MARKOV RANDOM FIELDS AND ITERATED TORIC FIBRE PRODUCTS

JAN DRAISMA AND FLORIAN M. OOSTERHOF

ABSTRACT. We prove that iterated toric fibre products from a finite collection of toric varieties are defined by binomials of uniformly bounded degree. This implies that Markov random fields built up from a finite collection of finite graphs have uniformly bounded Markov degree.

1. Introduction and main results

The notion of *toric fibre product* of two toric varieties goes back to [Sul07]. It is of relevance in algebraic statistics since it captures algebraically the Markov random field on a graph obtained by glueing two graphs along a common subgraph; see [RS16] and also below. In [Sul07, RS16, RS14] it is proved that under certain conditions, one can explicitly construct a Markov basis for the large Markov random field from bases for the components. For related results see [Shi12, EKS14, KR14].

However, these conditions are not always satisfied. Nevertheless, in [RS16, Conjecture 56] the hope was raised that when building larger graphs by glueing copies from a finite collection of graphs along a common subgraph, there might be a uniform upper bound on the Markov degree of the models thus constructed, independent of how many copies of each graph are used. A special case of this conjecture was proved in the same paper [RS16, Theorem 54]. We prove the conjecture in general, and along the way we link it to recent work [SS17] in *representation stability*. Indeed, an important point we would like to make, apart from proving said conjecture, is that algebraic statistics is a natural source of problems in *asymptotic algebra*, to which ideas from representation stability apply. Our main theorems are reminiscent of Sam's recent stabilisation theorems on equations and higher syzygies for secant varieties of Veronese embeddings [Sam17a, Sam17b].

Markov random fields. Let G = (N, E) be a finite, undirected, simple graph and for each node $j \in N$ let X_j be a random variable taking values in the finite set $[d_j] := \{1, ..., d_j\}$. A joint probability distribution on $(X_j)_{j \in N}$ is said to satisfy the *local Markov properties* imposed by the graph if for any two non-neighbours $j, k \in N$ the variables X_j and X_k are conditionally independent given $\{X_l \mid \{j, l\} \in E\}$.

On the other hand, a joint probability distribution f on the X_j is said to *factorise according to* G if for each maximal clique C of G and configuration $\alpha \in \prod_{j \in C} [d_j]$ of the random variables labelled by C there exists an interaction parameter θ_{α}^C such that for each configuration $\beta \in \prod_{j \in N} [d_j]$ of all random variables of G:

$$f(\beta) = \prod_{C \in \operatorname{mcl}(G)} \theta_{\beta|_{C}}^{C}$$

where mcl(*G*) is the set of maximal cliques of *G*, and $\beta|_{C}$ is the restriction of β to *C*.

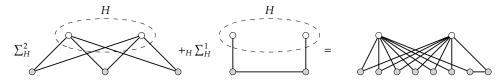
These two notions are connected by the Hammersley-Clifford theorem, which says that a positive joint probability distribution on *G* factorises according to *G* if and only if it satisfies the Markov properties; see [HC71] or [Lau98, Theorem 3.9].

The set of all positive joint probability distributions on *G* that satisfy the Markov properties is therefore a subset of the image of the following map:

$$\varphi_{G}: \mathbb{C}^{\prod_{C \in \mathrm{mcl}(G)} \prod_{j \in C} [d_{j}]} \to \mathbb{C}^{\prod_{j \in N} [d_{j}]}, \qquad (\theta_{\alpha}^{C})_{C,\alpha} \mapsto \left(\prod_{C \in \mathrm{mcl}(G)} \theta_{\beta|_{C}}^{C}\right)_{\beta}$$

It is the ideal I_G of polynomials vanishing on im φ_G that is of interest in algebraic statistics. Since the components of φ_G are monomials, I_G is generated by finitely many binomials (differences of two monomials) in the standard coordinates on $\mathbb{C}^{\prod_{j\in\mathbb{N}}[d_j]}$, and any finite generating set of binomials can be used to set up a Markov chain for testing whether given observations of the variables X_j are compatible with the assumption that their joint distribution factorises according to the graph G [DS98]. The zero locus of I_G is often called the *graphical model* of G.

Now suppose we have graphs G_1, \ldots, G_s with node sets N_1, \ldots, N_s , that $N_i \cap N_k$ equals a fixed set N_0 for all $i \neq k$ in [s], and that the graph induced on N_0 by each G_i is equal to a fixed graph H. Moreover, for each $j \in \bigcup_i N_i$ fix a number d_j of states. We can then glue copies of the G_i along their common subgraph H, by which we mean first taking disjoint copies of the G_i and then identifying the nodes labelled by a fixed $j \in N_0$ across all copies. For $a_1, \ldots, a_s \in \mathbb{Z}_{\geq 0}$, we denote the graph obtained by glueing a_i copies of graph $G_i, i \in [s]$ by $\sum_{H}^{a_1} G_1 + H \cdots + H \sum_{H}^{a_s} G_s$:



Theorem 1. Let G_1, \ldots, G_s be graphs with a common subgraph H and a number of states associated to each node. Then there exists a uniform bound $D \in \mathbb{Z}_{\geq 0}$ such that for all multiplicities a_1, \ldots, a_s , the ideal I_G of $G = \sum_{H}^{a_1} G_1 +_H \cdots +_H \sum_{H}^{a_s} G_s$ is generated by binomials of degree at most D.

Our proof shows that one needs only finitely many combinatorial types of binomials, independent of a_1, \ldots, a_s , to generate I_G . This result is similar in flavour to the Independent Set Theorem from [HS12], where the graph is fixed but the d_j vary. Interestingly, the underlying categories responsible for these two stabilisation phenomena are opposite to each other; see Remark 23.

Example 2. In [RS14] it is proved that the ideal I_G for the complete bipartite graph $G = K_{3,N}$, with two states for each of the random variables, is generated in degree at most 12 for all *N*. The graph *G* is obtained by glueing *N* copies of $K_{3,1}$ along their common subgraph consisting of 3 nodes without any edges.

We derive Theorem 1 from a general stabilisation result on *toric fibre products*, which we introduce next.

Toric fibre products. Fix a ground field *K*, let *r* be a natural number, and let $U_1, \ldots, U_r, V_1, \ldots, V_r$ be finite-dimensional vector spaces over *K*.

