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ABSTRACT
The prevalence of clouds in currently observable exoplanetary atmospheres motivates the
compilation and calculation of their optical properties. First, we present a new open-source
Mie scattering code known as LX-MIE, which is able to consider large-size parameters (∼107)
using a single computational treatment. We validate LX-MIE against the classical MIEVO code as
well as previous studies. Secondly, we embark on an expanded survey of the published literature
for both the real and imaginary components of the refractive indices of 32 condensate species.
As much as possible, we rely on experimental measurements of the refractive indices and
resort to obtaining the real from the imaginary component (or vice versa), via the Kramers–
Kronig relation, only in the absence of data. We use these refractive indices as input for
LX-MIE to compute the absorption, scattering and extinction efficiencies of all 32 condensate
species. Finally, we use a three-parameter function to provide convenient fits to the shape
of the extinction efficiency curve. We show that the errors associated with these simple fits
in the Wide Field Camera 3 (WFC3), J, H, and K wavebands are ∼10 per cent. These fits allow
for the extinction cross-section or opacity of the condensate species to be easily included
in retrieval analyses of transmission spectra. We discuss prospects for future experimental
work. The compilation of the optical constants and LX-MIE is publicly available as part of the
open-source Exoclime Simulation Platform (http://www.exoclime.org).

Key words: planets and satellites: atmospheres – planets and satellites: gaseous planets –
brown dwarfs.

1 IN T RO D U C T I O N

Clouds and hazes are expected to be commonplace (Marley
et al. 2013) and have been observationally established to be
prevalent in currently observable exoplanetary atmospheres (Pont
et al. 2008; Sing et al. 2016), with the degree of cloudiness being
tentatively correlated with gravity and temperature (Heng 2016;
Stevenson et al. 2016). These findings motivate the inclusion of
the effects of these clouds and hazes into retrieval analyses of
the spectra of exoplanetary atmospheres. Cloud and haze for-
mation from first principles is a challenging topic (e.g. Helling,
Woitke & Thi 2008), but once they are formed their effects on the
spectrum is a well-understood phenomenon as long as their optical
properties are known, because the absorption, scattering, and ex-
tinction efficiencies may be computed using Mie theory (e.g. van
de Hulst 1957; Pierrehumbert 2010), as we aim to do in the current
study. Effectively, a problem involving particle kinetics embedded
in a magnetized fluid reduces to an optics problem. This reasoning
motivates the compilation of a library of refractive indices and the
calculation of the corresponding absorption, scattering, and extinc-
tion efficiencies.
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In this study, we survey the published literature to obtain the
measured real and imaginary components of the refractive indices
of 32 condensate species. This expands upon the 20 species consid-
ered by Wakeford & Sing (2015). A subset of 12 species from the
compilation of Wakeford & Sing (2015) has recently been used by
Pinhas & Madhusudhan (2017) to obtain extinction cross-sections
of potential condensates and their spectral signatures. In this work,
we also revise some of their used optical constants by using al-
ternative data sources (e.g. for TiO2). We especially also include
condensates that are expected to form in carbon-rich environments,
such as, for example, TiC.

Additionally, we try to cover the entire wavelength range from
the ultraviolet to the far-infrared for each species, which makes
the compilation suitable for atmospheric modelling and simulat-
ing spectra. Heating from the star extends into the ultraviolet
(e.g. the Lyα line at 0.12 μm), and for the purpose of radia-
tive transfer it is essential to compute the extinction of starlight
across depth or pressure. The presence of condensates could al-
ter this extinction profile, which is why it is necessary to have
extinction efficiencies to ∼0.1 μm. On the other hand, exoplan-
etary atmospheres emit thermally at peak wavelengths ∼1 μm
(T/1000 K) and also longward of these wavelengths. To enforce
radiative equilibrium requires that one is able to integrate the flux
over all wavelengths, down into the long-wavelength tail of the
thermal distribution. The presence of condensates could alter the

C© 2017 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/475/1/94/4712225 by U
niversitaetsbibliothek Bern user on 20 February 2019

http://www.exoclime.org
mailto:daniel.kitzmann@csh.unibe.ch
mailto:kevin.heng@csh.unibe.ch


Optical properties of condensates 95

profile of the flux across wavelength, and it is necessary to be
able to compute extinction efficiencies to wavelengths as red as
∼10–100 μm.

We use these refractive indices as input for a newly constructed
Mie scattering code, LX-MIE, which we use to compute the absorp-
tion, scattering, and extinction efficiencies of these 32 condensate
species. Based on the reasoning that the extinction efficiency curve
has a somewhat general shape (e.g. Pierrehumbert 2010), we fit a
simple three-parameter function to it and quantify the errors asso-
ciated with the fit in the WFC3, J, H, and K wavebands for all 32
species. These empirical fits allow for the cross-section or opacity
of these 32 condensate species to be easily included in retrieval
analysis of transmission spectra, as was done by Lee, Heng & Irwin
(2013), Lavie et al. (2017), Oreshenko et al. (2017), and Tsiaras
et al. (2017).

In Section 2, we first briefly review Mie theory as a prelude to
describing the improved computational method for our LX-MIE code
in Section 3. Our compilation and treatment of optical constants are
described in Section 4. We present the three-parameter fits of the
extinction efficiencies in Section 5, and finally discuss prospects for
future work in Section 6.

