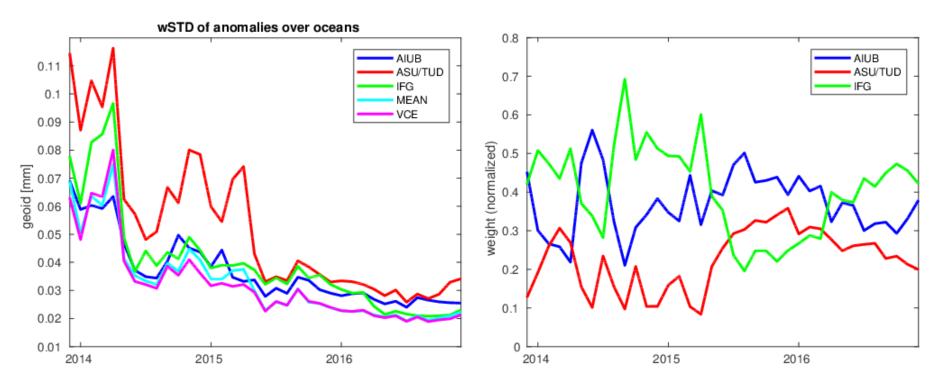
Combination: use of the same orbits



Test case: all solutions based on AIUB orbits:

- Combined solutions show lower noise than individual solutions
- Almost no difference between simple average and weighted average
- Weights suggest best performance of IfG approach

Combination: use of the same approach



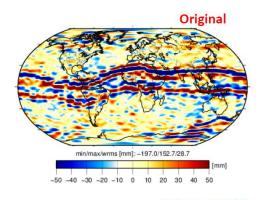
Test case: all solutions based on ASU approach:

- Orbit quality highly impacts the quality of the gravity field solutions
- Weighted average may compensate this to a certain extent
- Weights generally suggest best performance of AIUB orbits

Combination: all input is independent

All solutions completely independent:

- Situation is a mixture of previous slides
- Combination generally performs best
- Weights suggest best performances of IfG and AIUB solutions

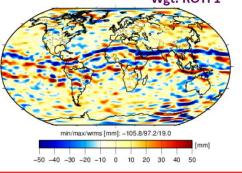

More information in the talk by Encarnação et al.: Signal contents of combined monthly gravity field models derived from Swarm GPS data, Fri 13 Apr, 09:45 - 10:00, Room D1

Mitigation of Systematic Errors: test cases

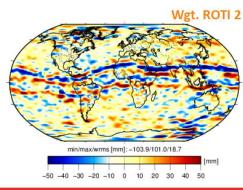
- Original GPS data
- "Standard screening": $|dL_{gf}/dt| > 2 cm/s \rightarrow discard GPS$ observation (*L_{af}*: geometry–free linear combination)
- $|d^2L_{gf}/dt^2| > 0.025 \ cm/s^2$, $|\phi| < 50^\circ \rightarrow$ weight down obs. with $\sigma = 21$, as opposed to nominal $\sigma = 1$ (ϕ : geographical latitude)
- ROTI 1: Downweight data with σ = max(ROTI · 60,1)
 ROTI = Rate of
 ROTI 2: Downweight data with σ = exp(ROTI · 20)
 TEC Index

 $ROTI = \sqrt{\frac{\langle \Delta TEC^2 \rangle - \langle \Delta TEC \rangle^2}{\Delta t^2}}, \quad \Delta t = 1s, \, \langle x \rangle = \text{average of } x \text{ over 31 s}$ $TEC = \frac{L_{gf} f_1^2 f_2^2}{40.3m^3 s^{-2} (f_1^2 - f_2^2)} \cdot 10^{-16} \frac{TECU}{e/m^2}$

High Ionospheric Activity (2015/03)



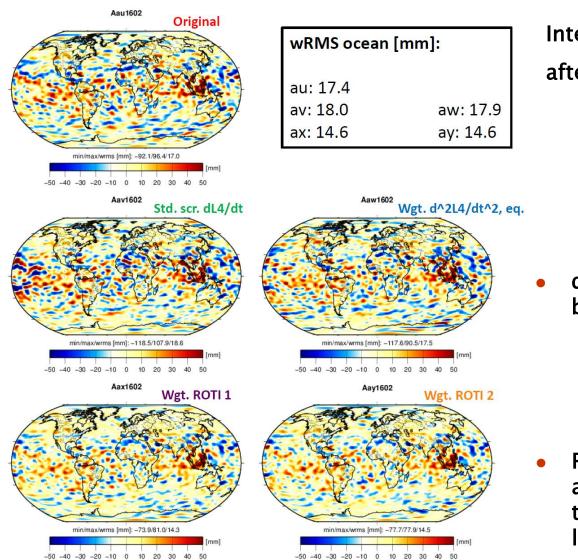
wRMS ocean [mm]:		
au: 31.5		
av: 18.6	aw: 17.7	
ax: 19.5	ay: 19.2	


High ionospheric activity, prior to tracking loop updates

Std. scr. dL4/dt

Wgt. ROTI 1

Wgt. d^2L4/dt^2, eq.