Define a bilinear operation

(1)
$$\prod_{j} U_{j} \times \prod_{j} V_{j} \to \prod_{j} (U_{j} \otimes V_{j}), \quad (u, v) \mapsto u * v := (u_{1} \otimes v_{1}, \dots, u_{r} \otimes v_{r})$$

Definition 3. The *toric fibre product* X * Y of Zariski-closed subsets $X \subseteq \prod_j U_j$ and $Y \subseteq \prod_i V_j$ equals the Zariski-closure of the set { $u * v \mid u \in X, v \in Y$ }.

Remark 4. In [Sul07], the toric fibre product is defined at the level of ideals: if $(x_i^j)_i$ are coordinate functions on U_j and $(y_k^j)_k$ are coordinate functions on V_j , then $(z_{i,k}^j := x_i^j \otimes y_k^j)_{i,k}$ are coordinate functions on $U_j \otimes V_j$. The ring homomorphism of coordinate rings

$$K[(z_{i,k}^j)_{j,i,k}] = K\left[\prod_j (U_j \otimes V_j)\right] \to K\left[\prod_j U_j \times \prod_j V_j\right] = K[(x_i^j)_{j,i}, (y_k^j)_{j,k}]$$

dual to (1) sends $z_{i,k}^j$ to $x_i^j \cdot y_k^j$. If we compose this homomorphism with the projection modulo the ideal of $X \times Y$, then the kernel of the composition is precisely the toric fibre product of the ideals of X and Y as introduced in [Sul07]. In that paper, multigradings play a crucial role for *computing* toric fibre products of ideals, but do not affect the *definition* of toric fibre products.

The product * is associative and commutative up to reordering tensor factors. We can iterate this construction and form products like $X^{*2} * Y * Z^{*3}$, where *Z* also lives in a product of *r* vector spaces W_j . This variety lives in $\prod_i (U_i^{\otimes 2}) \otimes V_j \otimes (W_i^{\otimes 3})$.

We will not be taking toric fibre products of general varieties, but rather *Hadamard-stable* ones. For this, we have to choose coordinates on each U_i , so that $U_i = K^{d_i}$.

Definition 5. On K^d the Hadamard product is defined as $(a_1, \ldots, a_d) \bigcirc (b_1, \ldots, b_d) = (a_1b_1, \ldots, a_db_d)$. On $U := U_1 \times \cdots \times U_r$, where $U_j = K^{d_j}$, it is defined component-wise. A set $X \subseteq \prod_j U_j$ is called *Hadamard-stable* if X contains the all-one vector $\mathbf{1}_U$ (the unit element of \bigcirc) and if moreover $x \bigcirc z \in X$ for all $x, z \in X$.

Remark 6. By [ES96, Remark after Proposition 2.3], *X* is Hadamard-stable if and only if its ideal is generated by differences of two monomials.

In particular, the Zariski-closure in *U* of a subtorus of the $\sum_j d_j$ -dimensional torus $\prod_i (K \setminus \{0\})^{d_j}$ is Hadamard-stable. These are the toric varieties from the abstract.

Suppose that we also fix identifications $V_j = K^{d'_j}$ and a corresponding Hadamard multiplication $\prod_j V_j \times \prod_j V_j \to \prod_j V_j$. Equipping the spaces $U_j \otimes V_j$ with the natural coordinates and corresponding Hadamard multiplication, the two operations just defined satisfy $(u \bigcirc u') * (v \bigcirc v') = (u * v) \bigcirc (u' * v')$ as well as $\mathbf{1}_{U_j \otimes V_j} = \mathbf{1}_{U_j} \otimes \mathbf{1}_{V_j}$. Consequently, if both $X \subseteq \prod_j U_j$ and $Y \subseteq \prod_j V_j$ are Zariski-closed and Hadamard-stable, then so is their toric fibre product X * Y. We can now formulate our second main result.

Theorem 7. Let $s, r \in \mathbb{Z}_{\geq 0}$. For each $i \in [s]$ and $j \in [r]$ let $d_{ij} \in \mathbb{Z}_{\geq 0}$ and set $V_{ij} := K^{d_{ij}}$. For each $i \in [s]$, let $X_i \subseteq \prod_j V_{ij}$ be a Hadamard-stable Zariski-closed subset. Then there exists a uniform bound $D \in \mathbb{Z}_{\geq 0}$ such that for any exponents a_1, \ldots, a_s the ideal of $X_1^{*a_1} * \cdots * X_s^{*a_s} \subseteq \prod_{j=1}^r \bigotimes_{i=1}^s V_{ij}^{\otimes a_i}$ is generated by polynomials of degree at most D.

Remark 8. A straightforward generalisation of this theorem also holds, where each X_i is a closed sub-scheme given by some ideal J_i in the coordinate ring of $\prod_j V_{ij}$. Hadamard-stable then says that that the pull-back of J_i under the Hadamard product lies in the ideal of $X_i \times X_i$, and the toric fibre product is as in Remark 4. Since this generality would slightly obscure our arguments, we have decided to present explicitly the version with Zariski-closed subsets—see also Remark 22.

Also, the theorem remains valid if we remove the condition that the X_i contain the all-one vector, but require only that they be closed under Hadamard-multiplication; see Remark 21.

Organisation of this paper. The remainder of this paper is organised as follows. In Section 2 we introduce the categories of (affine) **Fin**-varieties and, dually, **Fin**^{op}-algebras. The point is that, as we will see in Section 4, the iterated toric fibre products together form such a **Fin**-variety (or rather a **Fin**^s-variety, where **Fin**^s is the product category of *s* copies of **Fin**).

Indeed, they sit naturally in a Cartesian product of copies of the **Fin**-variety of rank-one tensors, which, as we prove in Section 3, is Noetherian (Theorem 12). This Noetherianity result is of a similar flavour as the recent result from [SS17] (see also [DK14, Proposition 7.5] which follows the same proof strategy) that any finitely generated **Fin**^{op}-module is Noetherian; this result played a crucial role in a proof of the *Artinian conjecture*. However, our Noetherianity result concerns certain **Fin**^{op}-algebras rather than modules, and is more complicated. Finally, in Section 4 we first prove Theorem 7 and then derive Theorem 1 as a corollary.

Acknowledgements. Both authors are (partially) supported by Draisma's *Vici* grant *Stabilisation in Algebra and Geometry* from the Netherlands Organisation for Scientific Research (NWO). The current paper is partly based on the second author's Master's thesis at Eindhoven University of Technology; see [Oos16]. We thank Johannes Rauh and Seth Sullivant for fruitful discussions at *Prague Stochastics*, August 2014.

