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1 Introduction

Conformal field theories (cfts) are of great importance in modern physics. They appear

at the fixed points of the rg flow in a variety of different systems, ranging from critical

phenomena to quantum gravity and string theory. Unfortunately, most of those cfts lack

nice perturbative limits making any analytic investigation harder or impossible.

However, as it was first observed in [1], there exist certain strongly coupled cfts in

the infrared (ir) in 2 + 1 dimensions with some global symmetry for which a Wilsonian

effective action can be written down in a meaningful way. In fact, those cfts are found

to be effectively at weak coupling by considering sectors of the theory at fixed and large

values of the associated global charge Q. Recall that Q is dimensionless in natural units

and 1/Q becomes the controlling parameter of a perturbation series (in a spirit similar to

large spin theories [2–5]) around a non-trivial vacuum –being different from the vacuum

of the full theory– which fixes the charge in the given sector. Small fluctuations around
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this vacuum are parametrized by Goldstone fields with non-Lorentz invariant dispersion

relations,1 which appear as a result of breaking the internal global symmetry group together

with conformal invariance. Any higher corrections are suppressed by appropriate powers

of 1/Q. This allows the perturbative computation of anomalous dimensions and fusion

coefficients in the three-dimensional cft in the regime (with Λ the ir cut off and V the

volume of the two-sphere) where √
1

V � Λ �
√
Q

V . (1.1)

This rather unexpected outcome was confirmed [8] via Monte-Carlo simulations of the

O(2) model on the lattice. At the analytic level, the large-charge construction was verified

and systematized2 in [12] using the paradigm of O(n) vector models (with the field content

in the vector representation of the global symmetry group). Differently from the situation

in chiral symmetry breaking where the low-energy spectrum is dynamically determined,

various non-trivial symmetry-breaking patterns can appear in the sectors of a theory at

fixed and large charge. Instead of starting from a concrete symmetry breaking pattern in

the effective description (see [13] for this approach), we shall use the linear sigma model as

an intermediate tool to find the light spectrum (gapless modes) relevant for the low-energy

physics, in the spirit of [12]. In more detail, the procedure established there to analyze

such large-charge sectors of the cft at hand is the following:

• Assume an order parameter for the critical theory

• Specify the global symmetry group and how it acts on the order parameter

• Write a Wilsonian effective action in the ir which enjoys all the global and local

symmetries

• Use this action to solve the classical problem of fixing the charge and establish the

vacuum

• Deduce the light spectrum relevant for the low-energy physics in the large-charge

sector by quantizing the fluctuations on top of the previously determined classical

ground state

• Ensure the stability of the expansion under quantum corrections by integrating out

heavy modes, thus verifying the self-consistency of the effective description

In [14] the large-charge techniques were extended in a similar spirit with the aim of under-

standing strongly coupled SU(N) matrix models (with the field in the adjoint representa-

tion). As a working example for that, the scalar SU(3) matrix theory was examined, which

1Such systems at finite charge density have been studied previously in the literature, see e.g. [6, 7]. As

the charge density was not taken large, though, the outlined perturbative character did not manifest itself

in those older studies.
2An independent derivation of large-charge theory in terms of conformal bootstrap has been recently

given in [9]. Moreover, Large-R expansions in models with N = 2, 4 superconformal symmetry have been

mainly considered in [10, 11].
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is of phenomenological interest due to its relation to the CP2 universality class [15]. It turns

out that the SU(3) matrix model flows in the ir to a fixed point which produces the same

qualitative predictions to leading orders in the large-charge expansion as the Wilson-Fisher

fixed point of the vector model theory.

In this paper, we put the latter finding in perspective and provide fixed-charge solutions

for matrix models with larger SU(N) symmetry groups. Specifically, we find (at least)

two fixed points of the rg flow which produce distinct predictions in the large-charge

expansion to tractable order. In the first class, the low-energy theory mimics the structure

of the Wilson-Fisher fixed point. In particular, the vacuum configuration with the lowest

possible energy (which is homogeneous in space) allows us to fix only one independent

charge scale, i.e. there can only exist one independent U(1) charge Q, which is non-zero (and

large). Trying to fix an additional U(1) scale at this fixed point will inevitably introduce

inhomogeneities in space, as it was observed in [16] for a similar setup. Contrary to that,

the second class of fixed points in the SU(N) matrix theory allows us to independently

fix up to bN/2c different charge scales Qj in the low-energy effective description, while

the ground state still remains homogeneous in space. Obviously, at least one of those

independent U(1) charges needs to be taken large for the perturbative analysis to apply in

the sense of eq. (1.1).

We exemplify these qualitative and quantitative differences by computing the anoma-

lous dimension ∆ of the lowest scalar operator3 with a particular charge configuration in

the three-dimensional flat-space cft that describes the matrix model in the ir. (By the

state-operator correspondence this ∆ is mapped on the cylinder to the lowest-energy state

characterized by the same charge assignment.) Concretely, we take the example of the

SU(4) matrix model which possesses the smallest global symmetry group exhibiting novel

features. A scalar operator either with charge Q at the former fixed point (P = 1) or with

charges Q1 = Q and Q2 at the latter fixed point (P = 2) has an anomalous dimension that

can be formally organized as an asymptotic expansion in 1/Q� 1:

∆(P ) = αP Q
3/2 + βP Q

1/2 − 0.0937− fP +O(Q−1/2) with P = 1, 2 (1.2)

and ∆(1) ≡ ∆(Q) whereas ∆(2) ≡ ∆(Q,Q2) and α2 ≡ α(Q2/Q), β2 ≡ β(Q2/Q).

In the leading condensate part of this formula αP and βP are ignorance coefficients of

order one which have to be determined via non-perturbative methods. Quantitatively, one

expects them to be different at different fixed points P of the rg flow. Already to leading

order in Q, we shall see a clear difference between the two fixed points. The ignorance

parameters α1 and β1 at the former fixed point depend only on the microscopic details of

the underlying physical system, but not on the global charge Q we select. On the other

side, the ignorance coefficients at the latter fixed point depend on the (generically order-

one) ratio Q2/Q1 of the two U(1) scales we choose. Hence, α2 and β2 are expected to

be different for different values of Q2/Q1 and have to be determined via non-perturbative

methods for each fixed ratio, separately. As it is beyond the analytic scope of the current

paper, we leave this as an open question for a non-perturbative treatment of the theory.

3Operators with large charge and non-zero spin have been also recently studied in [17].
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Contrary to the leading ignorance parameters, at order one at the perturbative level

there is a universal — independent of the fixed point — contribution. Most crucially,

though, a qualitative difference appears at order one: fP represents an order-one contribu-

tion which depends on the class of fixed points we look at. If the lowest operator carries one

non-vanishing U(1) scale Q, then f1 = 0. In the case when Q1 and Q2 are simultaneously

non-zero, then f2 poses a non-vanishing contribution, which depends on the microscopic

details of the physical system as well as on the charge ratio Q2/Q1. The main objective

of this work is to see how fP appears and to justify the related asymptotic expansions for

∆(P ) by studying their behavior under various charge configurations.

Overview of the paper. To this end, in section 2 we lay out the matrix model we wish

to investigate and review the necessary theoretical framework to perform our large-charge

analysis. Subsequently, we separately consider the two classes of fixed points. In section 3

we look in great detail at the novel fixed point (P = 2), while in section 4 the more familiar

situation (P = 1) is discussed which is similar to Wilson-Fisher with at most one non-

vanishing U(1) charge scale. The analysis is done using the concrete example of the SU(4)

matrix model exhibiting a sufficiently large symmetry group to accommodate both classes

of distinct fixed points. We also outline how the generic SU(N) theory works. In both

sections we derive expressions of the form (1.2) for the vacuum energy of the homogeneous

charged state (equivalently the anomalous dimension of the lowest scalar operator), which

we compare and contrast. Ultimately, in section 5 we provide the effective actions (using

the non-linear sigma model description) for some of the non-trivial light spectra we have

derived. In appendix A, expressions for various propagators used throughout the derivation

are given.

2 The linear sigma model

To study the behavior of a particular cft at large charge it is not enough to look at the

global symmetry, we also need to specify how this symmetry acts on the order parameter

(i.e. the matter content) of the critical theory. In the current paper we choose to work

with matter in the adjoint representation of the global SU(N) group, meaning our order

parameter is a traceless hermitian matrix, Φ ∈ su(N). In this section we review how to

write a linear sigma model in Φ and introduce the necessary notation and techniques to be

implemented in sections 3 and 4.

2.1 Classical analysis and the fixed point structure

First, we set up the classical problem at finite charge(s) within the framework of the linear

sigma model and comment on the qualitatively distinct fixed points that emerge, already

by considering the classical theory.

The Lagrangian formulation. Our starting point is a Wilsonian action in the ir for

the field Φ living in R × Σ (where Σ can be any well-behaved, compact two-dimensional

manifold),

S =

∫
dtdΣL =

∫
dtdΣ

[
1

2
Tr (∂µΦ∂µΦ)− V (Φ)

]
, (2.1)
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in terms of a scalar potential which we choose as (we comment below on possible general-

izations in relation with the fixed-point structure)

V (Φ) =
R
16

Tr Φ2 + g1Tr Φ6 + g2

(
Tr Φ2

)3
+ g3

(
Tr Φ3

)2
+ g4Tr Φ4 Tr Φ2 . (2.2)

R is the scalar curvature of Σ and gi for i = 1, 2, 3, 4 are dimensionless Wilsonian couplings

of order one. A necessary condition for the model under consideration to make sense in

the first place, is that the scalar potential (2.2) is stable. In detail, the potential has

to be bounded from below, meaning it cannot have a runway behavior at infinity, when

Tr Φ2 → ∞. This amounts to a set of conditions for the couplings gi. Only inside the

cone defined by this set of conditions in the space spanned by {gi} our analysis is valid.

Since the action under consideration is a tool we are using to derive the low-energy dofs,

the precise form of the cone is not of particular interest. We are content to know that

there exists at least a non-trivial region inside the cone. For instance, take all gi ≥ 0, then

obviously V (Φ) is well bounded from below. By trace cyclicity we readily see that the

action is invariant under global SU(N) transformations acting on the order parameter via

the adjoint map,

V ∈ SU(N) : Φ → Ad[V ]Φ := V ΦV −1 . (2.3)

To this global symmetry transformation there exists an associated Noether current

Jµ = i [Φ, ∂µΦ] . (2.4)

Assigning to the field operator the (naive) classical mass dimension [Φ] = 1/2, the action

under consideration becomes also scale invariant.

We will use this action to find the symmetry-breaking pattern associated to fixing some

large scale Q� 1 in the infrared cft. The light spectrum (i.e. gapless modes) arising due

to the derived symmetry breaking comprises the good low-energy dofs that are used in

section 5 to write down the appropriate non-linear sigma model for a given large-charge

configuration. Therefore, it is sufficient for our purposes to look at the particular linear

sigma model described by eq. (2.1) to deduce the relevant Goldstone spectrum. In addition,

the specified action is able to capture all the physics in the large-charge expansion up to

order one, which can be more intuitively understood by looking at the gravity dual [18] of

the investigated matrix theory.

Incidentally, the kinetic and curvature terms of the Lagrangian described by eq. (2.1)

are invariant under O(N2 − 1) global transformations. Once the parameters in the po-

tential V (Φ) of the linear sigma model are adjusted such that g1 = g3 = g4 = 0, the full

action of our matrix model enjoys the enhanced O(N2 − 1) symmetry. In such a coupling

configuration we recover the vector model paradigm, albeit in a different parametrization.

Since the vector model theory has been already explored in [12], we do not discuss it in

this paper, i.e. we always take at least g3 6= 0.

The Hamiltonian formulation. Since Φ is hermitian, we can diagonalize it,

Φ = UAU † with U ∈ SU(N)/U(1)N−1 (2.5)
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and obtain the eigenvalue matrix

A = diag (a1, . . . , aN ) with a1 + . . .+ aN = 0 . (2.6)

This eigendecomposition makes plausible to define the angular velocity together with the

canonically associated angular momentum matrix

ω = −iU †U̇ and K =

(
∂L
∂ω

)T
= U †J0U = [[ω,A] , A] . (2.7)

Using these definitions we can compactly write the Hamiltonian corresponding to La-

grangian (2.1) as

H =
1

2
Tr

(
π2
A + (∇A)2 +

[
U †∇U,A

]2
)

+
1

2

∑
i 6=j

|Kij |2
(ai − aj)2

+ V (A) , (2.8)

with the conjugate momentum to A being πTA = ∂L/∂Ȧ. Notice that the kinetic part of

the Hamiltonian is written as a sum of squares. In this work we are interested in the lowest

energy configuration at finite charge density J0. From eq. (2.7) we see that J0 6= 0 implies

K 6= 0. By inspecting the classical Hamiltonian it follows that the charged state of lowest

energy is described by a static (Ȧ = 0) and homogeneous in space (∇A = 0 and ∇U = 0)

solution to the Euler-Lagrange eoms,

Φ̈cl = −V ′(Φcl) . (2.9)

Any vacuum 〈Φ〉 in this paper will be of the form Φcl ≡ Φ(t). In a static and homogeneous

regime the classical Hamiltonian (2.8) simply becomes

H =
1

2

∑
i 6=j

|Kij |2
(ai − aj)2

+ V (A) . (2.10)

Tracing both sides of eq. (2.9) we deduce a necessary condition on the classical solution,

TrV ′(Φcl) = 0 . (2.11)

This in turn constrains the eigenvalues of Φcl (encoded by eq. (2.6)) on the real line to

form mirror pairs around the origin. In detail, for

SU(2k) theory : Acl = diag (a1,−a1, . . . , ak,−ak) , while for (2.12)

SU(2k + 1) theory : Acl = diag (a1,−a1, . . . , ak,−ak, 0) .