2 R E V I E W O F MI E T H E O RY

To calculate the optical properties of potential condensates, we use
Mie theory (Mie 1908), assuming a spherical particle shape. For
these calculations, we constructed a new Mie scattering code that is
especially designed to handle situations with large-size parameters.
Publicly available Mie codes, such as the well-known MIEVO code by
Wiscombe (1980, 1979), are validated only for size parameters of
the order of 104. This, for example, is insufficient to treat particles
with radii of 1000 μm at ultraviolet wavelengths. Such large parti-
cles are, for example, found in the atmosphere of Earth in the form
of ice crystals (Schmitt et al. 2016). Large particle sizes can usually
be expected if clouds form from the major atmospheric constituent.
If such an atmosphere becomes supersaturated, cloud particles can
grow quickly due to the huge amount of available, condensible ma-
terial. For example, Colaprete & Toon (2003) estimated that the
mean size of CO2 ice particles in a carbon dioxide-dominated at-
mosphere of early Mars would be 1000 μm. Other astrophysical
environments where large dust particles are known to exist are pro-
toplanetary discs. The dust grains in these discs can easily grow
to sizes in the centimetre range (Birnstiel, Klahr & Ercolano 2012;
Mordasini 2014).

While geometric optics approximations can be used to determine
the optical properties of large particles, it would be preferable to
have a Mie code, able to describe the entire wavelength range of
interest without needing to switch to different approximations at
certain wavelengths and particle sizes. The Mie scattering code
described in the following can easily handle size parameters of the
order of 107 and higher, including the calculation of the scattering
and absorption efficiencies, asymmetry parameter, as well as the
scattering phase function and its Legendre moments.

Condensates in astrophysical environments are probably not
spherical but rather fractal-like structures. However, in situ mea-
surements of the actual particle shapes in these environments
are unavailable. Furthermore, the scattering properties of such
non-spherical particles are extremely computationally demanding
(Rother 2009). Thus, for simplicity, we employ the approximation
of spherical particles in the following. Mie theory can also be used
to approximate the optical properties of non-spherical or fractal
particles. This was done, for example, for fractal haze particles

in the atmosphere of the early Earth by Arney et al. (2016) or to
describe non-spherical water ice cloud crystals in Earth-like atmo-
spheres by Kitzmann et al. (2010).

With the assumption of spherical particles the cross-sections for
a distinct particle radius a and wavelength λ are then given by (van
de Hulst 1957; Bohren & Huffman 1998)

Cext(a, λ) = 2 πa2

x2

∞∑
n=1

(2n + 1)Re (an(m(λ), x) + bn(m(λ), x)) ,

Csca(a, λ) = 2 πa2

x2

∞∑
n=1

(2n + 1)

× (|an(m(λ), x)|2 + |bn(m(λ), x)|2) ,

Cabs(a, λ) = Cext(a, λ) − Csca(a, λ) (1)

with the dimensionless size parameter

x = 2 πa

λ
. (2)

The Mie coefficients an(m(λ), x) and bn(m(λ), x) are defined with
respect to the wavelength-dependent complex refractive index

m(λ) = n(λ) − ik(λ) (3)

of the considered material.1 For a monodisperse population of con-
densates, it is convenient to specify the dimensionless efficiencies,

Q = C

πa2
, (4)

instead of the corresponding cross-sections.

2.1 Scattering phase function

To quantify the role of scattered radiation for, for example, the scat-
tering greenhouse effect of cloud particles in extrasolar planetary
atmospheres, the corresponding angular distribution of the scattered
radiation has to be specified by a scattering phase function p(a, α),
which describes the probability of a photon to be scattered with a
scattering angle α. The Mie intensity functions i1(a, α) and i2(a, α)

i1(a, α) =
∣∣∣∣∣

∞∑
n=1

2n + 1

n(n + 1)
[an(m, x)πn(α) + bn(m, x)τn(α)]

∣∣∣∣∣
2

,

i2(a, α) =
∣∣∣∣∣

∞∑
n=1

2n + 1

n(n + 1)
[an(m, x)τn(α) + bn(m, x)πn(α)]

∣∣∣∣∣
2

(5)

are used for the description of p(a, α). The angular eigenfunctions
πn(a, α) and τ n(a, α) are defined as

πn(a, α) = P 1
n (cos α)

sin α
and τn(a, α) = dP 1

n (cos α)

dα
, (6)

where P j
n are the associated Legendre polynomials. The scattering

phase function p(a, α) is given in terms of these intensities by2

p(a, α) = λ2

2 π

i1(a, α) + i2(a, α)

Csca(a)
. (7)

1 In the following, we are dropping the λ for the simplification of notation.
2 We note that the phase function defined here corresponds to Wiscombe
(1980) but it differs from that given in van de Hulst (1957) or Bohren &
Huffman (1998) by a factor of 4 π.
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It can also be represented as a series of Legendre polynomials
(Chandrasekhar 1960)

p(a, α) =
∞∑

n=0

(2n + 1)P 0
n (cos α)χn(a), (8)

with

χn(a) = 1

2

∫ 1

−1
p(a, α)P 0

n (cos α)d cos α. (9)

In practise, the phase function expansion series is truncated at
n = Nmax where the χNmax (a) becomes numerically zero.

The asymmetry parameter g(a) is another important parameter to
characterize the scattering properties of cloud particles. It is defined
as the mean cosine of the scattering angle

g(a) = 〈cos α〉 = 1

2

∫ π

0
p(α) cos(α) sin(α)dα. (10)

If more light is scattered in forward direction (α > 90◦), g is positive,
while g < 0 is obtained for dominant scattering in the backward
direction (α > 90◦). For g = 0, the phase function is symmetric
around α = 90◦ (but not necessarily isotropic). Note, that g exactly
corresponds to the χ1 moment of the Legendre series expansion (cf.
equation 9).

