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Abstract

Background

To our knowledge, no publication providing overarching guidance on the conduct of system-

atic reviews of observational studies of etiology exists.

Methods and findings

Conducting Systematic Reviews and Meta-Analyses of Observational Studies of Etiology

(COSMOS-E) provides guidance on all steps in systematic reviews of observational studies

of etiology, from shaping the research question, defining exposure and outcomes, to

assessing the risk of bias and statistical analysis. The writing group included researchers

experienced in meta-analyses and observational studies of etiology. Standard peer-review

was performed. While the structure of systematic reviews of observational studies on etiol-

ogy may be similar to that for systematic reviews of randomised controlled trials, there are

specific tasks within each component that differ. Examples include assessment for con-

founding, selection bias, and information bias. In systematic reviews of observational stud-

ies of etiology, combining studies in meta-analysis may lead to more precise estimates, but

such greater precision does not automatically remedy potential bias. Thorough exploration

of sources of heterogeneity is key when assessing the validity of estimates and causality.
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Conclusion

As many reviews of observational studies on etiology are being performed, this document

may provide researchers with guidance on how to conduct and analyse such reviews.

Introduction

Systematic reviews aim to appraise and synthesise the available evidence addressing a specific

research question; a meta-analysis is a statistical summary of the results from relevant studies.

A systematic review should generally be the basis of a meta-analysis, whereas a meta-analysis is

not a necessary feature of a systematic review if reviewers decide that pooling of effect esti-

mates is not appropriate. Many systematic reviews are based on observational studies. In 2014,

of about 8,000 systematic reviews published that year, 36% were on etiology, prognosis, or

diagnosis [1].

Etiological studies examine the association of exposures with diseases or health-related out-

comes. Exposures potentially causing diseases are also called risk factors and may take many

forms; they can be fixed states (e.g., sex, genetic factors) or vary over time, for example meta-

bolic risk factors (e.g., hypercholesterolemia, insulin resistance, hypertension), lifestyle habits

(e.g., smoking, diet), or environmental factors (e.g., air pollution, heat waves). Conceptually,

these exposures differ from interventions, which explicitly aim to influence health outcomes

and have a clear starting point in time [2]. Observational studies are important to study expo-

sures that are difficult or impossible to study in randomised controlled trials (RCTs), such as

air pollution or smoking. Also, observational studies are important to study causes with long

latency time, such as carcinogenic effects of environmental exposures or drugs.

The epidemiological study of risk factors typically relies on comparisons (exposed versus

unexposed); such comparisons can be made in cohort studies in which exposed and unexposed

people are followed over time [3]. Other approaches such as self-controlled studies, case-con-

trol studies, cross-sectional studies, ecological studies, instrumental variable analyses, and

mendelian randomisation also rely on comparisons. Box 1 presents an overview of observa-

tional study designs used to study etiology.

Aim and scope of COSMOS-E

For systematic reviews of randomised trials, guidelines on conduct [14] and reporting [15]

have been widely adopted. For systematic reviews of observational studies, reporting guide-

lines were published almost two decades ago [16], and, to date, there are, to our knowledge, no

guidelines on their conduct. Despite similarities in the general structure of the review, the

‘roadmap’ of systematic reviews of observational studies is less standardised [17], and some

design issues are not settled yet [18]. The aim of Conducting Systematic Reviews and Meta-

Analyses of Observational Studies of Etiology (COSMOS-E) is to discuss and give guidance on

key issues in systematic reviews of observational studies of etiology for researchers. We address

all steps in a review on observational studies, even though some will be similar to reviews of

RCTs of medical interventions. COSMOS-E covers the basic principles as well as some more

advanced topics but does not address systematic reviews of nonrandomised studies of inter-

ventions, or of diagnostic, prognostic, or genetic studies. COSMOS-E is not formally meant to

be a guideline; it provides guidance but does not formally prescribe how researchers should
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Box 1. Observational designs and approaches for studying etiology

Cohort study

Cohort studies follow a study population over time. Researchers can study the occur-

rence of different outcomes. In etiological research, an exposed and an unexposed group

are compared regarding the risk of the outcome. Different levels of exposure and expo-

sures that vary over time can be studied. Instrumental variable methods and self-con-

trolled case series studies are types of cohort studies (see below).

Example

In a large population-based cohort study, the occurrence of infectious complications was

compared between patients with and patients without Cushing disease [4].

Instrumental variable methods/mendelian randomisation

Instrumental variable (IV) analyses use an external factor that determines the exposure

of interest but is (ideally) not associated with the outcome other than through its effect

on the exposure. In other words, the instrument is not associated with the factors that

may confound the association between exposure and outcome. The instrument can be

calendar time, geographical area, or treatment preferences [5,6]. Mendelian randomisa-

tion studies are examples of IV analyses using genetic factors as instruments.

Example

A Mendelian randomisation study investigated whether more years spent in education

increase the risk of myopia or whether myopia leads to more years spent in education

[7].

Self-controlled designs

In self-controlled case series, the occurrence of the outcome is compared between time

windows during which individuals are exposed to a risk factor and time windows not

exposed. In contrast to standard cohort designs, the comparison is within individuals.

The design is used to study transient exposures for which exact timings are available,

such as infections, vaccinations, drug treatments, climatic exposures, or disease exacer-

bations [8].

Example

A self-controlled study examined the effect of cold spells and heat waves on admissions

for coronary heart disease, stroke, or heart failure in Catalonia [9].

Case-control study

In case-control studies, exposures are compared between people with the outcome of

interest (cases) and people without (controls) [3]. The design is especially efficient for

rare outcomes.

Example

A multicentre case-control study examined the association between mobile phone use

and primary central nervous system tumours (gliomas and meningiomas) in adults [10].

Cross-sectional studies
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perform or report their review. Also, this paper will not settle some ongoing debates and con-

troversies [18] around the performance of reviews of observational studies on etiology, but

rather will give the different viewpoints and possibilities. The writing group included research-

ers experienced in meta-analyses and observational studies of etiology. No external advise was

sought; standard peer-review was performed.

Preparing the systematic review

Building a review team

At the design stage, the team should cover both content knowledge and methodological exper-

tise. For example, identifying potential confounding variables or assessing exposure measure-

ments requires content knowledge. Similarly, the statistical analysis can often be complex,

highlighting the need for statistical expertise. Questions may arise about whether and how dif-

ferent designs (for example, case-control studies and cohort studies) can be combined in

meta-analysis or whether a dose-response meta-analysis is feasible. An information specialist

will ensure comprehensive and efficient literature searches.

Shaping the research question

A systematic review of observational studies requires a clear research question, which can be

broad initially but should be narrowed down subsequently in the interest of clarity and feasibil-

ity. In other words, and contrasting with systematic reviews for RCTs, the research question

In cross-sectional studies, study participants are assessed at the same point in time to

examine the prevalence of exposures, risk factors, or disease. The prevalence of disease is

then compared between exposure groups like in a cohort study, or the odds of exposure

are compared between groups with and without disease, like in a case-control study [3].

The temporal relationship between exposure and outcome can often not be determined

in cross-sectional studies.

Example

A cross-sectional analysis of the United Kingdom Biobank study examined whether

neighbourhood exposure to fast-food outlets and physical activity facilities was associ-

ated with adiposity [11].

Ecological studies

In ecological studies, the association between an exposure and an outcome is studied

and compared between populations that differ geographically or in calendar time. Limi-

tations include the ecological fallacy, in which associations observed at the aggregate

level do not hold at the individual level and confounding, which is often difficult to

control.

Example

An ecological study of male circumcision practices in different regions of sub-Saharan

Africa and HIV infection found that HIV prevalence was lower in areas where male cir-

cumcision was practiced than in areas where it was not [12]. The protective effect of

male circumcision was later confirmed in randomised trials [13].
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may be iterative. After framing the question, reviewers should scope key papers to get an idea

of what evidence is available about the problem, including what type of research has been

done. This exploratory step has two aims. It clarifies whether the question has already been

addressed in a recent systematic review and indicates whether and how the question needs to

be refined and focused so that it can be the subject of feasible systematic review.

Defining population, exposure, contrast, and outcome

In line with the well-known Population, Intervention, Control, and Outcome(s) (PICO) for-

mat [15], for systematic reviews of epidemiological studies, Population, Exposure, Control,

and Outcome(s) (PECO) should be defined [19]. The study population should reflect the target

population, i.e., the population to which the results should be applicable [20]. This can be the

general population, as in a meta-analysis of the association of insulin-like growth factor and

mortality [21], or a restricted population, such as in a review of the association between breast-

feeding and childhood leukemia [22]. The study population must be defined such that the

exposure–outcome association can be validly studied [23]. For example, if a radiation exposure

is assumed to damage growing tissues, then children are a more appropriate study population

than adults (see discussion of ‘study sensitivity’ [23] later in this article).

Studies on risk factors should ideally include people who are free of the outcome under

study at start of follow-up, but this is often unverifiable in population-based studies. Subclini-

cal or early disease might go undetected if such conditions are not ruled out explicitly. In a

review on the association between insulin resistance and cardiovascular events, not all popula-

tion-based studies explicitly excluded participants with cardiovascular disease at baseline.

These studies were not excluded but considered at higher risk of bias [24].

Exposure(s) and outcome(s) should be clearly defined. The definition and measurement of

many exposures in observational studies of etiology, such as socioeconomic status, diet, exer-

cise, or environmental chemicals, need careful attention, and the comparability of assessments

across studies needs to be assessed. Similarly, many outcomes—such as diseases (e.g., breast

cancer, thrombosis, diabetes mellitus) or health-related states (e.g., quality of life, levels of risk

factors)—can be defined, classified, or measured in many different ways. Consideration of out-

comes thus includes not only ‘what’ is the outcome of interest but also ‘how’ it was determined.

Only death is insensitive to method of measurement or ascertainment. The exposure–control

comparison also needs attention. In a study of the effect of leisure physical activity, the expo-

sure category (for example, weekly sport for more than 2 hours) might be compared to either

less than 2 hours per week or to no sport. Neither of these comparisons is wrong, but they

address different questions.

Reviewers may develop precise definitions and criteria for exposure and outcomes, but if

no single study used these definitions, the review will not be able to answer the research

question. Iteration and pragmatism are required in this situation. In the case of fat mass and

cardiovascular risk, a sophisticated exposure measurement—magnetic resonance imaging

(MRI)—may have been used only in a few small studies. The reviewers may then decide also

to include studies using body mass index or waist:hip ratio, which will ensure the inclusion

of more and larger studies. Whether the studies can be combined statistically in a meta-

analysis is a different question, which we will address later in this article.

