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Abstract

Interior characterization traditionally relies on individual planetary properties, ignoring correlations between
different planets of the same system. For multiplanetary systems, planetary data are generally correlated. This is
because the differential masses and radii are better constrained than absolute planetary masses and radii. We
explore such correlations and data specific to the multiplanetary system of TRAPPIST-1 and study their value for
our understanding of planet interiors. Furthermore, we demonstrate that the rocky interior of planets in a
multiplanetary system can be preferentially probed by studying the densest planet representing a rocky interior
analog. Our methodology includes a Bayesian inference analysis that uses a Markov chain Monte Carlo scheme.
Our interior estimates account for the anticipated variability in the compositions and layer thicknesses of core,
mantle, water oceans, and ice layers, as well as a gas envelope. Our results show that (1) interior estimates
significantly depend on available abundance proxies and (2) the importance of interdependent planetary data for
interior characterization is comparable to changes in data precision by 30%. For the interiors of TRAPPIST-1
planets, we find that possible water mass fractions generally range from 0% to 25%. The lack of a clear trend of
water budgets with orbital period or planet mass challenges possible formation scenarios. While our estimates
change relatively little with data precision, they critically depend on data accuracy. If planetary masses varied
within ±24%, interiors would be consistent with uniform (∼7%) or an increasing water mass fractions with orbital
period (∼2%–12%).

Key words: methods: statistical – planets and satellites: composition – planets and satellites: individual
(TRAPPIST-1) – planets and satellites: interiors – planets and satellites: oceans – planets and satellites: terrestrial
planets

1. Introduction

Among all exoplanetary systems known today, the
TRAPPIST-1 system harbors the largest number of Earth-sized
exoplanets in a single system. It is a tightly packed system in
which at least seven planets orbit an ultracool star (Gillon
et al. 2017). The proximity of the planets to their central star
and the low stellar mass and stellar luminosity imply temperate
conditions for the planets, with equilibrium temperatures
ranging from about 160 to 400 K. Although characteristics of
the planets remind us of Earth and Venus, the characteristics of
star and system architecture seem very exotic compared to our
solar system. How systems like TRAPPIST-1 formed and
evolved over time is an open and fascinating question that has
motivated plenty of exoplanetary studies.

Key to our understanding of the formation and evolution is
the knowledge of the composition and structure of the
planetary interiors. Our ability to characterize planetary
interiors depends on available observations and prior informa-
tion. Prior information is based on laboratory work and
theoretical considerations and yields important constraints, e.g.,
on the anticipated range of possible interiors. Astrophysical
observations provide, e.g., planetary mass, planetary radius,
and orbital period.

For our study, the observational data on planetary radii and
masses are taken from Delrez et al. (2018) and Grimm et al.
(2018), respectively. The observed transit depths constrain
ratios of planetary-to-stellar radii Rp/Rå for each planet, while
the transit timing variations (TTVs) constrain ratios of
planetary-to-stellar masses Mp/Må from gravitational interac-
tions among all seven planets and the star. The planet bulk

densities are then calculated from M M R Rp p
3

p
3

  r r= / / , given
the photometrically well-constrained stellar density ρå (Seager
& Mallen-Ornelas 2003). There are three important conse-
quences that stem from this: (1) mass and radius for each planet
are correlated, (2) planetary masses between the planets as
derived by TTV are correlated, and (3) planetary radii between
the planets are correlated. The correlation of the masses
between all planets is a consequence of the planets being in a
full resonance chain with each other. The correlation of
planetary radii stems from the differential radii (or differential
transit depths) being better constrained than the absolute radii
because the latter include the uncertainty on stellar radii.
Correlation of data can have significant influences on the range
of inferred planetary interiors.
For an individual planet, the correlation of mass and radius

has been taken into account for exoplanet interior characteriza-
tions (Weiss et al. 2016; Crida et al. 2018). However, the
correlation of data between different planets of a single system
has so far not been taken into account. In the present work, we
develop a new resampling scheme that formally accounts for
this interdependency of planetary data. We demonstrate how
our ability of constraining interiors is affected by data
interdependencies using the example of planetary masses. We
generally believe that it is important to make thorough use of
all available information (including the discussed data inter-
dependencies) because observational data are few and
expensive. Here we provide the tool to do so.
Previous characterization studies demonstrated the value

of refractory rock-forming element abundances as constraints
in addition to planetary mass and radius (Sotin et al. 2007;
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Dorn et al. 2015). Estimating photospheric abundances of this
faint (V=19) and cool (∼2500 K) host star is unfortunately still
very challenging. Measured elemental abundances in the stellar
photosphere may otherwise be used as abundance proxies for the
rocky planetary interiors. Given a multiplanetary system, we
can derive an abundance proxy based on the densest planet
of the system, because its interior will be dominantly rocky.
TRAPPIST-1e is the densest and probably a purely rocky planet,
given its high bulk density. Thus, planet e may be seen as a rocky
interior analog of all planets in the system. We analyze the
possible range of elemental abundances for planet TRAPPIST-1e
given only its mass and radius without abundance constraints.
The obtained range of bulk abundances of TRAPPIST-1e is
subsequently used as constraints for the other planets. Alter-
natively, we also investigate the abundance constraint that was
suggested by Unterborn et al. (2017).

We note that preliminary tests including new observations
for TRAPPIST-1 that were previously unavailable for the study
of Grimm et al. (2018) indicate shifts in planet masses within
±24% (Demory 2018). Also, Kane (2018) indicates changes in
planetary radii on the order of +2%. Therefore, our results and
those of Suissa & Kipping (2018) and Unterborn et al. (2018)
should be taken with care. We show how much such systematic
shifts could affect our interior estimates (Section 5.1). None-
theless, our paper demonstrates how interior characterization
for multiplanetary systems has extraordinary advances com-
pared to individual planets.

The structure of our study is as follows. We briefly review
previous studies on possible interiors of the TRAPPIST-1
planets (Section 2). Then we describe our methodology that
involves the new resampling scheme (Section 3). We
demonstrate and discuss our results (Section 4) in light of
possible formation and evolution paths of the planets
(Section 5), and then we provide a summary (Section 6).

2. Previous Studies

Masses and radii of the planets as estimated by Gillon et al.
(2017) suggest that all planets can have volatiles in either gas
or water layers or can be rocky, while only planet f actually
requires a significant layer of volatiles in order to explain its
low bulk density.

Given the mass and radius estimates from Gillon et al.
(2017) and Luger et al. (2017), Unterborn et al. (2017)
estimated the water mass fraction to be more than 50% for
planets f and g, and on the order of 7% for planets b and c.
They concluded that the difference in water mass fraction is
because of a difference in formation location relative to the
ice line.

Since tidal interactions between the planets may affect the
interiors, Barr et al. (2018) estimated the tidal heat fluxes on
planets d, e, and f and estimated them to be 20 times higher
than Earth’s mean surface heat flow. They suggest that magma
oceans could be maintained on planets b and c.

Given the bulk densities, thick atmospheres may cover the
planets. Such thick atmospheres could be realized by a few bars
of hydrogen; however, atmospheric escape around TRAPPIST-
1 is strong enough to limit the lifetime of H2 atmospheres given
the large EUV irradiation (Bolmont et al. 2016) or even
considering cometary impacts (Kral et al. 2018). Indeed, transit
spectroscopy for all planets shows no evidence for a cloud/
haze-free H2-dominated atmosphere (de Wit et al. 2016, 2018),
except for planet g, for which data remain inconclusive. Thus,

both atmospheric observations and theoretical considerations of
atmospheric loss strongly suggest the presence of terrestrial-
type atmospheres.
Turbet et al. (2018) highlight the synchronous rotation of the

planets and study consequences for the diversity of climates on
the planets. The nightside temperatures would allow atmo-
spheric CO2 to condense out to form ice shields. For the outer
planets g and h, a global CO2 ice cover is possible. However,
they also show that for planets g and f, greenhouse warming
could be efficient enough to allow liquid water.
Loss of water over the evolution of the planets has been

investigated by Bourrier et al. (2017). They suggest that water
loss could have been efficient enough to remove a few to
several tens of Earth oceans over the planet’s lifetime.
Compared to estimates of possible water mass fractions (7%–

50%), this is very small (1 Earth ocean is 0.02% of Earth’s
total mass).
The most recent and more precise mass and density estimates

from Grimm et al. (2018) provide new insights into the planet
bulk compositions. They find that purely rocky interiors are
likely for planets c and e, while planets b, d, f, g, and h require
envelopes of volatiles with water mass fractions generally less
than about 15%.4 For the inner planets b–d, volatiles are likely
in the form of an atmosphere given the high stellar irradiation.
The outer planets f–h have cold enough equilibrium tempera-
tures that common volatile species CO2 and H2O are condensed
out. Planet e has been recognized by different authors (e.g.,
Turbet et al. 2018; Grimm et al. 2018) to have the largest
potential for Earth-like surface conditions.
Here we provide distributions of possible interiors using a

Bayesian inference analysis while using all the information
from the calculated mass and radius distributions as provided
by Delrez et al. (2018) and Grimm et al. (2018). Furthermore,
our physical interior model accounts for interiors of general
structures and compositions that have been developed to
describe the full range of super-Earths to mini-Neptunes. Also,
we test different abundance proxies for refractory elements and
account for the correlation of planetary data between different
planets.