3 A N IM P ROV E D MI E C O D E : LX-M I E

The optical properties of spherical particles can be determined from
equation (1). The most difficult task is thereby the calculation of
the Mie coefficients an and bn, given by

an(m, x) = ψn(x)ψ ′
n(mx) − mψ ′

n(x)ψn(mx)

ζn(x)ψ ′
n(mx) − mζ ′

n(x)ψn(mx)
,

bn(m, x) = mψn(x)ψ ′
n(mx) − ψ ′

n(x)ψn(mx)

mζn(x)ψ ′
n(mx) − ζ ′

n(x)ψn(mx)
(11)

with the Riccati–Bessel functions ζ n, ψn and their corresponding
derivatives (Bohren & Huffman 1998). In the following, we first
briefly summarize the standard approach for the calculation of an

and bn. However, under certain conditions particles might reach
very large size parameters of the order of 105, which cannot be
handled by the standard Mie calculation procedure. Consequently,
we developed a new modified Mie-program code LX-MIE, especially
suited for large size parameters x. The improvements we introduced
in these Mie calculations are discussed in Section 3.2.

3.1 Standard procedure for Mie calculations

The calculation of the Mie coefficients present several computa-
tional challenges. The most important one is the calculation of
ψ ′

n(mx) and ψn(mx), which can be solved by introducing the loga-
rithmic derivative An(x) (Infeld 1947)

An(mx) = d(log ψn(mx))

d(mx)
= ψ ′

n(mx)

ψn(mx)
= − n

mx
+ Jn−1/2(mx)

Jn+1/2(mx)
,

(12)

where Jn ± 1/2 are the Bessel functions of the first kind. Using the
logarithmic derivative, the Mie coefficients can be re-written in the
following form:

an(m, x) = (An(mx)/m + n/x)ψn(x) − ψn−1(x)

(An(mx)/m + n/x)ζn(x) − ζn−1(x)
,

bn(m, x) = (mAn(mx) + n/x)ψn(x) − ψn−1(x)

(mAn(mx) + n/x)ζn(x) − ζn−1(x)
. (13)

The logarithmic derivative An(mx) can then be obtained by an up-
ward or a downward recursion. The upward recursion is only stable
for special cases [e.g. if Im(m) is small], while the downward re-
cursion

An−1(mx) = n

mx
− 1

n
mx

+ An(mx)
(14)

is always stable (Wiscombe 1979). For a downward recursion, how-
ever, the initial value AN(mx) must be known a priori, where n = N
is the last term to be taken into account in the (in principle infinite)
Mie series. Based on numerical studies with size parameters of up
to 20 000, Wiscombe (1980) suggested the following values:

N = Ñ(x) =
⎧⎨
⎩

x + 4x1/3 + 1 0.02 ≤ x ≤ 8
x + 4.05x1/3 + 2 8 < x < 4200
x + 4x1/3 + 2 4200 ≤ x ≤ 20 000

.

(15)

This commonly used criterion for the value of N = Ñ (x) from
Wiscombe (1980) was derived empirically for x ≤ 20 000, but lacks
a clear mathematical justification. The corresponding initial value
AN(mx) for the recurrence relation is usually obtained by the con-
tinuous fraction method introduced by Lentz (1976).3 The Riccati–
Bessel functions ζ n(x) and ψn(x) = Re ζ n(x) are calculated by an
upward recursion (Abramowitz & Stegun 1972), i.e.

ζn+1(x) = 2n + 1

x
ζn(x) − ζn−1(x). (16)

This recursion, however, is not always stable, especially if n 

x numerical errors start to dominate the calculations making the
upward recursion unstable.

3.2 Improved Mie calculations for large-size parameters

To perform Mie calculations for large size parameters, the method
to calculate the Riccati–Bessel functions in the Mie coefficients has
to be improved. Therefore, following Shen & Cai (2005), we write
the Mie coefficients an and bn in the form

an(m, x) = Bn(x)
An(mx)/m − An(x)

An(mx)/m − Cn(x)
,

bn(m, x) = Bn(x)
An(mx)m − An(x)

An(mx)m − Cn(x)
(17)

with

Bn(x) = ψn(x)

ζn(x)
,

Cn(x) = ζ ′
n(x)

ζn(x)
. (18)

In this formulation, the Mie coefficients are only functions of ra-
tios of Riccati–Bessel functions and their derivatives. Thus, the
direct calculation of single Riccati–Bessel functions is completely
avoided. The computation of these ratios is numerically much more
stable than that of single Riccati–Bessel functions, which results
in higher accuracy and computational stability for large x and n.
Therefore, large size parameters of, for example, x = 106 can be
used without numerical problems in our Mie calculations.

3 We note that in principle An(mx) can be calculated with the continuous
fractions from Lentz (1976) for any value of n, but the recurrence relation
equation (14) is computationally much faster.
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The ratios Bn(x) and Cn(x) also obey recurrence relations, namely

Bn(x) = Bn−1(x)
Cn(x) + n/x

An(x) + n/x
,

Cn(x) = −n

x
+ 1

n
x

− Cn−1(x)
. (19)

Both ratios are calculated here via upward recursions, starting with

B1(x) =
(

1 + i
cos x + x sin x

sin x − x cos x

)−1

and

C0(x) = −i. (20)

The coefficients An(mx) and An(x) are again calculated via the down-
ward recurrence equation (14), and its initial values AN(mx) and
AN(x) are obtained from the continuous fraction method after Lentz
(1976).

To obtain a non-empirical criterion for the value of N = N(x) in
the case of large x, we adopt the method published by Cachorro &
Salcedo (1991). They proved mathematically that the convergence
properties of the Mie series depend almost completely on the ratios
Bn(x) in equation (17). Based on their findings they concluded that
the truncation criterion for the series (i.e. the value of N) as a
function of the desired accuracy ε is given by

|Im ζN (x)| ≥
√

ε−1, (21)

considering the fact Re ζ n(x) = ψn(x) is negligible compared to
Im ζ n(x) for large values of n. For their general relation of the
truncation criterion

N = Ñ (x) = x + c × x1/3, (22)

they derived the constants c for several values of ε. For our Mie
calculations, we adopt their value of c = 4.3, which corresponds to
ε = 10−8.