2. Affine **Fin**-varieties and **Fin**^{op}-algebras

The category **Fin** has as objects all finite sets and as morphisms all maps. Its opposite category is denoted **Fin**^{op}. When **C** is another category whose objects are called *somethings*, then a **Fin**-*something* is a covariant functor from **Fin** to **C** and a **Fin**^{op}-*something* is a contravariant functor from **Fin** to **C**. The **C**-homomorphism associated to a **Fin**-morphism π is denoted π_* (the *push-forward of* π) in the covariant case and π^* (the *pull-back of* π) in the contravariant case.

More generally, we can replace **Fin** by any category **D**. The **D**-somethings themselves form a category, in which morphisms are natural transformations. In our paper, **D** is always closely related to **Fin** or to **Fin**^{*s*}, the *s*-fold product of **Fin**.

Here are three instances of Fin or Fin^{op}-somethings crucial to our paper.

Example 9. Fix $n \in \mathbb{Z}_{\geq 0}$. Then the functor $S \mapsto [n]^S$ is a **Fin**^{op}-set, which to $\pi \in \text{Hom}_{\text{Fin}}(S, T)$ associates the map $\pi^* : [n]^T \to [n]^S, \alpha \mapsto \alpha \pi$, the composition of α and π .

Building on this example, the functor $A_n : S \mapsto K[x_\alpha \mid \alpha \in [n]^S]$, a polynomial ring in variables labelled by $[n]^S$, is a **Fin**^{op}-*K*-algebra, which associates to π the *K*-algebra homomorphism $\pi^* : A(T) \to A(S)$, $x_\alpha \mapsto x_{\alpha\pi}$.

Third, we define an affine **Fin**-*K*-vector space Q_n by $Q_n : S \mapsto (K^n)^{\otimes S}$, the space of $n \times \cdots \times n$ -tensors with factors labelled by *S*, which sends $\pi \in \text{Hom}_{Fin}(S, T)$ to the linear morphism $\pi_* : (K^n)^{\otimes S} \to (K^n)^{\otimes T}$ determined by

$$\pi_*: \otimes_{i \in S} v_i \mapsto \otimes_{j \in T} \left(\bigcirc_{i \in \pi^{-1}(j)} v_i \right),$$

where \bigcirc is the Hadamard product in K^n . We follow the natural convention that an empty Hadamard product equals the all-one vector $\mathbf{1} \in K^n$; in particular, this holds in the previous formula for all $j \in T$ that are not in the image of π .

The ring A_n and the space Q_n are related as follows: $Q_n(S)$ has a basis consisting of vectors $e_{\alpha} := \bigotimes_{i \in S} e_{\alpha_i}$, $\alpha \in [n]^S$, where e_1, \ldots, e_n is the standard basis of K^n ; $A_n(S)$ is the coordinate ring of $Q_n(S)$ generated by the dual basis $(x_{\alpha})_{\alpha \in [n]^S}$; and for $\pi \in \text{Hom}_{\text{Fin}}(S, T)$ the pullback $\pi^* : A_n(T) \to A_n(S)$ is the homomorphism of *K*-algebras dual to the linear map $\pi_* : Q_n(S) \to Q_n(T)$. Indeed, this is verified by the following computation for $\alpha \in [n]^T$:

$$x_{\alpha}(\pi_* \otimes_{i \in S} v_i) = x_{\alpha}(\otimes_{j \in T} \left(\bigcirc_{i \in \pi^{-1}(j)} v_i \right)) = \prod_{j \in T} \left(\bigcirc_{i \in \pi^{-1}(j)} v_i \right)_{\alpha_j} = \prod_{i \in S} (v_i)_{\alpha_{\pi(i)}} = \pi^*(x_{\alpha})(\otimes_{i \in S} v_i).$$

This is used in Section 3. ♣

In general, by *algebra* we shall mean an associative, commutative *K*-algebra with 1, and homomorphisms are required to preserve 1. So a **Fin**^{op}-algebra *B* assigns to each finite set *S* an algebra and to each map $\pi : S \to T$ an algebra homomorphism $\pi^* : B(T) \to B(S)$. An *ideal* in *B* is a **Fin**^{op}-subset *I* of *B* (i.e., *I*(*S*) is a subset of *B*(*S*) for each finite set *S* and π^* maps *I*(*T*) into *I*(*S*)) such that each *I*(*S*) is an ideal in *B*(*S*); then $S \mapsto B(S)/I(S)$ is again a **Fin**^{op}-algebra, the *quotient B*/*I* of *B* by *I*.

Given a **Fin**^{op}-algebra *B*, finite sets S_j for *j* in some index set *J*, and an element $b_j \in B(S_j)$ for each *j*, there is a unique smallest ideal *I* in *B* such that each $I(S_j)$ contains b_j . This ideal is constructed as:

$$I(S) = \left(\pi^*(b_j) \mid j \in J, \pi \in \operatorname{Hom}(S, S_j)\right)$$

This is the ideal *generated* by the b_j . A **Fin**^{op}-algebra is called *Noetherian* if each ideal *I* in it is generated by finitely many elements in various $I(S_j)$, i.e., *J* can be taken finite.

Example 10. The **Fin**^{op}-algebra A_1 is Noetherian. Indeed, $A_1(S)$ is the polynomial ring K[t] in a single variable t for all S, and the homomorphism $A_1(T) \rightarrow A_1(S)$ is the identity $K[t] \rightarrow K[t]$. So Noetherianity follows from Noetherianity of the algebra K[t].

For $n \ge 2$ the **Fin**^{op}-algebra A_n is *not* Noetherian. For instance, consider the monomials

$$u_2 := x_{21}x_{12} \in A_n([2]), u_3 := x_{211}x_{121}x_{112} \in A_n([3]), u_4 := x_{2111}x_{1211}x_{1121}x_{1112} \in A_n([4]),$$

and so on. For any map $\pi : [k] \to [l]$ with k > l, by the pigeon hole principle there are two indices $i, j \in [k]$ such that $\pi(i) = \pi(j) =: m \in [l]$. Then $\pi^* x_{1 \dots 121 \dots 1}$, where the 2 is in the *m*-th position, is a variable with at least two indices equal to 2. Since u_k contains no such variable, $\pi^* u_l$ does not divide u_k . So u_2, u_3, \dots generates a non-finitely generated monomial **Fin**^{op}-ideal in A_n . (On the other hand, for each *d* the piece of A_n of homogeneous polynomials of degree at most *d* is Noetherian as a **Fin**^{op}-module, see [DK14, Proposition 7.5].)

We shall see in the following section that certain interesting quotients of each A_n are Noetherian.