Considering confounding and bias

Confounding is a crucial threat to the validity of observational studies. Confounding occurs

when comparison groups differ with respect to their risk of the outcome beyond the exposure

(s) of interest due to a common cause of exposure and outcome. When planning the review,
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researchers should carefully consider which factors might potentially confound the exposure–

outcome associations under study. Importantly, confounding is not a yes/no phenomenon but

a matter of degree. For example, strong confounding is expected in studies that compare mor-

tality between vegetarians and nonvegetarians because these groups will differ in many other

lifestyle characteristics, which will be associated with causes of death. The opposite is true

when studying smoking as a cause of lung cancer. There will be little confounding because

other strong risk factors for lung cancer are rare, and it is also unlikely that they are strongly

associated with smoking. In general, strong confounding is unlikely for adverse effects that

were unexpected at the time the study was conducted, for example, the link between asbestos

and mesothelioma [25]. Indeed, substantial confounding may be rare in occupational epidemi-

ology, even by risk factors strongly associated with the outcome of interest [26].

Other threads to the validity of the effect estimation are measurement (misclassification)

bias or selection bias. Misclassification is a crucial bias in environmental and occupational epi-

demiology, particularly for long-term exposures [26]. Thinking up front about potential con-

founding and bias will facilitate the ‘scoping’ of the crucial validity threats for the specific

research question and judgments on what types of studies are likely to provide the most unbi-

ased estimate.

The protocol

Every systematic review should be planned in a detailed protocol. The key issues that need to

be addressed are listed in Box 2. It is not always possible to specify fully all review methods

beforehand; the writing of the study protocol will often be an iterative process, informed by

scoping the literature and piloting procedures. Reviewers should take care not to change the

protocol based on study results, but the protocol may be adapted, for example, based on the

Box 2. Key elements of a protocol for a systematic review of
observational studies of etiology

1. Background and rationale

2. Review question(s)

3. Definition of exposures, contrasts, and outcomes

4. Tabulation of potential confounders and biases that could affect study results

5. Study eligibility criteria

6. Literature search for relevant studies

7. Data extraction (study characteristics and results)

8. Assessment of risk of bias and study sensitivity

9. Statistical methods

10. Planned analyses

11. Approach to how the body of evidence will be judged
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number and type of available studies. Registering the protocol in the International Prospective

Register of Systematic Reviews (PROSPERO) [27] increases transparency and allows editors,

peer reviewers, and others to compare planned methods with the published report and to iden-

tify inconsistencies or selective reporting of results. This does not mean that protocol devia-

tions are not possible, but such changes or additions should be made transparent in the

reporting phase.

Searching for relevant studies

Searching for eligible studies is a process that includes several steps: (i) selection of electronic

databases to be searched (e.g., MEDLINE, EMBASE, specialised databases such as Toxicology

Literature Online [Toxline], or databases of regulatory authorities); (ii) developing of search

strategies and piloting and refining these in collaboration with an information scientist or

librarian [28]; (iii) consideration of other approaches, such as citation tracking or scrutinising

references of key papers; and (iv) deciding whether to search the grey literature (e.g., confer-

ence abstracts, theses, preprints). As many relevant studies may be identified in sources other

than electronic databases [29,30], searches that extend beyond the standard electronic data-

bases should be considered.

Identification of observational study designs in literature databases is not straightforward,

as the indexing of study types can be inaccurate. Several electronic databases should be

searched, as no single database has adequate coverage of all the relevant literature [31]. A bib-

liographic study concluded that no efficient systematic search strategies exist to identify epide-

miologic studies [32]. Compiling a list of key studies that should be identified is helpful to

check the sensitivity of the electronic search strategy. As the number of hits from the search

may be very large relative to the number of eligible studies, the challenge is to focus the search

as much as possible without compromising sensitivity. Summarized Research in Information

Retrieval for Human Technology Assessment (HTA) (www.sure–info.org) is a web-based

resource that provides guidance on sources to search and on designing search strategies,

including search filters to identify observational studies. The incremental value of searching

for observational studies in languages other than English has not been evaluated but will

depend on the research question. In general, it is prudent to assume that language restrictions

could introduce bias. Researchers should search not only for studies on ‘the exposure and out-

come’ of interest but have an open mind for studies with negative exposure and outcome con-

trols, ecological and time trend studies of exposure and/or outcome, and papers from basic

science.

Study selection

The search produces bibliographic references with information on authors, titles, journals, etc.

However, the unit of interest is the study and not the publication—the same study might have

been reported more than once [33], and a single publication can report on multiple studies.

First, all identified reports are screened based on title and abstract to remove duplicate publica-

tions and articles that are clearly not relevant. This leads to a set of studies for which the full

texts are required to determine eligibility and potential overlaps in study populations. Even

with clearly defined eligibility criteria, not all decisions will be straightforward. For example, if

researchers want to perform a review restricted to children, some studies may have included

young adults without providing data for children only. In this case, reviewers may have to

decide what proportion of adults is acceptable for a study to be included, or they may attempt

to obtain the data on children from the authors.
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There is no standard answer to the question of whether study design or methodological

quality should guide inclusion of studies [18]. If, for a specific review, a design characteristic is

clearly related to high risk of bias and easy to identify (for example, case-control studies of

long-term exposures), then such studies could be excluded upfront. An argument for not

restricting reviews in this way is that the assessment of risk of bias will often be subjective to

some extent, potentially leading to inappropriate exclusions of studies, and that including all

studies may lead to important insights when exploring between-study heterogeneity [34].

Recording and reporting reasons for exclusions enhances the transparency of the process

and informs sensitivity analyses to examine the effect of excluding or including studies.

Reviewers should therefore document their decisions throughout the process of study selection

and summarise it in a flowchart. Fig 1 gives an example. Dedicated software to support the

process of selecting studies may be helpful (see http://systematicreviewtools.com/), including

tools using machine learning and text mining to partially automate finding eligible studies and

extracting data from articles.

Data extraction

Article screening, data extraction, and assessments of risk of bias should preferably be done

independently by two reviewers to reduce errors and to detect any differences in interpretation

between extractors [35,36]. Discrepancies can then be discussed and resolved [37]. Standard-

ised data extraction sheets should be developed for each review, piloted with a few typical stud-

ies, refined, and then implemented in generic (for example, EpiData) or preferably dedicated

software (for example, Covidence; see http://systematicreviewtools.com). For all included

studies, the following core data should be extracted:

1. Bibliographic information

2. Study design

3. Risk of bias assessment

4. Exposure(s) and outcomes, including definitions

5. Characteristics of study participants

Fig 1. Flow chart of study selection. From [15].

https://doi.org/10.1371/journal.pmed.1002742.g001
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6. Numerical results: number of participants per group, number with outcome

7. Effect estimates (adjusted and unadjusted) and their standard errors

Bibliographic information includes the journal or preprint server, publication year, volume

and page numbers, and digital object identifier (doi). The definition of the study design should

be based on an assessment of what was done, not on how the study was described in the title or

indexed in a database [3]. Indexing of observational study designs is often inadequate, and

authors may themselves confuse designs. In specialty journals, 30%–50% of studies indexed as

’case-control studies’ are not in fact case-control studies [38,39]. Characteristics of study par-

ticipants and outcomes are extracted separately for exposed and unexposed (cohort studies) or

cases and controls (case-control studies).

Extracting effect estimates and standard errors

Studies will typically report an effect estimate and a measure of precision (confidence interval)

or P value. The effect estimates may be odds ratios, rate ratios, risk ratios, or risk differences

for studies with a dichotomous outcome and the difference in means for continuous outcomes.

In general, extraction of the standard error or standard deviation may not be straightforward

(a standard error may wrongly be described as standard deviation or vice versa), and some-

times, the standard error needs to be calculated indirectly. S1 Box provides practical guidance.

The confounder-adjusted estimates will be of greatest interest for observational studies, but

it is useful to additionally extract the unadjusted estimates or raw data. Comparisons of

adjusted and crude estimates allow insights into the importance of confounding. Many studies

Fig 2. The causal structures of confounding and selection bias.

https://doi.org/10.1371/journal.pmed.1002742.g002
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report effect estimates from different models, adjusted for different sets of confounders. In this

situation, meta-analyses of maximally adjusted estimates and minimally adjusted or crude esti-

mates may be performed, as was done in a meta-analysis of insulin-like growth factor and can-

cer risk [40].

Assessing quality and bias

The assessment of methodological aspects of studies is a crucial component of any systematic

review. Observational studies may yield estimates of associations that deviate from true under-

lying relationships due to confounding or biases. Meta-analyses of observational studies may

therefore produce ‘very precise but equally spurious’ results [41].

The term ‘study quality’ is often used in this context, but it is important to distinguish

between quality and risk of bias. The quality of a study will be high if the authors have per-

formed the best possible study. However, a high-quality study may still be at high risk of bias.

For example, in a case-control study of lifetime alcohol consumption and endometrial cancer

risk, the authors used a state-of-the art population-based design to reduce the risk of selection

bias [42] but had to rely on self-reported alcohol intake over a lifetime. It is likely that some

women will have underreported their alcohol intake, introducing social desirability bias [43].

The concept of ‘study sensitivity’ [23] refers to the ability of studies to detect a true effect

and is more closely related to study quality than bias. If the study is negative, does this really

mean that there is evidence for no exposure–outcome association? For example, were the

numbers of exposed persons sufficient and the levels and duration of exposure adequate to

detect an effect? [23]. Was follow-up long enough to allow for the development of the cancer

of interest? Study sensitivity is particularly relevant in occupational and environmental epide-

miology but is also of great concern in pharmacoepidemiology in the context of adverse effects

of drugs. Reviewers should consider assessing both the risk of bias and study sensitivity in

reviews of observational studies.

Risk of bias in individual studies: Confounding, selection bias, and

information bias

Many possible sources of bias exist, and different terms are used to describe them. Bias typi-

cally arises either from flawed collection of information or selection of participants into the

study so that an association is found that deviates from the true value. Typically, bias is intro-

duced during the design or implementation of a study and cannot be remedied later.

In contrast to bias, confounding produces associations that are real but not causal because

some other, unaccounted factor is associated with both exposure and outcome (Box 3). Time-

dependent confounding is a special case of confounding (S2 Box). Confounding can be

adjusted for in the analysis if the relevant confounding variables have been well measured, but

some residual confounding may remain after adjustment (Box 4). Confounding is often con-

fused with selection bias. In particular, the situation in which comparison groups differ with

respect to an important prognostic variable is often described as selection bias. The term selec-

tion bias should, however, be used only for the situation in which participants, their follow-up

time, or outcome events are selected into a study or analysis in a way that leads to a biased

association between exposure and outcome. Directed acyclic graphs (DAGs) are useful to clar-

ify the structures of confounding and selection bias (see Box 3) [44]. Another important cate-

gory of bias is information bias, in which systematic differences in the accuracy of exposure or

outcome data may lead to differential misclassification of individuals regarding exposures or

outcomes. Bias needs to be distinguished from random error, a deviation from a true value

caused by chance variation in the data. Finally, it is important to note that confounding and
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selection bias refer to biases that are internal to the study (‘internal validity’) and not to issues

of generalisability or applicability (‘external validity’) [20]. How should the risk of bias in

observational studies best be assessed? A review identified more than 80 tools for assessing risk

of bias in nonrandomised studies [45]. The reviewers concluded that there is no ‘single obvious

candidate tool for assessing quality of observational epidemiological studies’. This is not sur-

prising considering the large heterogeneity in study designs, contexts, and research questions

in observational research. We believe that the quest for a ‘one size fits all’ approach is mis-

guided; rather, a set of criteria should be developed for each observational systematic review

and meta-analysis, guided by the general principles outlined below.