However, both the criteria of Wiscombe (1980) and of
Cachorro & Salcedo (1991) are only functions of the size parameter
x and do not depend on the refractive index m. As discussed by Ca-
chorro & Salcedo (1991), the conclusion of Ñ being only a function
of x is not universally true. In extremely rare cases resonant terms
can exist in the Mie series (depending on m), which invalidates the
assumption that Ñ is a function of x only. In order for these reso-
nance effects to appear in the Mie series, x and m would have to
be fine tuned with very high precision (Cachorro & Salcedo 1991).
Therefore, it is unlikely to encounter such resonances in practical
Mie calculations by coincidence.

With given Mie coefficients, the remaining calculations are
straightforward. For the Mie intensities (equation 5), the angular
eigenfunctions πn(a, α) and τ n(a, α) can also be written as re-
currence relations, which are calculated via upward recursion (see
Wiscombe 1979 for details). To calculate the moments of the Leg-
endre series expansion of the scattering phase function (equation 9),
the procedure from Dave (1970) can be used. The newly developed
Mie scattering code LX-MIE has been applied to various test examples
for validation (see Appendix A).

4 O P T I C A L C O N S TA N T S

In this section, we describe a new collection of optical constants,
the real part n and the imaginary part k of the refractive index,
for a broad set of potential condensates expected in extrasolar gas
planets.

Previously, a set of optical constants for 20 species was pub-
lished by Wakeford & Sing (2015). We here extend and revise

their published optical constants by including more dust species
and exploring other data sources to obtain refractive indices over a
broad wavelength range from the ultraviolet to the far-infrared.
The only two species that have the same optical constants in
Wakeford & Sing (2015) and this publication are KCl and NaCl.
We note that the data set for the refractive index of TiO2 (Kangar-
loo & Rafizadeh 2010a,b) used by Wakeford & Sing (2015) has
been retracted by the corresponding journal and, thus, requires re-
vision. We especially focus on amorphous condensates, which are
probably the more common form of dust particles in astrophysical
environments. In addition to Wakeford & Sing (2015), we also take
anisotropic crystals and temperature-dependent refractive indices
into account, if the corresponding data is available.

Our list includes several common silicates, oxides, sulfides, chlo-
rides, but also carbon bearing condensates. We also include some
solid solutions of the olivine and pyroxene groups. Most of the
optical constants are given from the ultraviolet to the far-infrared
range of wavelengths, which makes them suitable to be included in
atmospheric models or to study their impact on spectra. The optical
constants have been obtained from several sources and are listed in
Table 1. The plots of the n and k values as a function of wavelength
for all considered condensates are shown in Fig. 1. For enstatite and
quartz, we respectively include two different data sets. In case of
MgSiO3, these are two different amorphous states, and for SiO2, we
include its α-crystal as well as amorphous form.

In theory, n and k are not independent but as the real and imaginary
part of a complex number must follow the Kramers–Kronig relations
(Kronig 1926; Kramers 1927)

n(ω) − 1 = 2

π
P

∫ ∞

0

ω′k(ω′)
ω′2 − ω2

dω′ (23)

k(ω) = −2ω

π
P

∫ ∞

0

n(ω′) − 1

ω′2 − ω2
dω′, (24)

where ω = 2 πc/λ is the angular frequency and P denotes the prin-
cipal value of the singular integral. Theoretically, all n and k values
shown in Fig. 1 must satisfy these two relations. In practice, how-
ever, this is not always the case. Since most of the data is compiled
from different sources, with diverse experimental setups, measure-
ment errors, etc., it is usually impossible to satisfy the Kramers–
Kronig relations over the entire wavelength range. While it would
be possible to iterate n and k via the Kramers–Kronig relations to
obtain a consistent set of optical constants, the usefulness of this
approach is limited by the fact that the resulting refractive index
would not be consistent anymore with the measured experimental
data. Since we do not wish to judge each experimentally derived
refractive index on the basis of their experimental setup or measure-
ment accuracy, we choose not to perform an iteration here.

Furthermore, the calculation of k in the large transparency win-
dows, where it attains values of smaller than say 10−5 would mean
that n would have to be measured with a comparable accuracy in
order to produce reliable k-values via the Kramers–Kronig rela-
tions. Experimental measurement errors, however, are well above
this required accuracy.

Gaps in the experimental data are closed by extrapolation of
either n or k and then using the Kramers–Kronig relations to obtain
the other, missing part of the refractive index over the wavelength
range of the data gap. For this procedure, we employ the singly-
subtractive Kramers–Kronig relations that use experimental data at
other wavelengths to constrain the missing coefficients in the data
gap (Lucarini et al. 2005).

In case of MnS, no infrared data was available, which includes,
in particular, the sulphur feature. Here, we follow the approach of
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98 D. Kitzmann and K. Heng

Table 1. Collection of optical constants for a set of potential condensates in atmospheres of extrasolar planets and brown dwarfs. The Comments
column lists additional information on temperature-dependent data (if available), and amorphous or anisotropic materials. If no temperature information
is given, measurements where either performed at room temperature or no information is provided in the corresponding publications.