3. Method

The aim of this study is to calculate confidence regions of
interior parameters that are linked to the formation and
evolution of the planets. There are two sources of information
that allow us to constrain interior parameters: observable data
and prior information on the interior. Data d and interior
parameters m are linked by the interior model that is
incorporated in the operator g(·), such that d mg= ( ). In our
case, the operator g(·) is not invertible. Therefore, we need to
infer the possible realizations of m given the data d using
inference methods. Here we use a Bayesian inference analysis
based on a Markov chain Monte Carlo (MCMC) scheme by
Dorn et al. (2015). This scheme characterizes every planet
individually. However, there is a clear correlation of planetary
data between the planets. We account for this correlation by
introducing a novel resampling scheme. In the following, we
discuss the different aspects of the method.

4 In the published version their Figure 10 correctly compares different
interiors with the planetary data. However, in the text the erroneously stated 5%
should be 15% and 15% should be 35%.
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3.1. Interior Model

The interior model g(·) assumes planets to be composed of a
pure iron core, a silicate mantle comprising the oxides
Na2O–CaO–FeO–MgO–Al2O3–SiO2, a pure water layer, and
an isothermal gas layer. Those model parameters m that
determine the rocky and the water layers are rcore, rcore mantle+ ,
Fe Simantle, Mg Simantle, and mwater.

The structural model for the interior uses self-consistent
thermodynamics for core, mantle, high-pressure ice, and water
ocean. For the core density profile, we use the equation-of-state
(EOS) fit of iron in the hcp (hexagonal close-packed) structure
provided by Bouchet et al. (2013) on ab initio molecular
dynamics simulations. For the silicate mantle, we compute
equilibrium mineralogy and density as a function of pressure,
temperature, and bulk composition by minimizing Gibbs free
energy (Connolly 2009). For the water layers, we follow Vazan
et al. (2013) using a quotidian equation of state (QEOS), and
above 44.3 GPa, we use the tabulated EOS from Seager et al.
(2007) that is derived from density functional theory (DFT)
simulations. Depending on pressure and temperature, the water
can be in solid, liquid, or supercritical phase. Water vapor is
excluded, since we impose the condition that if water is present,
then there must be a gas layer on top that imposes a pressure at
least as high as the vapor pressure of water. We assume an
adiabatic temperature profile within each layer of core, mantle,
and solid water. The surface temperature of the water layer is
set equal to the temperature of the bottom of the gas layer.
Also, temperature is assumed to be continuous across other
layer boundaries.

For the gas layer, we test two different models: an isothermal
model (model I) and a fully adiabatic model (model II).
Model I assumes a thin, isothermal atmosphere in hydrostatic
equilibrium and ideal gas behavior, which is calculated using
the scale height model. Those model parameters of m that
parameterize the gas layer in model I and that we aim to
constrain are the pressure at the bottom of the gas layer Pbatm,
the mean molecular weight μ, and the mean temperature
(parameterized by α; see below). The thickness of the opaque
gas layer datm in model I is given by

d H
P

P
ln , 1atm

batm

out
= ( )

where the amount of opaque scale heights H is determined by
the ratio of Pbatm and Pout. Pout is the pressure level at the optical
photosphere for a transit geometry that we fix to 20 mbar
(Fortney et al. 2007). The scale height H is the increase in
altitude for which the pressure drops by a factor of e and can be
expressed by

H
T R

g
, 2atm

batm

*
m

= ( )

where gbatm and Tatm are gravity at the bottom of the
atmosphere and mean atmospheric temperature, respectively.
R* is the universal gas constant (8.3144598 J mol−1 K−1), and
μ is the mean molecular weight. The mass of the atmosphere
matm is directly related to the pressure Pbatm as

m P
r

g
4 , 3atm batm

batm
2

batm

p= ( )

where rbatm is the radius at the bottom of the atmosphere.

The atmosphere’s constant temperature is defined as

T T
R

a2
, 4atm star

stara= ( )

where Rstar and Tstar are the radius and effective temperature of
the host star, respectively, and a is the semimajor axis. The
factor α accounts for possible cooling and heating of the
atmosphere and can vary between 0.5 and αmax. The upper
bound αmax is because there is a physical limit to the amount of
warming by greenhouse gases. We approximate αmax for a
moist (water-saturated) atmosphere (see Appendix A; Dorn
et al. 2017).
The assumption of a constant mean temperature in model I

might affect the interior predictions. In order to test how
sensitive our results are to this assumption, we propose a
second atmosphere model (model II) that assumes a convective
adiabat. For model II, the temperature at the bottom of the gas
layer, Tbatm, is calculated as

T T
P

P
, 5batm out

batm

out
=

k⎛
⎝⎜

⎞
⎠⎟ ( )

where Tout is calculated with Equation (4), while restricting α

to values between 0.5 and 1, which is equivalent to a range of
albedos from 0 to 0.94. The exponent κ is equal to 2/(2+n),
with n being the number of degrees of freedom (which we vary
randomly between 5 and 6 for diatomic or triatomic gases, thus
neglecting vibrational modes). Following a convective adiabat,
the thickness of the opaque atmosphere is set to

d
c

g
T T , 6atm

p

batm
batm atm= -( ) ( )

where the heat capacity is c n R2 1p * m= +( ) .
In summary, the entire interiors are parameterized by the full

set of interior parameters m: rcore, rcore mantle+ , Fe Simantle,
Mg Simantle, mwater, Pbatm, α, μ, and for model II also n. We
refer to Dorn et al. (2017) for more details on the interior
structure model.

3.2. Prior Information

The prior distributions of the interior parameters are listed in
Table 1. The priors are chosen conservatively. The cubic
uniform priors on rcore and rcore mantle+ reflect equal weighing of
masses for both core and mantle. Prior bounds on Fe Simantle
and Mg Simantle are determined by the abundance proxies.
Since iron is distributed between core and mantle, the

Table 1
Prior Ranges

Parameter Prior Range Distribution

rcore (0.01–1) rmantle Uniform in rcore
3

Fe Simantle 0–Fe Sistar Uniform
Mg Simantle Mg Sistar Gaussian
rcore mantle+ (0.01–1) R Uniform in rmantle

3

mwater 0–0.98 M Uniform
Pbatm 20 mbar–Pbatm,max Uniform in ln(Pbatm)
α (model I) 0.5–αmax Uniform
α (model II) 0.5–1. Uniform
μ 2.3–50.0 Uniform in 1/μ
n (model II) 5–6 Uniform

3
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abundance constraint only sets an upper bound on Fe Simantle,
thus making iron-free mantles possible. For the atmospheric
models I and II, a ln-uniform prior is set for Pbatm. Pbatm,max is
estimated by Equation (24) from Ginzburg et al. (2016), who
investigated super-Earth atmospheres. A uniform prior in μ
equally favors various dominating species (e.g., N2, CO2,
H2O), which seems appropriate for anticipated terrestrial-like
atmospheres. The factor α incorporates possible cooling
(model I and II) and heating (model I) of the atmosphere; it
can vary linearly between 0.5 and αmax for the isothermal
model I and between 0.5 and 1 for the adiabatic model II. The
upper bound αmax is a physical limit to the amount of warming
by greenhouse gases and is described in Appendix A. The
lower bound of 0.5 is equivalent to an albedo of 0.94, which is
similar to the highest albedo estimate among solar system
bodies (0.96 for Eris; Sicardy et al. 2011).

3.3. Data

The data that we use to characterize the interiors of the
planets comprise planetary mass and radius, stellar irradiation,
and constraints on refractory element abundances. Planetary
radii are taken from Delrez et al. (2018), masses and semimajor
axes are taken from Grimm et al. (2018), and stellar radius and
luminosity are given by Gillon et al. (2017). These data are
based on several hundred planet transits that were observed
between 2015 September and 2017 March. In addition to the
transits presented in earlier studies (de Wit et al. 2016; Gillon
et al. 2016, 2017; Luger et al. 2017), Grimm et al. (2018)
included additional observations from Spitzer Space Telescope,
Kepler, and K2.