General principles

When assessing the risk of bias, seven general principles are relevant, based on theoretical con-

siderations, empirical work, and the experience with assessing risk of bias in RCTs and other

studies [55–57].

1. The relevant domains of bias should be defined separately for each review question

and for different study designs. Relevant domains of risk of bias that should be considered

include (i) bias due to (time-dependent) confounding, (ii) bias in selection of participants into

the study (selection bias), (iii) bias in measurement of exposures or outcomes (information

bias), (iv) bias due to missing data (selection bias), and (v) bias in selection of studies or

reported outcomes (selection bias) [56]. The risk of bias should be assessed for each domain

and, if required, for different outcomes. The focus should be on bias. For example, whether or

not a sample size calculation was performed or ethical approval was obtained does not affect

the risk of bias.

Box 3. The causal structures of confounding and selection bias

A directed acyclic graph (DAG) consists of (measured and unmeasured) variables and

arrows. They are useful to depict causal structures: arrows are interpreted as causal

effects of one variable on another [37]. Common causes of exposure and outcome con-

found the association between exposure and outcome. For example, as shown in the

DAG in Fig 2, the association between yellow fingers and lung cancer is confounded by

smoking. The association is spurious, i.e., it is entirely explained by smoking.

Selection bias occurs if the probability of inclusion into the study depends both on the

exposure and the outcome. In a hospital-based case-control study, inclusion into the

study naturally depends on being admitted to the hospital; it is conditional on hospitali-

sation. For example, in a case-control study of alcohol and prostate cancer, the inclusion

of controls hospitalised because of injuries suffered in traffic accidents will introduce an

association between alcohol consumption and prostate cancer because alcohol is a cause

of traffic accidents (Fig 2 for a graphical display). In general, conditioning on common

effects of exposure and outcome means that the probability of inclusion depends on the

exposure and outcome, which leads to selection bias. This structure applies to many

biases, including nonresponse bias, missing data bias, volunteer bias or health worker

bias, or bias due to loss of follow-up in cohort studies [44]. All of these biases have the

causal structure of selection bias.
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Box 4. Approaches to deal with confounding in observational
studies

Statistical adjustment in the analysis

Statistical adjustment for confounding can be performed using standard regression tech-

niques (for example, Cox or logistic regression). All of these models, including more

advanced techniques such as propensity scores [46] or inverse probability weighting,

rely on the assumption of no unmeasured confounding for the validity of the effect esti-

mate. This assumption is often unlikely to hold in practice because some confounding

factors may not have been assessed or have not been measured precisely. Residual con-

founding may therefore persist after adjustment, which should be taken into account

when interpreting combined estimates from meta-analysis of observational studies.

Matching

Matching is an intuitive approach to control for confounding at the design stage of a

study, particularly in case-control research [47]. The choice of the variables, exact

approach to matching, and the statistical analysis are complex and need careful consider-

ation. Bias may be introduced, for example, when matching for variables that are on the

causal pathway from exposure to disease [3]. Matching is particularly relevant in situa-

tions in which the distribution of important confounders differs substantially between

cases and unmatched controls [48].

Instrumental variable methods

Instrumental variables may be useful to control for confounding [49]. An instrument is

an external variable that is associated with the exposure of interest but ideally is not asso-

ciated with the outcome variable other than through its effect on the exposure. In

essence, instrumental variables circumvent the problem of unmeasured confounding.

For example, mendelian randomisation studies make use of common genetic polymor-

phisms (for example, the rs1229984 variant in the alcohol dehydrogenase 1B gene) that

influence levels of modifiable exposures (alcohol intake [50]). As with any other instru-

mental variable analysis, the validity of mendelian randomisation depends critically on

the absence of a relationship between the instrument (genes) and the outcome (for

example, cardiovascular disease) [5].

Negative controls

The use of ‘negative controls’ for outcomes or exposures can be helpful to assess the

likely presence of unmeasured or residual confounding in observational research [51].

The rationale is to examine an association that cannot plausibly be produced by the

hypothesised causal mechanism but may be generated by the same sources of bias or

confounding as the association of interest. For example, it has been hypothesised that

smoking increases the risk of depression and suicide because of effects on serotonin and

monoamine oxidase levels [52]. However, in large cohort studies, smoking is also posi-

tively associated with the risk of being murdered—the negative, biologically implausible

outcome control [53]. Similarly, in cohort studies, vaccination against influenza not only

protected against hospitalisation for pneumonia but also against hospitalisation for

injury or trauma [46], indicating that the beneficial effect on pneumonia may have been
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2. The risk of bias should be assessed qualitatively. For each study and bias domain, the

risk of bias should be assessed in qualitative categories, for example, as ‘low risk’, ‘moderate

risk’, or ‘high risk’. These categories and the criteria used to define them should be described

in the paper. Quantitative assessments by assigning points should be avoided (see also point

6).

3. Signalling questions may be useful. Within each bias domain, simple signalling ques-

tions may be useful to facilitate judgments about the risk of bias (Table 1). A comprehensive

list of signalling questions has recently been compiled by the developers of the Cochrane risk

of bias assessment tool for nonrandomised studies of interventions (ROBINS-I) [56], and a

similar tool is in development for nonrandomised studies of exposures [58]. These lists and

tools will be useful, but reviewers should think about further questions that may be relevant in

the context of their review. Cooper and colleagues compiled a list of questions relating to study

sensitivity [23].

4. Separate assessments may have to be made for different outcomes. The risk of bias

will often differ across different outcomes. For example, bias in the ascertainment of death

from all causes is much less likely than for a subjective outcome, such as quality of life or pain,

or for an outcome that relies on clinical judgment, such as pneumonia.

5. Assessments should be documented. It is good practice to copy and archive the text

from the article on which an assessment regarding the risk of bias is based. Such

overestimated. Negative exposure controls are usefully introduced in questionnaires to

gauge possible recall bias in case-control studies. A study of the association between

multiple sclerosis (MS) and childhood infections included questions on other childhood

events not plausibly associated with MS, such as fractures and tonsillectomy [54].

Table 1. Signalling questions for different bias domains.

Bias domain Study design Signalling question
Confounding Any What are the important variables that might confound the effect of

the exposure?

Any Were these variables measured with precision and at appropriate

points in time?

Any Did the authors use an appropriate analysis method or design that

adjusted for all of the important confounding variables?

Selection bias Cohort studies/cross-

sectional studies

Was selection into the study unrelated to both the exposure and

outcomes?

Cohort studies/cross-

sectional studies

Were the reasons for missing data unrelated to the exposure and

outcomes?

Case-control studies Were the controls sampled from the population that gave rise to the

cases?

Case-control studies Were the reasons for missing data related to case or control status?

Information

bias

Cohort studies/cross-

sectional studies

Were outcome assessors unaware of the exposure status of study

participants?

Cohort studies/cross-

sectional studies

Were the methods of outcome assessment comparable across

exposure groups?

Case-control studies Was the definition of case status/control status applied without

knowledge of exposure status?

Case-control studies Was data collection on exposure status unaffected by knowledge of

the outcome or risk of the outcome?

https://doi.org/10.1371/journal.pmed.1002742.t001
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documentation increases transparency, facilitates discussion in case of disagreement, and

allows for replication of assessments.

6. Summary scores should be avoided. Summary scores involve weighting of bias

domains; typically, each item in a score is weighted equally (0 or 1 point), but the importance

of a bias will depend on the context, and one bias may be more important than another

[59,60]. The situation is made worse if the scale includes items that are not consistently related

to bias. For example, the Newcastle-Ottawa Scale includes quality items of questionable valid-

ity, such as comparable nonresponse among cases and controls [61]. Rather than calculating

summary scores, a conservative approach classifies the study at the level of risk of bias corre-

sponding to the highest risk identified for individual domains.

7. Thinking about a hypothetical, unbiased trial may be helpful. It may useful, as a

thought experiment, to think of a hypothetical RCT that would answer the review question

posed in the systematic review [56]. Such a trial will often be unfeasible and unethical, but the

thought experiment may help to sharpen the review question and clarify the potential biases in

the observational studies. S3 Box gives an example.

Reporting biases, P hacking, and analytic choices

An important source of bias that may undermine conclusions from any systematic review or

meta-analysis is the selective publication of studies. It is known that studies with ‘positive’

results (i.e., statistically significant effects) are more likely to be published than negative stud-

ies, introducing a distorted overall picture of an association. There is robust evidence of publi-

cation bias and other reporting biases for RCTs [62,63]: positive trials are more likely to be

published, to be published quickly, to be published more than once, and to be cited, making it

more likely that they will be included in systematic reviews.

Selective publication of results may also be a problem within studies, when many different

exposures and outcomes were examined. If only the statistically significant associations are

fully analysed, written up, and published, the results of systematic reviews will be distorted. A

related issue arises when the selection of the study population or statistical model is chosen

based on the P value (‘P hacking’) [64].

How to deal with risk of bias?

Results from the risk of bias analysis should be presented in a transparent way, tabulating risk

of bias elements for each included study. An important consideration is how to deal with stud-

ies at high risk of bias. If the aim is to present the best available evidence on the efficacy of a

medical intervention, the review is often restricted to studies at low risk of bias. For systematic

reviews of observational studies of etiology, we generally advise against excluding studies

based on risk of bias assessments. Including all studies and exploring the impact of the risk of

different biases and of study sensitivity on the results in stratified or regression analyses will

often provide additional insights, as discussed below.

Exploring and exploiting heterogeneity

The studies included in a systematic review will generally vary with respect to design, study

populations, and risk of bias [1]. Mapping of heterogeneity between studies [65] may not only

provide a useful overview but also help decide whether or not to combine studies statistically

in a meta-analysis. Such diversity may provide opportunities for additional insights and can

explicitly be exploited [66]. For example, the association of Mycobacterium avium subspecies

paratuberculosis (MAP) with Crohn disease was examined in a review of case-control studies

that compared cases of Crohn disease with controls free of inflammatory bowel disease or with
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ulcerative colitis patients [67]. The association was strong for both comparisons, indicating

that the association with MAP is specific to Crohn disease and not a general (epi)phenomenon

in inflammatory bowel disease (see also Box 4 on negative controls).