Eventually, using the Lax formalism (see e.g. [14] for an application in the matrix-model

setting) we find that the homogeneous and static solution to the classical eoms (2.9) has

two distinct branches, depending on the values of the Wilsonian parameters gi. In both

cases, there exists always a gauge where the classical solution to eq. (2.9) is parametrized as

Φcl = Ad

[
exp

(
i
∑nh

j=1
µj h

j t

)]
Φ0 , (2.13)
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Classes of fixed points in the ir

matrix models Wilson-Fisher Wilson-Fisher-like multi-charge more generic

in 2 + 1 dim nh = 1 nh = 1 nh = bN/2c nh =?

SU(2) − − −
SU(3) − − −
SU(N), 4 ≤ N ≤ 7 − −
SU(N), N ≥ 8 −

Table 1. The table presents the qualitatively distinct classes of fixed points that appear in adjoint

models. The last column refers to additional fixed points with possibly different behavior not

classified in this work. For a given N , a hyphen means that this type of fixed point cannot appear.

nh gives the number of independent U(1) scales admissible in the non-linear effective theory.

where Φ0 ∈ su(N) denotes the time-independent part. The direction of the time-

dependence can be conveniently taken w.l.g. inside the Cartan sub-algebra of su(N). In this

notation, hj ∈ Csu(N) are nh linearly independent directions associated to chemical poten-

tials µj . As we outline in section 2.2, the corresponding embedding of the time-dependent

vacuum expectation value (vev) dictates the explicit symmetry breaking pattern in our

matrix model due to non-vanishing chemical potentials. Modulo accidental enhancements

at special charge configurations, the dimension nh gives the number of relativistic (with

linear dispersion relation) Goldstones χj and associated charge scales Qj in the low-energy

theory. Consequently, nh relates the present linear description to the non-linear sigma

models surveyed in section 5.

The fixed-point structure of matrix theories. In fact, the two branches of the clas-

sical solution mentioned in the previous paragraph are associated to different fixed points

of the rg flow. Quantizing the fluctuations on top of the corresponding vacua leads to

distinct predictions for the low-energy spectrum and the anomalous dimension of scalar

operators. Table 1 summarizes the relevant fixed-point structure for adjoint SU(N) theo-

ries in 2 + 1 dimensions, based on the discussion that follows. It is crucial to realize that

any analytic classification performed in this context is done to leading orders in the large

scale in the sense of eq. (1.2).

Multi-charge fixed point. Specifically, provided a SU(2k) or SU(2k+ 1) matrix model

with k ≥ 2 there exists a fixed point for generic values of the couplings gi in V (Φ) (well

inside the allowed parameter range). In section 3 we show that this class of fixed points is

generally characterized by k different chemical potentials in the embedding of eq. (2.13),

i.e. nh = k. As we argue in section 3.5, it generically leads to k relativistic Goldstones, thus

enabling us to fix up to k = bN/2c different U(1) charges in the low-energy description,

while still being homogeneous in space. In the large-charge expansion up to order one, it

gives a distinct prediction (fP 6= 0 in eq. (1.2) for P = 2) compared to the other class

of fixed points and to vector models. We shall refer to this type of fixed points as the

“multi-charge fixed point” of matrix theory. To avoid confusion we stress that the term

– 7 –
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“multi-charge” does not refer to the actual charge assignment we consider, but to the ability

to fix multiple U(1) scales in the low-energy theory around a homogeneous vacuum.

Wilson-Fisher-like fixed point. To understand the other class of fixed points we take

a closer look at how the scalar potential (2.2) behaves on the classical eoms for any SU(N)

matrix model. By merit of condition (2.12), TrA3
cl always vanishes identically and hence

V (Acl) does not depend on g3. Concentrating on the locus where g1 = g4 = 0 and g2, g3

arbitrary, the scalar potential evaluated at the classical solution Φcl becomes

V (Φcl) = V (Acl) =
R
16

TrA2
cl + g2

(
TrA2

cl

)3
. (2.14)

Then, the full action S[Φcl] enjoys the O(N2 − 1) symmetry. Consequently, this branch

of the solution follows the pattern of the classical ground state constructed for O(N2 − 1)

vector models in [12].

In particular, the lowest-lying state of fixed charge admits only one U(1) charge scale

given by Q, as there appears only one independent µ in eq. (2.13), meaning nh = 1. Here,

only one relativistic Goldstone arises. As we demonstrate in section 4 the leading (up to

order one) predictions derived at this fixed point cannot be qualitatively4 distinguished

from the results obtained at the Wilson-Fisher fixed point in the vector model theory (for

P = 1 it is always fP = 0 in eq. (1.2)). The deviations due to g3 6= 0 enter only at the level

of quantum fluctuations on top of the large-charge vacuum and are thus sub-leading (order

1/Q) in the large-charge expansion. Hence, we call this fixed point “Wilson-Fisher-like”.

More fixed points in SU(N) adjoint models for N ≥ 8. To quickly see that larger

symmetry groups can admit more types of fixed points, one has to recall that the su(N)

algebra is of rank N − 1 and thus has N − 1 independent Casimirs, from which we can

form the SU(N)-invariant monomials

Tr Φn for n = 0, 2, . . . , N . (2.15)

Due to necessary condition (2.12) we recognize from eq. (2.15) that the most general scalar

potential evaluated at the classical solution Φcl of SU(N) matrix theory, with N = 2k or

N = 2k + 1, can be parametrized at most by k independent monomials

Tr Φ2j
cl , j = 1, . . . , k . (2.16)

On the other hand, the particular scalar potential given in eq. (2.2) evaluated at the classical

solution, V (Φcl), has three independent terms (recall that Tr Φ3
cl = 0). This means that it

is sufficient to fully describe the large-charge behavior of matrix theories with k = 1, 2, 3.

Starting from SU(8) matrix models, we need to consider more general potentials which

could also change the qualitative behavior of the theory at large charge. Of course, there

can appear more distinct classes of fixed points. For those larger symmetry groups the

aforementioned two types of fixed points appear in the locus of the space of Wilsonian

parameters where the theory is described by the simpler potential eq. (2.2).

4Our analytic classification does not exclude the possibility that a non-perturbative treatment results

in different numerical values for the ignorance coefficients in the energy expansion (1.2) among the models

which qualitatively fall into the same class.
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The special cases of SU(2) and SU(3). Concerning the previous classification of fixed

points there are two special cases for k = 1. The SU(2) matrix model is the same as the

O(3) vector model and hence its analysis follows immediately from [12]. Despite that the

SU(3) matrix model is not really equivalent to any vector model, it turns out that this

matrix theory can only give qualitatively the same predictions as vector models. In the

su(3) algebra it is always possible to choose the basis of (2.15) to be spanned by Tr Φ2 and

Tr Φ3. This equivalently means that we can set w.l.g. g1 = g4 = 0 in the potential (2.2).

Consequently, SU(3) falls automatically into the class of Wilson-Fisher-like fixed points.

This is in full accordance with the explicit analysis performed in [14]. The upshot is that

we can never fix more than one independent U(1) scale in the low-energy description of a

model enjoying global SU(3) symmetry and be still homogeneous in space. Starting from

the SU(4) matrix model, we expect to see non-trivial deviations among the different classes

of fixed points. This is why we eventually specialize on N = 4, but we also comment on

the generalization to arbitrary N .

2.2 Symmetry breaking and dispersion relations

In this paragraph we outline the procedure followed to understand the symmetry breaking

pattern at fixed charge and determine the Goldstone spectrum on top of the homogeneous

vacuum 〈Φ(t)〉 introduced above. To keep notation simple, we look at the situation with

one chemical potential, the generalization to multiple µi being straight-forward.

Motivated from eq. (2.13) at the level of the quantum theory we write for the field

operator

Φ = Ad [ eiµt h ]Φ , (2.17)

so that Lagrangian (2.1) with any SU(N)-invariant potential V becomes in terms

of Φ ∈ su(N)

L =
1

2
Tr (∂µΦ∂

µΦ) + iµTr
(

[Φ, Φ̇]h
)
− 1

2
µ2 Tr [h, Φ]2 − V (Φ) . (2.18)

h is an element in the Cartan subalgebra of su(N). From the Lagrangian expressed in terms

of Φ in eq. (2.18) we read off the actual symmetry, after the explicit and rank-preserving

breaking due to non-zero µ, generated by

h = {T a ∈ su(N) | [h, T a] = 0} with rank h = rank su(N) . (2.19)

In order that the vev of the quantum operator 〈Φ〉 reduces to the classical solu-

tion (2.13), we additionally perform a spontaneous symmetry breaking by assigning the

time-independent vev to Φ,

〈Φ〉 = Φ0 . (2.20)

This breaks h into h′ with

h′ =
{
T ′
c ∈ h |

[
Φ0, T

′c] = 0
}
. (2.21)

– 9 –
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The Goldstone counting results from the number of broken generators Σi ∈ h with

[Σi,Φ0] 6= 0, i.e.

#Goldstones = dim h− dim h′ . (2.22)

Next, we construct the coset in order to describe the quantum fluctuations on top

of 〈Φ(t)〉. Our primary objective is to find the dispersion relations for the low-energy

spectrum. Following the standard procedure we have

Φ = Ad[eiµth]Φ = Ad[eiµth] Ad[UG] Ad[Uϕ] (Φ0 + Φradial) . (2.23)

Note that we can rearrange the coset factors, with the corrections being of higher order in

the field expansion (and hence of order 1/Q in the large-charge expansion). The Goldstone

fields corresponding to true symmetries of eq. (2.18) are included in

UG = exp

(
i
χi
v

Σi

)
with [Σi, h] = 0 and [Σi,Φ0] 6= 0 , (2.24)

while the spectator fields (which are generically expected to lead to massive modes) are

included in

Uϕ = exp

(
i
ϕa
v
Na

)
with [Na, h] 6= 0 and [Na,Φ0] 6= 0 . (2.25)

Here v with [v] = 1/2 denotes the characteristic field scale, Φ0 ∼ O (v) ∼ O
(
Q1/4

)
(the

large-charge scaling will be justified via the explicit analysis that follows), and is used to

give the proper dimensionality to the fluctuating modes in the coset. The radial modes are

given by

Φradial = rαR
α with [Rα,Φ0] = 0 . (2.26)

Stability of the large-charge construction – meaning that we are expanding around a true

minimum of the theory – implies that any radial mode is expected to be (very) massive.

Our main task is to expand the Lagrangian (2.1) of our linear sigma model in the

fluctuations described by eq. (2.23) around 〈Φ(t)〉,

L[Φ] = L(0)[Φ0 , µ] +
∑
m≥1

L(m)[Φ] , (2.27)

where L(m) denotes the Lagrangian piece which is of m-th order in the fluctuating fields.

From the quadratic piece L(2) one can read off the inverse propagator in momentum space,

D−1(k) with k ≡ kµ = (k0,−k). In field space it is represented by a (N2 − 1) × (N2 −
1) matrix for SU(N) adjoint models. Taking afterwards the determinant of the inverse

propagator and determining the roots of the resulting polynomial in k0,

detD−1(k)
!

= 0 , (2.28)

gives semi-classically the desired dispersion relations in flat space. Finally, we need to

assert that the expansion (2.27) is well-defined, i.e. the higher vertices encoded in L(m≥3)

are controlled by 1/Q.
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3 The multi-charge fixed point

The considerations in the previous section can be applied to any theory with SU(N) global

symmetry and matter in the adjoint representation. From this paragraph on, we focus on

the SU(4) matrix theory to outline a couple of novel features compared to vector models.

The main result is summarized in table 3 and consists of the energy expansions (3.40), (3.50)

and (3.56) corresponding to different charge configurations depicted in figure 2. At the end

of the section we also give how the SU(N) matrix theory should behave for any N at the

particular fixed point.

3.1 Ground state and anomalous dimension at multiple charges

In this section we discuss the first branch of the homogeneous solution to the Euler-

Lagrange eoms in eq. (2.9) at lowest energy and finite charge density. We are at a generic

point in the space of Wilsonian parameters {gi}, but well inside the cone where V (Φ) is

bounded from below.