For TRAPPIST-1, there is a correlation between planetary
radius and mass for the individual planets, as well as a
correlation between all seven planetary masses and between all
seven planetary radii. In order to better distinguish between the
two kinds of correlation, we will use the following nomen-
clature. Unless otherwise mentioned, the terms correlated data
and uncorrelated data refer to the correlation between mass
and radius of individual planets, while the terms dependent and

independent refer to the correlation between planetary data of
the different planets. Planetary masses and radii are shown in
Figure 1 and listed in Table 2, where we also list the
corresponding correlation cm,r. Figure 2 shows the interdepen-
dency of planetary masses as derived from Grimm et al. (2018).
For the constraints on refractory element abundances we

have compiled two different scenarios. In the first scenario (U),
we use the bulk abundance constraints as suggested by
Unterborn et al. (2017), who analyzed F-G-K stars of similar
metallicity to TRAPPIST-1 and estimated their statistical
median to Fe/Mg=1.72±0.46 in mass ratios, while fixing
the Mg/Si mass ratio to 0.87. Here we adopted these estimates:
Fe/Si=1.49±0.4, Mg/Si=0.89±0.3. For comparison,
the solar mass ratio estimates are Fe/Si=1.69 and
Mg/Si=0.89 (Lodders et al. 2009). In a second scenario
(A), we do not impose any constraints on bulk abundances that
are based on stellar estimates. Instead, we analyze the possible
range of refractory elements for the densest planet, TRAPPIST-
1e, while only using its data of mass, radius, and stellar
irradiation. The estimated ranges of Mg/SiT1e and Fe/SiT1e are
subsequently used as input constraints under the premise that
planet e is analogous in its relative refractory element budget to
the rocky interiors of all planets. This excludes a priori the
possibility of planet e being a Mercury-type planet.
In total, we discuss five different data scenarios, labeled U, A,

UCM, UHM, and UHMR, which we analyze in detail. All data
scenarios are summarized in Table 3. Scenarios U and A differ
in terms of the abundance constraints used; in scenario UCM, we
additionally account for the fact that planetary masses of
different planets depend on each other; for UHM and UHMR, we
use hypothetical reduced uncertainties on planetary masses and
radii. All scenarios help to determine the value of the different
data with respect to making interior predictions.

3.4. Interior Characterization Scheme

Our characterization scheme involves two main steps. The
first step comprises the interior characterization of individual
planets b–h using the generalized Bayesian inference scheme of
Dorn et al. (2017). The outputs are posterior distributions for
each of the planets that do not depend on each other. In a
second step, we account for the interdependency of the
different planetary data. In order to do so, we have developed
a resampling scheme that yields posterior distributions for each
of the planets that depend on each other. Thereby, we take all
available information of the mass–radius data into account.
In the following, we first introduce the formulation of

Tarantola & Valette (1982) on inference problems, and then we
describe each of the two main steps. Our scheme is summarized
in Figure 3.

Figure 1. Mass–radius plot showing TRAPPIST-1 planets, Earth and Venus.
The plot is adapted from Grimm et al. (2018). U17 refers to Unterborn
et al. (2017).

Table 2
Masses, Radii, and Their Correlation Coefficients cm,r of All Seven Planets

Planet m (M⊕) −σ +σ R (R⊕) −σ +σ cm,r

b 1.017 0.143 0.154 1.121 0.032 0.031 0.502
c 1.156 0.131 0.142 1.095 0.031 0.030 0.624
d 0.297 0.035 0.039 0.784 0.023 0.023 0.569
e 0.772 0.075 0.079 0.910 0.027 0.026 0.708
f 0.934 0.078 0.080 1.046 0.030 0.029 0.855
g 1.148 0.095 0.098 1.148 0.033 0.032 0.863
h 0.331 0.049 0.056 0.773 0.027 0.026 0.386
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3.4.1. Bayes’s Theorem and the Tarantola–Valette Formulation

Formally, the posterior distribution based on Bayes’s
theorem for a fixed model parameterization and conditional
on data is given by

m d
m m d

d
p

p L

p
, 7=( ∣ ) ( ) ( ∣ )

( )
( )

where p(m) represents prior information on model parameter
m, m dL ( ∣ ) is the likelihood function, and p(d) signifies the
evidence and is here a normalizing constant. The likelihood
function is defined as

m d

m d m d

L

g g

1

2 det

exp
1

2
, 8

N

T

2 1 2

1

p
=

S

´ - - S --⎜ ⎟⎛
⎝

⎞
⎠

( ∣ )
( ) ( )

( ( ) ) ( ( ) ) ( )

where Σ is the data covariance matrix and det(Σ) denotes the
determinant of Σ. For uncorrelated data errors, Σ is a diagonal
matrix. Here the correlation between planetary mass and radius
is prescribed by the off-diagonal entries of Σ.

There is a different formulation of inference problems by
Tarantola & Valette (1982) that we will use in the following. In
this formulation, the posterior p(d, m) is expressed in the joint

space of data and model parameters ( and) as

d m d m
d m d m

d m
p

z
, ,

, ,

,
, 9r q

r q
º  =( ) ( )( ) ( ) ( )

( )
( )

where the prior ρ, the forward model density θ, and the null
information density z are also defined in the joint space
 ´ . The null information is a normalizing constant. The
posterior of the model parameters evaluated in the model space
is then

m d m dp p d, . 10m

ò=( ) ( ) ( )

In Appendix B, we show that the Tarantola–Valette formula-
tion is equivalent to Bayes’s theorem under simplified
conditions.

3.4.2. Bayesian Inference of Individual Planets

We use the probabilistic inference analysis of Dorn et al.
(2017), who employ an MCMC. This method is used for every
planet individually, and it computes a posterior probability
density function (pdf) for each interior parameter m from data
d and prior information. It is important to note that the data
d used for each planet characterization are the marginalized
data for each planet, such that data priors ρ(d, m) are
independent. Thus, the obtained posteriors are independent of

Figure 2. 2D marginal data distributions of planetary masses extracted from Figure 6 of Grimm et al. (2018).

5

The Astrophysical Journal, 865:20 (17pp), 2018 September 20 Dorn et al.



each other. The information on interdependency of data from
different planets is ignored at this step and instead taken into
account by our developed resampling scheme. The Bayesian
inference analysis, in essence, explores the model space by
sampling a huge number of model realizations m that are
distributed according to the posterior distribution p(d, m). This
is achieved within an iterative scheme where the ratio of
likelihoods (Equation (8)) between subsequent sampled models
is used as a criterion to accept or reject model realizations. The
likelihood in probabilistic terms is a measure of how well a
model realization fits the observed data. Here the posterior
information is gathered from a large number of sampled models
(∼106). We refer to Dorn et al. (2015) for further details on the
inference analysis.

3.4.3. Resampling Scheme to Account for the Interdependency of Data
from Different Planets

The above-described Bayesian inference analysis yields
posterior samples in the model and data space ( and ),
p(d, m). Note that the posterior data pd(d) can be different from
the prior data ρd(d). The data prior is the distribution of the
noise-contaminated data, which is inherited by the given
distribution of observational uncertainties. The posterior data
are recomputed data, taking into account constraints from
the model m. Prior data and posterior data are therefore not

necessarily identical. The aim of our resampling is to preserve
the differences between posterior and prior (which is added by
model m), while adding the information of the interdependency
of prior data but not the prior data themselves (since these have
been already used in the Bayesian inference).
The posteriors p(d, m) are obtained for each planet

individually. Consequently, the obtained data posteriors for a
specific planet evaluated in , pd(d), do not depend on the
posteriors of other planets, but they are independent. The
interdependency of planetary masses as described by Grimm
et al. (2018) quantifies the dependencies of data priors between
the planets. Formally, we can say that d d dd ij d i d jij i j

r r r¹( ) ( ) ( ),
where i, j are generic planet indices i, jä{b, c, d, e, f, g, h}. In
the case in which the individual data priors are independent
from each other, we can write the data posteriors as

d d d d dp L L , 11d m i m j d i d j
indep
ij i j i j

r r=( ) ( ) ( ) ( ) ( ) ( )

while for dependent data priors the posteriors are

d d d d d

d d d d

p L

L L

, ,

, . 12
d m i j d i j

m i m j d i j

dep
ij ij ij

i j ij

r

r

=

=

( ) ( ) ( )

( ) ( ) ( ) ( )

If d d d dL L L,m i j m i m jij i j=( ) ( ) ( ), then

d d
d d

d d
p p

,
. 13d ij d ij

d i j

d i d j

dep indep
ij ij

ij

i j

r

r r
=( ) ( )

( )

( ) ( )
( )

The condition that d d d dL L L,m i j m i m jij i j=( ) ( ) ( ) can be
understood from the following. L(d) is a measure of the
likelihood of the specific data set d, based solely on the prior
information about the models m=g−1(d) that map into d. If g
is bijective (the inverse problem has a unique best-fitting
solution), d dL gm m

1r= -( ) ( ( )). If the problem is nonunique,
the right-hand side of this equation expresses an integral/sum
over all models that map into d. For simplicity, consider a case
where our data consist of two (possibly dependent) parts,
d1 and d2. In this case, the data likelihood can be expressed as

d d d d dL L g, , . 14m m m m1 2 ,
1

1 21 2
r= = -( ) ( ) ( ( )) ( )

However, when m1 and m2 are a priori (statistically)
independent and mi is functionally related only to di (for
i=1, 2), we get

d d d d d dg g g, , , 15m m m m,
1

1 2
1

1 2
1

1 21 2 1 2
r r r=- - -( ( )) ( ( )) · ( ( )) ( )

d dg g , 16m m
1

1
1

21 2
r r= - -( ( )) · ( ( )) ( )

leading to

d d d dL L L, . 17m m m1 2 1 21 2=( ) ( ) · ( ) ( )

So much for the theory.