Diversity in study settings also may provide insights. Lifestyle factors such as smoking,

physical activity, sexual behaviour, or diet are exposures of interest in many observational

studies, but they are highly correlated in Western societies. Their independent effects, for

example, on cancer risk, are therefore difficult to disentangle. The inclusion of studies in spe-

cial populations, for example, defined by religion or geographical regions with different life-

style patterns, may therefore help understand (residual) confounding. Similarly, studies that

measured exposures and confounding factors more or less precisely, used different methods to

adjust for confounding variables (Box 4), or were generally at higher or lower risk of bias will

be valuable in this context. For example, a meta-analysis showed that the relationship between

induced abortion and breast cancer was evident in case-control studies but not in cohort stud-

ies [68]: the association observed in case-control studies was probably due to recall bias.

The thoughtful exploitation of sources of heterogeneity at the design stage or exploration in

the analysis are therefore an important part of systematic reviews and meta-analyses of obser-

vational studies of etiology. Analyses should either be prespecified in the study protocol or

interpreted in the spirit of exploratory data analyses. Exploration of heterogeneity starts with

the visual inspection of forest plots and funnel plots. Statistical techniques include subgroup

analyses and metaregression, as discussed below.

Meta-analysis: To pool or not to pool?

After careful examination of risk of bias and other sources of heterogeneity, reviewers must

consider whether statistically combining effect estimates is appropriate for all studies, for a

subgroup of studies, or not appropriate at all. Authors provide different reasons for not pool-

ing data [69], and different opinions exist on how to approach this question [18]. Consider-

ations for or against pooling should be based on judgments regarding study diversity,

sensitivity, and risk of bias rather than solely on statistical measures of heterogeneity (see

below) for two reasons. First, in the absence of statistical heterogeneity, combining results

from biased studies will produce equally biased combined estimates with narrow confidence

intervals that may wrongly be interpreted as definitive evidence. The inclusion of studies at

high risk of bias will often, but not always, introduce heterogeneity. For example, the protective

effect of a diet rich in beta-carotene on cardiovascular mortality shown in observational studies

was very consistent across studies. However, randomised trials of beta-carotene supplementa-

tion did not show any benefit, making it likely that the results of observational studies were

confounded to a similar extent by other aspects of a healthy diet and lifestyle [41]. Second,

even in the presence of statistical heterogeneity, combining studies may be appropriate if stud-

ies are at low risk of bias and results are qualitatively consistent, indicating some degree of ben-

efit or risk. If authors decide not to provide one overall pooled estimate, stratified meta-

analyses (by study design or population) may be considered. Be mindful that a systematic

review that documents heterogeneity and risk of bias will still provide a valuable contribution

even without a formal meta-analysis.

Statistical analysis

Fixed- versus random-effect models in the context of observational studies

Once the decision has been made that (some) studies can be combined in a meta-analysis,

reviewers need to decide whether to use a fixed-effect or a random-effects model or both.

These models have been described extensively [70]. In short, fixed-effect analyses assume that
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all studies estimate the same underlying effect and that differences between effect estimates are

due to sampling variation. In contrast, random-effects models assume that underlying true

effects vary between studies. In the presence of statistical heterogeneity, effect estimates will

differ because smaller studies receive more weight in the random-effects than in the fixed-

effect model, and the random-effects confidence interval will be wider because it additionally

incorporates the between-study variation. In the absence of statistical heterogeneity, results

from random- and fixed-effect models will be identical.

In observational studies, population characteristics and exposure or outcome definitions

will likely differ across studies. The assumption that all these studies estimate the same under-

lying effect is rarely justified, and using a random-effects model for combining observational

studies therefore seems reasonable [18]. An important consideration in this context is the

question of whether, for a given research question, smaller or larger studies are at greater risk

of bias. In clinical research, large multicentre trials tend to be at lower risk of bias than small

single-centre studies, supporting the use of fixed-effect models. The opposite may be the case

in observational etiological research, for which smaller studies may have collected better data

on exposures and confounders. The model to be used should be specified in advance, but pre-

senting results from both models in a sensitivity analysis may be informative. Of note,

although random-effects models allow for between-study heterogeneity, they do not help to

understand the sources of heterogeneity [71].

Statistical measures of between study heterogeneity

Methods to assess statistical heterogeneity include the I2 statistics and Cochrane’s Q test for

heterogeneity. The Q test assesses whether variation between effect estimates is likely due to

chance alone; the I2 statistic quantifies the amount of variation between studies that cannot

be attributed to chance [72]. These measures should be interpreted with caution: the I2 sta-

tistic is captured with uncertainty [73], and Cochrane’s Q test has limited power to detect

heterogeneity when the number of included studies is low [74]. Since the number of studies

included in a review of observational studies is typically 10 to 20 [1], statistical power will

generally be low. Moreover, the statistical verdict on presence or absence of heterogeneity

does not need to coincide with the reviewers’ judgment on presence or absence of study

diversity or risk of bias. It might be that important study diversity does not translate into

statistical heterogeneity.

Funnel plot (a)symmetry

A funnel plot is a graphical tool to investigate whether estimates from smaller studies differ

from those of larger studies. Effect sizes are plotted against the standard error or precision of

the estimate (which relate to study size) [75]. If estimates from different studies differ only

because of random variation, then they will scatter symmetrically around a central value, with

variation decreasing as precision increases. The plot will thus resemble an inverted funnel.

Asymmetry of the funnel plot means that there is an association between study size and effect

estimates or a ‘small study effect’ [76], with smaller studies typically showing larger effects.

This may be due to several reasons, including true heterogeneity (i.e., smaller studies differ

from larger ones in terms of study population, exposure levels, etc.), selection bias (i.e., the

selective publication of small studies showing an effect), bias in design or analysis, or chance

[77,78]. Asymmetry should not be equated with publication bias. Particularly in the context of

observational studies, there are many other sources of heterogeneity and funnel plot

asymmetry.
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Metaregression

Metaregression is used to investigate whether study characteristics are associated with the

magnitude of effects and whether specific study characteristics can explain (some of) the

observed statistical heterogeneity. The presence of heterogeneity motivates metaregression

analyses, and random-effects metaregression should therefore always be used. The use of

fixed-effect metaregression is conceptually nonsensical and yields a high rate of false-positive

results [79].

Variables included in a metaregression model may be study features, such as study design,

year of publication, or risk of bias; or characteristics of the people included in the different

studies, such as age, sex, or disease stage. These variables are potential effect modifiers. For

example, the risks of smoking decrease with advanced age. Only a few variables should be

included in a metaregression analysis (about one variable per 10 studies), and they should be

prespecified to minimise the risk of false-positive results [80]. In multivariable metaregression,

the model presents mutually adjusted estimates, and permutation tests to adjust for multiple

testing can be considered [80]. When including characteristics of study participants, note that

associations observed at the study level may not reflect those at the individual level—the so-

called ecological fallacy [81]. This phenomenon is illustrated in Fig 3 for trends in the CD4

positive lymphocyte count in HIV-positive patients starting antiretroviral therapy (ART): in

five of the six studies, the CD4 cell count at the start of ART increased over time, which was

not shown in metaregression analysis at the study level. A graphical display of the metaregres-

sion is informative [82]. Such a graph shows for each study the outcome (e.g., a relative risk or

a risk difference) on the y-axis, the explanatory variable on the x-axis, and the regression line

that shows the association between two variables. In a metaregression graph, the weight of the

studies is preferably shown by ‘bubbles’ around the effect estimates, with larger bubbles relat-

ing to studies with more weight in the analysis (Fig 3 provides a schematic example).

Combining different metrics

Meta-analyses depend on how data are presented in individual articles. Especially in the con-

text of observational studies, researchers may face the problem that different metrics are used

for the same exposure–outcome association, depending on study design or statistical models

used. Consider the association between smoking (exposure) and blood pressure (outcome). In

cohort studies, hazard ratios, incidence rate ratios, risk ratios, or odds ratios can be estimated

Fig 3. Illustration of the ecological fallacy. Hypothetical example of aggregate and individual level CD4 cell count

data at the start of ART. Adapted from [83]. ART, antiretroviral therapy.

https://doi.org/10.1371/journal.pmed.1002742.g003
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when the outcome is dichotomized, whereas mean difference or standardised mean difference

may be reported if this is not the case.

How can different metrics be combined in meta-analysis? There are two issues to consider,

one conceptual, one more technical. When studies report different ratio metrics, for example,

hazard ratios, risk ratios, or odds ratios, they may be combined ignoring the differences in

metrics. This may be appropriate depending on which study designs were included (cohort

studies or case-control studies) and how participants were sampled in case-control studies

[84,85]. As a general rule, the different ratio metrics can be combined if the outcome under

study is rare (<5%), which is often the case in etiologic studies. If the outcome is not rare,

researchers must be more careful because the odds ratio will substantially overestimate the rel-

ative risk. This property of the odds ratio is a reflection of the fact that for non-rare outcomes,

the odds is larger than the risk (for example, if the risk is 0.8, the corresponding odds is 4).

It is also possible to combine relative risks with other metrics like standardised mean differ-

ences or correlation coefficients. This requires transformation from an odds ratio in a stan-

dardised mean difference (or vice versa) [86] or an odds ratio in a correlation coefficient

[87,88]. For example, in a meta-analysis of the association between fibrinogen levels on post-

operative blood loss, studies reported odds ratios, regression coefficients, correlation coeffi-

cients, and/or P values [89]. All effect measures were transformed into correlation coefficients

and subsequently combined in a meta-analysis [89].

Dose-response meta-analysis

In many epidemiologic studies, several levels of exposure are compared. For example, the

effect of blood glucose on cardiovascular outcomes can be studied across several groups of glu-

cose levels, using one category as reference. However, different studies may report different

categories of the exposure variable (tertiles, quartiles, or quintiles). One approach is to meta-

analyse the estimates by comparing the lowest and highest category. This is not recommended

because the meaning of lowest versus highest differs across studies. A more sophisticated

approach is to model the association between the exposure and outcome to estimate the

increase (or decrease) in risk associated with one unit (or other meaningful incremental)

increase in exposure. See references for technical details [90,91]. For example, a meta-analysis

of the association between Homeostasis Model Assessment Insulin Resistance (HOMA-IR)

and cardiovascular events used dose-response modelling to estimate that the cardiovascular

risk increased by 46% per one standard deviation increase in HOMA-IR [24].

