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We construct an efficient Monte Carlo algorithm that overcomes the severe signal-to-noise ratio
problems and helps us to accurately compute the conformal dimensions of large-Q fields at the
Wilson-Fisher fixed point in the Oð2Þ universality class. Using it, we verify a recent proposal that
conformal dimensions of strongly coupled conformal field theories with a global Uð1Þ charge can be
obtained via a series expansion in the inverse charge 1=Q. We find that the conformal dimensions of the
lowest operator with a fixed charge Q are almost entirely determined by the first few terms in the series.
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Conformal field theories (CFTs) occupy a central place
in our understanding of modern physics. They describe
critical phenomena in condensed matter physics and
statistical models [1,2], quantum gravity via the AdS/
CFT correspondence [3], and can be found at fixed points
of renormalization group flows [4–7]. They are uniquely
described by a set of dimensionless numbers (the CFT
data), i.e., conformal dimensions and operator product
expansion (OPE) coefficients associated with the primary
fields of the theory. Since they are typically strongly
coupled and lack a characteristic scale, it is often difficult
to compute the conformal dimensions analytically. Still, a
number of sophisticated techniques have been developed to
deal with this challenge, both perturbatively (e.g., 4-ϵ
expansion, fixed-dimension expansion, and large-N limit;
see [2] for a review) and nonperturbatively (e.g., bootstrap
[8]). In some cases Monte Carlo (MC) techniques offer a
reliable numerical approach for computing the conformal
dimensions [9,10].
Energies of low-lying states also capture universal

features of a 2þ 1 dimensional CFT when the theory is
studied on a space-time manifold R × Σ (see [11,12]
for some recent work in this direction). For example,
conformal dimensions D of operators on R3 are related
to the energies ES2 of states living on a two-sphere of
radius r0 through the relation D ¼ r0ES2 [13,14]. This
relation, known as the state-operator correspondence, is a

consequence of the fact thatR3 is conformally equivalent to
R × S2ðr0Þ. Recently, such a connection has been used in
CFTs with global Uð1Þ charges to show that the conformal
dimension DðQÞ of the lowest operator with fixed Uð1Þ
charge Q can be expanded in inverse powers of the charge
density on a unit sphereQ=4π [15,16] (see also [17–21] for
related work),

DðQÞ¼
ffiffiffiffiffiffi
Q3
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�
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where c0 ≈ −0.094 [22] and the other coefficients only
depend on the universality class. While a simple dimen-
sional analysis allows one to predict the leading large-Q
behavior, it is a priori unclear if a power series can capture
the subleading corrections. Recent work argues that by
separating the theory into sectors of fixed chargeQ one can
construct an effective field theory (EFT) in each sector,
which can be used to compute the energies as a power
series in 1=Q. Through the state-operator correspondence
one can then obtain the series expansion of the conformal
dimension DðQÞ and directly relate the coefficients in
Eq. (1) to the coefficients in the energy expansion.
In this Letter we make significant progress in establish-

ing that Eq. (1) is an excellent description of the Wilson-
Fisher (WF) fixed point in the Oð2Þ universality class. In
order to achieve this we overcome severe signal-to-noise
ratio problems in Monte Carlo methods that usually hinder
calculations of DðQÞ for large values of Q. Our new
approach allows us to determine the corresponding uni-
versal coefficients c3=2 ¼ 1.195ð10Þ, c1=2 ¼ 0.075ð10Þ for
the first time. In Fig. 1 we demonstrate that the measured
values of DðQÞ using our Monte Carlo approach are
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excellently described by Eq. (1). Surprisingly, we find that
the large-Q expansion with the first three coefficients
matches the conformal dimensions even at Q ¼ 1, within
a few percent. Thus, our work demonstrates that at least in
some class of models, the large-Q expansion is similar to
the ϵ expansion in the fact that the strongly coupled
conformal fixed point can be described within a simple
perturbative framework. The coefficients of the expansion
could still be difficult to compute analytically, but perhaps
bootstrap techniques could be developed for it [23].
To understand the origin of Eq. (1), consider the

conformal field theory describing the Wilson-Fisher fixed
point in the three-dimensional Oð2Þ universality class. In a
fixed-charge sector Q, the charge density introduces the
mass scale

ffiffiffiffiffiffiffiffiffiffi
Q=V

p
in the theory and, hence, for momentum

scales p ≪
ffiffiffiffiffiffiffiffiffiffi
Q=V

p
the physics is described by a Goldstone

field χ that is controlled by an approximately scale-
invariant Lagrangian [15,17] (see also [24] for a related
approach to effective descriptions of nonrelativistic CFTs),