Table 3
Data Scenarios for Interior Characterization

Considered Data N U A UCM UHM UHMR

Correlated Mp and Rp ✓ ✓ ✓ ✓ ✓ ✓

Stellar irradiation ✓ ✓ ✓ ✓ ✓ ✓

Interdependency of planetary masses Mp × × × ✓ × ×
Interdependency of planetary masses Mp excl. planet e × × × × × ×
Bulk abundances based on Unterborn et al. (2017) × ✓ × ✓ ✓ ✓

Bulk abundances based on TRAPPIST-1e × × ✓ × × ×
Hypothetical reduced precision in Mp × × × × × ✓

Hypothetical reduced precision in Rp × × × × ✓ ✓

Figure 3. Schematic of interior characterization scheme represented in the data
space . Dependent data refers to the data that contain the interdependency of
different planetary data. Independent data refers to the data of each planet that
do not depend on other planets.
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In practice, the resampling works as follows. The inference
analysis of individual planets yields independent data poster-
iors d d d dp p p,d i j d i d j

indep
ij i j

=( ) ( ) ( )( ) . For a total of K samples,

we have di
1, di

2, ..., di
K from pdi

and dj
1, dj

2, ..., dj
K from pdj

.

Thus, any pair (e.g., d d,i j
1 1( ), d d,i j

2 2( ), ... d d,i
K

j
K( )) is a sample

from d dp pd i d ji j
( ) ( ). We shall resample from d dp pd i d ji j

( ) ( ) such
that the new samples are drawn from d dp ,d i j

dep
ij

( ). In order to
do so, we calculate a factor Q that signifies a maximum
difference between the data priors of the data-independent and
data-dependent cases:

d d d dQ max , . 18k d i
k

j
k

d i
k

d j
kdep

ij i j
r r r= ( ( ) ( ) ( )) ( )

For k=1, K, K,

1. we generate a random number wä[0,1];
2. if d d d dw Q,d i

k
j
k

d i
k

d j
kdep

ij i j
r r r< ´( ) ( ( ) ( )), then

d d d d, ,i
k

j
k

i
k

j
k dep=( ) ( ) ; otherwise, discard the sample.

Thereby, we obtain samples d d,i
k

j
k dep( ) that represent the data

posterior d dp ,d i j
dep
ij

( ). Any interior model pairs m m,i
k

j
k dep( )

that generated d d,i
k

j
k dep( ) are samples from the model posterior

m mp ,m i j
dep

ij
( ).

In other words, we can understand the resampling as follows.
We randomly combine samples from the analysis of individual
planets i and j, which represents a set of paired samples
d d,i

k
j
k( ) drawn from the data posterior under the premise that

data of different planets are independent. In order to obtain the
data posterior samples d d,i

k
j
k dep( ) that incorporate the depen-

dencies of data from different planets, we reject some of the
original samples d d,i

k
j
k( ). Those samples for which the ratio

between dependent data prior and independent data prior is
large (close to 1 or larger) are likely accepted as samples from
d d,i

k
j
k dep( ) , while they are rejected if the ratio is closer to 0.

This procedure is done for all combinations of planets i and j.
Alternatively, it is in principle possible to do an inference

analysis by using all data and their correlations and
interdependencies between planets. However, our scheme
elegantly separates the information of correlated mass and
radius of individual planets from information about interde-
pendent data of different planets. This allows us to better
control each analysis step and to be more flexible with testing
different data scenarios without the need to run a full inference
analysis for the entire system. Furthermore, our scheme can be
generally applied to other inference problems.

4. Results

4.1. Bulk Refractory Element Constraints

In Figure 4, we show the consequences of different bulk
constraints on mass and radius of TRAPPIST-1e. The prior
data of measured mass and radius are highlighted in blue. The
use of the suggested stellar constraint of Unterborn et al. (2017)
(scenario U) is not able to explain well the relatively high bulk
density of TRAPPIST-1e. This is evident from the difference
between the prior data distribution (blue) and the posterior
distribution of scenario U (green).

In a second scenario N, we do not impose any abundance
constraints. Instead, we analyze the possible range of
bulk abundances of TRAPPIST-1e, while only using the
data of mass, radius, and stellar irradiation. The predicted

bulk mass ratios are high, with large 1σ uncertainties:
Fe/SiT1e=11.2±5.7 and Mg/SiT1e=5.7±3.7. The data
of only mass and radius (N) allow high relative bulk iron
abundances, since iron incorporated in silicates and oxides in
the mantle has a limited influence on bulk density. These
abundance ranges (Fe/SiT1e and Mg/SiT1e) are subsequently
used as input constraints to analyze the other planets in
scenario A.
The ratios Fe/SiT1e and Mg/SiT1e are much higher than

those estimated for Earth and other solar terrestrial planets.
However, the large uncertainties on the ratios also allow for
Earth-like rocky compositions. The fact that these uncertainties
estimated from mass and radius alone are high illustrates the
large degeneracy of rocky interiors, i.e., very different
combinations of mantle compositions and core sizes can
explain a given planetary mass and radius. The suggested
stellar abundance proxy of Unterborn et al. (2017), with
a relatively small uncertainty of 30%, is partly incompatible
with mass and radius of TRAPPIST-1e. In the discussion
(Section 5), we provide two interpretations for the interior of
planet e.

4.2. Interior Predictions

Our calculated interior predictions account for the variability
in layer thicknesses (of core, mantle, ice/ocean, and gas), layer
compositions (of mantle and gas), and thermal states. In the
following, we present 1D and 2D marginalized distributions of
estimated posteriors. Note that the 1σ uncertainty regions differ
between a distribution that is marginalized over one or two
dimensions. The uncertainty regions are generally smaller for
1D marginalized distributions. Stated uncertainty regions refer
to 1D marginalized distributions.
In Figure 5 we show the predicted ranges of radius fractions

for gas and water layers for the scenario U, in which we use
the stellar abundance proxy as suggested by Unterborn et al.
(2017). Possible radius fractions of gas envelopes range

Figure 4. Comparison of data priors and data posteriors for TRAPPIST-1e for
planetary mass and radius. The prior distribution (Grimm et al. 2018) is shown
in blue, which overlaps well with the posterior distribution of scenario N, but
not only in parts with the posterior distribution of scenario U. In comparison,
different mass–radius curves are plotted for pure iron (black solid) line, pure
MgSiO3 (black solid line with circles), interiors of iron-free mantles that agree
with the median constraint of Unterborn et al. (2017; green dashed line), and
interiors of median structure and composition as inferred for planet e and
scenario N (red dashed line). Stated ratios are mass ratios.
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between 0% and 5%, while water layers can contribute up to
30% to the total radius. The uncertainty ranges on possible
amounts of water are large. This is because of the degeneracy
with gas envelope thicknesses (Figure 5), but mainly the size of
the rocky interiors (Figure 6) is large. There is a strong

correlation between the possible amount of water and the size
of the rocky interior, as expected.
In the following, we discuss how much the predicted

water mass fractions depend on model assumptions and
considered data.

Figure 5. 2D marginalized posterior distribution of gas and water radius fraction for scenario U and all seven planets (b–h). The difference in radius attributed to the
gas or water layers is shown. Dark-gray and light-gray regions refer to 1σ and 2σ regions, respectively.

Figure 6. 2D marginalized posterior distribution of rocky interior size and water mass fraction for scenario U and all seven planets (b–h). Dark-gray and light-gray
regions refer to 1σ and 2σ regions, respectively.
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4.2.1. Influence of the Choice of Abundance Proxy

Figure 7 illustrates how the choice of abundance constraints
influences the predicted amount of water. If the stellar proxy
(U) is used, rocky interiors are less dense compared to the

proxy that is based on TRAPPIST-1e (A). Consequently, the
predicted amount of water is smaller in scenario U, since less
water can be added on top of low-density rocky interiors while
still fitting mass and radius. There are differences in the median

Figure 7. 1D marginalized posterior distribution of water mass fractions for all seven planets (b–h). The shown data scenarios use the stellar abundance proxy (U) or
the abundance proxy based on TRAPPIST-1e (A). For the gas layer, model I (blue and yellow curve) assumes an isothermal temperature profile, while model II (red
curve) assumes a convective adiabat in the gas layer.