Interpretation and discussion of results

Reviewers should discuss their results in a balanced way: many of the included studies might

be far from perfect, even if the overall estimate comes with a narrow confidence interval [41],

and researchers should keep in mind that statistical significance is not an indicator of whether

a true relation exists or not. Big numbers cannot compensate for bias. If included studies have

a low risk of bias and heterogeneity does not seem large, researchers may conclude that the

main results provide reasonably valid estimates. On the other hand, if many studies are at high

risk of bias, researchers should conclude that the true effect remains uncertain. The Grades of

Recommendation, Assessment, Development, and Evaluation (GRADE) system can be helpful

to formally judge ‘the extent of our confidence that the estimates of an effect are adequate to

support a particular decision or recommendation’ [92], taking into account study design, risk

of bias, degree of inconsistency, imprecision and indirectness (applicability) of results, and

reporting bias [93].
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One or a few studies might suffice to demonstrate that a relevant bias likely exists and that

all other studies suffer from it. For example, many cohort studies have shown that higher C-

reactive protein (CRP) levels are associated with cardiovascular risk. However, other cardio-

vascular risk factors, including smoking, obesity, and physical activity, are associated with

higher CRP levels, and these may confound the association with cardiovascular disease levels

[94]. No association was seen in mendelian randomisation studies [94], which used genetic

variants that are related to CRP levels but independent of the behavioural or environmental

risk factors that confound the association in epidemiological studies [95] (see Box 1). Mende-

lian randomisation studies and classic cohort studies in fact estimate different ‘effects’: lifelong

exposure in mendelian randomisation versus exposure from a certain (often not well-defined)

time-point onward. It should be noted that when mendelian randomisation studies include

participants later in life, selection bias may occur [96]. Evidence from mendelian randomisa-

tion studies, if available, should always be taken into account when interpreting the results

from systematic reviews of epidemiological studies. A useful guide for reading mendelian ran-

domisation studies has recently been published [97].

When assessing causality, integration of different sources of evidence (e.g., ecological stud-

ies, basic research on mechanisms) may facilitate a final judgement; trying to obtain an inte-

grated verdict based on results from different analytic or epidemiologic design approaches, for

which each approach has different and preferably unrelated sources of potential bias, is called

triangulation [98]. If different approaches all point to the same conclusion, this strengthens

confidence that the finding may be causal [98]. For example, in the discussion on smoking and

lung cancer, time trends in lung cancer were an important argument against the hypothesis

that an inherited trait would cause lung cancer as well as smoking [99]. Discussing competing

explanations systematically will add value to the interpretation of the results [100]. Especially

in the field of toxicology, mechanistic evidence plays an important role in causal inference,

and systematic review of this literature is encouraged [17]. Clearly, understanding pathways

requires more than quickly searching for a few articles that support the hypothesis (’cherry

picking’) [17]. Systematic reviews on insulin-like growth factor or adiposity and cancer risk

took laboratory, animal, and human evidence into account to judge the plausibility of different

mechanisms [40,101].

Finally, the importance of the results in terms of clinical and public health relevance should

be discussed. The identification of likely causes does not necessarily translate into recommen-

dations for interventions [102]. For example, based on epidemiological and other evidence,

obesity probably increases the risk of several cancers [101,103], but this does not mean that los-

ing weight will reduce cancer risk. Obesity may have exerted its detrimental effect, and differ-

ent interventions to reduce obesity have different effects on cancer risk [104].

An important strength of systematic reviews is that they generate a clear overview of the

field and identify the gaps in the evidence base and the type of further research needed. The

usual statement that ’more research is needed’ can thus be replaced by detailed recommenda-

tions of specific studies. Furthermore, having assessed the strengths and limitations of many

studies, reviewers will be in an excellent position to name the pitfalls that need to be avoided

when thinking about future research.

Supporting information

S1 Box.

(DOCX)

S2 Box.

(DOCX)

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002742 February 21, 2019 19 / 24

http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002742.s001
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002742.s002
https://doi.org/10.1371/journal.pmed.1002742


S3 Box.

(DOCX)

Acknowledgments

Douglas Altman died on June 3, 2018. We dedicate this paper to his memory.

References

1. Page MJ, Shamseer L, Altman DG, Tetzlaff J, Sampson M, Tricco AC, et al. Epidemiology and Report-

ing Characteristics of Systematic Reviews of Biomedical Research: A Cross-Sectional Study. PLoS

Med. 2016; 13(5):e1002028. https://doi.org/10.1371/journal.pmed.1002028 PMID: 27218655

2. Mansournia MA, Higgins JP, Sterne JA, Hernan MA. Biases in Randomized Trials: A Conversation

Between Trialists and Epidemiologists. Epidemiology. 2017; 28(1):54–9. https://doi.org/10.1097/EDE.

0000000000000564 PMID: 27748683

3. Vandenbroucke JP, von Elm E, Altman DG, Gotzsche PC, Mulrow CD, Pocock SJ, et al. Strengthen-

ing the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration.

PLoS Med. 2007; 4(10):e297. https://doi.org/10.1371/journal.pmed.0040297 PMID: 17941715

4. Dekkers OM, Horvath-Puho E, Jorgensen JO, Cannegieter SC, Ehrenstein V, Vandenbroucke JP,

et al. Multisystem morbidity and mortality in Cushing’s syndrome: a cohort study. J Clin Endocrinol

Metab. 2013; 98(6):2277–84. https://doi.org/10.1210/jc.2012-3582 PMID: 23533241

5. Hernan MA, Robins JM. Instruments for causal inference: an epidemiologist’s dream? Epidemiology.

2006; 17(4):360–72. https://doi.org/10.1097/01.ede.0000222409.00878.37 PMID: 16755261

6. Rassen JA, Brookhart MA, Glynn RJ, Mittleman MA, Schneeweiss S. Instrumental variables I: instru-

mental variables exploit natural variation in nonexperimental data to estimate causal relationships. J

Clin Epidemiol. 2009; 62(12):1226–32. https://doi.org/10.1016/j.jclinepi.2008.12.005 PMID: 19356901

7. Mountjoy E, Davies NM, Plotnikov D, Smith GD, Rodriguez S, Williams CE, et al. Education and myo-

pia: assessing the direction of causality by mendelian randomisation. BMJ. 2018; 361:k2022. https://

doi.org/10.1136/bmj.k2022 PMID: 29875094

8. Petersen I, Douglas I, Whitaker H. Self controlled case series methods: an alternative to standard epi-

demiological study designs. BMJ. 2016; 354:i4515. https://doi.org/10.1136/bmj.i4515 PMID:

27618829

9. Ponjoan A, Blanch J, Alves-Cabratosa L, Marti-Lluch R, Comas-Cufi M, Parramon D, et al. Effects of

extreme temperatures on cardiovascular emergency hospitalizations in a Mediterranean region: a

self-controlled case series study. Environ Health. 2017; 16(1):32. https://doi.org/10.1186/s12940-017-

0238-0 PMID: 28376798

10. Coureau G, Bouvier G, Lebailly P, Fabbro-Peray P, Gruber A, Leffondre K, et al. Mobile phone use

and brain tumours in the CERENAT case-control study. Occup Environ Med. 2014; 71(7):514–22.

https://doi.org/10.1136/oemed-2013-101754 PMID: 24816517

11. Mason KE, Pearce N, Cummins S. Associations between fast food and physical activity environments

and adiposity in mid-life: cross-sectional, observational evidence from UK Biobank. Lancet Public

Health. 2018; 3(1):e24–e33. https://doi.org/10.1016/S2468-2667(17)30212-8 PMID: 29307385

12. Moses S, Bradley JE, Nagelkerke NJ, Ronald AR, Ndinya-Achola JO, Plummer FA. Geographical pat-

terns of male circumcision practices in Africa: association with HIV seroprevalence. Int J Epidemiol.

1990; 19(3):693–7. PMID: 2262266

13. Siegfried N, Muller M, Deeks JJ, Volmink J. Male circumcision for prevention of heterosexual acquisi-

tion of HIV in men. Cochrane Database Syst Rev. 2009;(2):CD003362. https://doi.org/10.1002/

14651858.CD003362.pub2 PMID: 19370585

14. Higgins JPT, Green S (Editors). Cochrane Handbook for Systematic Reviews of Interventions: online

version (5.1.0, March 2011) The Cochrane Collaboration, 2011. 2011;(Available from www.

handbook-5-1.cochrane.org).

15. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement

for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions:

explanation and elaboration. PLoS Med. 2009; 6(7):e1000100. https://doi.org/10.1371/journal.pmed.

1000100 PMID: 19621070

16. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observa-

tional studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epi-

demiology (MOOSE) group. JAMA. 2000; 283(15):2008–12. PMID: 10789670

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002742 February 21, 2019 20 / 24

http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002742.s003
https://doi.org/10.1371/journal.pmed.1002028
http://www.ncbi.nlm.nih.gov/pubmed/27218655
https://doi.org/10.1097/EDE.0000000000000564
https://doi.org/10.1097/EDE.0000000000000564
http://www.ncbi.nlm.nih.gov/pubmed/27748683
https://doi.org/10.1371/journal.pmed.0040297
http://www.ncbi.nlm.nih.gov/pubmed/17941715
https://doi.org/10.1210/jc.2012-3582
http://www.ncbi.nlm.nih.gov/pubmed/23533241
https://doi.org/10.1097/01.ede.0000222409.00878.37
http://www.ncbi.nlm.nih.gov/pubmed/16755261
https://doi.org/10.1016/j.jclinepi.2008.12.005
http://www.ncbi.nlm.nih.gov/pubmed/19356901
https://doi.org/10.1136/bmj.k2022
https://doi.org/10.1136/bmj.k2022
http://www.ncbi.nlm.nih.gov/pubmed/29875094
https://doi.org/10.1136/bmj.i4515
http://www.ncbi.nlm.nih.gov/pubmed/27618829
https://doi.org/10.1186/s12940-017-0238-0
https://doi.org/10.1186/s12940-017-0238-0
http://www.ncbi.nlm.nih.gov/pubmed/28376798
https://doi.org/10.1136/oemed-2013-101754
http://www.ncbi.nlm.nih.gov/pubmed/24816517
https://doi.org/10.1016/S2468-2667(17)30212-8
http://www.ncbi.nlm.nih.gov/pubmed/29307385
http://www.ncbi.nlm.nih.gov/pubmed/2262266
https://doi.org/10.1002/14651858.CD003362.pub2
https://doi.org/10.1002/14651858.CD003362.pub2
http://www.ncbi.nlm.nih.gov/pubmed/19370585
http://www.handbook-5-1.cochrane.org
http://www.handbook-5-1.cochrane.org
https://doi.org/10.1371/journal.pmed.1000100
https://doi.org/10.1371/journal.pmed.1000100
http://www.ncbi.nlm.nih.gov/pubmed/19621070
http://www.ncbi.nlm.nih.gov/pubmed/10789670
https://doi.org/10.1371/journal.pmed.1002742


17. Hoffmann S, de Vries RBM, Stephens ML, Beck NB, Dirven H, Fowle JR 3rd, et al. A primer on sys-

tematic reviews in toxicology. Arch Toxicol. 2017; 91(7):2551–75. https://doi.org/10.1007/s00204-

017-1980-3 PMID: 28501917

18. Mueller M, D’Addario M, Egger M, Cevallos M, Dekkers O, Mugglin C, et al. Methods to systematically

review and meta-analyse observational studies: a systematic scoping review of recommendations.