For SU(4) matrix models the homogeneous solution to the eoms at the multi-charge

fixed point is given by

Φ(t) =
v√
2


0 eiµ1t cos ϑ2 0 0

e−iµ1t cos ϑ2 0 0 0

0 0 0 eiµ2t sin ϑ
2

0 0 e−iµ2t sin ϑ
2 0

 , (3.1)

up to global SU(4) transformations. The chemical potentials are fixed according to

µ1/2 ≡ µ± =

√
λ1v4 +

1

4

(
1

4
cos 2ϑ± cosϑ

)
λ2v4 +

1

8
R , (3.2)

in terms of the effective couplings

λ1 ≡
9

16
g1 + 6g2 +

7

4
g4 and λ2 ≡ 3g1 + 4g4 . (3.3)

Due to the form of eq. (2.2) we would generally expect three of the initial couplings to

appear in the classical solution, g1, g2 and g4. In fact, this is the case in SU(N) matrix

models starting from N ≥ 5. The reason that only two couplings appear in eq. (3.3) is

special to SU(4) matrix theory. The su(4) algebra has only three independent Casimirs.

In other words, the SU(4) invariant monomials in V (Φ) are related via [19]

Tr Φ6 +
1

8

(
Tr Φ2

)3 − 1

3

(
Tr Φ3

)2 − 3

4
Tr Φ4 Tr Φ2 = 0 . (3.4)

The Tr Φ3 monomial associated to g3 vanishes once Φ = Φcl. There thus remain two

independent Casimirs, one is given by Tr Φ2 and the second is found by solving eq. (3.4)

in terms of either Tr Φ6 or Tr Φ4 Tr Φ2 . One can equivalently say that w.l.g. g4 (or g1) can

be set to zero.

– 11 –



J
H
E
P
0
6
(
2
0
1
8
)
1
6
4

In the spectral decomposition of eq. (2.5) the classical solution can be recast into

Φ(t) = Ad
[
ei(µ1h

1+µ2h2)t
]

Ad[U0]Acl (3.5)

in terms of the eigenvalue matrix

Acl =
v√
2

diag

(
cos

ϑ

2
,− cos

ϑ

2
, sin

ϑ

2
,− sin

ϑ

2

)
, (3.6)

the unitary transformation matrix

U0 =
1√
2


1 −1 0 0

1 1 0 0

0 0 1 −1

0 0 1 1

 , (3.7)

and the two directions in the Cartan subalgebra

h1 = diag(1,−1, 0, 0) and h2 = diag(0, 0, 1,−1) . (3.8)

Therefore, there are two directions (nh = 2 in eq. (2.13)) to characterize the time-

dependence of the classical background. Using the particular form of Acl the original

potential (2.2) becomes

V (Φ(t)) = V (Acl) =
λ1

6
v6 +

λ2

16

(
1

3
+

1

2
cos 2ϑ

)
v6 . (3.9)

Avoiding that V (Acl) has a runway behavior when v →∞ requires

λ1 > 0 and λ2 ∈ R with λ1 >
λ2

16
> −λ1

5
. (3.10)

Once the fluctuations on top of 〈Φ(t)〉 are considered, we find that stability of the large-

charge expansion constrains this interval further to

16λ1 > 3λ2 > 0 . (3.11)

Within this validity region, to avoid a redundant description of the classical solution we

only need to look at the first Weyl chamber,

ϑ ∈ [0, π/2] . (3.12)

Generally, one could expect µ1 and µ2 to be arbitrary. However, for a simple Lie group

there are constraints imposed by eq. (3.2), meaning that not all points in the space spanned

by h1 and h2 can be reached, but only those satisfying

µ2 = µ1

√
1− 8λ2 cosϑ

16λ1 + 4λ2 cosϑ+ λ2 cos 2ϑ
+ subleading R-dependent terms . (3.13)

The admissible (µ1, µ2) tuples within the first Weyl chamber (3.12) (where µ1 ≥ µ2 ≥ 0) are

plotted in figure 1. The chemical potentials used here to parametrize the time-dependence

of the general solution (3.1) should not be confused with the chemical potentials we are

going to use in section 5 to write the non-linear sigma models. The former see the full

structure of the global symmetry algebra su(4), whereas the latter know only about the

low-energy dynamics described by the relevant coset spaces which we derive in sections 3.2

and 3.3.
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µ1

µ2 µ2 = µ1

µ2 =
16�1 � 3�2

16�1 + 5�2
µ1

Figure 1. The shaded region indicates the possible values of the chemical potentials µ1 and µ2

parametrizing the time-dependence of the classical ground state, eq. (3.5), in the first Weyl chamber.

The Noether current. In the chosen gauge the Noether matrix (2.4) is conveniently

diagonal,

J0 = i[Φ, Φ̇] = v2 diag

(
µ1 cos2 ϑ

2
, −µ1 cos2 ϑ

2
, µ2 sin2 ϑ

2
, −µ2 sin2 ϑ

2

)
. (3.14)

Charge conservation applied to our homogeneous state, J̇0 = 0, implies that both v and

ϑ are constant. Furthermore, if at least one global charge is taken sufficiently large it

becomes clear that the radial condensate v is also large. It is important to stress that for

generic ϑ and in the allowed region (3.11) it is µ1 6= µ2 as manifested by relation (3.13). In

the low-energy theory, this will allow us to independently fix two U(1) scales, Q1 and Q2,

characterized by charge densities ρ1 = Q1/V and ρ2 = Q2/V respectively. Thus, we take

in our linear description

B J0
!

= diag (ρ1 , −ρ1 , ρ2 , −ρ2) with B = diag (b1, b1, b2, b2) . (3.15)

b1 and b2 are order-one parameters chosen such that the associated conserved global charges

Qi =

∫
Σ

dΣ ρi ∈ Z , i = 1, 2 , (3.16)

are properly quantized, independently of the global properties of the field Φ. They depend

on the microscopic structure of a given physical system. To better comprehend how they

arise we need to investigate the contribution of higher terms to the linear Lagrangian (2.1).

Due to Lorentz- and SU(N)-invariance they always take the form

Tr (∂µΦ∂µΦ · · ·Φ · · · ∂νΦ∂νΦ · · · )
(Tr Φ2)#

, (3.17)

where the denominator is chosen such that the higher operator has mass dimension three

in three space-time dimensions. On the classical solution Φ = Φcl specified by eq. (3.1) the

contribution of all these higher vertices changes the angular momentum matrix K defined

in eq. (2.7) to BK. This in turn implies together with [B,U ] = 0 for the transformation

matrix of eq. (3.7) that the Noether matrix J0 is modified to BJ0 as indicated in (3.15) with

b1 =
∞∑

n,m=0

cnm

(µ1

v2

)n
cosm

ϑ

2
and b2 =

∞∑
n,m=0

cnm

(µ2

v2

)n
sinm

ϑ

2
, (3.18)
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where cnm are infinitely many Wilsonian parameters of order one. Thus, b1 and b2 are in

fact functions of ϑ. In the first Weyl chamber it follows that b1 ≥ b2 ≥ 0.

Combining eq. (3.14) and (3.15) into

ρ2 = ρ1
b2
b1

tan2 ϑ

2

√
1− 8λ2 cosϑ

16λ1 + 4λ2 cosϑ+ λ2 cos 2ϑ
+ O

(R
ρ1

)
, (3.19)

we recognize that Q1 � 1 can be used w.l.g. as a good expansion parameter in this setting.

In the first Weyl chamber (3.12), where the ϑ-dependent factor takes values from 0 to 1,

it is ρ1 ≥ ρ2 ≥ 0. Eq. (3.19) is very important because it relates the angle ϑ to the ratio

of the fixed charges. Due to the ϑ-dependence of b1 and b2 it is not possible however to

analytically solve the relation for ϑ. As we are going to see in the following, this inability

will result in infinitely many ignorance coefficients in the large-charge expansion, two for

each possible value of the ratio Q2/Q1.

The condensate energy. Independent of the charges Q1 and Q2 fixed in eq. (3.15) the

energy of the classical ground state can be always given as a perturbative expansion in

some suitably chosen large parameter. As we commented below (3.19) this is naturally

chosen to be Q1 � 1. Then using that 0 ≤ cosϑ ≤ 1, we easily deduce the relevant scalings

v ∼ O
(
Q

1/4
1

)
and µ1, µ2 ∼ O

(
Q

1/2
1

)
. (3.20)

Implementing those scalings, we generically find from the Hamiltonian (2.10) the energy

of the condensate on a compact manifold with volume V,

E0 =
1

2
µ2

1v
2 cos2 ϑ

2
+

1

2
µ2

2v
2 sin2 ϑ

2
+
R
16
v2 + v6

(
λ1

6
+
λ2

48
+
λ2

32
cos 2ϑ

)
(3.21)

=

(
1

b1(ϑ)

)3/2 16λ1 + 2λ2 + 3λ2 cos 2ϑ

3 cos3(ϑ/2) (16λ1 + 4λ2 cosϑ+ λ2 cos 2ϑ)3/4

(
Q1

V

)3/2

+

(
1

b1(ϑ)

)1/2 16λ1 − 2λ2 + 8λ2 cosϑ− λ2 cos 2ϑ

8 cos(ϑ/2) (16λ1+4λ2 cosϑ+λ2 cos 2ϑ)5/4
R
(
Q1

V

)1/2

+O
(
Q
−1/2
1

)
,

as an asymptotic expansion in 1/Q1 � 1. In this formula ϑ is determined by the exact

solution of eq. (3.19). Hence, the order-one coefficients in front of the Q
3/2
1 - and Q

1/2
1 -term

depend on the underlying model as described by the Wilsonian parameters and on the ratio

of the two charges Q2/Q1.

Anomalous dimension. By the standard state-operator correspondence in any cft we

can map the vacuum energy 〈E〉 = E0 for the constructed state at fixed charges Q1 and

Q2 on the manifold Σ to the anomalous dimension ∆ of the lowest scalar operator with

the same charge configuration in R3 space. Concretely, we only need to take the compact

manifold to be the unit two-sphere, Σ = S2, which means substituting V = 4π and R = 2

in eq. (3.21). Then, we automatically obtain the condensate contribution E0|S2 to the

anomalous dimension ∆(Q1, Q2).
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Q1

Q2
Q2 = Q1

b2 = b1
3cs

Q2

Q1
= fixed

b2 6= b1
cs ⌘ cs(Q2/Q1)

Q2 = 0

b2 = 0 , cs = 0Q1 � 1
fi
rst

W
ey
l
ch
am

b
er

Figure 2. The relation (3.19) is plotted in the first Weyl chamber where Q1 ≥ Q2 ≥ 0. To

each fixed ratio Q2/Q1 with Q1 � 1 there generically corresponds an orange line along which the

expansion (3.22) has the same ignorance coefficients and the same non-universal contribution cs at

order one (see also table 3). The blue and green lines describe limiting configurations of enhanced

symmetry, analyzed in section 3.2 and at the end of 3.3.

Including the order-one contribution EGCasimir(S
2) due to the Casimir energy on the

two-sphere of relativistic Goldstones that follows after analyzing the quantum fluctuations

in the subsequent section, the leading prediction5 for the anomalous dimension is given by

∆(Q1, Q2) = E0|S2 + ECasimir
G (S2) +O

(
Q
−1/2
1

)
(3.22)

= c3/2(Q2/Q1)

(
Q1

4π

)3/2

+ c1/2(Q2/Q1)

(
Q1

4π

)1/2

− 0.0937− f2(Q2/Q1) +O
(
Q
−1/2
1

)
,

as an expansion in 1/Q1 � 1. f2(Q2/Q1) summarizes the contribution from relativistic

Goldstones with non-universal speeds of sound cs given in eq. (3.37) and (3.48). In figure 2

we indicate how this formula should behave along various charge configurations in the first

Weyl chamber where Q1 ≥ Q2.

Specifically, for each fixed ratio Q2/Q1 we obtain an asymptotic expansion in 1/Q1

with (the same for all Q1) ignorance coefficients c3/2 and c1/2. Therefore, along each orange

line in figure 2 there exists a meaningful large-charge expansion whose leading orders are

dictated by the condensate energy (3.21) on the two-sphere. Notice that this expansion

is qualitatively the same as the one encountered at a fixed point of Wilson-Fisher type,

cf. formula (4.18). Expanding ∆ along some different line (i.e. for a different fixed ratio

Q2/Q1) leads to a distinct large-charge prediction, already to leading orders, in the sense

that the ignorance coefficients c3/2 and c1/2 are generically expected to be different. This

is due to the infinite series of corrections summarized by b1 and b2 in eq. (3.18).

5As long as these leading terms are concerned, the action (2.1) is sufficient to capture all the physics.

Including any higher-derivative terms in this action will simply change the ignorance coefficients c3/2 and

c1/2 but will not spoil the form of the Q1-expansion and most importantly the prediction at order one.
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In addition to the non-trivial situation encountered for the condensate part E0|S2 ,

formula (3.22) also gives different predictions at order one deepening on the particular

charge assignment and the associated symmetry-breaking pattern. The study of such

predictions is the subject of the semi-classical as well as quantum analysis that follows.