Table 4
Interior Parameter Estimates with 1σ Uncertainties of the 1D Marginalized Posterior Distributions

Planet: TRAPPIST-1b TRAPPIST-1c TRAPPIST-1d

Scenario: U A UCM U A UCM U A UCM

rcore/rcore mantle+ 0.39 0.11
0.09

-
+ 0.50 0.14

0.12
-
+ 0.39 0.11

0.09
-
+ 0.40 0.11

0.08
-
+ 0.52 0.13

0.11
-
+ 0.40 0.11

0.08
-
+ 0.39 0.11

0.09
-
+ 0.51 0.14

0.12
-
+ 0.39 0.12

0.08
-
+

rcore mantle+ Rp 0.84 0.06
0.06

-
+ 0.79 0.07

0.07
-
+ 0.82 0.07

0.08
-
+ 0.92 0.05

0.04
-
+ 0.86 0.06

0.06
-
+ 0.91 0.05

0.04
-
+ 0.84 0.06

0.05
-
+ 0.79 0.06

0.06
-
+ 0.84 0.06

0.06
-
+

m Mwater p 0.15 0.07
0.08

-
+ 0.19 0.08

0.09
-
+ 0.16 0.09

0.10
-
+ 0.06 0.04

0.05
-
+ 0.10 0.05

0.06
-
+ 0.06 0.04

0.05
-
+ 0.14 0.06

0.08
-
+ 0.18 0.07

0.07
-
+ 0.14 0.07

0.09
-
+

r Rwater p 0.15 0.06
0.07

-
+ 0.19 0.07

0.07
-
+ 0.16 0.08

0.07
-
+ 0.07 0.04

0.05
-
+ 0.12 0.06

0.06
-
+ 0.08 0.04

0.05
-
+ 0.14 0.06

0.06
-
+ 0.18 0.06

0.06
-
+ 0.13 0.06

0.07
-
+

r Rpgas 0.01 0.01
0.01

-
+ 0.01 0.01

0.01
-
+ 0.01 0.01

0.01
-
+ 0.01 0.01

0.01
-
+ 0.01 0.01

0.01
-
+ 0.01 0.01

0.01
-
+ 0.02 0.01

0.02
-
+ 0.02 0.01

0.02
-
+ 0.02 0.01

0.02
-
+

Planet: TRAPPIST-1e TRAPPIST-1f TRAPPIST-1g
Scenario: U A UCM U A UCM U A UCM

rcore/rcore mantle+ 0.45 0.10
0.06

-
+ 0.58 0.11

0.09
-
+ 0.45 0.10

0.07
-
+ 0.39 0.11

0.08
-
+ 0.52 0.13

0.12
-
+ 0.39 0.11

0.08
-
+ 0.39 0.11

0.08
-
+ 0.50 0.14

0.12
-
+ 0.39 0.11

0.09
-
+

rcore mantle+ Rp 0.97 0.02
0.02

-
+ 0.93 0.05

0.04
-
+ 0.97 0.02

0.02
-
+ 0.91 0.03

0.03
-
+ 0.86 0.05

0.05
-
+ 0.91 0.03

0.03
-
+ 0.86 0.03

0.03
-
+ 0.81 0.05

0.05
-
+ 0.86 0.03

0.03
-
+

m Mwater p 0.02 0.01
0.02

-
+ 0.04 0.03

0.04
-
+ 0.02 0.01

0.02
-
+ 0.07 0.03

0.03
-
+ 0.11 0.05

0.05
-
+ 0.07 0.03

0.03
-
+ 0.13 0.04

0.04
-
+ 0.17 0.06

0.05
-
+ 0.13 0.04

0.04
-
+

r Rwater p 0.02 0.01
0.02

-
+ 0.06 0.04

0.05
-
+ 0.02 0.01

0.02
-
+ 0.08 0.03

0.03
-
+ 0.13 0.05

0.05
-
+ 0.08 0.03

0.03
-
+ 0.13 0.04

0.03
-
+ 0.18 0.06

0.05
-
+ 0.13 0.04

0.04
-
+

r Rpgas 0.01 0.00
0.01

-
+ 0.01 0.01

0.01
-
+ 0.01 0.00

0.01
-
+ 0.01 0.01

0.01
-
+ 0.01 0.01

0.01
-
+ 0.01 0.01

0.01
-
+ 0.01 0.01

0.01
-
+ 0.01 0.01

0.01
-
+ 0.01 0.01

0.01
-
+

Planet: TRAPPIST-1h
Scenario: U A UCM

rcore/rcore mantle+ 0.40 0.11
0.08

-
+ 0.52 0.14

0.11
-
+ 0.40 0.12

0.08
-
+

rcore mantle+ Rp 0.89 0.07
0.06

-
+ 0.84 0.07

0.07
-
+ 0.87 0.07

0.06
-
+

m Mwater p 0.09 0.06
0.09

-
+ 0.12 0.07

0.08
-
+ 0.11 0.06

0.09
-
+

r Rwater p 0.10 0.06
0.08

-
+ 0.14 0.07

0.08
-
+ 0.11 0.06

0.08
-
+

r Rpgas 0.01 0.01
0.02

-
+ 0.01 0.01

0.02
-
+ 0.01 0.01

0.02
-
+
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predicted water mass fraction that range from 25% up to 50%
between U and A. For all but planet e, the differences are
largely around 30%. For planet e, it is the discrepancy between
mass and radius versus stellar proxy that leads to such large
changes in mwater/Mp between the scenarios U and A. Table 4
summarizes the estimated interior parameters and their 1σ
uncertainties.

4.2.2. Accounting for the Interdependency of Planetary Masses

Inferred planetary masses by Grimm et al. (2018) are
significantly correlated between different planets (Figure 2).
We account for this interdependency of planetary masses by
resampling the posterior interior samples of scenario U with our
new resampling scheme (Section 3.4.3) that yields the posterior
distribution UCM. The difference between the posterior
distribution U and UCM demonstrates the information contained
in the interdependency of planetary masses. Figure 8 shows
that the differences are largest for planets b and h, with up to
20% difference in both the median water mass fraction and the
corresponding uncertainty (Table 4).

The information contained in the interdependency of
planetary data depends on the specific correlation between
the planets. In Figure 9 we show how the distribution of water
mass fraction for planet b changes while adding step by step the
information on the correlation between the planetary masses.
For planet b, the information gained by accounting for
interdependency of masses is mainly kept in the interdepen-
dency with planets e and h. In general, how much information
can be gained depends on the actual level of interdependency
of planet pairs. While accounting for interdependent data, water
mass fractions are shifting toward lower values, and uncertain-
ties increase.

Why do uncertainties on estimated water mass fractions
increase? The reason is illustrated in Figure 10, showing
the independent posteriors (U) and the prior ratio
( d d d dQ,d i j d i d jij i j
r r r( ) ( ) ( ) from Equation (13)), which is used
to resample from the independent posteriors in order to obtain
dependent posteriors. The ratio is highest at the two tails of the

Figure 8. 1D marginalized posterior distribution of water mass fractions for all seven planets (b–h). U ignores interdependencies of planetary data, while UCM accounts
for interdependent masses. The change between U and UCM depends on the abundance proxy used. Shown scenarios use the stellar proxy.

Figure 9. 1D marginalized posterior distribution of water mass fractions for
planet b. The independent posterior of scenario U (light blue line) yields the
highest water mass estimates. While subsequently taking into account
the interdependency of planetary masses between planet b and the other
planets, the curves are colored with more reddish colors and move to
lower water mass fractions. The lowest water mass fractions represent
scenario UCM.
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2D distributions, where planetary masses are both small and
large. These tails of the independent mass distribution are
preferentially resampled. For a given radius, high masses are
characterized by low water contents and vice versa. In
consequence, the distribution of possible water mass fractions
broadens.

Why are higher water mass fractions preferentially resampled?
For some of the planets, the highest possible masses cannot be
well described by the stellar proxy (U). This is the case for planet
e (as discussed earlier for Figure 4) but also planets c and h
(Figure 10, bottom panel). It is not the case, for example, for
planets f and g (Figure 10, top panel). The consequence is clear
from the posteriors (U) that are shifted to smaller planetary
masses compared to the prior data (for e, h, and c). During the
resampling of the posterior U, only those samples survive for
which the prior ratio is large. This is the case for lower masses
(Figure 10, bottom panel) that are characterized by higher water
contents (for a given radius).