3. RANK-ONE TENSORS FORM A NOETHERIAN Fin-VARIETY

Let $Q_n^{\leq 1}(S)$ be the variety of *rank-one tensors*, i.e., those of the form $\bigotimes_{i \in S} v_i$ for vectors $v_i \in K^n$. We claim that this defines a Zariski-closed **Fin**-subvariety $Q_n^{\leq 1}$ of Q_n .

For this, we must verify that for a map $\pi : S \to T$ the map $Q_n(S) \to Q_n(T)$ dual to the algebra homomorphism $A_n(T) \to A_n(S)$ sends $Q_n^{\leq 1}(S)$ into $Q_n^{\leq 1}(T)$. And indeed, in Example 9 we have seen that this map sends

$$\otimes_{i\in S} v_i \mapsto \otimes_{j\in T} \left(\bigcirc_{i\in\pi^{-1}(j)} v_i \right).$$

It is well known that (if *K* is infinite) the ideal in $A_n(S)$ of $Q_n^{\leq 1}(S)$ equals the ideal $I_n(S)$ generated by all binomials constructed as follows. Partition *S* into two parts S_1, S_2 , let $\alpha_i, \beta_i \in [n]^{S_i}$ and write $\alpha_1 || \alpha_2$ for the element of $[n]^S$ which equals α_i on S_i . Then we have the binomial

(2)
$$x_{\alpha_1 \| \alpha_2} x_{\beta_1 \| \beta_2} - x_{\alpha_1 \| \beta_2} x_{\beta_1 \| \alpha_2} \in I_n(S).$$

and $I_n(S)$ is the ideal generated by these for all partitions and all $\alpha_1, \alpha_2, \beta_1, \beta_2$. The functor $S \mapsto I_n(S)$ is an ideal in the **Fin**^{op}-algebra A_n ; for infinite K this follows from the computation above, and for arbitrary K it follows since the binomials above are mapped to binomials by pull-backs of maps $T \to S$ in **Fin**. Moreover, I_n is finitely generated (see also [DK14, Lemma 7.4]):

Lemma 11. The ideal I_n in the **Fin**^{op}-algebra A_n is finitely generated.

Proof. In the determinantal equation (2), if there exist distinct $j, l \in S_1$ such that $\alpha_1(j) = \alpha_2(l)$ and $\beta_1(j) = \beta_2(l)$, then the equation comes from an equation in $I_n(S \setminus \{j\})$ via the map $S \to S \setminus \{j\}$ that is the identity on $S \setminus \{j\}$ and maps $j \to l$. By the pigeon hole principle this happens when $|S_1| > n^2$. Similarly for $|S_2| > n^2$. Hence I_n is certainly generated by $I_n([2n^2 - 1])$.

The main result in this section is the following.

Theorem 12. For each $n \in \mathbb{Z}_{\geq 0}$ the coordinate ring A_n/I_n of the Fin-variety $Q_n^{\leq 1}$ of rank-one tensors is a Noetherian Fin^{op}-algebra.

Our proof follows the general technique from [SS17], namely, to pass to a suitable category close to **Fin** that allows for a Gröbner basis argument. However, the relevant well-partial-orderedness proved below is new and quite subtle. We use the category **OS** from [SS17] (also implicit in [DK14, Section 7]) defined as follows.

Definition 13. The objects of the category **OS** ("ordered-surjective") are all finite sets equipped with a linear order and the morphisms $\pi : S \to T$ are all surjective maps with the additional property that the function $T \to S$, $j \mapsto \min \pi^{-1}(j)$ is strictly increasing.

Any **Fin**-algebra is also an **OS**-algebra, and **OS**-Noetherianity implies **Fin**-Noetherianity. So to prove Theorem 12 we set out to prove the stronger statement that A_n/I_n is, in fact, **OS**-Noetherian.

We get a more concrete grip on the *K*-algebra A_n/I_n through the following construction. Let M_n denote the (Abelian) **Fin**^{op}-monoid defined by

$$M_n(S) := \left\{ \alpha \in \mathbb{Z}_{\geq 0}^{[n] \times S} \mid \forall j, l \in S : \sum_{i=1}^n \alpha_{ij} = \sum_{i=1}^n \alpha_{il} \right\},$$

in which the multiplication is given by addition, and where the pull-back of a map $\pi : S \to T$ is the map $\pi^* : M_n(T) \to M_n(S)$ sending $(\alpha_{ij})_{i \in [n], j \in T}$ to $(\alpha_{i\pi(j)})_{i \in [n], j \in S}$. So elements of $M_n(S)$ are matrices with nonnegative integral entries and constant column sum. Let KM_n denote the **Fin**-algebra sending *S* to the monoid *K*-algebra $KM_n(S)$. The following proposition is a reformulation of a well-known fact.

Proposition 14. The Fin^{op}-algebra A_n/I_n is isomorphic to the Fin^{op}-algebra KM_n (and the same is true when both are regarded as **OS**^{op}-algebras).

Proof. For each finite set *S*, the *K*-algebra homomorphism $\Phi_S : A_n(S) \to KM_n(S)$ that sends $x_{\alpha}, \alpha \in [n]^S$ to the $[n] \times S$ matrix in $M_n(S)$ with a 1 at the positions $(\alpha_j, j), j \in S$ and zeroes elsewhere is surjective and has as kernel the ideal $I_n(S)$. Moreover, if $\pi : S \to T$ is a morphism in **Fin**, then we have $\Phi_T \pi^* = \pi^* \Phi_S$, i.e., the $(\Phi_S)_S$ define a natural transformation.

Choose any monomial order > on $\mathbb{Z}_{\geq 0}^n$, i.e., a well-order such that a > b implies a + c > b + c for every $a, b, c \in \mathbb{Z}_{\geq 0}^n$. Then for each object *S* in **OS** we define a linear order > on $M_n(S)$, as follows: $\alpha > \beta$ if $\alpha \neq \beta$ and the smallest $j \in S$ with $\alpha_{,j} \neq \beta_{,j}$ (i.e., the *j*-th column of α is not equal to that of β) satisfies $\alpha_{,j} > \beta_{,j}$ in the chosen monomial order on $\mathbb{Z}_{\geq 0}^n$. A straightforward verification shows that this is a monomial order on $M_n(S)$ (we call the elements of $M_n(S)$ monomials, even though $KM_n(S)$ is not a polynomial ring). Moreover, for various *S*, these orders are interrelated as follows.