BMC Med Res Methodol. 2018; 18(1):44. https://doi.org/10.1186/s12874-018-0495-9 PMID:

29783954

19. Morgan RL, Whaley P, Thayer KA, Schunemann HJ. Identifying the PECO: A framework for formulat-

ing good questions to explore the association of environmental and other exposures with health out-

comes. Environ Int. 2018. 121(Pt 1):1027–1031 https://doi.org/10.1016/j.envint.2018.07.015 PMID:

30166065

20. Dekkers OM, von Elm E, Algra A, Romijn JA, Vandenbroucke JP. How to assess the external validity

of therapeutic trials: a conceptual approach. Int J Epidemiol. 2010; 39(1):89–94. https://doi.org/10.

1093/ije/dyp174 PMID: 19376882

21. Burgers AM, Biermasz NR, Schoones JW, Pereira AM, Renehan AG, Zwahlen M, et al. Meta-analysis

and dose-response metaregression: circulating insulin-like growth factor I (IGF-I) and mortality. J Clin

Endocrinol Metab. 2011; 96(9):2912–20. https://doi.org/10.1210/jc.2011-1377 PMID: 21795450

22. Amitay EL, Keinan-Boker L. Breastfeeding and Childhood Leukemia Incidence: A Meta-analysis and

Systematic Review. JAMA Pediatr. 2015; 169(6):e151025. https://doi.org/10.1001/jamapediatrics.

2015.1025 PMID: 26030516

23. Cooper GS, Lunn RM, Agerstrand M, Glenn BS, Kraft AD, Luke AM, et al. Study sensitivity: Evaluating

the ability to detect effects in systematic reviews of chemical exposures. Environ Int. 2016; 92–

93:605–10. https://doi.org/10.1016/j.envint.2016.03.017 PMID: 27156196

24. Gast KB, Tjeerdema N, Stijnen T, Smit JW, Dekkers OM. Insulin resistance and risk of incident cardio-

vascular events in adults without diabetes: meta-analysis. PLoS ONE. 2012; 7(12):e52036. https://doi.

org/10.1371/journal.pone.0052036 PMID: 23300589

25. Vandenbroucke JP. When are observational studies as credible as randomised trials? Lancet. 2004;

363(9422):1728–31. https://doi.org/10.1016/S0140-6736(04)16261-2 PMID: 15158638

26. Blair A, Stewart P, Lubin JH, Forastiere F. Methodological issues regarding confounding and exposure

misclassification in epidemiological studies of occupational exposures. Am J Ind Med. 2007; 50

(3):199–207. https://doi.org/10.1002/ajim.20281 PMID: 17096363

27. Booth A, Clarke M, Dooley G, Ghersi D, Moher D, Petticrew M, et al. The nuts and bolts of PROS-

PERO: an international prospective register of systematic reviews. Syst Rev. 2012; 1:2. https://doi.

org/10.1186/2046-4053-1-2 PMID: 22587842

28. McGowan J, Sampson M. Systematic reviews need systematic searchers. J Med Libr Assoc. 2005; 93

(1):74–80. PMID: 15685278

29. Greenhalgh T, Peacock R. Effectiveness and efficiency of search methods in systematic reviews of

complex evidence: audit of primary sources. BMJ. 2005; 331(7524):1064–5. https://doi.org/10.1136/

bmj.38636.593461.68 PMID: 16230312

30. Kuper H, Nicholson A, Hemingway H. Searching for observational studies: what does citation tracking

add to PubMed? A case study in depression and coronary heart disease. BMC Med Res Methodol.

2006; 6:4. https://doi.org/10.1186/1471-2288-6-4 PMID: 16483366

31. Lemeshow AR, Blum RE, Berlin JA, Stoto MA, Colditz GA. Searching one or two databases was insuf-

ficient for meta-analysis of observational studies. J Clin Epidemiol. 2005; 58(9):867–73. https://doi.

org/10.1016/j.jclinepi.2005.03.004 PMID: 16085190

32. Waffenschmidt S, Hermanns T, Gerber-Grote A, Mostardt S. No suitable precise or optimized epide-

miologic search filters were available for bibliographic databases. J Clin Epidemiol. 2017; 82:112–8.

https://doi.org/10.1016/j.jclinepi.2016.08.008 PMID: 27570049

33. von Elm E, Poglia G, Walder B, Tramer MR. Different patterns of duplicate publication: an analysis of

articles used in systematic reviews. JAMA. 2004; 291(8):974–80. https://doi.org/10.1001/jama.291.8.

974 PMID: 14982913

34. Berlin JA. Invited commentary: benefits of heterogeneity in meta-analysis of data from epidemiologic

studies. Am J Epidemiol. 1995; 142(4):383–7. PMID: 7625402

35. Tendal B, Higgins JP, Juni P, Hrobjartsson A, Trelle S, Nuesch E, et al. Disagreements in meta-analy-

ses using outcomes measured on continuous or rating scales: observer agreement study. BMJ. 2009;

339:b3128. https://doi.org/10.1136/bmj.b3128 PMID: 19679616

36. Gotzsche PC, Hrobjartsson A, Maric K, Tendal B. Data extraction errors in meta-analyses that use

standardized mean differences. JAMA. 2007; 298(4):430–7. https://doi.org/10.1001/jama.298.4.430

PMID: 17652297

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002742 February 21, 2019 21 / 24

https://doi.org/10.1007/s00204-017-1980-3
https://doi.org/10.1007/s00204-017-1980-3
http://www.ncbi.nlm.nih.gov/pubmed/28501917
https://doi.org/10.1186/s12874-018-0495-9
http://www.ncbi.nlm.nih.gov/pubmed/29783954
https://doi.org/10.1016/j.envint.2018.07.015
http://www.ncbi.nlm.nih.gov/pubmed/30166065
https://doi.org/10.1093/ije/dyp174
https://doi.org/10.1093/ije/dyp174
http://www.ncbi.nlm.nih.gov/pubmed/19376882
https://doi.org/10.1210/jc.2011-1377
http://www.ncbi.nlm.nih.gov/pubmed/21795450
https://doi.org/10.1001/jamapediatrics.2015.1025
https://doi.org/10.1001/jamapediatrics.2015.1025
http://www.ncbi.nlm.nih.gov/pubmed/26030516
https://doi.org/10.1016/j.envint.2016.03.017
http://www.ncbi.nlm.nih.gov/pubmed/27156196
https://doi.org/10.1371/journal.pone.0052036
https://doi.org/10.1371/journal.pone.0052036
http://www.ncbi.nlm.nih.gov/pubmed/23300589
https://doi.org/10.1016/S0140-6736(04)16261-2
http://www.ncbi.nlm.nih.gov/pubmed/15158638
https://doi.org/10.1002/ajim.20281
http://www.ncbi.nlm.nih.gov/pubmed/17096363
https://doi.org/10.1186/2046-4053-1-2
https://doi.org/10.1186/2046-4053-1-2
http://www.ncbi.nlm.nih.gov/pubmed/22587842
http://www.ncbi.nlm.nih.gov/pubmed/15685278
https://doi.org/10.1136/bmj.38636.593461.68
https://doi.org/10.1136/bmj.38636.593461.68
http://www.ncbi.nlm.nih.gov/pubmed/16230312
https://doi.org/10.1186/1471-2288-6-4
http://www.ncbi.nlm.nih.gov/pubmed/16483366
https://doi.org/10.1016/j.jclinepi.2005.03.004
https://doi.org/10.1016/j.jclinepi.2005.03.004
http://www.ncbi.nlm.nih.gov/pubmed/16085190
https://doi.org/10.1016/j.jclinepi.2016.08.008
http://www.ncbi.nlm.nih.gov/pubmed/27570049
https://doi.org/10.1001/jama.291.8.974
https://doi.org/10.1001/jama.291.8.974
http://www.ncbi.nlm.nih.gov/pubmed/14982913
http://www.ncbi.nlm.nih.gov/pubmed/7625402
https://doi.org/10.1136/bmj.b3128
http://www.ncbi.nlm.nih.gov/pubmed/19679616
https://doi.org/10.1001/jama.298.4.430
http://www.ncbi.nlm.nih.gov/pubmed/17652297
https://doi.org/10.1371/journal.pmed.1002742


37. Rohner E Bolius J, da Costa RR, Trelle S. Managing people and data in systematic reviews. In: Egger

M, Davey Smith G., editor. Systematic Reviews in Health Care: Meta-analysis in Context Chichester,

England. John Wiley & Sons; 2019 (in press).

38. Grimes DA. "Case-control" confusion: mislabeled reports in obstetrics and gynecology journals.

Obstet Gynecol. 2009; 114(6):1284–6. https://doi.org/10.1097/AOG.0b013e3181c03421 PMID:

19935031

39. Nesvick CL, Thompson CJ, Boop FA, Klimo P Jr. Case-control studies in neurosurgery. J Neurosurg.

2014; 121(2):285–96. https://doi.org/10.3171/2014.5.JNS132329 PMID: 24949675

40. Renehan AG, Zwahlen M, Minder C, O’Dwyer ST, Shalet SM, Egger M. Insulin-like growth factor

(IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lan-

cet. 2004; 363(9418):1346–53. https://doi.org/10.1016/S0140-6736(04)16044-3 PMID: 15110491

41. Egger M, Schneider M, Davey Smith G. Spurious precision? Meta-analysis of observational studies.

BMJ. 1998; 316(7125):140–4. PMID: 9462324

42. Friedenreich CM, Speidel TP, Neilson HK, Langley AR, Courneya KS, Magliocco AM, et al. Case-con-

trol study of lifetime alcohol consumption and endometrial cancer risk. Cancer Causes Control. 2013;

24(11):1995–2003. https://doi.org/10.1007/s10552-013-0275-0 PMID: 23929278

43. Tourangeau R, Yan T. Sensitive questions in surveys. Psychol Bull. 2007; 133(5):859–83. https://doi.

org/10.1037/0033-2909.133.5.859 PMID: 17723033

44. Hernan MA, Hernandez-Diaz S, Robins JM. A structural approach to selection bias. Epidemiology.

2004; 15(5):615–25. PMID: 15308962

45. Sanderson S, Tatt ID, Higgins JP. Tools for assessing quality and susceptibility to bias in observational

studies in epidemiology: a systematic review and annotated bibliography. Int J Epidemiol. 2007; 36

(3):666–76. https://doi.org/10.1093/ije/dym018 PMID: 17470488

46. Austin PC. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in

Observational Studies. Multivariate Behav Res. 2011; 46(3):399–424. https://doi.org/10.1080/

00273171.2011.568786 PMID: 21818162

47. Costanza MC. Matching. Prev Med. 1995; 24(5):425–33. https://doi.org/10.1006/pmed.1995.1069

PMID: 8524715

48. Mansournia MA, Jewell NP, Greenland S. Case-control matching: effects, misconceptions, and rec-

ommendations. Eur J Epidemiol. 2018; 33(1):5–14. https://doi.org/10.1007/s10654-017-0325-0 PMID:

29101596

49. Greenland S. An introduction to instrumental variables for epidemiologists. Int J Epidemiol. 2000; 29

(4):722–9. PMID: 10922351

50. Holmes MV, Dale CE, Zuccolo L, Silverwood RJ, Guo Y, Ye Z, et al. Association between alcohol and

cardiovascular disease: Mendelian randomisation analysis based on individual participant data. BMJ.