The difference between U and UCM is due to not only the
partial incompatibility of planetary data (mass and radius
versus the stellar proxy) of planets e, h, and c but also the fact
that the 2D mass distributions (Figure 2) are not perfect
ellipses.

4.2.3. Influence of Atmospheric Model

Figure 7 shows that the differences in water mass fractions
are small when we change from an isothermal to a fully
adiabatic temperature model for the gas layer. In the isothermal
model I, we have introduced a parameter α that accounts for
cooling and heating of an atmosphere. However, temperatures
are largely limited to 400 K, and thus, especially for the
innermost planets, this model I is not able to produce
temperatures as high as suggested by Grimm et al. (2018)
(surface temperatures of 750–1500 K for planet b). Model II
overcomes this limitation but overpredicts the temperatures in
the gas layer by assuming a fully convective gas layer. In
consequence, surface temperatures in model II can be very high
and can range, for example, on planet b from 500 to 10,000 K
for surface pressures of 1–104 bars. Thus, while temperatures in
model I are underestimated, they are overestimated in model II.
This is illustrated in Figure 11, showing pressure–temperature
profiles for an Earth-like atmosphere. Global climate models
that solve for radiative transfer as presented in Turbet et al.
(2018) yield much more realistic surface temperatures.
However, we find that there is only limited influence due to
the choice of gas layer model on the estimated mass of the
underlying water layer. Median estimates generally vary by
10%–15%, expect for planets b and c with 25%. The
differences are relatively small compared to other influences
(Sections 4.2.1 and 5.1).
Estimated water mass fractions are smaller for model II

compared to model I. This is because the lower gas envelope
temperatures in model I result in smaller scale heights and thin
gas envelopes, and thus larger amounts are required to fit planet
mass and radius. The solutions given the two models I and II
represent end-member solutions.

4.2.4. Relevance of Data Uncertainty

Figure 12 illustrates how much our ability to constrain water
mass fraction would improve by more precise estimates of
mass and radius. An improved estimate on planet mass (70% of
the nominal uncertainty) only has generally marginal influence

Figure 10. Planetary mass distributions for planets f and g (top panel) and
planets c and h (bottom panel). The 1σ and 2σ contours in white are the
independent posteriors of scenario U. These posteriors are resampled according
to the ratio priordep/(Qpriorindep) (in color) as described in Section 3.4.3 in
order to obtain the dependent posteriors.

Figure 11. Comparison of atmospheric models I (isothermal temperature
profile; solid lines) and II (adiabatic; dashed lines) for an Earth-like
atmosphere. Δzgas is the depth into the gas envelope reaching different
pressures ΔP compared to 20 mbar at zgas=0 km. Depending on the model
(I or II), the increase in temperature ΔT is zero or higher than Earth’s
atmospheric temperatures. The models enclose Earth’s average atmosphere
profile and represent end-member cases.
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on the median estimate of mwater/Mp, but it reduces the 1σ
confidence interval by 5%–20%. Improved estimates on both
planet mass and radius (70% of the nominal uncertainty) reduce
the 1σ confidence interval by 10%–35%. The largest improve-
ments are seen for planets e and h, while the smallest
improvements are seen for planets f and g. The information
gained by improved data uncertainty is small compared to the
different choices of abundance proxies (Figure 7), as well as
the information kept in the interdependency of planetary data
(Figure 8).

5. Discussion

Although masses, radii, and temperature conditions of the
TRAPPIST-1 planets generally remind us of terrestrial solar
system planets, the possible interiors of the TRAPPIST-1
planets can contain significant water budgets of up to 20% or
even 30%, unlike the terrestrial planets (�0.02% surface
water). This is because of the roughly 20% lower bulk
densities, their associated uncertainties, and the large degen-
eracy due to variability in structure and composition of the
rocky interior, as well as in gas layer characteristics.

5.1. Systematic Data Biases

Recent announcements (Demory 2018) have indicated that
previously unavailable observations for the TTV analysis of
Grimm et al. (2018) provide a higher accuracy with changes in
planetary masses within ±24%. In Figure 13, we show that
consequences for the estimated water mass fractions are large.
Planet e would not be the odd case of a super-Mercury. All
planets could be consistent with an increasing water mass
fraction with orbital period (within 2%–12% with respect to 1σ
errors) or a uniform water mass fraction of 7% (within 1σ
errors). Such large amounts of water would exclude Earth-like
habitability even for the temperate planets since their rocky
interiors are separated by icy layers from the water oceans in

that case. In contrast, the published data estimates (Grimm
et al. 2018) suggest no clear trend of water mass fraction with
orbital distance as discussed below (Figure 13).
Specifically for the TRAPPIST-1 planets, the trend of

changing water mass fractions with systematic shifts in
planetary masses can be described as follows. A shift of
+25% in planetary mass can reduce the water mass fraction by
65% (i.e., the reference water mass fraction multiplied by a
factor of 0.35). For shifts of +20%, +10%, +5%, and −15%
the factor is roughly 0.4, 0.55, 0.75, and 2.6, respectively.
In general, biases from the TTV analysis are extremely

difficult to quantify because they stem from limited observa-
tions. Biases from TTV can be caused by unresolved
degeneracies between eccentricity, mass, and arguments of
perihelion of the different planets. Limited observation time
can cause the TTV analysis to prefer solutions that depart from
the true solution, or the parameter search is trapped in a local
minimum of the sampling parameter space. Also strong tidal
effects, nearby perturbing stars, or even yet-undetected
additional planets can introduce a TTV signal bias. Further
TTV analysis on a larger number of transit observations is
needed to increase the accuracy of planetary masses.

5.2. Rocky Interiors and TRAPPIST-1e

The degeneracies within structure and composition of rocky
interiors stem from the fact that we allow for variable silicate
mantle compositions and core sizes. Independent constraints on
element abundances as taken from stellar proxies are highly
valuable for refined rocky interior estimates (Dorn et al. 2015).
Here, however, no direct estimates from the faint host star are
available. Instead, we have adopted two different abundance
proxies (see Table 3): a stellar proxy (scenario U) as derived
from F-G-K stars of similar metallicities (Unterborn
et al. 2017), and a proxy based on only mass and radius of
the densest planet of the system, planet e (scenario A).

Figure 12. 1D marginalized posterior distribution of water mass fractions for all seven planets (b–h). For U the nominal data uncertainties are used, while for UHM and
UHMR 70% of the uncertainties on planet mass and on mass and radius are used, respectively. All shown data scenarios use the stellar proxy.
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Depending on the abundance proxies used for refractory
elements (U or A), the interior estimates change with significant
influences on the predicted possible water budgets (Section 4.2.1).
Any decision on whether scenario U or A is more likely depends
on the interpretation of planet e.

If TRAPPIST-1e were a super-Mercury-type planet, it would
not represent the rocky analog for all planets. In this case,
scenario A would be best only to describe planet e, while all
other planets would be best described by scenario UCM(in case
the stellar proxy would be excluded for planet e). A super-
Mercury-type interior could be explained by a high-energy
giant impact (Benz et al. 1988; Stewart & Leinhardt 2009;
Marcus et al. 2010). This would also allow us to explain why
inferred interiors for planet e are poorest in volatiles, although
its neighboring planets are volatile-rich. A mantle-stripping
impact would require large impact velocities or small impact
angles (Stewart & Leinhardt 2009), or an impactor larger than
planet e, which does not exist in the system. It remains to be
studied whether impacts are a reasonable scenario.

If TRAPPIST-1e is not a super-Mercury-type planet, there
are two interpretations possible. First, TRAPPIST-1e can
indeed be a rocky analog of all the planets regarding the
relative ratios of rock-forming elements. In this case, all planets
have compositions that are not Earth-like, implying that
the iron was more abundant compared to solar compositions.
In this case, all planetary interiors are best described by
scenario A.

Second, let us assume that TRAPPIST-1e is indeed similar
to an Earth interior and thus well represented by U, but its
mass and radius estimates are affected by systematic biases
(as discussed in Section 5.1). In this case, scenario U may well
describe planet e, while dismissing high bulk density interiors.
Thus, many mass–radius realizations are incompatible for
planet e in scenario U. Given that all planetary masses (radii)
are correlated to the mass (radius) of planet e, there are also
many planetary masses (radii) of the other planets that are
incompatible with U. In consequence, accounting for the
interdependencies of planetary data improves interior estimates.
If this case is true, all interiors are well described by
scenario UCM.