L¼ k3=2
27

ð∂μχ∂μχÞ3=2þk1=2R

3
ð∂μχ∂μχÞ1=2þ��� ð2Þ

where R is the scalar curvature of the manifold R × Σ.
Thus, we learn that in the large-Q limit only the two
parameters k3=2 and k1=2 that appear in Eq. (2) play an
important role; all other terms are suppressed [16,18]. Since
the charge is nonzero, the action is only meaningful away
from χ ¼ 0 and is to be expanded around the fixed-charge
homogeneous classical solution χ ¼ μt. Using the effective
quantum Hamiltonian arising from the effective Lagrangian
Eq. (2), one can show that the total energy of the system is
given by

EΣðQÞ ¼
ffiffiffiffiffiffi
Q3
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where the first two terms are related to the couplings in the
effective Lagrangian Eq. (2) through the relations k3=2 ¼
4=c23=2 and k1=2 ¼ −c1=2=c3=2. The higher-order terms in
the expansion are related to higher-dimensional operators
in Eq. (2) and quantum corrections. The last term qΣ arises
due to quantum fluctuations that can be computed exactly
for simple manifolds. For the sphere (R ¼ 2=r20) one finds
qS2 ¼ c0=r0 where c0 ≈ −0.094 [22], while for the torus
(R ¼ 0) it is qT2 ¼ c0=L with c0 ≈ −0.508 [25].
By choosing Σ ¼ S2 and using the state-operator corre-

spondence one can now easily derive Eq. (1). It is
interesting to note that the coefficients c3=2, c1=2 in
Eqs. (1), (3) are related to the low-energy constants k3=2
and k1=2 of the effective Lagrangian in Eq. (2). Indeed,
these low-energy constants are independent of the manifold
chosen and depend only on the CFT. Assuming the
manifold is the torus we predict that

lim
Q→∞

DðQÞ
ET2ðQÞL ¼ 1

2
ffiffiffi
π

p : ð4Þ

Note that every term in the energy expansion is a dimen-
sionless function of three variables: a coefficient in the
DðQÞ expansion, a geometrical term from the manifold,
and a power of V=Q.
The motivation of our current work is to compute DðQÞ

and EΣðQÞ in the classical Oð2Þ σ model on a torus and
verify the expansions in Eqs. (1) and (3) and the con-
nections between them. We accomplish this by regularizing
the classical Oð2Þ σ model on a cubic lattice with lattice
spacing a and use Monte Carlo methods to perform the
calculations. The model is defined by phases, expðiθxÞ, on
each three-dimensional lattice site x ¼ ðx1a; x2a; x3aÞ and
the nearest-neighbor action

S ¼ −β
X

x;α

cosðθx − θxþα̂aÞ: ð5Þ

Here α̂a denotes the three unit lattice vectors, and β is the
coupling of the model. The physics of the Wilson-Fisher
fixed point can be studied by tuning the coupling to its
critical value (βc ¼ 0.454 165 2 [26–28]), where a second-
order phase transition separates the symmetric phase
(β < βc) and the spontaneously broken superfluid phase
(β > βc). Universality implies that details of our specific
model should be irrelevant in the limit a → 0 which is
naturally reached by studying large lattices at βc.
Configurations that contribute to the partition function of

the lattice model at the critical point can be efficiently
generated by both the Wolff cluster algorithm [29] and the
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FIG. 1. Plot of the values of DðQÞ extracted from our
Monte Carlo calculations at the Oð2Þ WF fixed point, along
with the plot of Eq. (1) (solid line) with our estimated values
c3=2 ¼ 1.195 and c1=2 ¼ 0.075 and previously computed value
c0 ¼ −0.094. It is surprising that these three leading coefficients
in Eq. (1) can predict the conformal dimensions for all Q ≥ 1
very well.
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worm algorithm based on the worldline representation [30].
However, in order to compute the conformal dimension
DðQÞ in R3 we need to compute the two-point correlation
function CQðrÞ of charge Q fields on a large lattice of size
L, which is expected to decay as a power law for large
separations r ≪ L at the critical point,

CQðrÞ ¼ hexpðiQθrÞ expð−iQθ0Þi ∼
aðQÞ
jrj2DðQÞ : ð6Þ

Fitting the data to this form we can in principle extract
DðQÞ and thus verify Eq. (1). Note that for Q ¼ 1, it
reduces to the standard two-point correlation function,
which is used to extract the critical exponent η through
the relation C1ðrÞ ¼ GðrÞ ∝ 1=rd−2þη. For Q ¼ 2, 3, 4, the
corresponding conformal dimensions have also been com-
puted earlier using different methods, and the results are
summarized in Table I. Unfortunately, calculations ofDðQÞ
for higher values of Q do not exist and, hence, the relation
(1) remains unconfirmed.
It is difficult to measure DðQÞ for large values of Q

through a Monte Carlo method due to severe signal-to-
noise ratio problems in the Monte Carlo calculations. With
the Wolff cluster algorithm it is difficult to average numbers
of order 1 to compute a small value of CQðrÞ at large
separations. In contrast, in the worm algorithm, it is
difficult to correctly build the worldline configurations
that contribute to the correlation function in the presence of
charged sourcesQ and −Q separated by a large distance. In
this case the severe signal-to-noise ratio problem emerges
as an overlap problem between the vacuum ensemble and
the one containing the sources. In order to overcome this
problem we have designed an algorithm to efficiently
compute the ratio