3.2 A charge configuration with enhanced symmetry

It is instructive to first discuss the limiting case Q1 = Q2 of the fixed-charge configuration

to better comprehend the concepts outlined in section 2.2 as well as to clearly demonstrate

the novel features arising at the present fixed point. Ultimately, we analyze the general case

with Q1 6= Q2. Our objective is to read off the Goldstone spectrum on top of the vacuum

state 〈Φ(t)〉 and compute the associated Casimir energy ECasimir
G (S2) on the two-sphere.

This enables us to provide a meaningful perturbative expansion (eq. (3.50) together with

its limiting scenarios eq. (3.40) and (3.56)) for the anomalous dimension of the lowest scalar

operator. The overall outcome of the semi-classical analysis that follows is summarized in

table 3.

We consider the extreme case with Q1 = Q2 to perform perturbative expansions in

Q1 � 1. This saturates the upper limit within the first Weyl chamber (blue line in

figure 2). Contrary perhaps to naive expectation, fixing one charge scale still has tractable

consequences in the fluctuations on top of 〈Φ(t)〉 in this branch of the classical solution.

In such a charge configuration ϑ = π/2, so that the unique large-charge scale Q1 = 4πρ1

is associated to the Noether current matrix via eq. (3.15):

J0
!

=
ρ1

b1
diag (1,−1, 1,−1) with

µv2

2
=
ρ1

b1
, (3.23)

where the chemical potentials in the classical solution (3.1) are naturally identified,

µ ≡ µ1 = µ2 =
1√
2

(16λ1 − λ2)1/4

√
ρ1

b1
+ O

(
ρ
−1/2
1

)
, (3.24)

and from eq. (3.18) it also follows that b1 = b2. The radial amplitude in the time-

independent vev Φ0 scales with

v =

(
64

16λ1 − λ2

)1/8(ρ1

b1

)1/4

+ O
(
ρ
−3/4
1

)
. (3.25)

Evidently, both v and µ are large, when ρ1 is large, so they can be used as expansion pa-

rameters, as well. This is a mere technical convenience; eventually, everything is expressed

in terms of the one large scale, the global charge Q1 = Q2.

The symmetry breaking pattern in this extreme case reads

SU(4)
explicit−−−−→ U(2)× SU(2)

spontaneous−−−−−−−→ SU(2)′ . (3.26)

In detail, the Cartan generator of the time-dependent vev in eq. (2.17),

h = diag (1,−1, 1,−1) , (3.27)
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leaves unbroken the two su(2) subalgebras generated by

T 1 =


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , T 2 =


0 0 i 0

0 0 0 0

−i 0 0 0

0 0 0 0

 , T 3 =


1 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0

 (3.28)

and T 4 =


0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

 , T 5 =


0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0

 , T 6 =


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 −1

 ,

as well as the u(1) generator described by h itself. Out of these generators, the su(2)′

subalgebra generated by

T ′
1

= T 1 + T 4 , T ′
2

= T 2 + T 5 and T ′
3

= T 3 + T 6 (3.29)

remains unbroken by the time-independent vev Φ0 (obtained from (3.1) for t = 0 and

ϑ = π/2). Hence, we are expecting the Goldstone spectrum to live in the coset space

(U(2)× SU(2)) / SU(2)′ = U(2) (3.30)

of dimension 4. The corresponding coset factor UG in eq. (2.24) can be subsequently

parametrized by

Σ1 = diag (1,−1, 0, 0) , Σ2 = diag (0, 0, 1,−1) and Σ3 = T 1 , Σ4 = T 2 . (3.31)

Note that this choice (which is dictated by mere convenience in the subsequent expansion

of the Lagrangian) for the generators Σi is not unique, but up to identifications in the coset.

These identifications are described by elements in the surviving su(2)′ algebra (3.29). In

particular, to make the underlying U(2) group structure of the coset space apparent, one

starts from the provided parametrization in terms of Σi and defines new generators (∼=
means equality in the coset space)

Σ̃1 = Σ3 , Σ̃2 = Σ4 , Σ̃3 = diag (1, 0,−1, 0)

=
1

2

(
Σ1 − Σ2 + diag (1, 1,−1,−1)

) ∼= 1

2

(
Σ1 − Σ2

)
and TU(1) = Σ1 + Σ2 = diag (1,−1, 1,−1) , (3.32)

which satisfy the su(2) algebra commutation relations, [Σ̃i, Σ̃j ] = 2iεijkΣ̃
k as well as

[Σ̃i, TU(1)] = 0. On the other hand, the base part specified by eq. (2.26) includes seven

radial modes,

Φradial =


r5 r1 r6 + i r7 r3 + i r4

r1 r5 r3 + i r4 r6 + i r7

r6 − i r7 r3 − i r4 −r5 r2

r3 − i r4 r6 − i r7 r2 −r5

 . (3.33)

– 17 –



J
H
E
P
0
6
(
2
0
1
8
)
1
6
4

The spectator fields ϕa parameterizing the coset factor Uϕ in eq. (2.25) are aligned along

Uϕ = exp
i

v


0 iϕ1 0 0
−iϕ1 0 ϕ3 + iϕ4 0

0 ϕ3 − iϕ4 0 iϕ2

0 0 −iϕ2 0

 . (3.34)

Now, we are in a position to expand the Lagrangian L = K−V up to quadratic order

in the fluctuating fields and up to order one in the chemical potential µ ∼ O
(√
Q1

)
:

L =
16µ3 − 3µR

12
√

16λ1 − λ2
+

√
2µ3/2χ̇1

(16λ1 − λ2)1/4
+

√
2µ3/2χ̇2

(16λ1 − λ2)1/4
(3.35)

− (16λ1+λ2)
(
8µ2−R

)
128λ1 − 8λ2

r2
1 −

(16λ1−3λ2)
(
8µ2−R

)
64λ1 − 4λ2

r2r1 −
(16λ1+λ2)

(
8µ2−R

)
128λ1 − 8λ2

r2
2

− λ2

(
8µ2 −R

)
32λ1 − 2λ2

r2
3 −

λ2

(
8µ2 −R

)
32λ1 − 2λ2

r2
4 −

(16λ1 + 7λ2)µ2 − λ2R
32λ1 − 2λ2

r2
5

− (16λ1 + 7λ2)µ2 − λ2R
32λ1 − 2λ2

r2
6 −

(16λ1 + 7λ2)µ2 − λ2R
32λ1 − 2λ2

r2
7

− 1

2
µ2ϕ2

1 −
1

2
µ2ϕ2

2 −
1

2
µ2ϕ2

3 −
1

2
µ2ϕ2

4 − µϕ3ϕ̇4 − µ ϕ̇3ϕ4

+ 2µr1χ̇1 + 2µr2χ̇2 + 2µr3χ̇3 + 2µr4χ̇4

+
1

2

7∑
α=1

(
ṙ2
α − (∇rα)2

)
+

1

2

4∑
a=1

(
ϕ̇2
a − (∇ϕa)2

)
+

1

2

4∑
i=1

(
χ̇i

2 − (∇χi)2
)

+O
(
µ−1/2

)
.

Our coset parametrization ensures that the kinetic term is diagonal in the fluctuations

rα , ϕa and χi . Furthermore, several fields have been appropriately rescaled by numerical

factors such that the normalization of the kinetic terms is canonically set to 1/2. The inverse

propagator D−1(k) in this coset parametrization takes block-diagonal form by ordering the

fields as {r1, r2, χ1, χ2 , χ3, r3, χ4, r4, r5, r6, r7 , ϕ1, ϕ2, ϕ3, ϕ4}:

D−1(k) = diag
(
D−1(k)|r1,r2,χ1,χ2 , D

−1(k)|χ3,r3,χ4,r4 , D
−1(k)|r5,r6,r7 , D−1(k)|ϕ1,ϕ2,ϕ3,ϕ4

)
.

(3.36)

The explicit expressions for the blocks are provided in the first paragraph of appendix A.

Using these blocks to determine the roots of eq. (2.28) we obtain the various gapless

and massive modes listed in table 2. In detail, the light spectrum comprises four relativis-

tic Goldstone fields. The first relativistic Goldstone has a universal, model-independent

dispersion relation, while the other three Goldstone modes have a model-dependent speed

of sound:

c(1)
s = 1/

√
2 and c(2)

s =

√
2λ2

16λ1 + λ2
< 1 for 16λ1 > 3λ2 > 0︸ ︷︷ ︸
3 times

. (3.37)

Inside the allowed region (3.11) the model-dependent speed of sound satisfies causality.

In contrast to the SU(3) matrix model and the O(n) vector models exhibiting only one
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propagator block dispersion relation ω +O
(
µ−1

)
multiplicity type

D−1(k)
∣∣
r1,r2,χ1,χ2

|k| /
√

2 1 relativistic, universal√
2λ2

16λ1+λ2
|k| 1 relativistic, model-dep.

2
√

2µ 1 massive

2
√

16λ1+λ2
16λ1−λ2 µ 1 massive

D−1(k)|χ3,r3,χ4,r4

√
2λ2

16λ1+λ2
|k| 2 relativistic, model-dep.

2
√

16λ1+λ2
16λ1−λ2 µ 2 massive

D−1(k)|r5,r6,r7
√

16λ1+7λ2
16λ1−λ2 µ 3 massive

D−1(k)|ϕ1,ϕ2,ϕ3,ϕ4 µ 4 massive

Table 2. The table lists the spectrum found semi-classically in the limiting situation with Q1 = Q2

and b1 = b2. The propagator blocks refer to eq. (3.36). The leading dispersion relation of each mode

is specified and how many times it is obtained in a given block. µ ∼ O
(√
Q1

)
sets the mass scale.

relativistic mode with the universal speed of sound, as long as vacuum configurations are

considered which are homogeneous in space, additional relativistic dofs emerge in our

homogeneous SU(4) setting. Their dispersion relation in this setup is the same, but non-

universal, since it depends on the effective couplings λ1 and λ2, which encode microscopic

information about the underlying physical model. All other modes are heavy with masses

which scale with µ ∼ O
(√
Q1

)
.

With the derived spectrum at hand, it is easy to see that the energy formula in eq. (3.22)

receives a tractable contribution from the fluctuations at order one. This contribution

comes from the four relativistic Goldstones χi with dispersion relation on the unit-sphere

S2 given by

ω(j)(S2) = c(j)
s

√
l(l + 1) +O (1/Q1) , l ∈ Z , (3.38)

where the speed of sound c
(j)
s , j = 1, 2 , is read off from These relativistic modes contribute

to the vacuum energy via their Casimir energy [20]:

E
(j)
Casimir(S

2) =
c

(j)
s

2

(
−1

4
− 0.015096

)
. (3.39)

Hence, by the state-operator correspondence (R = 2 on S2) the final formula for the

anomalous dimension of the lowest scalar operator with charges Q1 = Q2 becomes

∆(Q1, Q1) =
2
√

2

3
(16λ1 − λ2)1/4

(
Q1

4πb1

)3/2

+
1

2
√

2 (16λ1 − λ2)1/4

(
Q1

4πb1

)1/2

− 0.0937− 3× 0.1325

√
2λ2

16λ1 + λ2
+O

(
Q
−1/2
1

)
. (3.40)

As anticipated, this perturbation series is of the form schematically given in eq. (1.2) with

the model-dependent contribution given by fP = 3× 0.1325 c
(2)
s . Any effect due to higher

vertices from the Lagrangian expansion (2.27) is suppressed, as shown in section 3.4 by

powers of 1/Q1.
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3.3 The dispersion relations for generic charges

In this section we deduce the spectrum when two different charges Q1 and Q2 are fixed in

eq. (3.15). We parametrize the fluctuations on top of the classical vacuum 〈Φ(t)〉 according

to eq. (2.23). For generic ϑ in the classical solution (3.1) the radial modes satisfying

[Φ0,Φradial] = 0 are given by

Φradial =
1√
2


1√
2
r3 r1 0 0

r1
1√
2
r3 0 0

0 0 − 1√
2
r3 r2

0 0 r2 − 1√
2
r3

 . (3.41)

The naive (i.e. excluding accidental symmetry enhancements) symmetry breaking pattern,

SU(4)
explicit−−−−→ U(1)3 spontaneous−−−−−−−→ U(1) , (3.42)

dictates the structure of the coset. For those Goldstone fields corresponding to exact

symmetries of the action (2.18) we have

UG = exp

{
i

2

(
µ1t+

χ1

v cos ϑ2

)
diag(1,−1, 0, 0) +

i

2

(
µ2t+

χ2

v sin ϑ
2

)
diag(0, 0, 1,−1)

}
.