Lemma 15. For any $\pi \in \text{Hom}_{OS}(S,T)$ and $\alpha, \beta \in M_n(T)$, we have $\alpha > \beta \Rightarrow \pi^* \alpha > \pi^* \beta$.

Proof. If $j \in T$ is the smallest column index where α and β differ, then $\alpha' := \pi^* \alpha$ and $\beta' := \pi^* \beta$ differ in column $l := \min \pi^{-1}(j)$, where they equal $\alpha_{.,j}$ and $\beta_{.j}$, respectively, and the former is larger than the latter. Furthermore, if l' is the smallest position where α', β' differ, then $\alpha_{.,\pi(l')} \neq \beta_{.,\pi(l')}$ and hence $\pi(l') \ge j$ and hence $l' = \min \pi^{-1}(\pi(l')) \ge \min \pi^{-1}(j) = l$. Hence in fact l = l' and $\pi^* \alpha > \pi^* \beta$. \Box

In addition to the well-order \leq on each individual $M_n(S)$, we also need the following partial order | on the union of all of them.

Definition 16. Let *S*, *T* be objects in **OS**. We say that $\alpha \in M_n(T)$ *divides* $\beta \in M_n(S)$ if there exist a $\pi \in \text{Hom}_{OS}(S, T)$ and a $\gamma \in M_n(S)$ such that $\beta = \gamma + \pi^* \alpha$. In this case, we write $\alpha | \beta$.

The key combinatorial property of the relation just defined is the following.

Proposition 17. The relation | is a well-quasi-order, that is, for any sequence $\alpha^{(1)} \in M_n(S_1), \alpha^{(2)} \in M_n(S_2), \ldots$ there exist i < j such that $\alpha^{(i)} | \alpha^{(j)}$.

Proof. First, to each $\alpha \in M_n(S)$ we associate the monomial ideal $P(\alpha)$ in the polynomial ring $R := K[z_1, ..., z_n]$ (here K is but a place holder) generated by the monomials $z^{\alpha_{,j}}$, $j \in S$. The crucial fact that we will use about monomial ideals in R is that in any sequence $P_1, P_2, ...$ of such ideals there exist i < j such that $P_i \supseteq P_j$ —in other words, monomial ideals are well-quasi-ordered with respect to reverse inclusion [Mac01].

To prove the proposition, suppose, on the contrary, that there exists a sequence as above with $\alpha^{(i)} \not\mid \alpha^{(j)}$ for all i < j. Such a sequence is called *bad*. Then by basic properties of well-quasi-orders, some bad sequence exists in which moreover

$$P(\alpha^{(1)}) \supseteq P(\alpha^{(2)}) \supseteq \dots$$

Among all bad sequences *with this additional property* choose one in which, for each j = 1, 2, ..., the cardinality $|S_j|$ is minimal among all bad sequences starting with $\alpha^{(1)}, ..., \alpha^{(j-1)}$.

Write $\alpha^{(j)} = (\gamma^{(j)}|\beta^{(j)})$, where $\beta^{(j)} \in \mathbb{Z}_{\geq 0}^n$ is the last column (the one labelled by the largest element of S_j), and $\gamma^{(j)}$ is the remainder. By Dickson's lemma, there exists a subsequence $j_1 < j_2 < \ldots$ such that $\beta^{(j_1)}, \beta^{(j_2)}, \ldots$ increase weakly in the coordinate-wise ordering on $\mathbb{Z}_{\geq 0}^n$. By restricting to a further subsequence, we may moreover assume that also

(4)
$$P(\gamma^{(j_1)}) \supseteq P(\gamma^{(j_2)}) \supseteq \dots$$

Then consider the new sequence

$$\alpha^{(1)}, \ldots, \alpha^{(j_1-1)}, \gamma^{(j_1)}, \gamma^{(j_2)}, \ldots$$

By (4) and (3), and since $P(\alpha^{(j)}) \supseteq P(\gamma^{(j)})$, this sequence also satisfies (3). We claim that, furthermore, it is bad.

Suppose, for instance, that $\gamma^{(j_1)}|\gamma^{(j_2)}$. Set $a_i := \max S_{j_i}$ for i = 1, 2. Then there exists a $\pi \in \text{Hom}_{OS}(S_{j_2} \setminus \{a_2\}, S_{j_1} \setminus \{a_1\})$ such that $\gamma^{(j_2)} - \pi^* \gamma^{(j_1)} \in M_n(S_{j_2} \setminus \{a_2\})$. But then extend π to an element π of $\text{Hom}_{OS}(S_{j_2}, S_{j_1})$ by setting $\pi(a_2) := a_1$; since $\beta^{(j_1)}$ is coordinate-wise smaller than $\beta^{(j_2)}$ we find that $\alpha^{(j_2)} - \pi^* \alpha^{(j_1)} \in M_n(S_{j_2})$, so $\alpha^{(j_1)}|\alpha^{(j_2)}$, in contradiction to the badness of the original sequence.

On the other hand, suppose for instance that $\alpha^{(1)}|\gamma^{(j_2)}$ and write $a_2 := \max S_{j_2}$. Then there exists a $\pi \in \text{Hom}_{OS}(S_{j_2} \setminus \{a_2\}, S_1)$ such that $\gamma^{(j_2)} - \pi^*(\alpha^{(1)}) \in M_n(S_{j_2} \setminus \{a_2\})$. Now, and this is why we required that (3) holds, since $P(\alpha^{(j_2)}) \subseteq P(\alpha^{(1)})$, there exists an element $s \in S_1$ such that the column $\beta^{(j_2)}$ is coordinatewise at least as large as the *s*-th column of $\alpha^{(1)}$. Extend π to an element of $\text{Hom}_{OS}(S_{j_2}, S_1)$ by setting $\pi(a_2) = s$. Since a_2 is the maximal element of S_{j_2} , this does not destroy the property that the function min $\pi^{-1}(.)$ be increasing in its argument. Moreover, this π has the property that $\alpha^{(j_2)} - \pi^* \alpha^{(1)} \in M_n(S_{j_2})$, again a contradiction.

Since we have found a bad sequence satisfying (3) but with strictly smaller underlying set at the j_1 -st position, we have arrived at a contradiction.

Next we use a Gröbner basis argument.