RðL=2Þ ¼ CQðr ¼ L=2Þ
CQ−1ðr ¼ L=2Þ ð7Þ

on cubic lattices of side L for 8 ≤ L=a ≤ 120 at the critical
point βc (the details of our algorithm can be found in the
Supplemental Material [36]). Using RðL=2Þ it is easy to

extract the difference ΔðQÞ ¼ DðQÞ −DðQ − 1Þ using
the relation RðLÞ ∼ 1=L2ΔðQÞ. The accuracy with which
we are able to compute the ratio RðL=2Þ for various
values of Q can be seen in Fig. 2. Once the differences
ΔðQÞ are known, we can also extract DðQÞ by setting
DðQ ¼ 0Þ ¼ 0. Our estimates of both ΔðQÞ and DðQÞ
using Monte Carlo calculations, are given in Table II. It is

TABLE I. Conformal dimensionsDðQÞ obtained previously by
other methods forQ ≤ 4. Field theory results in 4 − ϵ dimensions
at five loops are in the second column, six-loop results at d ¼ 3
are in the third column ([31] for Q ¼ 2, in [32] for Q ¼ 3 and in
[33] for Q ¼ 4), previous MC results are in the fourth column
[34], and bootstrap results are in the fifth column [35].

Q ϵ5 λ6 MC Bootstrap

1 0.518(1) � � � 0.5190(1) 0.5190(1)
2 1.234(3) 1.23(2) 1.236(1) 1.236(3)
3 2.10(1) 2.10(1) 2.108(2) � � �
4 3.114(4) 3.103(8) 3.108(6) � � �
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FIG. 2. The figures (top and bottom) show the quantity RðL=2Þ
for different lattice sizes L=a ¼ 8;…; 120 and differentQ values.
The straight line on a log-log plot is indicative of the power law
behavior, and the slope gives the difference of the conformal
dimensions 2ΔðQÞ. Note that there is no visible signal-to-noise
problem in these correlators.

TABLE II. Results for the conformal dimensions ΔðQÞ and
DðQÞ defined through (6). Fit systematics are discussed in the
Supplemental Material [36]. While our results for Q < 4 are in
good agreement with previous results as seen in Table I, there is a
slight deviation for Q ¼ 4.

Q ΔðQÞ DðQÞ Q ΔðQÞ DðQÞ
1 0.516(3) 0.516(3) 7 1.332(5) 6.841(8)
2 0.722(4) 1.238(5) 8 1.437(4) 8.278(9)
3 0.878(4) 2.116(6) 9 1.518(2) 9.796(9)
4 1.012(2) 3.128(6) 10 1.603(2) 11.399(10)
5 1.137(2) 4.265(6) 11 1.678(5) 13.077(11)
6 1.243(3) 5.509(7) 12 1.748(5) 14.825(12)
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easy to verify that our results match quite well with
previous results in Table I when Q < 4.
We can now verify if the conformal dimensions in Table II

are consistent with Eq. (1). For this purpose we perform a
combined fit of our data for the difference ΔðQÞ and DðQÞ
assuming that c3=2, c1=2, c−1=2 are nonzero and c0 ¼ −0.094
as expected. Taking into account various systematic errors
from fitting procedures, we estimate c3=2 ¼ 1.195ð10Þ,
c1=2 ¼ 0.075ð10Þ and c−1=2 ¼ 0.0002ð5Þ. The raw data
for ΔðQÞ are shown in Fig. 3, and further technical details
are discussed in the Supplemental Material [36]. We also
show a comparison with the prediction obtained by just
keeping the first three leading terms of the expansion in
Eq. (1). As the figure shows, this prediction works even at
small values of Q but is off only by a few percent at Q ¼ 1.
Next we explore if we can connect our above calculations

of c3=2 and c1=2 with the ones appearing in Eq. (3) for the
expansion of the energy on a torus. Lattice calculations
naturally lead to a torus geometry in the continuum limit ifwe
keep the physical length L fixed while taking the number of
lattice points in each direction, L=a, to infinity. The lattice
spacing a itself is defined by setting the lattice energyELðQÞ
to be equal to the continuum energy ET2ðQÞ on the torus of
side L as the continuum limit is taken. On the lattice we
measure the energy in terms of the dimensionless number
ELðQÞat as a function ofL=a, whereat is the temporal lattice
spacing. Although the lattice calculation at a fixed L=a and
chargeQ breaks the symmetrybetween space and time, in the
continuum limit (i.e.,L=a → ∞),we expectat=a → 1 due to
the cubic symmetry of the lattice action, Eq. (5). Thus on the
latticewith a fixedL=awe can replace Eq. (3) by the formula