5.3. Water Budgets

The layers of water can generally be in liquid, solid, and
even supercritical state. Water vapor is excluded, as we impose
that any water layer requires a gaseous layer on top that
imposes a pressure at least as high as the vapor pressure of
water. For simplification, we use pure water and neglect other
forms of ices (e.g., CO2). For all but planet e, most of the
possible planetary interiors are characterized by ice layers
separating water oceans from rocky interiors. This is due to the
fact that either the large amounts of water allow pressures
high enough to form high-pressure ices or temperatures are
sufficiently cool (especially for the outer planets f, g, and h).
We note that the thermal states of the planets are unknown
and significant tidal heating may allow for more extended
thicknesses of liquid water. Planet e is the volatile-poor
exception among the planets. Its possible tiny amounts of water
and temperate conditions allow for liquid water on the surface.
Also for planets c and h, the uncertainty on mass and radius
allows for negligibly thin volatile layers.

In Figure 14, we show the 2σ uncertainty distribution for
scenario U and all planets in comparison with mean estimates

for Earth and Venus, but also Titan and icy satellites, which
probably formed outside the water ice line: Europa, Ganymede,
Callisto, Triton, Pluto, and Charon. The water mass fractions of
the shown solar system objects range from 0% to 30% (for a
review, see Nimmo & Pappalardo 2016) and are comparable to
our inferred ranges of possible water mass fractions. Water
mass fractions of solar system objects on the order of 1000 km
or smaller can have higher water budgets. (Saturn’s moon
Tethys, with a radius of 1060 km, is almost entirely composed
of water, with a bulk density of 0.98 g cm−3.) Formation
models that simulate the structure and evolution of disks
(Alibert & Benz 2017) predicted planets to be more volatile-
rich around low-mass stars, since the snow line is located closer
to the stars compared to the solar system. Indeed, the
TRAPPIST-1 system is significantly more volatile-rich than
the terrestrial solar system planets.
Our results suggest an upper water mass fraction of not

much larger than 30%. The amount of water loss (Bourrier
et al. 2017) or water delivery (Kral et al. 2018) during the long-
term evolution of the planets after formation is small compared
to our predicted uncertainties on water budgets. While water
budgets can be altered by 1–100 Earth oceans, the predicted
water budgets range from tens to thousands of Earth oceans,
with uncertainties on the scale of hundreds to thousands
of Earth oceans. Therefore, our inferred water budgets
largely represent the water budgets originally accreted during
formation.
In comparison to the expected water mass fraction of

material outside the water snow line of 50% (Lodders 2003),
our maximum predicted water budgets are significantly smaller
(30%). This can be due to a mixed accretion of volatile-poor
and volatile-rich planetesimals from within and beyond the ice
line, respectively. Sufficient mixing of volatile-poor and
volatile-rich planetesimals for all planets is also reasonable
given that no clear trend of water budget with orbital distance is
seen as shown in Figure 13. Here we plot the inferred water
mass fractions against the equilibrium temperature at zero
albedo, which relates to orbital distance. The error bars on
water mass fraction represent 3th–16th–84th–97th percentiles
of the cumulative distribution. Neither a clear trend of water
mass fraction with orbital distance nor one with planet mass
could be identified. Thus, our findings suggest that the accreted
material stems from regions in the disk where mixing was
efficient enough to blur any possible trends of increasing water
mass fraction with orbital distance, unless migration reordered
the planets. Below, we discuss the implications for the
formation of the planets in more detail.

5.4. Implications for Planet Formation

The two main conclusions of our calculations are that the
water content is very diverse among the planets, with no
obvious correlation with either the mass or the period, and that
the maximum amount of water is somewhat lower than the icy
content of planetesimals usually assumed in the solar system.
The scatter in planetary water budgets is at odds with what

we observe in the solar system, both in the planets and in
Galilean satellites. In both cases, innermost objects tend to be
dryer than outermost ones. While a uniform water budget in all
planets cannot be excluded at the 2σ level (see Figure 13), this
scatter is puzzling. Different origins can be invoked for this
scatter. First, planets likely migrated during their formation
(Alibert & Benz 2016), and therefore accreted planetesimals
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from different parts in the disk, some dry (inside the ice line)
and some wet (beyond the ice line). In addition, the ice line
itself is likely to move during the formation of planets, and this
can modify the water content of solids in the disk (pebbles, but
also small planetesimals). In both cases, one can therefore
expect that the average water content of accreted solids (which
does not necessary reflect the final water content of planets as
discussed below) can vary depending on the exact formation
path of the planets. What is, however, not clear is whether it is
possible to end up with a water budget that shows no trend.
Indeed, one would expect, from a smooth and ordered
migration of planets, that the water content should mono-
tonically increase as a function of period, as we see, for
example, in the case of Galilean satellites. Breaking such a
monotonic trend requires exchanging the place of some planets,
which requires a strong level of dynamical rearrangement

resulting from gravitational interactions. Whether such a
rearrangement is possible, while at the same time ending with
a flat and resonant system, remains to be investigated.
Another possibility is that the final water budget of planets is

not the one of the accreted solids. Indeed, during their
formation, planets accrete a gas envelope (which may be lost
afterward). The interaction of the gas envelope, the proto-
planetary disk, and the accreted solids can lead, under some
circumstances, to the loss of some of the accreted solid material
(Alibert 2017); however, see Brouwers et al. (2018). This
process results from the advection of gas from the disk to the
planetary atmosphere, and such a process could prevent
accretion of water by forming planets. As the efficiency of
advection depends on different parameters (including planetary
mass, gas density in the disk, and distance to the star) in a
nontrivial way, it is not clear whether such a process can
destroy a preexisting water content gradient, but it is likely to
increase the scatter in the final water content.
The second conclusion of our study is that the maximum

water content is of the order to 30%. Interestingly enough, this
value is smaller than the assumed water content in solids beyond
the ice line, but at the same time similar to the maximum water
content in solar system bodies up to the terrestrial mass range
(see Figure 14). In fact, Ormel et al. (2017) predict moderate
water budgets (∼10%) for the TRAPPIST-1 planets when
planetary embryos form at the water snow line, migrate to the
inner disk, and grow by dry pebbles until a critical planet mass
(∼0.7 MÅ) is reached that prohibits further pebble accretion.
A reduction of water budget for planets that accreted outside
of the snow line can include processes such as desiccation of
volatile-rich planetesimals by short-lived radionuclides (Grimm
& McSween 1993; Lichtenberg et al. 2018), giant impacts
between embryos (Genda & Abe 2005), and heating of planets
and planetesimals during accretion and collisions, which
is expected to be more efficient around low-mass stars (Lissauer
2007).
In any case, the water budget of the TRAPPIST-1 planets is

an important constraint that needs to be fully considered in
formation models. As a consequence, better determinations
(e.g., by improving the mass, radius, or compositional
constraints on refractory elements or atmospheric composition)
of this quantity are key to making future progress in the
understanding of the formation of the system.

6. Conclusions

The TRAPPIST-1 planets do not follow a single mass–radius
trend, but there is some scatter among the bulk densities of
planets. Here we have quantified the origin of this scatter,
which is mostly due to different amounts of water, but also to
some extent the sizes of rocky interiors and the thicknesses of
gas envelopes.
Our analysis characterizes the nature of TRAPPIST-1 planet

interiors while accounting for all available and relevant data.
These include the correlated planetary masses and radii and
stellar irradiation. In addition, we have tested different
abundance constraints: a stellar proxy based on stars of similar
metallicities, as well as a proxy that is based on the densest and
probably a purely rocky planet of the system, planet e. The
latter abundance proxy is unique to multiplanetary systems (see
Section 4.2.1). Furthermore, there are data specific to multi-
planetary systems that have not been considered in previous
studies: the interdependency of planet masses between different

Figure 13. Marginalized water mass fractions as a function of equilibrium
temperature Teq (at zero albedo). The top panel shows scenario UCM. There is
no obvious trend of increasing water mass fraction with larger orbital distance
and thus cooler Teq. For the water mass fractions, the 3th–16th–84th–97th
percentiles are depicted by the thin and thick error bars. How much water mass
fraction there could have been after formation (open circles) is calculated by
adding the amount of lost water (Bourrier et al. 2017) to our inferred median
estimates (filled circles). The bottom panel shows that possible systematic
shifts in planet masses (from −18% to 24%) could in fact result in finding
water mass fractions that are uniform or increasing with orbital distance.
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planets as derived from TTV analysis, and the interdependency
of planet radii between different planets as derived from TTV
analysis. Here we have developed a new resampling scheme
(Section 3.4.3) that allowed us to incorporate the information
on interdependent data (Section 4.2.2). The information that we
can gain on the interiors by accounting for interdependent
planetary data can be important (up to 20% differences), even
as important as an improvement in mass and radius precision
(Section 4.2.4).

We highlight that the precision on the differential planetary
data is much better than on absolute masses and radii. This is
because the latter includes stellar uncertainties, while the
former does not. By accounting for the correlations among all
seven masses, we formally use the knowledge on the
differential masses. For multiplanetary systems, as demon-
strated here for TRAPPIST-1, the use of differential planetary
data is important for a thorough interior investigation.