Proof of Theorem 12. We prove the stronger statement that KM_n is Noetherian as an **OS**-algebra. Let *P* be any ideal in $A_n/I_n = KM_n$. For each object *S* in **OS**, let $L(S) \subseteq M_n(S)$ denote the set of leading terms of nonzero elements of P(S) relative to the ordering >. Proposition 17 implies that there exists a finite collection S_1, \ldots, S_N and $\alpha^{(j)} \in L(S_j)$ such that each element of each L(S) is divisible by some $\alpha^{(j)}$. Correspondingly, there exist elements $f_j \in P(S_j)$ with leading monomial $\alpha^{(j)}$ and leading coefficient 1. To see that the f_j generate *P*, suppose that there exists an *S* such that P(S) is not contained in the ideal generated by the f_j , and let $g \in P(S)$ have minimal leading term β among all elements of P(S) not in the ideal generated by the f_j ; without loss of generality *g* has leading coefficient 1. By construction, there exists some *j* and some $\pi \in \text{Hom}_{OS}(S, S_j)$ such that $\beta - \pi^* \alpha^{(j)} \in M_n(S)$. But now, by Lemma 15, we find that the leading monomial of $\pi^* f_j$ equals $\pi^* \alpha^{(j)}$, hence subtracting a monomial times $\pi^* f_j$ from *g* we obtain an element of P(S) with smaller leading monomial that is not in the ideal generated by the f_j —a contradiction. \Box

Below, we need the following generalisation of Theorem 12.

Theorem 18. For any $n_1, \ldots, n_r \in (\mathbb{Z})_{\geq 0}$ the **Fin**-algebra (or **OS**-algebra) $(A_{n_1}/I_{n_1}) \otimes \cdots \otimes (A_n/I_{n_1})$ is Noetherian.

Proof. This algebra is isomorphic to $B := K(M_{n_1} \times \cdots \times M_{n_r})$. There is a natural embedding $\iota : M_{n_1} \times \cdots \times M_{n_r} \to M_{n_1+\ldots+n_s} =: M_n$ by forming a block matrix; its image consists of block matrices with constant partial column sums. And while a subalgebra of a Noetherian algebra is not necessarily Noetherian, this is true in the current setting.

The crucial point is that if $\alpha_i \in (M_{n_1} \times \cdots \times M_{n_r})(S_i)$ for i = 1, 2, then a priori $\iota(\alpha_1)|\iota(\alpha_2)$ only means that $\iota(\alpha_2) - \pi^* \iota(\alpha_1) \in M_n(S_2)$; but since both summands have constant partial column sums, so does their difference, so in fact, the difference lies in the image of ι . With this observation, the proof above for the case where r = 1 goes through unaltered for arbitrary r.

Remark 19. Similar arguments for passing to sub-algebras are also used in [HS12] and [Dra10].

4. Proofs of the main results

In this section we prove Theorems 1 and 7.

Toric fibre products. To prove Theorem 7, we work with a product of *s* copies of the category **Fin**; one for each of the varieties X_i whose iterated fibre products are under consideration. Let $s, r \in \mathbb{Z}_{\geq 0}$. For each $i \in [s]$ and $j \in [r]$ let $d_{ij} \in \mathbb{Z}_{\geq 0}$ and set

 $V_{ij} := K^{d_{ij}}$. Consider the **Fin**^{*s*}-variety \mathcal{V} that assigns to an *s*-tuple $S = (S_1, \ldots, S_s)$ the product

$$\prod_{j=1}^r \bigotimes_{i=1}^s V_{ij}^{\otimes S_i}$$

and to a morphism $\pi = (\pi_1, ..., \pi_s) : S \to T := (T_1, ..., T_s)$ in **Fin**^{*s*} the linear map $\mathcal{V}(S) \to \mathcal{V}(T)$ determined by

(5)
$$\left(\otimes_{i} \otimes_{k \in S_{i}} v_{ijk}\right)_{j \in [r]} \mapsto \left(\otimes_{i} \otimes_{l \in T_{i}} \left(\bigcirc_{k \in \pi_{i}^{-1}(l)} v_{ijk}\right)\right)_{j \in [r]}$$

where the Hadamard product \bigcirc is the one on V_{ij} . Let $Q^{\leq 1}(S)$ be the Zariski-closed subset of $\mathcal{V}(S)$ consisting of *r*-tuples of tensors of rank at most one; thus $Q^{\leq 1}$ is a **Fin**^{*s*}-subvariety of \mathcal{V} .

For each $i \in [s]$ let $X_i \subseteq \prod_{j=1}^r V_{ij}$ be a Hadamard-stable Zariski-closed subset. Then for any tuple $S = (S_1, \ldots, S_s)$ in **Fin**^{*s*} the variety $\mathcal{X}(S) := X_1^{*S_1} * \cdots * X_s^{*S_s}$ is a Zariski-closed subset of $\mathcal{V}(S)$.

Lemma 20. The association $S \mapsto X(S)$ defines a Fin^s-closed subvariety of $Q^{\leq 1}$.

Proof. From the definition of * in (1) it is clear that the elements of $\mathcal{X}(S)$ are *r*-tuples of tensors of rank at most 1. Furthermore, for a morphism $S \to T$ in **Fin**^{*s*} the linear map $\mathcal{V}(S) \to \mathcal{V}(T)$ from (5) sends $\mathcal{X}(S)$ into $\mathcal{X}(T)$ —here we use that if $(v_{i,j,k})_{j \in [r]} \in X_i$ for each $k \in \pi^{-1}(l)$, then also $(\bigcirc_{k \in \pi^{-1}(l)} v_{ijk})_{j \in [r]} \in X_i$ since X_i is Hadamard-stable. \Box

Now Theorem 7 follows once we know that the coordinate ring of $Q^{\leq 1}$ is a Noetherian (**Fin**^{*s*})^{op}-algebra. For *s* = 1 and *r* = 1 this is Theorem 12 with *n* equal to d_{11} . For *s* = 1 and general *r*, this is Theorem 18 with n_i equal to d_{1i} .

For r = 1 and general *s*, Theorem 7 follows from a **Fin**^{*s*}-analogue of Theorem 12, which is proved as follows. The coordinate ring of $Q^{\leq 1}(S_1, \ldots, S_s)$ is the subring of $K(M_{d_{11}}(S_1) \times \cdots \times M_{d_{s1}}(S_s))$ spanned by the monomials corresponding to *s*-tuples of matrices with the *same* constant column sum. Using Proposition 17 and the fact that a finite product of well-quasi-ordered sets is well-quasi-ordered one finds that the natural **Fin**^{*s*}-analogue on $M_{d_{11}} \times \cdots \times M_{d_{s1}}$ of the division relation | is a well-quasi-order; and this implies, once again, that the coordinate ring of $Q^{\leq 1}$ is a Noetherian (**OS**^{*s*})^{op}-algebra.