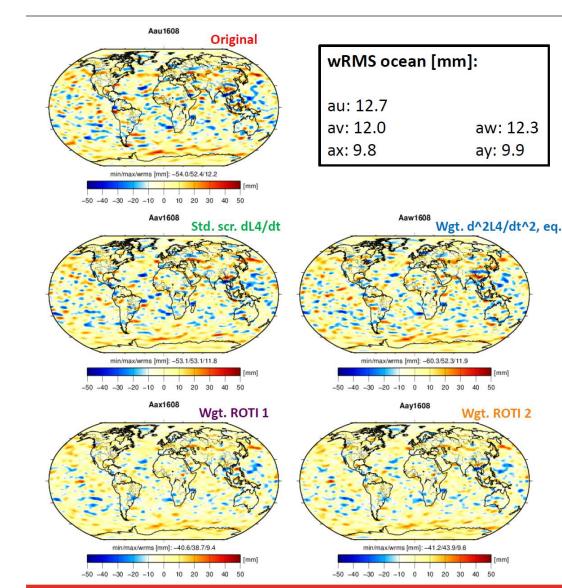
 d²L_{gf}/dt² criterion slightly better than dL_{gf}/dt criterion

• ROTI-based weighting not as efficient to remove artefacts along geomagnetic equator

Astronomical Institute University of Bern

Intermediate Ionospheric Activity (2016/02)

Intermediate ionospheric activity, after tracking loop updates

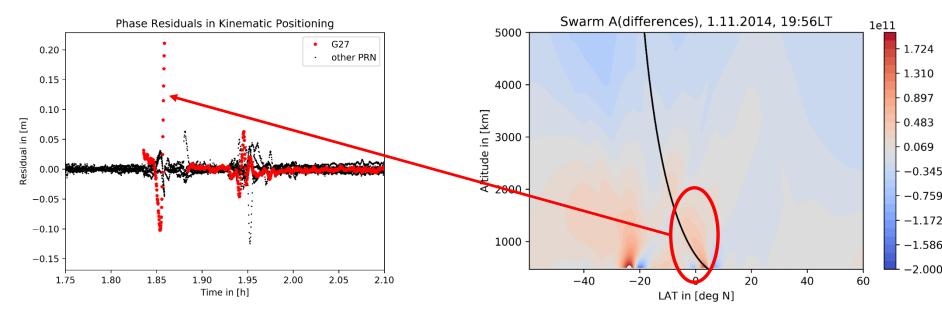

 d²L_{gf}/dt² criterion slightly better than dL_{gf}/dt criterion

 ROTI-based weighting is advantageous to reduce the noise for periods of lower ionospheric activity

AII/B

Astronomical Institute University of Bern

Low Ionospheric Activity (2016/08)


Low ionospheric activity, after tracking loop updates

 d²L_{gf}/dt² criterion is here slightly worse than dL_{gf}/dt criterion

 ROTI-based weighting is very helpful to reduce the noise for periods of low ionospheric activity

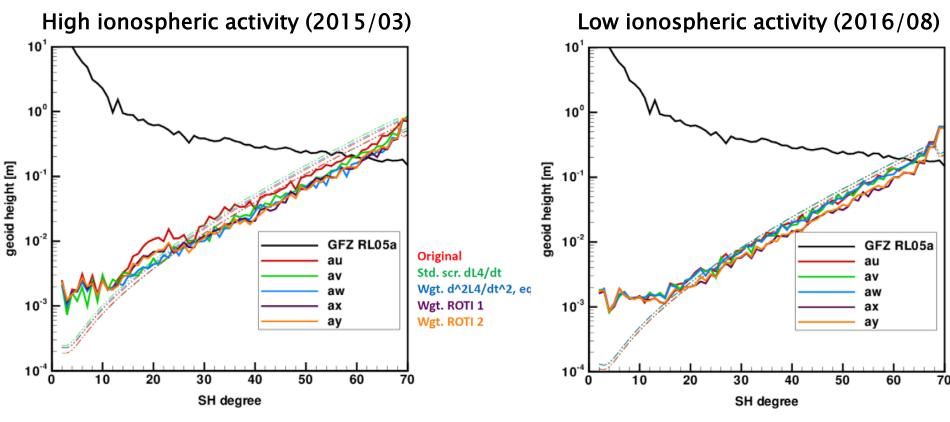
Astronomical Institute University of Bern