Systematic biases of data can critically influence interior
characterization. Care should be taken with our and all previous
interior interpretations that critically depend on planetary
masses and densities of TRAPPIST-1. Ongoing observational
efforts indicate possible changes in mass accuracies within
±24% (Demory 2018). In this case, all interiors could be
consistent with an increasing water mass fraction with orbital
period (within 2%–12% with respect to 1σ errors) or a uniform
water mass fraction of 7% (within 1σ errors). This is in contrast
with our findings based on the most recent data publications
(Delrez et al. 2018; Grimm et al. 2018), which we summarize
below:

1. TRAPPIST-1e can be a super-Mercury-type planet with
non-Earth-like bulk abundance. This is obvious from the
high bulk density as determined by Grimm et al. (2018)
and was discussed by Suissa & Kipping (2018). Here we
have quantified the rocky composition of planet e to be
characterized by Fe/SiT1e=11.2±5.7 and Mg/SiT1e=
5.7±3.7. If the rocky composition of planet e were
indeed different from the other planets, it could be due to
a giant impact that has not only stripped off parts of the
mantle (Benz et al. 1988) but also removed volatile-rich
layers. Such a scenario would explain why planet e is
much drier than the other planets. However, this scenario
would require an impactor larger than planet e, which
does not exist in the system, and it remains to be studied
whether impacts are a reasonable scenario. In this
scenario, the interiors predicted for all planets might be
well described by U, with the exception of planet e, which
is best described by A.

2. Alternatively, TRAPPIST-1e may not be a super-
Mercury-type planet. There are two interpretations
possible under this premise:
i. First, it is possible that systematic errors of the
TTV analysis due to the limited observation time and
yet-undetected planets in the system may bias the
planetary masses, including planet e. If this is the case,
the stellar proxy would be an important constraint to
favor rather Earth-like interiors for planet e, dismissing
high bulk density interiors. Consequently, due to the
interdependency of planetary data, the information
kept in the level of incompatibility of data (in scenario

Figure 14. Ternary diagram showing the marginalized 2σ distributions of rock–water–gas radius fractions for TRAPPIST-1 planets and scenario UCM. All three radius
fractions sum up to 1, which makes it possible to represent the distributions in a ternary diagram. For comparison, Earth and Venus are shown in red, and mean
estimates for Europa, Ganymede, Callisto, Titan, Triton, Pluto, and Charon are shown in purple.
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U using the stellar proxy) propagates to all other
planets, yielding better-constrained interiors by exclud-
ing some interior models. In other words, for all
planets there is only a subset of interiors that is in
agreement with all available data on all planets, their
interdependencies, and the stellar proxy. If this case is
true, all interiors are well described by scenario UCM.

ii. Second, it is possible that the interiors of TRAPPIST-
1 planets cannot be described by Earth-like interiors or
the suggested stellar proxy. Instead the purely rocky
interior of all planets is directly probed by the densest
planet, planet e, assuming that all rocky interiors have
similar ratios of rock-forming elements (Mg, Si, Fe).
In this case, all predicted interiors are best described
by scenario A.

3. Differences between estimated interiors are large when
comparing different abundance constraints (U and A).
This demonstrates the need to better understand the
relative amounts of refractory, rock-forming elements in
dwarf systems, like TRAPPIST-1, which probably also
depend on our knowledge of the age of the system.
Unfortunately, direct estimates of the photosphere of the
faint TRAPPIST-1 are unavailable. Possible abundance
constraints based both on stars with similar metallicities
(U) and on the densest planet (A) can be justified.
However, it is difficult to state a clear preference.

4. The information that is kept in the interdependency of
planetary data is a valuable constraint that can signifi-
cantly affect interior estimates. For example, estimated
median water budgets can vary up to 20% (compare
scenarios U and UCM). Accounting for interdependency of
planetary data compares with changes in data precision
of 30%.

5. Mass and radius data only carry limited information about
planetary interiors, and additional data types are required
to significantly improve interior estimates. For example,
the improvement on predicted amounts of water due to
more precise data (70% of nominal data uncertainties) is
rather small compared to changes in abundance proxies
(U and A).

6. Our inferred ranges of water contents of 0%–25% are
high compared to terrestrial solar system planets and are
smaller by a factor of two compared to predictions from
formation studies (Alibert & Benz 2016). Volatile-rich
interiors of planets in dwarf star systems are predicted
given that the water ice line is much closer to the star
compared to a solar-like system.

7. There is no clear trend of volatile fraction with orbital
period. This suggests that the accreted planetesimals were
sufficiently mixed such as to blur otherwise expected
increases of water fraction with distance from the star. A
corresponding uniform water content is indeed possible
within 2σ error bars. Alternatively, migration may have
rearranged the planets before they were captured in
resonance.

8. Possible delivery of volatiles after formation by cometary
impacts (Kral et al. 2018) of a few Earth oceans is tiny
compared to our predicted water mass fractions. This
means that the overall water budgets were accreted during
formation. Also, the interior degeneracy is large such that
uncertainties of predicted water masses are orders of

magnitude larger than possible late-delivered amounts of
volatiles. This implies that the data do not allow us to
validate late delivery of volatiles.

9. The loss of volatiles as predicted by Bourrier et al. (2017)
of several tens of Earth oceans is small compared to the
total amount of water that shapes the planets, except for
planet e. This implies that the ice mass fraction of the
bulk accreted material does not significantly exceed 30%.
If data accuracy changes by up to 24%, this upper limit
could be significantly lower (∼15%).

10. The uncertainty in our predicted water mass fractions
stems from the degeneracy with the size, structure, and
composition of the rocky interior, as well as with the
characteristics of the overlying gas envelope. The
estimated degeneracy will be generally lower if interior
models are employed that only allow for limited
variability, e.g., mantles of pure MgSiO3 as employed
in Unterborn et al. (2017). Similarly, estimated degen-
eracies will be larger if interior models are used that allow
for interiors that are unlikely to exist in nature, e.g., pure
iron cores surrounded by gas envelopes as used in Suissa
& Kipping (2018).

Significant further improvements on our understanding of
the TRAPPIST-1 planetary interiors are only expected with
higher data accuracy and/or informative data other than those
investigated here, which may include better understanding of
their specific host star chemistry, spectroscopic constraints on
atmospheric composition (e.g., with JWST, Ariel, E-ELT), or
constraints on tidal parameters (e.g., Papaloizou et al. 2017).
With our study on TRAPPIST-1, we have explored the data

types that are specific to multiplanetary systems. Such data will
be relevant for the interior characterization of planets in other
systems as well. First, there are correlations between the data of
different planets that can carry crucial information for interior
characterization. Second, we have demonstrated that it is
possible to preferentially probe the rocky interiors of all planets
by studying the densest planet of a multiplanetary system. This
study provides new pathways for an improved interior
characterization that is specific to multiplanetary systems.

This work was supported by the Swiss National Foundation
under grant PZ00P2_174028. It was in part carried out within
the frame of the National Centre for Competence in Research
PlanetS.

Appendix A
Approximation of αmax

There is a physical upper limit to the amount of warming by
greenhouse gases. The Komabayashi–Ingersoll (KI) limit
describes the maximum amount of radiation that can be
transferred by a moist atmosphere, which occurs when the
transparency τs of the atmosphere becomes very small, i.e.,
τs=τlimit.
Here this limit is represented by αmax, which we roughly

approximate as follows:
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where Rstar and Tstar are the radius and effective temperature of
the host star, respectively, a is the semimajor axis, and Tlimit is
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Here T0 is the temperature at some vapor pressure p0 (here we use
p 1 100

5= ´ Pa and T0=373 K for water; Goldblatt &
Watson 2012), κ and τlimit are the opacity and optical depth at
the KI limit, respectively, and g is surface gravity. The fraction

limit

k
t

is approximated for Earth (Tlimit≈400 K) and is estimated to

be 10−7 (in SI units). Thereby, Tlimit (Equation (20)) scales with
the surface gravity. This is a rough estimate for Tlimit and thus
αmax. More advanced modeling would be required to better
determine this limit, but this is outside of the scope of this study.

Equation (20) is derived from
p

gs
s*t = k
and the Clausius–

Clapeyron equation, which relates the surface pressure ps and
temperature Ts:
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Appendix B
Equivalence between Bayes’s Theorem and the Tarantola–

Valette Formulation

The prior in the Valette formulation is described in data and
model space ( and). If the data are a priori independent of
the model, the prior can be written as

d m d m, , 22d mr r r=( ) ( ) ( ) ( )

where ρd(d) and ρm(m) are evaluated in data and model space,
respectively. If the data–model mapping g(·) is exact, the
forward density θ(d, m) can be rewritten as
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where δ is the delta function. If the null information density z
(d, m) is constant, we can state the posterior as
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where Ld(m) is the likelihood of the Bayes’s formulation.
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