Finally, for general *s* and general *r*, the result follows as in the proof of Theorem 18. This proves the Theorem 7 in full generality. \Box

Remark 21. The only place where we used that the X_i contain the all-one vector is in the proof of Lemma 20 when $\pi^{-1}(l)$ happens to be empty. If we do not require this, then the conclusion of Theorem 7 still holds, since one can work directly with the category **OS**^{*s*} in which morphisms π are surjective.

Remark 22. If we replace the X_i by Hadamard-stable closed subschemes rather than subvarieties, then $S \mapsto \mathcal{X}(S)$ is still a **Fin**^{*s*}-closed subscheme of $Q^{\leq 1}$, and since the coordinate ring of the latter is Noetherian, the proof goes through unaltered.

10

Remark 23. In the Independent Set Theorem from [HS12], the graph G = (N, E) is fixed but the state space sizes d_j grow unboundedly for j in an independent set $T \subseteq N$ and are fixed for $j \notin T$. In this case, given a T-tuple of maps $(\pi_j : S_j \rightarrow P_j)_{j \in T}$ of finite sets, where S_j is thought of as the state space of $j \in T$ in the smaller model and P_j as the state space in the larger model, we obtain a natural map from the larger model into the smaller model. Hence then the graphical model is naturally a (**Fin**^{op})^{*T*}-variety and its coordinate ring is a **Fin**^{*T*}-algebra. Note the reversal of the roles of these two categories compared to Lemma 20.

Markov random fields. Given a finite (undirected, simple) graph G = (N, E) with a number d_j of states attached to each node $j \in N$, the graphical model is $X_G := \overline{\operatorname{im} \varphi_G}$, where φ_G is the parameterisation

$$\varphi_G: \mathbb{C}^{\prod_{C \in \mathrm{mcl}(G)} \prod_{j \in C} [d_j]} \to \mathbb{C}^{\prod_{j \in N} [d_j]}, \qquad (\theta^C_\alpha)_{C,\alpha} \mapsto \left(\prod_{C \in \mathrm{mcl}(G)} \theta^C_{\beta|_C}\right)_{\beta}.$$

Lemma 24. For any finite graph G, the graphical model X_G is Hadamard-closed.

Proof. The parameterisation φ sends the all-one vector in the domain to the all-one vector **1** in the target space, so $\mathbf{1} \in \operatorname{im} \varphi$. Moreover, if θ, θ' are two parameter vectors, then $\varphi(\theta \bigcirc \theta') = \varphi(\theta) \bigcirc \varphi(\theta')$, so im φ is Hadamard-closed. Then so is its closure.

Following [Sul07], we relate graph glueing to toric fibre products. We are given finite graphs G_1, \ldots, G_s with node sets N_1, \ldots, N_s such that $N_i \cap N_k = N_0$ for all $i \neq k$ in [*s*] and such that each G_i induces the same graph H on N_0 . Moreover, for each $j \in \bigcup_i N_i$ we fix a number d_i of states.

For each $\beta_0 \in \prod_{j \in N_0} [d_j]$ and each $i \in [s]$ set $V_{i,\beta_0} := \mathbb{C}^{\prod_{j \in N_i \setminus N_0} [d_j]}$, which we interpret as the ambient space of the part of the probability table of the variables $X_j, j \in N_i$ where we have fixed the states of the variables in N_0 to β_0 —up to scaling, these are the conditional joint probabilities for the $X_j, j \in N_i \setminus N_0$ given that the $X_j, j \in N_0$ are in joint state β_0 . For $\beta \in \prod_{j \in N_i} [d_j]$ write $\beta = \beta_0 ||\beta'$ where β_0, β' are the restrictions of β to N_0 and $N_i \setminus N_0$, respectively. For each maximal clique C in G_i define $C_0 = C \cap N_0$ and $C' = C \setminus N_0$. Correspondingly, decompose $\alpha \in \prod_{j \in C} [d_j]$ as $\alpha = \alpha_0 ||\alpha'$, where α_0, α' are the restrictions of α to C_0 and C', respectively.

Then the graphical model $X_{G_i} := \operatorname{im} \varphi_{G_i}$ is the closure of the image of the parameterisation

$$\varphi_{i}: \mathbb{C}^{\prod_{C \in \mathrm{mcl}(G_{i})} \prod_{j \in C} [d_{j}]} \to \prod_{\beta_{0} \in \prod_{j \in N_{0}} [d_{j}]} V_{i,\beta_{0}}, \qquad (\theta_{\alpha}^{C})_{C,\alpha} \mapsto \left(\left(\prod_{C \in \mathrm{mcl}(G)} \theta_{(\beta_{0}|_{C_{0}}) \parallel (\beta'|_{C'})}^{C}\right)_{\beta'}\right)_{\beta_{0}}.$$

Setting $r := \prod_{j \in N_0} d_j$, we are exactly in the setting of the previous sections: for each $i, k \in [s]$, we have the bilinear map

$$*: \prod_{\beta_0} V_{i,\beta_0} \times \prod_{\beta_0} V_{k,\beta_0} \to \prod_{\beta_0} (V_{i,\beta_0} \otimes V_{k,\beta_0}), \qquad ((v_{i,\beta_0})_{\beta_0}, (v_{k,\beta_0})_{\beta_0}) \mapsto (v_{i,\beta_0} \otimes v_{k,\beta_0})_{\beta_0},$$

and we can take iterated products of this type. The space on the right is naturally isomorphic to $\mathbb{C}^{\prod_{j\in\mathbb{N}_1\cup\mathbb{N}_2}[d_j]}$, the space of probability tables for the joint distribution

of the variables labelled by the vertices in the glued graph $G_i +_H G_k$. Under this identification we have the following.

Proposition 25. For
$$G := \sum_{H}^{a_1} G_1 +_H \cdots +_H \sum_{H}^{a_s} G_s$$
 we have $X_G = X_{G_1}^{*a_1} * \cdots * X_{G_s}^{*a_s}$.