(3.43)

The chemical potentials µ1 and µ2 are determined by the classical solution (3.2). The radial

amplitude v and the angle ϑ are fixed by the general Noether-matrix condition (3.15). The

coset factor for the spectator modes can be written up to O (1/v) re-orderings as

Uϕ = exp
i

v




0 0 ϕ1 − iϕ3 + (ϕ2 − iϕ4) tanϑ 0

0 0 0 1
cosϑ(ϕ2 − iϕ4)

ϕ1 + iϕ3 + (ϕ2 + iϕ4) tanϑ 0 0 0

0 1
cosϑ(ϕ2 + iϕ4) 0 0



+


0 − i

2 cosϑ/2ϕ9 0 1
cosϑ(ϕ6 − iϕ8)

i
2 cosϑ/2ϕ9 0 ϕ5 − iϕ7 + (ϕ6 − iϕ8) tanϑ 0

0 ϕ5 + iϕ7 + (ϕ6 + iϕ8) tanϑ 0 − i
2 sinϑ/2ϕ10

1
cosϑ(ϕ6 + iϕ8) 0 i

2 sinϑ/2ϕ10 0


,

(3.44)

such that the quadratic kinetic term in eq. (2.18) is conveniently diagonal in ϕi. Due

to accidental enhancements for certain charge configurations there appear more massless

modes coming from Uϕ.

With the data specifying the coset construction at hand, we proceed to expand the

Lagrangian in rα, ϕa and χi as instructed by eq. (2.27). In the spirit of section 2.2 we

read off the tree-level propagators from the quadratic piece L(2). The fluctuating fields are

always ordered such that D−1(k) optimally takes block-diagonal form:

D−1(k) = diag
(
D−1(k)|r1,r2,χ1,χ2,r3 , D

−1(k)|ϕi, i=1,...,4 ,

D−1(k)|ϕi, i=5,...,8 , D
−1(k)|ϕi, i=9,10

)
. (3.45)
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The explicit expressions for the various blocks are given in the second paragraph of ap-

pendix A. Solving eq. (2.28) for the first block we find three massive radial modes with

masses of the order

M (i)
r ∼ m(i)

r (Q2/Q1)
√
Q1 , i = 1, 2 and M (3)

r ∼ m(3)
r (Q2/Q1, g3)

√
Q1 , (3.46)

where it suffices6 to note that the functions m
(i)
r > 0 within 16λ1 > 3λ2 > 0 and suitably

adjusted g3. In addition to the massive modes, we obtain two relativistic Goldstones,

ω(i)
χ = c(i)

s |k|+O
(
v−2
)

, i = 1, 2 , (3.47)

with speed of sound

c(1)
s =

1√
2

and c(2)
s =

λ2

(
cos2 ϑ− 1

) (
2λ2 cos2 ϑ− 16λ1 + λ2

)
8λ2

2 cos4 ϑ+
(
32λ1λ2 − 22λ2

2

)
cos2 ϑ+ 256λ2

1 − λ2
2

, (3.48)

where ϑ is formally the solution to eq. (3.19) which cannot be given in a closed form.

Anyhow, the speed of sound of the second relativistic Goldstone has to be determined via

non-perturbative methods for each ratio Q2/Q1.

Contrary to the first Goldstone mode, which exhibits the by now familiar universal

dispersion relation, the speed of sound of the second gapless mode depends on the specifics

of the physical system, i.e. the Wilsonian parameters λ1, λ2, cnm, as well as on the ratio

Q2/Q1. Inside the admissible region 16λ1 > 3λ2 > 0, it is c
(2)
s < 1 as required by causality.

Once λ2 = 0, also c
(2)
s = 0 and we thus recover the predictions of the Wilson-Fisher-like

fixed point discussed in section 4.

In a completely analogous fashion we analyze the dispersions from the spectator part

D−1(k)
∣∣
ϕi

. The two 4 × 4 blocks give eight generically massive modes with pairwise the

same mass,

M (i)
ϕ ∼ m(i)

ϕ (Q2/Q1)
√
Q1︸ ︷︷ ︸

2 times

, i = 1, . . . , 4 . (3.49)

Again, the mass parameters m
(i)
ϕ are always strictly positive for i = 2, 3, 4 within the

allowed parameter range. For generic Q2/Q1 also m
(1)
ϕ is non-zero. In addition, there are

two diagonal massive modes, ϕ9 and ϕ10, with masses µ1 and µ2, respectively.

Based on the spectrum we have just derived from propagator (3.45) and using energy

formula (3.21) and the speeds of sound in eq. (3.48), we arrive at the following expression for

the anomalous dimension of the lowest scalar operator with generic charges Q1 > Q2 > 0:

∆(Q1, Q2) = c3/2 (Q2/Q1)

(
Q1

4π

)3/2

+ c1/2 (Q2/Q1)

(
Q1

4π

)1/2

(3.50)

− 0.0937− 0.1325 c(2)
s (Q2/Q1) +O

(
Q
−1/2
1

)
.

6Since these massive modes do not appear in the low-energy physics, we do not care about the precise

dependence of their mass on λ1, λ2, g3 and the ratio Q2/Q1.
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Again, the asymptotic expansion in 1/Q1 � 1 is of the general form (3.22) with fP =

0.1325 c
(2)
s . In addition to the ratio Q2/Q1, the ignorance coefficients and the model-

dependent speed of sound depend on the Wilsonian parameters of the effective theory.

This expansion and the associated spectrum exhibit two interesting limiting cases.

Case I. First of all, as can be deduced by slightly moving away from the extreme case

analyzed in section 3.2, taking Q1 ≈ Q2 such that (for reasonable values of cnm in eq. (3.18))

b1 ≈ b2 and hence

cosϑ =
16λ1 − λ2

2 (16λ1 − λ2)

Q1 −Q2

Q1
+O

(
Q−2

1

)
� 1 , (3.51)

results in a symmetry enhancement. In detail, the first spectator mass parameter in

eq. (3.49) becomes subleading, m
(1)
ϕ ∼ O

(
1/
√
Q1

)
, resulting in the appearance of two addi-

tional relativistic Goldstones with the same model-dependent speed of sound c
(2)
s . Precisely

at Q2 = Q1, when the coset parametrization in eq. (3.44) becomes singular (cosϑ = 0), the

accidental symmetry is enhanced to a true symmetry of the action (2.18) and we recover

the spectrum of table 2.

The associated expansion for the anomalous dimension of an operator with charges

Q1 ≈ Q2 was computed in eq. (3.40). We stress the clear order-one difference of that

expansion compared to eq. (3.50) where Q1 6= Q2. In the limiting case Q2 → Q1, there is

a factor of 3 in front of the vacuum energy contribution associated with the non-universal

speed of sound. Since c
(2)
s is perturbatively undetermined but nevertheless bounded by

causality, one cannot reabsorb this factor by any redefinition. Hence, we have a sharp way

to distinguish Q1 ≈ Q2 from Q1 6= Q2, already at the analytic level.

Case II. On the other side, we can take the opposite limit to fix a large hierarchy among

the two charge scales by choosing Q2 � Q1. In that case,

cosϑ = 1− 2

√
16λ1 + 5λ2

16λ1 − 3λ2

Q2

Q1
+ O

(
Q
−3/2
1

)
� 0 (3.52)

so that b2 ≈ 0. All spectator modes in eq. (3.49) have large masses at large Q1. In addition,

the speed of sound in eq. (3.48) of the model-dependent Goldstone becomes suppressed by

Q1 according to

ω(2)
χ =

2
√

2λ2

4
√

(16λ1 − 3λ2)(16λ1 + 5λ2)

√
ρ2/b2
ρ1/b1

|k|+O (1/ρ1) . (3.53)

Precisely when ρ2 = 0 and cosϑ = 1, there is a symmetry restoration7 of the form

SU(4)
explicit−−−−→ U(3)

spontaneous−−−−−−−→ U(2) , (3.54)

7For ρ2 = 0 a larger symmetry enhancement is possible for the values µ1 = µ2 in eq. (3.5) and ϑ = 0 in

eq. (3.6). In that case, the coset is given by U(3)/U(2) resulting into one relativistic and two non-relativistic

Goldstone fields.
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which promotes ω
(2)
χ from eq. (3.47) into a non-relativistic Goldstone with quadratic

(Galilean) dispersion relation,

ω(2)
χ =

4
√

16λ1 + 5λ2√
16λ1 − 3λ2

√
1

ρ1/b1
|k|2 +O (1/ρ1) . (3.55)

This fact is in accordance with the preceding literature finding that having only one non-

vanishing U(1) charge results into one relativistic and at most a bounce of non-relativistic

Goldstones.

In total, we see that the leading energy on S2 when Q1 � Q2 ≥ 0 becomes

∆(Q1, Q2) =
(16λ1 + 5λ2)1/4

3

(
Q1

4πb1

)3/2

+
1

4 (16λ1 + 5λ2)1/4

(
Q1

4πb1

)1/2

− 0.0937 +O
(
Q
−1/2
1

)
. (3.56)

This formula has to be especially compared with the energy expansion of the opposite

liming scenario Q1 ∼ Q2 in eq. (3.40). Most importantly, there exists no model-dependent

contribution to order Q0
1, as it is either suppressed by 1/Q1 when 0 < Q2 � Q1 or it

is strictly zero in case Q2 = 0 (recall that a non-relativistic Goldstone has by definition

vanishing vacuum energy). Therefore, for this charge configuration there is no qualita-

tively tractable difference up to order one in the large-charge expansion compared to the

prediction at a Wilson-Fisher-type fixed point.

All in all, the detailed analysis of the dispersion relations reveals the origin of the order-

one terms in eq. (3.22), as summarized in table 3. By the semi-classical analysis we have

verified the existence of the universal Goldstone with speed of sound 1/
√

2 for any charge

configuration. Most crucially, we have seen that the model-dependent contribution to fP
for P = 2 exhibits three qualitatively distinct regions (last column in table 3), depending

on the charge configuration at the multi-charge fixed point.

3.4 Loop suppression

The stability of the large-charge construction under quantum corrections has been verified

in [1] for a pure U(1) theory and in [12] for any O(n) vector model when the light spectrum

includes a universal relativistic Goldstone plus additional non-relativistic fields. For models

with similar characteristics we refer to those previous papers. Instead, we demonstrate

how the suppression of quantum corrections works at large Q1 in the novel situation with

multiple relativistic Goldstones. This shall be done using the path integral formulation [21]

by integrating out any massive modes while treating the light dofs as background fields.

By the semi-classical analysis in the previous paragraphs we have found multiple mas-

sive modes. Their masses scale with µ ∼ O
(√
Q1

)
. Therefore, any µ-massive mode can be

safely integrated out at Q1 � 1, as its loops will be suppressed by inverse powers of the

large parameter. This also means that any higher term of such massive mode coupled to

the light dofs is irrelevant for the leading low-energy action. Consequently, the interesting

for us dispersion relations of the Goldstone sector in our theory are determined just by

setting all µ-massive modes to the minimum of their respective scalar potential.
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Gapless modes at the multi-charge fixed point

charge setup effective universal model-dependent coset

with Q1 � 1 parameters cs = 1/
√

2 gapless modes space f2

Q2 ≈ Q1 b2 ≈ b1 yes 3 relativistic with c
(2)
s

U(2)×SU(2)

SU(2)′
3× 0.13 cs

Q2 < Q1 b2 < b1 yes 1 relativistic with c
(2)
s U(1)3

U(1)′

0.13 cs

Q2 � Q1 b2 ≈ 0 yes 1 relativistic with c
(2)
s � 1

0
Q2 = 0 b2 = 0 yes 1 non-relativistic U(2)

U(1)

Table 3. The table summarizes the light spectrum (including accidental enhancements) supported

by various charge configurations at the multi-charge fixed point. The second column refers to the

coefficients defined in eq. (3.18). The third column stresses the existence of a universal relativistic

Goldstone for any charge configuration, while the forth column specifies the non-universal Goldstone

modes that appear. In the fifth column, we also provide the associated coset space. The last column

gives the contribution of the non-universal, model-dependent light spectrum to formula (3.22).