Condensate Name Wavelength range Comments Data source
(μm) Reference Wavelength range

(μm)

Al2O3 Corundum 0.2 – 500 Amorphous; 873 K Begemann et al. (1997)∗t 7.8 – 500
Koike et al. (1995)t 0.2 – 12.0

C Graphite 10− 4 – 105 Anisotropic Draine (2003)t 10− 4 – 105

CaTiO3 Perovskite 0.035 – 5.8 · 105 Posch et al. (2003)t 2 – 5.8 · 105

Ueda et al. (1998)f 0.02 – 2.0
Cr 0.04 – 500 Lynch & Hunter in Palik (1991)t 0.04 – 31

Rakić et al. (1998)t 31 – 500
Fe[s] 1.2 · 10− 4 – 286 Lynch & Hunter in Palik (1991)t 1.2 · 10− 4 – 286
Fe2O3 Hematite 0.1 – 1000 A.H.M.J. Triaud∗t 0.1 – 1000
Fe2SiO4 Fayalite 0.4 – 104 Anisotropic Fabian et al. (2001)∗t 0.4 – 104

FeO Wüstite 0.1 – 500 Henning et al. (1995)∗t 0.1 – 50
FeS Troilite 0.1 – 487 Pollack et al. (1994)t 0.1 – 104

Henning & Mutschke (1997)t 20 – 487
H2O[s] 0.04 – 2 · 106 Warren (1984)t 0.04 – 2 · 106

KCl Sylvite 0.03 – 103 Palik in Palik (1985)t 0.03 – 103

Mg2SiO4 Forsterite 0.2 – 950 Amorphous (sol-gel) Jäger et al. (2003)∗t 0.2 – 950
Mg0.8Fe1.2SiO4 Olivine 0.2 – 500 Amorphous (glassy) Dorschner et al. (1995)∗t 0.2 – 500
MgFeSiO4 Olivine 0.2 – 500 Amorphous (glassy) Dorschner et al. (1995)∗t 0.2 – 500
MgSiO3 Enstatite 0.2 – 500 Amorphous (glassy) Dorschner et al. (1995)∗t 0.2 – 500
MgSiO3 Enstatite 0.2 – 1000 Amorphous (sol-gel) Jäger et al. (2003)∗t 0.2 – 1000
Mg0.4Fe0.6SiO3 Pyroxene 0.2 – 500 Amorphous (glassy) Dorschner et al. (1995)∗t 0.2 – 500
Mg0.5Fe0.5SiO3 Pyroxene 0.2 – 500 Amorphous (glassy) Dorschner et al. (1995)t 0.2 – 500
Mg0.8Fe0.2SiO3 Pyroxene 0.2 – 500 Amorphous (glassy) Dorschner et al. (1995)∗t 0.2 – 500
MgAl2O4 Spinel 0.35 – 104 928 K Zeidler et al. (2011)∗t 6.6 – 104

Tropf & Thomas in Palik (1991)t 0.35 – 11.9
MgO Periclase 0.16 – 625 Roessler & Huffman in Palik (1991)t 0.16 – 625
MnS 0.09 – 190 Huffman & Wild (1967)tf 0.05 – 13

Montaner et al. (1979)f 2.5 – 200
Na2S 0.04 – 200 Khachai et al. (2009)f 0.04 – 63

Montaner et al. (1979)f 2.5 – 200
NaCl 0.05 – 3 · 104 Eldrige & Palik in Palik (1985)t 0.05 – 3 · 104

SiC Moissanite 10− 3 – 103 Laor & Draine (1993)t 10− 3 – 103

SiO 0.05 – 100 Philipp in Palik (1985)t 0.05 – 100
SiO2 Quartz 0.05 – 104 α-crystal; 928 K; Zeidler, Posch & Mutschke (2013)∗t 6.25 – 104

Anisotropic Philipp in Palik (1985)t 0.05 – 8.4
SiO2 Quartz 0.05 – 490 Amorphous; 300 K Henning & Mutschke (1997)∗t 6.67 – 490

Philipp in Palik (1985)t 0.05 – 8.4
TiC 0.02 – 207 Koide et al. (1990)t 9 · 10− 3 – 0.9

Henning & Mutschke (2001)f 10− 4 – 207
TiO2 Anatase 0.1 – 6 · 103 Anisotropic Zeidler et al. (2011)∗t 0.4 – 10

Posch et al. (2003)∗t 10 – 6 · 103

Siefke et al. (2016)t 0.1 –125
ZnS 0.02 – 286 Palik & Addamiano in Palik (1985)t 0.02 – 286
Titan tholins 0.02 – 920 Khare et al. (1984)t 0.02 – 920

Notes. ∗Optical constants from the Database of Optical Constants for Cosmic Dust, Laboratory Astrophysics Group of the AIU Jena
(http://www.astro.uni-jena.de/Laboratory/OCDB/index.html).
tData from a printed table or in digital format.
fData available as figure.

Morley et al. (2012) and use extrapolations based on the other two
sulphur-bearing species Na2S and ZnS to reconstruct the missing
part. For troilite, we combine the two data sets of Pollack et al.
(1994) and Henning & Mutschke (1997). The compilation of Pol-
lack et al. (1994) used a few experimental data points in combination
with extrapolations to account for the missing data. Especially in
the infrared region, this set is not consistent with the measured data
provided by Henning & Mutschke (1997). We therefore replace the
IR data with the latter one and use the Kramers–Kronig relations to

consistently combine the IR part with the measured shortwave data
provided in Pollack et al. (1994). This leads to a shift of the strong
iron feature near 3 μm to slightly larger wavelengths compared to
the original compilation provided by Pollack et al. (1994).

Some condensates, such as graphite, are anisotropic, i.e. their op-
tical properties depend on the direction of the incident light relative
to the crystals’ principal axes. In case directional-dependent data
was available for these condensates, we calculate a mean refractive
index by weighting the dielectric functions in each direction by 1/3
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Optical properties of condensates 99

Figure 1. Optical constants of a set of potential condensates. The plots show the real (n, blue) and imaginary (k, red) parts of the refractive index. The optical
constants have been compiled from several different sources. Details on the compilation are given in Section 4 and Table 1.
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Figure 1 – continued
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Optical properties of condensates 101

and converting them to the corresponding n and k values. In Table 1,
these materials are marked as anisotropic.

In case temperature-dependent data is available, we always
choose a temperature close to the ones expected in atmospheres
of brown dwarfs or giant exoplanet where the condensates are ex-
pected to form. In most cases, though, the optical constants have
been measured at room temperature.