2014; 349:g4164. https://doi.org/10.1136/bmj.g4164 PMID: 25011450

51. Lipsitch M, Tchetgen Tchetgen E, Cohen T. Negative controls: a tool for detecting confounding and

bias in observational studies. Epidemiology. 2010; 21(3):383–8. https://doi.org/10.1097/EDE.

0b013e3181d61eeb PMID: 20335814

52. Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, Shea C, et al. Brain monoamine oxidase A inhi-

bition in cigarette smokers. Proc Natl Acad Sci U S A. 1996; 93(24):14065–9. PMID: 8943061

53. Smith GD, Phillips AN, Neaton JD. Smoking as "independent" risk factor for suicide: illustration of an

artifact from observational epidemiology? Lancet. 1992; 340(8821):709–12. PMID: 1355809

54. Zaadstra BM, Chorus AM, van Buuren S, Kalsbeek H, van Noort JM. Selective association of multiple

sclerosis with infectious mononucleosis. Mult Scler. 2008; 14(3):307–13. https://doi.org/10.1177/

1352458507084265 PMID: 18208871

55. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collabora-

tion’s tool for assessing risk of bias in randomised trials. BMJ. 2011; 343:d5928. https://doi.org/10.

1136/bmj.d5928 PMID: 22008217

56. Sterne JA, Hernan MA, Reeves BC, Savovic J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool

for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016; 355:i4919. https://

doi.org/10.1136/bmj.i4919 PMID: 27733354

57. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised

tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011; 155(8):529–36.

https://doi.org/10.7326/0003-4819-155-8-201110180-00009 PMID: 22007046

58. Morgan RL, Thayer KA, Santesso N, Holloway AC, Blain R, Eftim SE, et al. Evaluation of the risk of

bias in non-randomized studies of interventions (ROBINS-I) and the ’target experiment’ concept in

studies of exposures: Rationale and preliminary instrument development. Environ Int. 2018; 120:382–

7. https://doi.org/10.1016/j.envint.2018.08.018 PMID: 30125855

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002742 February 21, 2019 22 / 24

https://doi.org/10.1097/AOG.0b013e3181c03421
http://www.ncbi.nlm.nih.gov/pubmed/19935031
https://doi.org/10.3171/2014.5.JNS132329
http://www.ncbi.nlm.nih.gov/pubmed/24949675
https://doi.org/10.1016/S0140-6736(04)16044-3
http://www.ncbi.nlm.nih.gov/pubmed/15110491
http://www.ncbi.nlm.nih.gov/pubmed/9462324
https://doi.org/10.1007/s10552-013-0275-0
http://www.ncbi.nlm.nih.gov/pubmed/23929278
https://doi.org/10.1037/0033-2909.133.5.859
https://doi.org/10.1037/0033-2909.133.5.859
http://www.ncbi.nlm.nih.gov/pubmed/17723033
http://www.ncbi.nlm.nih.gov/pubmed/15308962
https://doi.org/10.1093/ije/dym018
http://www.ncbi.nlm.nih.gov/pubmed/17470488
https://doi.org/10.1080/00273171.2011.568786
https://doi.org/10.1080/00273171.2011.568786
http://www.ncbi.nlm.nih.gov/pubmed/21818162
https://doi.org/10.1006/pmed.1995.1069
http://www.ncbi.nlm.nih.gov/pubmed/8524715
https://doi.org/10.1007/s10654-017-0325-0
http://www.ncbi.nlm.nih.gov/pubmed/29101596
http://www.ncbi.nlm.nih.gov/pubmed/10922351
https://doi.org/10.1136/bmj.g4164
http://www.ncbi.nlm.nih.gov/pubmed/25011450
https://doi.org/10.1097/EDE.0b013e3181d61eeb
https://doi.org/10.1097/EDE.0b013e3181d61eeb
http://www.ncbi.nlm.nih.gov/pubmed/20335814
http://www.ncbi.nlm.nih.gov/pubmed/8943061
http://www.ncbi.nlm.nih.gov/pubmed/1355809
https://doi.org/10.1177/1352458507084265
https://doi.org/10.1177/1352458507084265
http://www.ncbi.nlm.nih.gov/pubmed/18208871
https://doi.org/10.1136/bmj.d5928
https://doi.org/10.1136/bmj.d5928
http://www.ncbi.nlm.nih.gov/pubmed/22008217
https://doi.org/10.1136/bmj.i4919
https://doi.org/10.1136/bmj.i4919
http://www.ncbi.nlm.nih.gov/pubmed/27733354
https://doi.org/10.7326/0003-4819-155-8-201110180-00009
http://www.ncbi.nlm.nih.gov/pubmed/22007046
https://doi.org/10.1016/j.envint.2018.08.018
http://www.ncbi.nlm.nih.gov/pubmed/30125855
https://doi.org/10.1371/journal.pmed.1002742


59. da Costa BR, Hilfiker R, Egger M. PEDro’s bias: summary quality scores should not be used in meta-

analysis. J Clin Epidemiol. 2013; 66(1):75–7. https://doi.org/10.1016/j.jclinepi.2012.08.003 PMID:

23177896

60. Juni P, Witschi A, Bloch R, Egger M. The hazards of scoring the quality of clinical trials for meta-analy-

sis. JAMA. 1999; 282(11):1054–60. PMID: 10493204

61. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonran-

domized studies in meta-analyses. Eur J Epidemiol. 2010; 25(9):603–5. https://doi.org/10.1007/

s10654-010-9491-z PMID: 20652370

62. Turner EH, Matthews AM, Linardatos E, Tell RA, Rosenthal R. Selective publication of antidepressant

trials and its influence on apparent efficacy. N Engl J Med. 2008; 358(3):252–60. https://doi.org/10.

1056/NEJMsa065779 PMID: 18199864

63. Roest AM, de Jonge P, Williams CD, de Vries YA, Schoevers RA, Turner EH. Reporting Bias in Clini-

cal Trials Investigating the Efficacy of Second-Generation Antidepressants in the Treatment of Anxiety

Disorders: A Report of 2 Meta-analyses. JAMA Psychiatry. 2015; 72(5):500–10. https://doi.org/10.

1001/jamapsychiatry.2015.15 PMID: 25806940

64. Head ML, Holman L, Lanfear R, Kahn AT, Jennions MD. The extent and consequences of p-hacking

in science. PLoS Biol. 2015; 13(3):e1002106. https://doi.org/10.1371/journal.pbio.1002106 PMID:

25768323

65. Althuis MD, Weed DL, Frankenfeld CL. Evidence-based mapping of design heterogeneity prior to

meta-analysis: a systematic review and evidence synthesis. Syst Rev. 2014; 3:80. https://doi.org/10.

1186/2046-4053-3-80 PMID: 25055879

66. Davey Smith G, Egger M, Phillips AN. Meta-analysis. Beyond the grand mean? BMJ. 1997; 315

(7122):1610–4. PMID: 9437284

67. Feller M, Huwiler K, Stephan R, Altpeter E, Shang A, Furrer H, et al. Mycobacterium avium subspecies

paratuberculosis and Crohn’s disease: a systematic review and meta-analysis. Lancet Infect Dis.

2007; 7(9):607–13. https://doi.org/10.1016/S1473-3099(07)70211-6 PMID: 17714674

68. Bartholomew LL, Grimes DA. The alleged association between induced abortion and risk of breast

cancer: biology or bias? Obstet Gynecol Surv. 1998; 53(11):708–14. PMID: 9812330

69. Ioannidis JP, Patsopoulos NA, Rothstein HR. Reasons or excuses for avoiding meta-analysis in forest

plots. BMJ. 2008; 336(7658):1413–5. https://doi.org/10.1136/bmj.a117 PMID: 18566080

70. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and random-

effects models for meta-analysis. Res Synth Methods. 2010; 1(2):97–111. https://doi.org/10.1002/

jrsm.12 PMID: 26061376

71. Greenland S. Invited commentary: a critical look at some popular meta-analytic methods. Am J Epide-

miol. 1994; 140(3):290–6. PMID: 8030632

72. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ.