We demonstrate the suppression using the charge configuration of section 3.2. The

more generic situation with two relativistic Goldstones works in a similar fashion. After

the spectrum has been determined by analyzing the quantum Lagrangian L(2) in eq. (3.35),

we have to show that the contribution of higher terms L(m≥3) comes only sub-leading to

the previously derived dispersion relations by integrating out all massive modes, rα and

ϕa. However, from the form of L(2) it becomes clear that some of the massive fields are

coupled to the light dofs χi for i = 1, 2, 3, 4. Therefore, we need to explicitly diagonalize

the quadratic Lagrangian, instead of just looking at the roots of detD−1(k), as we did

above. For this purpose, we define two new Goldstone fields

χ± = (χ2 ± χ1) /
√

2 . (3.57)

Next, for the first four radial modes we determine the non-trivial minimum of their scalar

potential:

rmin
1 =

2λ2 χ̇+ − (16λ1 − λ2) χ̇−

4
√

2λ2 µ
+O

(
µ−3

)
and rmin

2 =
2λ2 χ̇+ + (16λ1 − λ2) χ̇−

4
√

2λ2 µ
+O

(
µ−3

)
rmin

3 =
(16λ1 − λ2)

4λ2µ
χ̇3 +O

(
µ−3

)
and rmin

4 =
(16λ1 − λ2)

4λ2µ
χ̇4 +O

(
µ−3

)
, (3.58)

where the χ-Goldstones are treated as background fields. All other µ-massive modes have

a trivial minimum at the origin, rmin
α = 0, α = 5, 6, 7 and ϕmin

a = 0, ∀a . We are now in a
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position to perform the path integral over the massive radial rα and spectator ϕa modes,

iS̃[χ] = log

∫
DrDϕ eiS[rα,ϕa,χ] , (3.59)

in order to read off the resulting action in the Goldstone fields:

L̃ =
4µ3

3
√

16λ1 − λ2
− µR

4
√

16λ1 − λ2
+

2µ3/2

4
√

16λ1 − λ2
χ̇+ (3.60)

+ χ̇2
+ −

1

2
(∇χ+)2 +

(16λ1 + λ2)

4λ2
χ̇2
− −

1

2
(∇χ−)2

+
(16λ1 + λ2)

4λ2
χ̇2

3 −
1

2
(∇χ3)2 +

(16λ1 + λ2)

4λ2
χ̇2

4 −
1

2
(∇χ4)2 + O

(
µ−1/2

)
.

As expected, integrating out the massive modes reproduces the low-energy spectrum found

semi-classically in section 3.2 with quantum corrections due to massive fluctuations being

of higher orders in 1/µ. This ensures the stability of the leading Goldstone dispersion

relations stated in table 2.

3.5 Generalizing to SU(N) theory

Let us generalize the previous results at the multi-charge fixed point (for generic gi in

eq. (2.2)) to SU(2k) matrix theory. The homogeneous solution to the classical eoms can

be brought to block-diagonal form,

Φ(t) =
1√
2



0 v1 eiµ1t

v1 e−iµ1t 0

0 v2 eiµ2t

v2 e−iµ2t 0
. . .

0 vk eiµkt

vk e−iµkt 0


, (3.61)

with the associated finite Noether-current matrix being diagonal,

J0 = diag
(
µ1v

2
1 , −µ1v

2
1 , . . . , µkv

2
k , −µkv2

k

)
∈ su(2k) . (3.62)

In the case of the SU(2k + 1) matrix model the classical solution has again k such blocks

and zero elsewhere. The Noether-current matrix is similarly modified to

J0 = diag
(
µ1v

2
1 , −µ1v

2
1 , . . . , µkv

2
k , −µkv2

k , 0
)
∈ su(2k + 1) . (3.63)

It is convenient to introduce generalized polar coordinates

v1 = v cosϑ1 , v2 = v sinϑ1 cosϑ2 , . . . , vk−1 = v sinϑ1 · · · sinϑk−2 cosϑk−1 ,

vk = v sinϑ1 · · · sinϑk−2 sinϑk−1 , (3.64)
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to parametrize the radial vevs vi . Given an SU(N) matrix model with N = 2k or N =

2k + 1, the classical eoms can then be schematically expressed as

µj = v2 fj (g1, g2, g4 ; ϑ1, . . . , ϑk−1)

+ subleading R-dependent terms, with j = 1, . . . , k . (3.65)

The k chemical potentials µj are thus functionally determined by the Wilsonian couplings

and the polar angles, while their scaling is generically of order v2. From eq. (3.62) and (3.63)

we see that it is possible to fix up to k = bN/2c global U(1) charges Qj . Taking Q1 � 1

it is clear that v4 ∼ O (Q1) so that we can write in the spirit of eq. (3.22) an asymptotic

expansion of the anomalous dimension:

∆(Q1, . . . , Qk) = c3/2(Qi/Qj)

(
Q1

4π

)3/2

+ c1/2(Qi/Qj)

(
Q1

4π

)1/2

− 0.0937− f2(Qi/Qj) +O
(
Q
−1/2
1

)
. (3.66)

The ignorance coefficients c3/2, c1/2 and the non-universal order-one contribution f2 depend

on the ratio Qi/Qj for i < j as well as on the Wilsonian parameters g1, g2 and g4.

Inspecting the form of the classical solution (3.61) it is possible, by readily general-

izing eq. (3.6) and (3.7), to bring Φ(t) to the form (2.13) where Φ0 represents the time-

independent block-matrix and the direction of the time-dependent vev is given by

bN/2c∑
j=1

µj h
j =

{
diag (µ1 , −µ1 , . . . , µk , −µk) for N = 2k

diag (µ1 , −µ1 , . . . , µk , −µk , 0) for N = 2k + 1
. (3.67)

From here we read off the symmetry breaking pattern for generic Qj 6= 0 for all j = 1, . . . , k

(implying generic polar angles in eq. (3.64)), as explained in section 2.2:

SU(2k)
explicit−−−−→ U(1)2k−1 spontaneous−−−−−−−→ U(1)k−1

SU(2k + 1)
explicit−−−−→ U(1)2k spontaneous−−−−−−−→ U(1)k .

(3.68)

Thus, we expect in both cases k = bN/2c relativistic Goldstone fields. One of these modes

should always possess the universal dispersion relation with c
(1)
s = 1/

√
2 and the rest will

have speed of sounds c
(j)
s for j = 2, . . . , k, depending on the microscopic details of the

theory and the precise charge configuration. Consequently, we generically expect k − 1

ignorance parameters in the energy expansion (3.66) at order one.

4 The Wilson-Fisher-like fixed point

The second branch of the homogeneous solution to the eoms (2.9) with one chemical

potential appears inside a special region in the space of Wilsonian parameters, when g1 =

g4 = 0 in the potential (2.2).
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4.1 The classical solution

The classical solution of SU(N) matrix theory with one chemical potential µ can be writ-

ten as

Φ(t) =
1√
2



0 υ1eiµt 0 · · · 0 0

υ1e−iµt 0 υ2eiµt · · · 0 0

0 υ2e−iµt 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 υN−1eiµt

0 0 0 · · · υN−1e−iµt 0


(4.1)

=
N−1∑
i=1

υi√
2

(
eiµtEαi + e−iµtE−αi

)
=

N−1∑
i=1

υi√
2

Ad[eiµt h]
(
Eαi + E−αi

)
,

with the direction of the time-dependent vev in the language of eq. (2.13) given by

h =


1
2 diag (2k − 1, 2k − 3, . . . , 1,−1, . . . ,−2k + 1) for SU(2k)

diag (k, k − 1, . . . , 1, 0,−1, . . . ,−k) for SU(2k + 1)
. (4.2)

E±αi are the ladder operators corresponding to the simple root αi for i = 1, . . . , N − 1.

The chemical potential is fixed by the eoms in terms of the curvature R and the Wilsonian

coupling g2 to

µ =

√
g2 υ4 +

R
8

where υ2 =

N−1∑
i=1

v2
i . (4.3)

Using generalized polar coordinates to parametrize the radial vevs υi according to

eq. (3.64), the appearance only of the overall radius υ in eq. (4.3) shows the O(N2−1) sym-

metry of the classical ground state in the given branch. In the chosen gauge the Noether

matrix becomes diagonal:

J0 = µ diag
(
υ2

1,−υ2
1 + υ2

2, . . . ,−υ2
N−2 + υ2

N−1,−υ2
N−1

)
(4.4)

= υ4

√
g2 +

R
8υ4

diag
(
cos2 θ1 , − cos2 θ1 + sin2 θ1 cos2 θ2 , . . .

)
,

From the first line we see that it suffices to take all υi ≥ 0. Written in polar coordinates in

the second line, the current density makes apparent that we can at most fix one independent

large-charge scale. Of course, this observation remains to be verified by the quantum

analysis, where the appearance of a unique relativistic Goldstone is anticipated. The

radial amplitude υ carries the large scale, while the polar angles θi parametrize the precise

alignment of J0 in the Cartan sub-algebra of SU(N). In other words, we can take in terms

of the unique scale described by Q� 1:

Tr J2
0 ∼ O

(
υ8
)
∼ O

(
Q2
)
. (4.5)
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The low-energy physics and in particular the symmetry breaking pattern at large

charge does not depend on the orientation of J0 in the Cartan sub-algebra as specified

by the θ’s. In fact, once we consider the fluctuations on top of the large-charge vacuum,

we see that only the massive modes depend on the polar angles. Since their masses scale

with µ ∼ O
(√
Q
)
, they appear sub-leading in the large-charge expansion. In contrast,

the leading dispersion relations of the Goldstone fields (the “good” dofs in the low-enrgy

regime) are independent of the precise orientation of J0 6= 0.

The Calogero-Moser system. Hence, it suffices to look at some selected charge con-

figuration to outline the qualitative behavior of the system at this fixed point of the rg

flow, while keeping notation condensed. A particularly interesting setting arises when we

orient our current matrix along

J0
!

=
ρ

b

2

N2 −N diag (1, . . . , 1,−(N − 1)) , (4.6)

by choosing the amplitudes as

υj = υ

√
2j

N2 −N for j = 1, . . . , N − 1 , (4.7)

such that µυ2 = ρ/b. The angular momentum matrix (2.7) takes then the characteristic

form

Kij =

{
2/(N2 −N) ρ/b i 6= j

0 i = i
. (4.8)

In terms of the (time-independent) eigenvalues of Φ(t) in eq. (4.1), ai ≡ ai(υj), the homo-

geneous Hamiltonian simplifies to

H =
1

2

∑
i 6=j

(2/(N2 −N) ρ/b)2

(ai − aj)2
+ V (a1, . . . , an) ,

N∑
i=1

ai = 0 . (4.9)

This Hamiltonian system describes the well-studied Calogero-Moser problem [22], namely

N identical particles on the real line, all with the same charge 2/(N2 − N) ρ/b, repelling

each other in a confining potential V . From the form of the eigenvalues of Φ(t) on the

classical solution (cf. eq. (2.12)) (which is associated to the symmetry of H under reflection,

ai → −ai) we see that the configuration with the lowest energy is achieved, once the charged

particles are aligned in mirror pairs around the origin. The fixed-charge condition (4.6)

determines the scaling of the radial amplitude to

υ =

(
1√
λ1

ρ

b

)1/4 (
1 +O

(
ρ−1
))
, (4.10)

so that the condensate energy can be expanded at large charge density ρ as

E0 =
µ2υ2

2
+
Rυ2

16
+
λ1υ

6

6
=

2

3
4
√
λ1

(ρ
b

)3/2
+
R
16

1
4
√
λ1

(ρ
b

)1/2
+O

(
ρ−1/2

)
. (4.11)

Here, we have used the effective coupling λ1 introduced in eq. (3.3). This is special only to

the su(4) algebra; due to relation (3.4) it suffices to have λ2 = 0, i.e. g4 = −3
4g1. Starting

from the SU(5) matrix model one needs to set both g1 = g4 = 0.
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4.2 Symmetry breaking and spectrum

As in the case of the generic fixed point, to analyze the structure of the Wilson-Fisher-like

fixed point at large charge, we will concentrate on the sufficiently general SU(4) matrix

theory focusing on the particular Calogero-Moser configuration reviewed in the previous

paragraph. Around the classical ground state (4.1) we write the fluctuations in the familiar

form (2.23) with the direction h of the time-dependent vev specified in the upper line of

eq. (4.2) for k = 2 and the time-independent Φ0 obtained from (4.7) for N = 4. The radial

modes are determined by the condition [Φ0,Φradial] = 0 to

Φradial =



− r1√
6

r2
2
√

3
− r3√

6
r1

2
√

3
r3
2

r2
2
√

3
− r3√

6
0 r2√

6
+ r3

2
√

3
r1
2

r1
2
√

3
r2√

6
+ r3

2
√

3
r1√

6
r2
2

r3
2

r1
2

r2
2 0


. (4.12)

The coset for Goldstones corresponding to true symmetries of the action (2.18) is

parametrized as

UG = exp
i

v


χ1√

5
+ 3χ2√

5
+ 3χ3

2 0 0 0

0 χ1√
5
− 2χ2√

5
+ χ3

2 0 0

0 0 −2χ1√
5
− χ2√

5
− χ3

2 0

0 0 0 −3χ3

2

 , (4.13)

while the naive coset factor for the spectator fields can be written as

Uϕ = exp
i

v


−ϕ2

√
3ϕ1 − iϕ4 − iϕ6√

3
+ iϕ7√

6
− iϕ9

2

√
2ϕ2 − iϕ5 − iϕ8√

2
−3iϕ7

2√
3ϕ1 + iϕ4 + iϕ6√

3
− iϕ7√

6
+ iϕ9

2 ϕ2 −i
√

2
3ϕ6 − iϕ7

2
√

3
− iϕ9√

2
−i
√

3
2ϕ8

√
2ϕ2 + iϕ5 + iϕ8√

2
i
√

2
3ϕ6 + iϕ7

2
√

3
+ iϕ9√

2
0

√
3ϕ3 − i

√
3ϕ9

2

3iϕ7

2 i
√

3
2ϕ8

√
3ϕ3 + i

√
3ϕ9

2 0

.
(4.14)