5 A NA LY T I C A L F I T S O F E X T I N C T I O N
E FFICIENCIES

In retrieval analyses of spectra of exoplanetary atmospheres, there
is always a balance between the realism and sophistication of the
model, the computational efficiency, and the quality and number of
data points. Including a full-blown, first-principles cloud model
in atmospheric retrievals of current spectra is currently unwar-
ranted, given the large number of free parameters involved and
the ∼10–100 data points typically available for each object. Instead
of including a formation model of clouds in the retrieval, several
past efforts have focused on how the clouds would affect the spec-
trum if assumed to be present (Lee et al. 2013; Lavie et al. 2017;
Oreshenko et al. 2017; Tsiaras et al. 2017). Specifically, these stud-
ies follow the reasoning laid out in, for example, Pierrehumbert
(2010), that the curves of extinction efficiencies follow a roughly
universal shape, somewhat insensitive to the composition of the
condensate. (We will see later that this statement is only partially
correct.) The efficiencies for small and large values of the size pa-
rameter (x) converge to simpler, analytical expressions. In other
words, our motivation is to provide a library of more accurate fits to
augment the approach that is already being pursued in the published
literature.

For large values of x, i.e. if the particle radius is large compared
to the wavelength under consideration, Mie theory yields the large-
particle limit, which is given by the simple expressions

lim
x→∞

Qabs = 1 − Qrefl, (25)

lim
x→∞

Qsca = 1 + Qrefl (26)

and

lim
x→∞

Qext = 2. (27)

The reflection efficiency Qrefl can be determined by geometric optics
calculations (see Bohren & Huffman 1998 for details).

For particles much smaller than the considered wavelength, i.e.
x = 2 πa/λ � 1, Mie theory converges to the limit of Rayleigh
scattering. The efficiencies are then given by

Qabs = 4x�
{

m(λ)2 − 1

m(λ)2 + 2

} [
1 − 4x3

3
�

{
m(λ)2 − 1

m(λ)2 + 2

}2
]

, (28)

Qsca = 8

3
x4�

{
m(λ)2 − 1

m(λ)2 + 2

}2

, (29)

and

Qext = Qabs + Qsca. (30)

An example of the extinction efficiencies of graphite for three
different particle sizes is shown in Fig. 2. The figure illustrates nicely
the two different limits of Mie theory just discussed. Note, however,
that the curve for the particles with a radius of 0.1 μm slightly
deviates from the large particle limit due to a drop in the absorptivity
of graphite at around a wavelength of 0.1 μm (see Fig. 1). The

Figure 2. Extinction efficiency of graphite as a function of the size param-
eter x. Shown are the results for three different particle sizes: 0.1 μm (solid),
1 μm (dotted), and 10 μm (dashed).

overall shape of the curve can, in principle, be represented by an
almost constant value at large x, a slope for small size parameters,
and a specific x-value where the Qext peaks, connecting the two
limits.

Given the general shape of the extinction efficiency curve, Lee
et al. (2013) proposed a simple analytical fit to describe the overall
behaviour of Qext as a function of the size parameter x

Qext = 5

Q0x−4 + x0.2
. (31)

This fit is not expected to provide an accurate representation of the
extinction efficiencies but can only approximate the overall shape
of Qext. The free parameter Q0 describes the x-value where the ex-
tinction efficiencies peak. The parameter depends on the condensate
optical properties, and thus, on the particle composition. It could
therefore be used for a first-order characterization of condensates
in exoplanet transmission spectra, for example. These transmission
spectra depend mostly on the extinction properties and not on the
detailed contributions of scattering and absorption. The idea of such
an analytical fit is, thus, to offer simple retrievable parameters for
transmission spectroscopy that would allow for a basic character-
ization of the condensates present in the planet’s atmosphere to a
certain degree. It will not be accurate enough to distinguish between
different members of, for example, the olivine or pyroxene family,
though.

In the following subsection, we present our fitting procedure. The
corresponding fits and associated errors with respect to the actual
Qext are discussed in Section 5.2.

5.1 Description of the analytical fit

We follow the analytical fit of Qext as a function of x proposed in Lee
et al. (2013) but increase the number of free parameters to three:

Qext = Q1

Q0x−a + x0.2
, (32)

where Q1 is a normalization constant, Q0 determines the x-value
where Qext peaks, and a is the slope in the small particle limit.
It is quite obvious that a simple, analytical equation as this cannot
describe all the usually complex behaviour of the extinction efficien-
cies over a large wavelength range, especially the various specific
absorption features of the different condensates. We may, however,
hope to use the analytic expression in restricted wavelength bands
associated with important observational filters.
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102 D. Kitzmann and K. Heng

Figure 3. Examples of analytical fits for three different condensates. The
analytical fits are depicted by the red, solid curves as a function of the size
parameter x. For comparison, the Qext values are also shown in black for
three different particles sizes: 0.1 μm (solid), 1 μm (dotted), and 10 μm
(dashed).

Here, we focus especially on the WFC3 instrument with the G141
grism and the standard filters J, H, and K that are used in exoplanet
transmission or brown dwarf emission spectroscopy. In principle,
one could make an independent fit for each filter separately. For sim-
plicity, we use WFC3 here in the following. To constrain the three
parameters, we perform a global minimization by using a three-
dimensional Nelder–Mead simplex method (Lagarias et al. 1998).
The quantity to be minimized is the mean error in the WFC3 fil-
ter, integrated over a range of particle sizes with radii between
al = 0.1 μm and au = 10 μm:

E = 1

log au − log al

∫ log au

log al

E(a) d log a, (33)

with the mean error E in a wavelength range between λl and λu

given by

E(a) = 1

λu − λl

∫ λu

λl

∣∣Qext,mie(a, λ) − Qext,fit(a, λ)
∣∣ dλ. (34)

Table 2. Coefficients of the analytic fits of the extinction efficiencies and
their corresponding average errors. The errors shown in the table refer to the
WFC3 filter The condensates are ordered with respect to their Q0 value.