ELðQÞL¼Q3=2ðcL3=2þcL1=2Q
−1þcL−1=2Q

−2…ÞþqL; ð8Þ

such that in the continuum limit (i.e., large lattices) we expect
this equation to turn into Eq. (3) on the torus, with

ELðQÞ → ET2ðQÞ, cL3=2 → c3=2, cL1=2 → ðRL2=2Þc1=2 ¼ 0,
and qL → qT2 ¼ −0.508.
Unfortunately, computing ELðQÞ on the lattice is subtle

due to the additive renormalization of lattice energies
[37–39]. Thus, in this Letter we use the techniques
discussed in [30] to compute energy differencesΔELðQÞ ¼
½ELðQÞ − ELðQ − 1Þ� at a fixed lattice size L=a. The idea is
to couple a chemical potential μat to the conserved charge
Q and extract the energy differences between ground states
with chargesQ andQ − 1 by tuning the chemical potential.

At the critical chemical potential μðQ−1Þ
c ¼ ΔELðQÞ, the

average charge of the system jumps from Q − 1 to Q.
Further details on the method can be found in the
Supplemental Material [36].
Unfortunately, our method is efficient only on small

lattice sizes L=a, limiting the range ofQ s that can be used.
Remember that the EFT description is valid only when
1 ≪ ðL=aÞ= ffiffiffiffi

Q
p

≪ L=a. Further, small lattices also imply
larger lattice spacing errors, which means cL3=2 and c

L
1=2 may

not quite agree with continuum expectations discussed
above. Still, we can learn about the magnitude of the errors.
With this in mind we have computedΔELðQÞL in the range
1 ≤ Q ≤ 18 for L=a ¼ 8 and 10. Our results are tabulated
in Table III.
Our data for L=a ¼ 8 and 10 fit well to Eq. (8) with a

χ2=DOF ≈ 1, as long as we restrict the fits to the range
5 ≤ Q ≤ 13 and 10 ≤ Q ≤ 18, respectively. The fit result
for L=a ¼ 10 is shown in Fig. 4. The fits give cL3=2 ¼
1.235ð10Þ and cL1=2 ¼ 0.12ð10Þ for both sets of the data.
However, cL−1=2 fits to 1.9(5) at L=a ¼ 10 and to 0.7(2) at
L=a ¼ 8. Note that cL3=2 is only about 3% off from
1.195(10) extracted earlier using conformal dimensions.
This error seems reasonable given our small lattices (see the
Supplemental Material for further discussion of this point
[36]). The coefficient cL1=2 is small, perhaps related to the
fact that it is expected to be zero in the continuum. The
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FIG. 3. Plot of ΔðQÞ extracted using Monte Carlo calculations,
along with a plot of Eq. (1) keeping the first three nonzero
coefficients estimated using our fits.

TABLE III. Values of ΔELðQÞL obtained on the lattice using
the Monte Carlo method for various values of Q on lattice sizes
L=a ¼ 8 and 10.

ΔELðQÞL ΔELðQÞL
Q L=a ¼ 8 L=a ¼ 10 Q L=a ¼ 8 L=a ¼ 10

1 1.3442(5) 1.3393(7) 10 5.7135(24) 5.6998(3)
2 2.2422(3) 2.2311(4) 11 6.0074(24) 5.9960(4)
3 2.9012(4) 2.8851(3) 12 6.2866(24) 6.2786(4)
4 3.4434(3) 3.4259(3) 13 6.5529(24) 6.5487(4)
5 3.9142(3) 3.8949(2) 14 6.8078(32) 6.8074(5)
6 4.3346(16) 4.3150(2) 15 7.0524(32) 7.0560(20)
7 4.7178(16) 4.6987(2) 16 7.2884(32) 7.2970(10)
8 5.0722(16) 5.0545(3) 17 7.5152(32) 7.5280(20)
9 5.4026(16) 5.3868(3) 18 � � � 7.7530(20)
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value of c−1=2 is consistent with being nonzero, although it
was recently argued that the classical contribution to the
energy at this order is expected to vanish in the continuum
limit [18]. Contributions from quantum corrections were
not computed and could in principle be nonzero. Finally, as
discussed in the Supplemental Material [36], all of our
results are consistent with those obtained recently [12].
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cL−1=2 ¼ 1.9. The function with cL1=2 ¼ 0 (dashed line) almost
coincides with the solid line.
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