Of course, this is one of the possible parametrizations for the coset space dictated by

eq. (2.23). Due to accidental enhancements at large charge some of the spectator fields

become massless. Implementing this particular realization we obtain the fluctuating La-

grangian (disregarding overall boundary terms):

L(2) =
1

2

9∑
a=1

(
ϕ̇2
a − (∇ϕa)2

)
+

1

2

3∑
α=1

(
ṙ2
α − (∇rα)2

)
+

1

2

3∑
i=1

(
χ̇i

2 − (∇χi)2
)

(4.15)

− µ
(√

3 +
1√
3

)
ϕ1ϕ̇4 − 2

√
2µϕ1ϕ̇7 − 3

√
2µϕ2ϕ̇5 + µ

(√
3 +

1√
3

)
ϕ3ϕ̇6

− 2

√
2

3
µϕ3ϕ̇7 + 2

√
2

3
µr1ϕ̇1 − 2

√
2µr1ϕ̇3 + 3

√
2µr3ϕ̇2 −

√
2

5
µϕ5χ̇1 +

4µ√
5
ϕ8χ̇1
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+ 2

√
2

5
µϕ5χ̇2 +

2µ√
5
ϕ8χ̇2 +

√
2

5
µr3χ̇1 − 2

√
2

5
µr3χ̇2 + 2µr2χ̇3

+ 2

√
2

3
µ2ϕ4ϕ7 −

2

3

√
2µ2ϕ6ϕ7 +

2

3

√
2µ2r1ϕ4 + 2

√
2

3
µ2r1ϕ6 + 4µ2r3ϕ5

−
((

g1 + 3g3

2λ1
− 5

6

)
µ2 − g1 + 3g3

16λ1
R
)
r2

1 −
(

2µ2 − R
4

)
r2

2 + 2µ2r2
3 +

3

2
µ2ϕ2

1ϕ
2
2

+ 4µ2 +
3

2
µ2ϕ2

3 +
1

6
µ2ϕ2

4 + 2µ2ϕ2
5 +

1

6
µ2ϕ2

6 +
5

6
µ2ϕ2

7 −
1

2
µ2ϕ2

9 +O
(
µ−1/2

)
.

From here we read off the inverse propagator D−1(k). For the purposes of this section

we are content to determine the roots of eq. (2.28). This gives us 12 massive modes,

ω(1)
µ = µ+O

(
µ−1

)︸ ︷︷ ︸
5 times

, ω(2)
µ = 2µ+O

(
µ−1

)︸ ︷︷ ︸
3 times

, ω(3)
µ = 3µ+O

(
µ−1

)
, ω(4)

µ = 4µ+O
(
µ−1

)

ω(4)
µ = 2

√
2µ+O

(
µ−1

)
and ωr =

√
9 +

g1 + 3g3

λ1
µ+O

(
µ−1

)
, (4.16)

as well as three Goldstone fields consisting of the universal relativistic and two non-

relativistic modes,

ω(1)
χ =

k√
2

+O
(
µ−1

)
and ω(2)

χ =
k2

2µ
+O

(
µ−2

)
︸ ︷︷ ︸

2 times

. (4.17)

Combining this light spectrum with the energy expansion (4.11) we obtain the anomalous

dimension formula at the Wilson-Fisher-like fixed point,

∆(Q) =
2

3
4
√
λ1

(
Q

4πb

)3/2

+
1

8 4
√
λ1

(
Q

4πb

)1/2

− 0.0937 +O
(
Q−1/2

)
. (4.18)

As anticipated, it formally agrees with the asymptotic expansion at Wilson-Fisher fixed

point (see eq. (5.16) in [12] as well as eq. (2.56) in [14]).

The counting of the Goldstone dofs, 1 + 2 × 2 = 5 = dim (U(3)/U(2)), agrees with

the symmetry breaking

SU(4)
explicit−−−−→ U(3)

spontaneous−−−−−−−→ U(2) . (4.19)

This pattern generalizes the finding in [14] concerning the SU(3) model to SU(N) ma-

trix theory:

SU(N)
explicit−−−−→ U(N − 1)

spontaneous−−−−−−−→ U(N − 2) . (4.20)

Since only one relativistic Goldstone, the universal ω
(1)
χ is present in this class of fixed

points, the energy expansion on S2 and the associated anomalous dimension are described

by eq. (1.2) with f1 = 0 and the same ignorance coefficients for any global Q� 1.
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5 Non-linear sigma models

For completeness we show how to directly write the non-linear sigma model on a general

manifold, once the low-energy spectrum around the large-charge vacuum is known. This

serves as an important crosscheck for the previously derived asymptotic expansions of the

anomalous dimension and is furthermore needed in order to compute fusion coefficients. In

the following we rederive the Goldstone spectrum for the special Q1 = Q2 ≡ Q configuration

and the general case with Q1 6= Q2.

5.1 The U(2) coset

In section 3.2 we have found that the generic fixed point can support in a certain limit a

low-energy spectrum described by four relativistic dofs. This spectrum is dictated by the

symmetry-breaking pattern of eq. (3.26) and the associated coset space turns out to be the

U(2) Lie group. Hence, we can parametrize our low-energy field variable U ∈ U(2) as

U(χ;π1, π2, π3) = eiχ eiσ
3π3 eiσ

2π1 eiσ
3π2 ≡ eiχ U(π1, π2, π3) , U ∈ SU(2) , (5.1)

where σi are the standard 2×2 Pauli-matrices and in the Euler-parametrization the angles

are constrained within π1 ∈ [0, π2 ], π2 ∈ [0, 2π), π3 ∈ [0, π] and χ ∈ [0, 2π). The main

building block of the non-linear action is given by

‖∂U‖ ≡
√

Tr (∂µU †∂µU) =

√
|∂χ|2 + Tr ∂µU†∂µU where |∂χ| ≡ ‖∂χ‖≡

√
2 ∂µχ∂µχ .

(5.2)

Since our goal is to expand around a charged vacuum where 〈U †U̇〉 ∼ µ is large, the square

root in ‖∂U‖ is well-defined.

Following the analysis of the leading order terms outlined in [1], we classify all possible

scalar operators of dimension 3 which are compatible with Lorentz and U(2) invariance.

We find that the most general scale-invariant action in 2 + 1 space-time dimensions can be

written as

S =

∫
dtdΣ

[
1

6
‖∂U‖3 − cR

2
R‖∂U‖

]
F (X,Y ) +O

(
µ−1

)
, (5.3)

where R is the Ricci scalar (e.g. of the two-sphere) and cR an undetermined constant.

The functional freedom in writing the most general U(2)-invariant action at fixed charge

is encoded by F (X,Y ). At least up to order one in µ (the large vev of U †U̇) this depends

on two dimensionless variables

X =
‖∂U‖2

|∂χ|2
and Y =

Tr
(
∂µU

†∂νU
)

Tr
(
∂µU †∂νU

)
|∂χ|4

. (5.4)

Using elementary Pauli-matrix algebra one can show that any other leading U(2)- and

Lorentz-invariant combination of zero dimension can be expressed in terms of X and Y .

There are further sub-leading, curvature-dependent quantities one can define which we do

not record here.
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The classical equations of motion. Since we know from the analysis of the linear

sigma model that our vacuum of lowest energy is homogeneous, we use that ∇U = 0 as an

input in discussing the eoms. Notice that under this assumption Y = X. By construction

the theory (5.3) is invariant under SU(2)L × SU(2)R global transformations implying the

conserved Noether currents JµL and JµR . At the same time, U(1) invariance of the action

implies the conserved current JµU(1) with zeroth component

J0
U(1) =

δL
δχ̇

=

(
‖∂U‖ − cRR

‖∂U‖

)
F (X,X) χ̇

−
(

1

6
‖∂U‖3 − cR

2
R‖∂U‖

) Tr
(
U̇†U̇

)
χ̇3

∂XF (X,X) . (5.5)

For generic functional F the classical eoms can be summarized by

d

dt

(
U†U̇

)
and χ̈ = 0 . (5.6)

We choose to fix the U(1) current J0
U(1) = % 6= 0 and J iU(1) = 0, while we set the SU(2)

currents completely to zero, JµL = JµR = 0. This corresponds (up to global U(2) transfor-

mations) to the following classical configuration:

χ = µ t , π1 =
π

4
, π2 = π3 = 0 . (5.7)

On the classical solution the U(1) current (5.5) becomes

J0
U(1) =

(
1− cRR

2µ2

)
F0 µ

2 with F (1, 1) ≡ F0√
2
, (5.8)

from where we deduce that µ ∼ O
(√
ρ
)
, as expected. Hence, at large ρ the chemical

potential µ can be promoted to an expansion parameter for technical convenience.

Fluctuations Around the vacuum configuration described by (5.7) we parametrize the

fluctuations by setting

χ = µt+
χ̂√
µ

, π1 =
π

4
+

π̂1√
µ

, π2 =
π̂2√
µ

, π3 =
π̂3√
µ
. (5.9)

The normalization 1/
√
µ is used so that the fluctuations have the proper dimension of a

field (mass dimension 1/2). The µ-expansion of the dimensionless variables introduced in

eq. (5.4) around the classical ground state 〈χ〉 and 〈πi〉 gives

X = 1 +
1

µ3

3∑
i=1

[
π̇2
i − (∇πi)2

]
+O

(
µ−7/2

)
, Y = 1 +

2

µ3

3∑
i=1

π̇2
i +O

(
µ−7/2

)
.

(5.10)
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As a consequence, µ-expanding the Lagrangian up to order one we find

L = F0

(
µ3

3
+
cR
2
Rµ

)
+ F0 µ

3/2 (∂0χ̂) (5.11)

+
1

6

3∑
i=1

[
(3F0 + 2FX + 4FY ) (∂0π̂i)

2 − (3F0 + 2FX) (∇π̂i)2
]

+ F0

[
(∂0χ̂)2 − 1

2
(∇χ̂)2

]
+O

(
µ−1

)
.

where

∂XF (X,Y )|X=Y=1 ≡
FX√

2
and ∂Y F (X,Y )|X=Y=1 ≡

FY√
2
. (5.12)

Neglecting the total-derivative term, from the Lagrangian part which is quadratic in the

fields it is straight-forward to determine the leading dispersion relations:

ωχ =
|k|√

2
and ωπi =

√
3F0 + 2FX

3F0 + 2FX + 4FY
|k| , i = 1, 2, 3 . (5.13)

As expected from the analysis of the spectrum in the linear sigma model (section 3.2), we

find four relativistic Goldstones, one with the universal dispersion relation (c
(1)
s = 1/

√
2)

and three with an undetermined, but equal, speed of sound c
(2)
s . Evidently, reality and

causality, c
(2)
s < 1, constrain the coefficients F0, FX and FY in the Taylor-expansion of

F (X,Y ). Furthermore, the condensate contribution in the first line of eq. (5.11) entails

two ignorance coefficients (F0 and cR) in agreement with the general prediction of expan-

sion (1.2).

Finally, note that in the non-linear sigma model for the present charge configuration

the µ-expansion coincides with a field expansion in the Goldstones χ̂ and π̂i. Expanding

the Lagrangian L up to order Q0 results at most to a quadratic piece L(2)(χ̂, π̂i). Conse-

quently, any term which is higher in the fluctuations π̂i, χ̂ will be automatically suppressed

by powers of 1/Q and the derived dispersion relations (5.13) are protected against quan-

tum corrections.

5.2 The U(1)×U(1) coset

In a purely analogous fashion we can analyze the general situation where Q1 6= Q2. As we

have seen in section 3.3 the low-energy spectrum is described by a coset with U(1) ×U(1)

symmetry.8 It is intuitive to parametrize the coset space via two Goldstone fields χ1, χ2

independently realizing each U(1) symmetry as a shift, χi → χi + const for i = 1, 2. In the

spirit of eq. (5.2) abbreviating

‖∂χ‖ ≡
√
|∂χ1|2 + |∂χ2|2 where |∂χi| ≡

√
∂µχi ∂µχi , i = 1, 2 , (5.14)

8A similar effective model has been constructed in [13], however not in the context of SU(4) matrix

theory.
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the most general Lagrangian associated to the generic symmetry breaking pattern can be

written as

S =

∫
dtdΣ

(
1

3
‖∂χ‖3 − cRR‖∂χ‖

)
f (x, y) +O

(
µ−1

)
. (5.15)

In this effective action, f is an arbitrary function of the two dimensionless combinations,

x =
|∂χ2|
|∂χ1|

and y =
∂µχ1 ∂

µχ2

|∂χ1|2
, (5.16)

that can be independently constructed out of χ1 and χ2 in a Lorentz- and U(1)2 -invariant

way. R is the Ricci scalar and cR an arbitrary constant. As in the previous example, this

action makes sense only when the characteristic scale parameter µ (to be defined shortly)

in ‖∂χ‖ ∼ µ is large.