Condensate Q0 Q1 a E (per cent)

C 0.07 3.62 6.58 8.95
TiC 0.24 3.60 3.74 7.45
Cr 0.30 3.61 3.66 7.96
Fe[s] 0.30 3.59 3.88 8.09
FeS 0.30 3.84 3.12 6.01
FeO 0.49 3.78 4.31 7.78
Fe2O3 0.99 3.81 5.05 12.38
MnS 1.11 3.84 5.44 15.35
SiC 1.47 3.86 5.23 13.19
TiO2 1.74 3.90 5.21 13.30
ZnS 2.16 3.88 4.96 12.80
CaTiO3 2.17 3.94 5.07 12.88
SiO 2.48 4.02 4.25 8.66
Mg0.8Fe1.2SiO4 3.56 4.00 3.55 10.05
MgFeSiO4 4.68 3.99 3.53 10.45
Fe2SiO4 5.52 4.09 4.38 11.28
Na2S 6.77 4.07 4.03 10.79
MgO 8.23 4.09 4.15 10.18
Mg0.4Fe0.6SiO3 8.51 4.09 3.92 9.93
MgAl2O4 8.85 4.10 4.18 9.90
Mg0.5Fe0.5SiO3 9.54 4.10 3.96 9.57
Al2O3 9.55 4.16 3.51 9.99
Titan tholins 10.69 4.15 4.07 9.49
Mg2SiO4 11.95 4.16 4.05 9.29
Mg0.8Fe0.2SiO3 13.27 4.18 3.95 8.66
MgSiO3

a 15.15 4.17 3.98 8.93
MgSiO3

b 15.59 4.21 3.98 8.80
SiO2

c 16.47 4.21 3.95 8.79
NaCl 16.59 4.22 3.95 8.74
KCl 20.76 4.18 3.84 8.68
H2O[s] 64.98 4.36 3.34 9.53

Notes. aamorphous (glassy); bamorphous (sol-gel);
cα-crystal & amorphous.

The integration over the particle sizes in the calculation of E is
performed over the logarithm of a because the radii span two or-
ders of magnitude. We limit the largest radii to au = 10 μm because
larger particles would already be in the large particle limit at the
small wavelengths under investigation here, i.e. their extinction ef-
ficiencies would yield Qext = 2, irrespective of the actual particle
size. The efficiencies have been calculated with the Mie code de-
scribed in Section 2 for a broad range different particle radii between
au = 0.1 μm and au = 10 μm. Examples of the resulting extinction
efficiencies for three different sizes and three different condensates
are shown in Fig. 3.

5.2 Fit results

The obtained fit coefficients and the mean error E are shown in
Table 2 in descending order of their Q0 parameter. As mentioned in
Lee et al. (2013), refractory condensates feature Q0 values around
10–20, while more volatile species, such as water, have much higher
ones. The Q0 values of elements like iron, chromium, or graphite,
on the other hand, drop below unity. Based on this range of values,
it might be possible to identify condensates present in exoplanet
atmosphere to a certain degree by employing retrieval techniques
(see e.g. Lavie et al. 2017).
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Optical properties of condensates 103

Figure 4. Errors of the analytical fits as a function of particle radius. The errors are shown for four different filters commonly used in exoplanet and brown
dwarf spectroscopy: G141@WFC3 (blue), J (red), H (yellow), and K (purple).

The normalization constant Q1 shows a much smaller spread, with
values close to 4. The exponential parameter varies roughly between
three and seven, depending on the absorptivity of the materials in
the wavelength range under consideration. Thus, for actual retrieval
methods, the normalization constant Q1 could be fixed to four in

many cases since the accuracy of exoplanet data is currently not
good enough to distinguish the very close parameter values for
many of the condensates.

Examples of the analytical fits in comparison to the actual Qext

curves obtained from Mie theory are shown in Fig. 3 for three
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104 D. Kitzmann and K. Heng

Figure 4 – continued

different condensates. The results suggest that the analytical func-
tion can represent the actual Mie efficiencies in certain wavelength
ranges. Obviously, the simple fit cannot account for absorption fea-
tures of the different condensates, as can be seen for the cases of
FeS or moissanite.

More detailed information on the errors of the fits as a function
of particle sizes are shown in Fig. 4. The figure depicts the mean
errors, averaged over four different filters, as a function of the
particle sizes. Equation (34) is used to calculate the mean error in
each filter. The results shown in Fig. 4 suggest that depending on the
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Optical properties of condensates 105

type of condensate and the particle size, the errors can be as small
as 1 per cent, but can also yield values around 80 per cent, especially
for very small particle radii.

6 D ISCUSSION AND PROSPECTS FOR
F U T U R E WO R K

In this work, we compiled a new set of optical constants for po-
tential condensates in atmospheres of giant exoplanets and brown
dwarfs. While we tried to provide a consistent data set over a broad
wavelength range for each species, the data needs to be treated
with care as the lack of available laboratory data currently does not
allow us to provide more accurate refractive indices or for inter-
comparisons since in most cases only single measurements were
available. Gaps in the experimental data needed to be closed by
extrapolation of the n or k values and by employing the Kramers–
Kronig relations. Other uncertainties for exoplanet atmospheres
include also the effect of temperature or porosity on the optical
constants.