Impact on Ionosphere/Plasmasphere Reconstruction

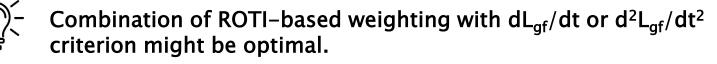
Original GPS Data

Weighted GPS Data

- Swarm GPS data issues are significant for reconstruction of upper ionosphere
- Difference pattern may be related to data that were problematic for POD


More Information on the poster X4.262 by Schreiter et al.: Imaging the topside ionosphere and the plasmasphere using Swarm GPS observations, Mon 09 Apr, 17:30 - 19:00, Hall X4

Conclusion


- Several analysis centers are computing Swarm monthly gravity field solutions on a regular basis.
- Combining independent gravity field solutions reduces the noise of the individual solutions.
- Systematic errors along the geomagnetic equator are affecting the Swarm solutions, especially during periods of high ionospheric activity and before the tracking loop updates.
- To remove artifacts around geomagnetic equator the ROTIbased weighting is not as efficient as the standard screening or the weighting based on d²L_{gf}/dt² criterion.
- ROTI-based weighting significantly reduces, however, the noise, also for time periods of low ionospheric activity.
- A combination of ROTI and d²L_{gf}/dt² based weighting seems promising to efficiently mitigate artifacts and reduce the noise.

Difference Degree Amplitudes

- dL_{gf}/dt slightly better for low degrees d²L_{qf}/dt² slightly better for higher degrees
- ROTI-based weighting is well suited to reduce the noise

AIUB

SLR Validation (Swarm-A, 2015/03)

Scenario	Reddynamic		Kinematic	
	Mean (mm)	Std. dev. (mm)	Mean (mm)	Std. dev. (mm)
Original	4.6	27.3	2.4	31.1
Std. screening	3.7	26.9	0.7	31.4
$d^2 L_{gf}/dt^2$	4.6	27.3	1.9	32.5
ROTI 1	4.9	26.5	1.0	28.8
ROTI 2	5.0	25.8	0.9	28.7

SLR observations of Graz, Greenbelt, Haleakala, Hartebeesthoek, Herstmonceux, Matera, Mount Stromlo, Potsdam, Wettzell (SOSW), Wettzell (WLRS), Yarragadee, and Zimmerwald, 20cm outlier threshold, 10°elevation cutoff.

SLR Validation (Swarm-A, 2016/02)

Scenario	Reddynamic		Kinematic	
	Mean (mm)	Std. dev. (mm)	Mean (mm)	Std. dev. (mm)
Original	8.4	12.1	6.4	16.5
Std. screening	8.1	13.1	6.3	22.9
$d^2 L_{gf}/dt^2$	8.4	12.1	6.1	16.0
ROTI 1	8.5	12.5	5.7	15.4
ROTI 2	8.5	12.6	5.9	15.5

SLR observations of Graz, Greenbelt, Haleakala, Hartebeesthoek, Herstmonceux, Matera, Mount Stromlo, Potsdam, Wettzell (SOSW), Wettzell (WLRS), Yarragadee, and Zimmerwald, 20cm outlier threshold, 10°elevation cutoff.

SLR Validation (Swarm-A, 2016/08)

Scenario	Reddynamic		Kinematic	
	Mean (mm)	Std. dev. (mm)	Mean (mm)	Std. dev. (mm)
Original	4.9	14.2	3.9	16.6
Std. screening	5.0	14.3	3.9	16.7
$d^2 L_{gf}/dt^2$	4.9	14.2	3.9	16.8
ROTI 1	4.7	14.7	3.8	17.0
ROTI 2	4.7	14.7	3.8	16.9

SLR observations of Graz, Greenbelt, Haleakala, Hartebeesthoek, Herstmonceux, Matera, Mount Stromlo, Potsdam, Wettzell (SOSW), Wettzell (WLRS), Yarragadee, and Zimmerwald, 20cm outlier threshold, 10°elevation cutoff.