The classical solution. Using the fact that the classical ground state of lowest energy

at fixed charges is homogeneous in space, we solve the classical problem. In detail, the

eoms read

χ̇1 = µ1 = µ cosα and χ̇2 = µ2 = µ sinα , (5.17)

introducing the time-independent chemical potentials µi. It is convenient to parametrize

them in polar coordinates in terms of the “radial” chemical potential µ and the angle α.

Since this non-linear model should correspond to the generic charge configuration, also α

is taken to be generic.

For spatially homogeneous solutions there exists only one independent variable in

eq. (5.16), x = y. On the classical eoms it is x = y = tanα. In our homogeneous

setting, the two U(1) charge densities associated to the two independent shift symmetries

in χi are given by

j0
1 =

δL
δχ̇1

=

(
‖∂χ‖ − cRR

‖∂χ‖

)
f(x, x) χ̇1 −

(
1

3
‖∂χ‖3 − cRR‖∂χ‖

)
∂xf(x, x)

χ̇2

χ̇2
1

and

j0
2 =

δL
δχ̇2

=

(
‖∂χ‖ − cRR

‖∂χ‖

)
f(x, x) χ̇2 +

(
1

3
‖∂χ‖3 − cRR‖∂χ‖

)
∂xf(x, x)

1

χ̇1
. (5.18)

Abbreviating

f0 ≡ f(tanα, tanα) , fx ≡ ∂xf(x, y)|x=y=tanα and fy ≡ ∂yf(x, y)|x=y=tanα ,

(5.19)

the conditions that fix two different charge scales at the vacuum described by eq. (5.17)

can be combined as follows:

i=1,2 : j0
i

!
= ρi ⇒ %2 ≡ ρ2

1 + ρ2
2 = µ4

(
f2

0 +
(fx + fy)

2

9 cos4 α
+O

(
µ−2

))
. (5.20)

From here we deduce the relevant scaling µ ∼ O
(√
%
)

, thus we can use µ as an expansion

parameter at the technical level.
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The fluctuations. We parametrize the fluctuations around the classical vacuum (5.17) as

χ1 = µt cosα+ 2χ̂1/
√
µ , χ2 = µt sinα+ 2χ̂2/

√
µ . (5.21)

Dropping boundary terms, the Lagrangian up to quadratic order in χ̂i (which coincides

with O (1) in the large-µ expansion) reads

L(0) + L(2) = f0

(
µ3 − cRRµ

)
(5.22)

+
[
3f0(3 + cos 2α) + 4

(
(cosα)−2 − 3

)
(fx + fy) tanα

]
(∂0χ̂1)2

−
[
6f0 −

2 (fx + 2fy) sinα

cos3 α

]
(∇χ̂1)2

+ [3f0(3− cos 2α) + 12 (fx + fy) tanα] (∂0χ̂2)2

− 2
[
3f0 + 2fx (sin 2α)−1

]
(∇χ̂2)2

+
[
6f0 sin 2α− 8

(
2 (cosα)−2 − 3

)
(fx + fy)

]
(∂0χ̂1)(∂0χ̂2)

− 4fy (cosα)−2 ∇χ̂1 · ∇χ̂2 ,

Diagonalizing L(2) we find for generic α two relativistic Goldstones. The one relativistic

mode has the universal and the other a model-dependent speed of sound:

c(1)
s = 1/

√
2 and c(2)

s ≡ c(2)
s (α, f0, fx, fy) . (5.23)

The latter dispersion depends on the microscopic details of the underlying model through

the ignorance function f . Similar to the outcome in the linear sigma model, c
(2)
s is inde-

pendent of the large scale, while it depends on the ratio Q2/Q1, through α here and ϑ

in eq. (3.48). Finally, the suppression of the higher loops in the Goldstone fields follows

immediately by derivative counting, as in the previous example.

6 Conclusion and outlook

In this work we have studied the universality class of three-dimensional theories with global

SU(N) symmetry at the ir fixed point of the rg flow where the order parameter can be

described by a spin-0 field in the adjoint representation of the symmetry group. This

unveiled a new aspect of cfts at large charge, namely the possibility to fix multiple global

U(1) scales while the classical ground state still remains homogeneous in space, in contrast

to O(2N) vector models.

In particular, we have seen that the low-energy spectrum of an SU(N) matrix theory

at bN/2c fixed global charges is generically described by bN/2c relativistic Goldstone fields.

Similarly to previous studies, by taking at least one of those global charges to be large we

are able to perform perturbative calculations in the chosen sector of the strongly coupled

theory. The non-trivial prediction for the anomalous dimension of the lowest scalar operator

with different charge assignments, given in in the case of SU(4) matrix model, remains to

be verified by non-perturbative methods, e.g. via simulations on the lattice.
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Furthermore, the large-charge analysis enables us to make sharper statements about

the structure of the space of theories with a given global symmetry. So far, collecting

what we know in the literature including the current paper, we see that the space of scalar

theories with global SU(N) symmetry has at least three classes of qualitatively distinct

fixed points:

• Wilson-Fisher fixed point with matter in the vector representation (i.e. the O(2N)

vector model)

• Qualitatively similar to Wilson-Fisher fixed point but with matter in the adjoint

representation

• Qualitatively and quantitatively distinct fixed point with matter in the adjoint rep-

resentation

Since the various fixed points produce different predictions to tractable order, the way to

probe them is to consider different charge configurations for the lowest scalar operator, cf.

formula (1.2) for P = 1, 2. In fact, we do not even need to introduce multiple scales to

see the novel character of the third fixed point. Even when all Qj = Q, this fixed point

produces a distinct prediction (f2 6= 0 in eq. (1.2)) compared to the first two. In particular,

taking Q1 = Q2 in our SU(4) application led to the emergence of a new symmetry breaking

pattern in fixed-charge theories. This symmetry breaking was independently analyzed using

the non-linear effective description in section 5.1.

The provided list of fixed points is by no means exhaustive for theories with global

SU(N) symmetry. On the one hand, non-perturbative and beyond-the-leading-order effects

can further differentiate among the classified fixed points. On the other hand, starting

from N = 8 the number of invariant terms one needs to write in the linear action of the

matrix model to be sufficiently general to derive the dispersion relations becomes very

large and hence the current effective techniques are no longer efficient. Still, the three

distinct classes of fixed points outlined above remain inside special regions in the space

of Wilsonian parameters, but more qualitatively different fixed points can arise. It thus

remains an open question how to efficiently tackle those models entailing significantly

larger symmetry groups. One could hope to relate that particular question to the more

general investigations concerning the compatibility of large-charge and large-N expansions

as well as to possible applications of large-charge techniques in the context of the ads/cft

correspondance.
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A Tree level propagators

In this appendix we explicitly provide the various blocks of the inverse propagators in

momentum space used to semi-classically derive the dispersion relations in the linear sigma

model.

Specifically, in section 3.2 the inverse propagator of the limiting model with Q1 = Q2

was defined in eq. (3.36) such that it takes block-diagonal form. The first block is given

by the radial modes r1 , r2 coupled to the first two relativistic Goldstones along the Cartan

directions Σ1 and Σ2 :

D−1(k)
∣∣
r1,r2,χ1,χ2

=



k2 − k2
0 +M2

r
2(16λ1−3λ2)

16λ1−λ2 µ2 −2ik0µ 0

2(16λ1−3λ2)
16λ1−λ2 µ2 k2 − k2

0 +M2
r 0 −2ik0µ

2ik0µ 0 k2 − k2
0 0

0 2ik0µ 0 k2 − k2
0


(A.1)

with M2
r =

2 (16λ1 + λ2)

16λ1 − λ2
µ2 +

R
8
.

Notice that there is also a mixed term r1r2 . On the other hand, rα couples to χi for

α = i = 3, 4 contributing two identical blocks to the inverse propagator:

D−1(k)
∣∣
χ3,r3,χ4,r4

=


k2 − k2

0 2ik0µ 0 0

−2ik0µ k2 − k2
0 +m2

r 0 0

0 0 k2 − k2
0 2ik0µ

0 0 −2ik0µ k2 − k2
0 +m2

r

 (A.2)

with m2
r =

8λ2

16λ1 − λ2
µ2 +

R
8
.

The Goldstone-radial part in D−1(k) is followed by the diagonal contributions from the

rest of the radial modes,

D−1(k)
∣∣
r5,r6,r7

= diag

k2 − k2
0 +

(16λ1 + 7λ2)

16λ1 − λ2
µ2 − λ2

16λ1 − λ2
R︸ ︷︷ ︸

3 times

 , (A.3)

together with those of the spectator fields in Uϕ ,

D−1(k)
∣∣
ϕ1,ϕ2,ϕ3,ϕ4

= diag

k2 − k2
0 + µ2︸ ︷︷ ︸

4 times

 . (A.4)

In section 3.3 the block-diagonal inverse propagator was introduced in eq. (3.45) for a

charge configuration with generic Q1 ≥ Q2 ≥ 0, i.e. generic µ1 ≥ µ2 ≥ 0 in the first Weyl
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chamber. We have the following blocks:

D−1(k)
∣∣
r1,r2,χ1,χ2,r3

=


k2 − k2

0 +m2
r1

v4

8 (16λ1 − 3λ2) sinϑ −2ik0µ1 0 0

v4

8 (16λ1 − 3λ2) sinϑ k2 − k2
0 +m2

r2 0 −2ik0µ2 0

2ik0µ1 0 k2 − k2
0 0 0

0 2ik0µ2 0 k2 − k2
0 0

0 0 0 0 k2 − k2
0 +m2

r3

 ,

(A.5)

with m2
r1 =

(
3λ1 +

3λ2

8
+ 2λ1 cosϑ+

7

8
λ2 cosϑ+

5

16
λ2 cos 2ϑ

)
v4 +

R
8
− µ2

1 ,

m2
r2 =

(
3λ1 +

3λ2

8
− 2λ1 cosϑ− 7

8
λ2 cosϑ+

5

16
λ2 cos 2ϑ

)
v4 +

R
8
− µ2

2 ,

m2
r3 =

(
3

2
cos2 ϑ g1 +

9

2
cos2 ϑ g3 + λ1 +

λ2

2
+

1

16
λ2 cos 2ϑ

)
v4 +

R
8
,

which includes the Goldstone fields from UG coset factor together with the radial modes

rα in Φradial . In the same manner, D−1(k)|ϕi includes the spectator fields from Uϕ which

are generally expected to be massive. According to (3.45) it breaks into a 4× 4 part

D−1(k)
∣∣
ϕi, i=1,...,4

=


−k2

0 + k2 +m2
1

1
2 sinϑ

(
µ2

1 − µ2
2

)
−i cosϑ k0 (µ1 + µ2) −i sinϑ k0 (µ1 + µ2)

1
2 sinϑ

(
µ2

1 − µ2
2

)
−k2

0 + k2 +m2
4 −i sinϑ k0 (µ1 + µ2) i cosϑ k0 (µ1 + µ2)

i cosϑ k0 (µ1 + µ2) i sinϑ k0 (µ1 + µ2) −k2
0 + k2 +m2

1
1
2 sinϑ

(
µ2

1 − µ2
2

)
i sinϑ k0 (µ1 + µ2) −i cosϑ k0 (µ1 + µ2) 1

2 sinϑ
(
µ2

1 − µ2
2

)
−k2

0 + k2 +m2
4

 ,

(A.6)

together with another 4× 4 block

D−1(k)
∣∣
ϕi, i=5,...,8

=


−k2

0 + k2 +m2
2

1
2 sinϑ

(
µ2

1 − µ2
2

)
i cosϑ k0 (µ1 − µ2) i sinϑ k0 (µ1 − µ2)

1
2 sinϑ

(
µ2

1 − µ2
2

)
−k2

0 + k2 +m2
3 i sinϑ k0 (µ1 − µ2) i cosϑ k0 (µ1 − µ2)

−i cosϑ k0 (µ1 − µ2) −i sinϑ k0 (µ1 − µ2) −k2
0 + k2 +m2

2
1
2 sinϑ

(
µ2

1 − µ2
2

)
−i sinϑ k0 (µ1 − µ2) i cosϑ k0 (µ1 − µ2) 1

2 sinϑ
(
µ2

1 − µ2
2

)
−k2

0 + k2 +m2
3

 ,

(A.7)

with m2
1 =

1

4
(µ1 − µ2)2 +

1

2
cosϑ

(
µ2

1 − µ2
2

)
and m2

2 =
1

4
(µ1 + µ2)2 +

1

2
cosϑ

(
µ2

1 − µ2
2

)
, (A.8)

m2
3 =

1

4
(µ1 + µ2)2 − (cos 2ϑ− 3)

(
µ2

1 − µ2
2

)
4 cosϑ

and m2
4 =

1

4
(µ1 − µ2)2 − (cos 2ϑ− 3)

(
µ2

1 − µ2
2

)
4 cosϑ

,

as well as two diagonal entries

D−1(k)|ϕi,i=9,10 = diag
(
−k2

0 + k2 + µ2
1 , − k2

0 + k2 + µ2
2

)
. (A.9)
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