Optical constants are clearly a function of temperature (see e.g.
Zeidler et al. 2013). Temperature-dependent effects include, for ex-
ample, a shift and/or broadening of absorption features or changes
in the general slopes of the n and k values. In most cases, how-
ever, the refractive index has been measured at room tempera-
ture or in environments resembling the cold interstellar medium.
Data for temperatures more related to the atmospheres of brown
dwarfs or extrasolar giant planets are rarely available, and mea-
surements for these cases are strongly required. Additionally, the
optical constants of sulphide-bearing species need additional labo-
ratory measurements to close the gaps in the present data, especially
for MnS and FeS. Furthermore, most solid condensates forming in
atmospheres are expected to be amorphous, which also directly
impacts the refractive index. To date, unfortunately, this data is
unavailable for many condensates, though the measurements by,
for example, Dorschner et al. (1995) or Jäger et al. (2003) are
notable exceptions. The compilation of optical constants listed in
Table 1 and shown in Fig. 1 is available as part of this publica-
tion’s online material and on the Exoclime Simulation Platform
(http://www.exoclime.org).

The optical properties of the condensates were calculated by us-
ing our newly developed, improved Mie-scattering code. It is able
to calculate the Mie efficiencies, asymmetry parameters, and scat-
tering phase functions for size parameters exceeding values of 107.
The code has been extensively tested against other available codes.
It will be publicly released as part of the Exoclime Simulation
Platform. With the calculated optical properties, we performed an-
alytical fits of the obtained extinction efficiencies. The fits can be
used in atmospheric retrieval of exoplanet atmospheres by adding
two to three additional parameters to the set of retrievable quantities
that describe the basic shapes of the extinction efficiencies. They,
thus, allow for a basic characterization of the clouds present in these
atmospheres. We will employ these analytical fits for atmospheric
retrieval in a future publication.
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APPENDIX A : MIE SCATTERING C ODE
VA L I DAT I O N

The Mie code developed in this work has been extensively validated
against the results of other standard Mie codes, such as the well-
known code MIEVO (Wiscombe 1979). In this appendix, we present
a sample of the validation results.

For the intercomparison, we use a set of refractive indices pub-
lished by e.g. Du (2004) or Shen & Cai (2005), which includes
cases of strongly, weakly, and non-absorbing particles. The values

Figure A1. Extinction efficiency (upper diagram) and scattering efficiency
(lower diagram) obtained from Mie scattering calculations with LX-MIE for
a refractive index of m = 10 − 10i. Selected results of the MIEVO code from
Wiscombe (1979) are shown as red crosses for several selected representative
size parameters. Additionally, the results for x = 106 published by Du (2004)
are marked by blue stars.

for the extinction efficiency Qext and scattering efficiency Qsca ob-
tained from our code LX-MIE, MIEVO (in double-precision accuracy),
and published results from Du (2004) are listed in Table A1 for
different refractive indices m and several specific size parameters x.
Additionally, the extinction and scattering efficiencies for a refrac-
tive index of m = 10–10i are shown in Fig. A1 as a function of the
size parameter x. Selected values for representative size parameters
calculated with MIEVO are also shown in this figure within its vali-
dated range of x < 20 000. For a quantitative comparison, some of
these values are listed in Table A1.

The resulting efficiencies in Table A1 and Fig. A1 show that
the results of our Mie code and MIEVO agree in at least nine sig-
nificant digits in most cases. Some minor deviations are found for
small size parameters, which are caused by the small-particle ap-
proximations used in MIEVO (see Wiscombe 1979, for details on its
treatment of Mie calculations for small size parameters). Note, that
the results from Du (2004) listed in Table A1 are identical to those
published by Shen & Cai (2005), who introduced the improved
treatment of the Riccati–Bessel functions, which is now also used
in LX-MIE.

For a large size parameter of x = 106, the values given in Du
(2004) are used for comparison. His results of Qext = 2.00022 and
Qsca = 1.79218 agree with our calculated values in all digits. While
x = 106 is the largest size parameter for which results were published
by Du (2004), Fig. A1 suggests that LX-MIE yields numerically stable
results for size parameters of at least 107. Thus, LX-MIE provides
accurate results over at least 10 orders of magnitude in the size
parameter range.
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Table A1. Comparison of extinction and scattering efficiencies obtained from Du (2004), MIEVO (Wiscombe 1979), and LX-MIE (this work) for different
refractive indices and size parameters.

Qext Qsca

m x Du (2004) MIEVO LX-MIE Du (2004) MIEVO LX-MIE

10 − 10i 0.001 6.00207512 × 10−5 6.00207581 × 10−5 2.66646989 × 10−12 2.66646989 × 10−12

10 − 10i 0.1 3.20390865 × 10−2 3.20390907 × 10−2 2.70983004 × 10−4 2.70983004 × 10−4

10 − 10i 1 2.53299 2.53299308 2.53299308 2.04941 2.04940501 2.04940501
10 − 10i 100 2.07112 2.07112433 2.07112433 1.83679 1.83678540 1.83678540
10 − 10i 1000 2.02426046 2.02426046 1.80546582 1.80546582
10 − 10i 20000 2.00361474 2.00361474 1.79419080 1.79419080
10 − 10i 106 2.00022 2.00021914 1.79218 1.79218105
1.5 − 1i 100 2.09750 2.09750176 2.09750176 1.28370 1.28369705 1.28369705
1.5 − 1i 10000 2.00437 2.00436771 2.00436771 1.23657 1.23657431 1.23657431
1.33 − 10−5i 100 2.10132 2.10132071 2.10132071 2.09659 2.09659351 2.09659351
1.33 − 10−5i 10000 2.00409 2.00408893 2.00408893 1.72386 1.72385722 1.72385722
0.75 − 0i 10 2.23226 2.23226484 2.23226484 2.23226 2.23226484 2.23226484
0.75 − 0i 1000 1.99791 1.99790818 1.99790818 1.99791 1.99790818 1.99790818
0.75 − 0i 10000 2.00125518 2.00125518 2.00125518 2.00125518

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 475, 94–107 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/475/1/94/4712225 by U
niversitaetsbibliothek Bern user on 20 February 2019