Proof. It suffices to prove this for the gluing of two graphs. Note that a clique in $G := G_1 +_H G_2$ is contained entirely in either G_1 or G_2 , or in both but then already in *H*. Let θ , η be a parameter vectors in the domains of φ_{G_1} , φ_{G_2} , respectively. Then

$$\begin{split} \varphi_{G_{1}}(\theta) * \varphi_{G_{2}}(\eta) \\ &= \left(\left(\prod_{C \in \mathrm{mcl}(G_{1})} \theta^{C}_{(\beta_{0}|c_{0})} \| (\beta'|_{C'}) \right)_{\beta'} \right)_{\beta_{0}} * \left(\left(\prod_{C \in \mathrm{mcl}(G_{2})} \eta^{C}_{(\beta_{0}|c_{0})} \| (\beta'|_{C'}) \right)_{\beta'} \right)_{\beta_{0}} \\ &= \left(\left(\prod_{C \in \mathrm{mcl}(G_{1})} \theta^{C}_{(\beta_{0}|c_{0})} \| (\beta'|_{C'}) \right)_{\beta' \in \prod_{j \in N_{1} \setminus N_{0}} [d_{j}]} \otimes \left(\prod_{C \in \mathrm{mcl}(G_{2})} \eta^{C}_{(\beta_{0}|c_{0})} \| (\beta'|_{C'}) \right)_{\beta' \in \prod_{j \in N_{2} \setminus N_{0}} [d_{j}]} \right)_{\beta_{0}} \\ &= \left(\left(\prod_{C \in \mathrm{mcl}(G_{1})} \theta^{C}_{(\beta_{0}|c_{0})} \| (\beta'|_{C'}) \cdot \prod_{C \in \mathrm{mcl}(G_{2})} \eta^{C}_{(\beta_{0}|c_{0})} \| (\beta'|_{C'}) \right)_{\beta' \in \prod_{j \in (N_{1} \cup N_{2}) \setminus N_{0}} [d_{j}]} \right)_{\beta_{0}} \\ &= \left(\left(\prod_{C \in \mathrm{mcl}(G)} \mu^{C}_{(\beta_{0}|c_{0})} \| (\beta'|_{C'}) \right)_{\beta' \in \prod_{j \in (N_{1} \cup N_{2}) \setminus N_{0}} [d_{j}] \right)_{\beta_{0}} = \varphi_{G}(\mu), \end{split}$$

where, for $C \in mcl(G)$ and $\alpha \in \prod_{i \in C} [d_i]$, the parameter μ_{α}^{C} is defined as

$$\mu_{\alpha}^{C} := \begin{cases} \theta_{\alpha}^{C} & \text{if } C \subseteq N_{1} \text{ and } C \nsubseteq N_{0}, \\ \eta_{\alpha}^{C} & \text{if } C \subseteq N_{2} \text{ and } C \nsubseteq N_{0}, \text{ and} \\ \theta_{\alpha}^{C} \eta_{\alpha}^{C} & \text{if } C \subseteq N_{0}. \end{cases}$$

This computation proves that $X_{G_1} * X_{G_2} \subseteq X_G$. Conversely, given any parameter vector μ for G, we can let θ be the restriction of μ to maximal cliques of the first and third type above, and set η_{α}^{C} equal to μ_{α}^{C} if C is of the second type above and equal to 1 if it is of the third type. This yields the opposite inclusion.

Proof of Theorem 1. By Proposition 25, the ideal I_G is the ideal of the iterated toric fibre product $X_{G_1}^{*a_1} * \cdots * X_{G_s}^{*a_s}$. By Lemma 24, each of the varieties X_{G_i} is Hadamard closed. Hence Theorem 7 applies, and I_G is generated by polynomials of degree less than some D, which is independent of a_1, \ldots, a_s . Then it is also generated by the binomials of at most degree D.

References

- [DK14] Jan Draisma and Jochen Kuttler. Bounded-rank tensors are defined in bounded degree. Duke Math. J., 163(1):35–63, 2014.
- [Dra10] Jan Draisma. Finiteness for the k-factor model and chirality varieties. *Adv. Math.*, 223:243–256, 2010.
- [DS98] Persi Diaconis and Bernd Sturmfels. Algebraic algorithms for sampling from conditional distributions. Ann. Stat., 26(1):363–397, 1998.

- [EKS14] Alexander Engström, Thomas Kahle, and Seth Sullivant. Multigraded commutative algebra of graph decompositions. J. Algebr. Comb., 39(2):335–372, 2014.
- [ES96] David Eisenbud and Bernd Sturmfels. Binomial ideals. Duke Math. J., 84(1):1-45, 1996.
- [HC71] J.M. Hammersley and P. Clifford. Markov fields on finite graphs and lattices. Unpublished, http://www.statslab.cam.ac.uk/~grg/books/hammfest/hamm-cliff.pdf, 1971.
- [HS12] Christopher J. Hillar and Seth Sullivant. Finite Gröbner bases in infinite dimensional polynomial rings and applications. Adv. Math., 221:1–25, 2012.
- [KR14] Thomas Kahle and Johannes Rauh. Toric fiber products versus Segre products. Abh. Math. Semin. Univ. Hamb., 84(2):187–201, 2014.
- [Lau98] Steffen L. Lauritzen. Graphical models, volume 17 of Oxford Statistical Science Series. Oxford Univ. Press., Oxford, 1998.
- [Mac01] Diane MacLagan. Antichains of monomial ideals are finite. Proc. Am. Math. Soc., 129(6):1609– 1615, 2001.
- [Oos16] Florian M. Oosterhof. Stabilisation of iterated toric fibre products. 2016. Master's thesis, Eindhoven University of Technology, http://repository.tue.nl/855107.
- [RS14] Johannes Rauh and Seth Sullivant. The Markov basis of k_{3,N}. \protect\vrule width0pt\protect\href{http://arxiv.org/abs/1406.5936}{arXiv:1406.5936}, 2014.
- [RS16] Johannes Rauh and Seth Sullivant. Lifting Markov bases and higher codimension toric fiber products. J. Symb. Comp, 74:276–307, 2016.
- [Sam17a] Steven V. Sam. Ideals of bounded rank symmetric tensors are generated in bounded degree. Invent. Math., 207(1):1–21, 2017.
- [Sam17b] Steven V. Sam. Syzygies of bounded rank symmetric tensors are generated in bounded degree. Math. Ann., 368(3–4):1095–1108, 2017.
- [Shi12] Takafumi Shibuta. Gröbner bases of contraction ideals. J. Algebr. Comb., 36(1):1–19, 2012.
- [SS17] Steven V. Sam and Andrew Snowden. Gröbner methods for representations of combinatorial categories. J. Am. Math. Soc., 30(1):159–203, 2017.
- [Sul07] Seth Sullivant. Toric fiber products. J. Algebra, 316(2):560–577, 2007.

(Jan Draisma) Mathematical Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland; and Eindhoven University of Technology, The Netherlands

E-mail address: jan.draisma@math.unibe.ch

(Florian M. Oosterhof) Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

E-mail address: f.m.oosterhof@tue.nl