2003; 327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557 PMID: 12958120

73. Ioannidis JP, Patsopoulos NA, Evangelou E. Uncertainty in heterogeneity estimates in meta-analyses.

BMJ. 2007; 335(7626):914–6. https://doi.org/10.1136/bmj.39343.408449.80 PMID: 17974687

74. Takkouche B, Cadarso-Suarez C, Spiegelman D. Evaluation of old and new tests of heterogeneity in

epidemiologic meta-analysis. Am J Epidemiol. 1999; 150(2):206–15. PMID: 10412966

75. Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J

Clin Epidemiol. 2001; 54(10):1046–55. PMID: 11576817

76. Sterne JA, Gavaghan D, Egger M. Publication and related bias in meta-analysis: power of statistical

tests and prevalence in the literature. J Clin Epidemiol. 2000; 53(11):1119–29. PMID: 11106885

77. Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, et al. Recommendations for examining

and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;

343:d4002. https://doi.org/10.1136/bmj.d4002 PMID: 21784880

78. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphi-

cal test. BMJ. 1997; 315(7109):629–34. PMID: 9310563

79. Higgins JP, Thompson SG. Controlling the risk of spurious findings from meta-regression. Stat Med.

2004; 23(11):1663–82. https://doi.org/10.1002/sim.1752 PMID: 15160401

80. Thompson SG, Higgins JP. How should meta-regression analyses be undertaken and interpreted?

Stat Med. 2002; 21(11):1559–73. https://doi.org/10.1002/sim.1187 PMID: 12111920

81. Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct,

and reporting. BMJ. 2010; 340:c221. https://doi.org/10.1136/bmj.c221 PMID: 20139215

82. Anzures-Cabrera J, Higgins JP. Graphical displays for meta-analysis: An overview with suggestions

for practice. Res Synth Methods. 2010; 1(1):66–80. https://doi.org/10.1002/jrsm.6 PMID: 26056093

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002742 February 21, 2019 23 / 24

https://doi.org/10.1016/j.jclinepi.2012.08.003
http://www.ncbi.nlm.nih.gov/pubmed/23177896
http://www.ncbi.nlm.nih.gov/pubmed/10493204
https://doi.org/10.1007/s10654-010-9491-z
https://doi.org/10.1007/s10654-010-9491-z
http://www.ncbi.nlm.nih.gov/pubmed/20652370
https://doi.org/10.1056/NEJMsa065779
https://doi.org/10.1056/NEJMsa065779
http://www.ncbi.nlm.nih.gov/pubmed/18199864
https://doi.org/10.1001/jamapsychiatry.2015.15
https://doi.org/10.1001/jamapsychiatry.2015.15
http://www.ncbi.nlm.nih.gov/pubmed/25806940
https://doi.org/10.1371/journal.pbio.1002106
http://www.ncbi.nlm.nih.gov/pubmed/25768323
https://doi.org/10.1186/2046-4053-3-80
https://doi.org/10.1186/2046-4053-3-80
http://www.ncbi.nlm.nih.gov/pubmed/25055879
http://www.ncbi.nlm.nih.gov/pubmed/9437284
https://doi.org/10.1016/S1473-3099(07)70211-6
http://www.ncbi.nlm.nih.gov/pubmed/17714674
http://www.ncbi.nlm.nih.gov/pubmed/9812330
https://doi.org/10.1136/bmj.a117
http://www.ncbi.nlm.nih.gov/pubmed/18566080
https://doi.org/10.1002/jrsm.12
https://doi.org/10.1002/jrsm.12
http://www.ncbi.nlm.nih.gov/pubmed/26061376
http://www.ncbi.nlm.nih.gov/pubmed/8030632
https://doi.org/10.1136/bmj.327.7414.557
http://www.ncbi.nlm.nih.gov/pubmed/12958120
https://doi.org/10.1136/bmj.39343.408449.80
http://www.ncbi.nlm.nih.gov/pubmed/17974687
http://www.ncbi.nlm.nih.gov/pubmed/10412966
http://www.ncbi.nlm.nih.gov/pubmed/11576817
http://www.ncbi.nlm.nih.gov/pubmed/11106885
https://doi.org/10.1136/bmj.d4002
http://www.ncbi.nlm.nih.gov/pubmed/21784880
http://www.ncbi.nlm.nih.gov/pubmed/9310563
https://doi.org/10.1002/sim.1752
http://www.ncbi.nlm.nih.gov/pubmed/15160401
https://doi.org/10.1002/sim.1187
http://www.ncbi.nlm.nih.gov/pubmed/12111920
https://doi.org/10.1136/bmj.c221
http://www.ncbi.nlm.nih.gov/pubmed/20139215
https://doi.org/10.1002/jrsm.6
http://www.ncbi.nlm.nih.gov/pubmed/26056093
https://doi.org/10.1371/journal.pmed.1002742


83. Ford N, Mills EJ, Egger M. Editorial commentary: immunodeficiency at start of antiretroviral therapy:

the persistent problem of late presentation to care. Clin Infect Dis. 2015; 60(7):1128–30. https://doi.

org/10.1093/cid/ciu1138 PMID: 25516184

84. Vandenbroucke JP, Pearce N. Case-control studies: basic concepts. Int J Epidemiol. 2012; 41

(5):1480–9. https://doi.org/10.1093/ije/dys147 PMID: 23045208

85. Knol MJ, Vandenbroucke JP, Scott P, Egger M. What do case-control studies estimate? Survey of

methods and assumptions in published case-control research. Am J Epidemiol. 2008; 168(9):1073–

81. https://doi.org/10.1093/aje/kwn217 PMID: 18794220

86. Chinn S. A simple method for converting an odds ratio to effect size for use in meta-analysis. Stat

Med. 2000; 19(22):3127–31. PMID: 11113947

87. Cleophas TJ, Zwinderman AH. Transforming Odds Ratios into Correlation Coefficients. In: Modern

Meta-Analysis Springer, Cham. 2017.

88. da Costa BR, Rutjes AW, Johnston BC, Reichenbach S, Nuesch E, Tonia T, et al. Methods to convert

continuous outcomes into odds ratios of treatment response and numbers needed to treat: meta-epi-

demiological study. Int J Epidemiol. 2012; 41(5):1445–59. https://doi.org/10.1093/ije/dys124 PMID:

23045205

89. Gielen C, Dekkers O, Stijnen T, Schoones J, Brand A, Klautz R, et al. The effects of pre- and postoper-

ative fibrinogen levels on blood loss after cardiac surgery: a systematic review and meta-analysis.

Interact Cardiovasc Thorac Surg. 2014; 18(3):292–8. https://doi.org/10.1093/icvts/ivt506 PMID:

24316606

90. Hartemink N, Boshuizen HC, Nagelkerke NJ, Jacobs MA, van Houwelingen HC. Combining risk esti-

mates from observational studies with different exposure cutpoints: a meta-analysis on body mass

index and diabetes type 2. Am J Epidemiol. 2006; 163(11):1042–52. https://doi.org/10.1093/aje/

kwj141 PMID: 16611666

91. Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data,

with applications to meta-analysis. Am J Epidemiol. 1992; 135(11):1301–9. PMID: 1626547

92. Balshem H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, Brozek J, et al. GRADE guidelines: 3.

Rating the quality of evidence. J Clin Epidemiol. 2011; 64(4):401–6. https://doi.org/10.1016/j.jclinepi.

2010.07.015 PMID: 21208779

93. Morgan RL, Thayer KA, Bero L, Bruce N, Falck-Ytter Y, Ghersi D, et al. GRADE: Assessing the quality

of evidence in environmental and occupational health. Environ Int. 2016; 92–93:611–6. https://doi.org/

10.1016/j.envint.2016.01.004 PMID: 26827182

94. Wensley F, Gao P, Burgess S, Kaptoge S, Di Angelantonio E, Shah T, et al. Association between C

reactive protein and coronary heart disease: mendelian randomisation analysis based on individual

participant data. BMJ. 2011; 342:d548. https://doi.org/10.1136/bmj.d548 PMID: 21325005

95. Smith GD, Ebrahim S. Mendelian randomization: prospects, potentials, and limitations. Int J Epide-

miol. 2004; 33(1):30–42. https://doi.org/10.1093/ije/dyh132 PMID: 15075143

96. Boef AG, le Cessie S, Dekkers OM. Mendelian randomization studies in the elderly. Epidemiology.

2015; 26(2):e15–6. https://doi.org/10.1097/EDE.0000000000000243 PMID: 25643110

97. Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: a guide, glos-

sary, and checklist for clinicians. BMJ. 2018; 362:k601. https://doi.org/10.1136/bmj.k601 PMID:

30002074

98. Lawlor DA, Tilling K, Davey Smith G. Triangulation in aetiological epidemiology. Int J Epidemiol. 2016;

45(6):1866–86. https://doi.org/10.1093/ije/dyw314 PMID: 28108528

99. Vandenbroucke JP. Commentary: ’Smoking and lung cancer’—the embryogenesis of modern epide-

miology. Int J Epidemiol. 2009; 38(5):1193–6. https://doi.org/10.1093/ije/dyp292 PMID: 19773412

100. Maclure M. Demonstration of deductive meta-analysis: ethanol intake and risk of myocardial infarction.

Epidemiol Rev. 1993; 15(2):328–51. PMID: 8174661

101. Renehan AG, Zwahlen M, Egger M. Adiposity and cancer risk: new mechanistic insights from epidemi-

ology. Nature Rev Cancer. 2015; 15(8):484–98.

102. Greenland S. Epidemiologic measures and policy formulation: lessons from potential outcomes.

Emerging Themes Epidemiol. 2005; 2:5.

103. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a

systematic review and meta-analysis of prospective observational studies. Lancet. 2008; 371

(9612):569–78. https://doi.org/10.1016/S0140-6736(08)60269-X PMID: 18280327

104. Hernan MA, Taubman SL. Does obesity shorten life? The importance of well-defined interventions to

answer causal questions. Int J Obes. 2008; 32 Suppl 3:S8–14.

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002742 February 21, 2019 24 / 24

https://doi.org/10.1093/cid/ciu1138
https://doi.org/10.1093/cid/ciu1138
http://www.ncbi.nlm.nih.gov/pubmed/25516184
https://doi.org/10.1093/ije/dys147
http://www.ncbi.nlm.nih.gov/pubmed/23045208
https://doi.org/10.1093/aje/kwn217
http://www.ncbi.nlm.nih.gov/pubmed/18794220
http://www.ncbi.nlm.nih.gov/pubmed/11113947
https://doi.org/10.1093/ije/dys124
http://www.ncbi.nlm.nih.gov/pubmed/23045205
https://doi.org/10.1093/icvts/ivt506
http://www.ncbi.nlm.nih.gov/pubmed/24316606
https://doi.org/10.1093/aje/kwj141
https://doi.org/10.1093/aje/kwj141
http://www.ncbi.nlm.nih.gov/pubmed/16611666
http://www.ncbi.nlm.nih.gov/pubmed/1626547
https://doi.org/10.1016/j.jclinepi.2010.07.015
https://doi.org/10.1016/j.jclinepi.2010.07.015
http://www.ncbi.nlm.nih.gov/pubmed/21208779
https://doi.org/10.1016/j.envint.2016.01.004
https://doi.org/10.1016/j.envint.2016.01.004
http://www.ncbi.nlm.nih.gov/pubmed/26827182
https://doi.org/10.1136/bmj.d548
http://www.ncbi.nlm.nih.gov/pubmed/21325005
https://doi.org/10.1093/ije/dyh132
http://www.ncbi.nlm.nih.gov/pubmed/15075143
https://doi.org/10.1097/EDE.0000000000000243
http://www.ncbi.nlm.nih.gov/pubmed/25643110
https://doi.org/10.1136/bmj.k601
http://www.ncbi.nlm.nih.gov/pubmed/30002074
https://doi.org/10.1093/ije/dyw314
http://www.ncbi.nlm.nih.gov/pubmed/28108528
https://doi.org/10.1093/ije/dyp292
http://www.ncbi.nlm.nih.gov/pubmed/19773412
http://www.ncbi.nlm.nih.gov/pubmed/8174661
https://doi.org/10.1016/S0140-6736(08)60269-X
http://www.ncbi.nlm.nih.gov/pubmed/18280327
https://doi.org/10.1371/journal.pmed.1002742

