
A
cc

ep
te

d
 A

rt
ic

le

This article has been accepted for publication and undergone full peer review but has not 

been through the copyediting, typesetting, pagination and proofreading process, which may 

lead to differences between this version and the Version of Record. Please cite this article as 

doi: 10.1111/1755-0998.12991 

This article is protected by copyright. All rights reserved. 

MISS AUDE  ROGIVUE (Orcid ID : 0000-0002-6864-0587) 

MRS. RIMJHIM ROY  CHOUDHURY (Orcid ID : 0000-0002-0499-4124) 

DR. STÉPHANE  JOOST (Orcid ID : 0000-0002-1184-7501) 

PROF. CHRISTIAN  PARISOD (Orcid ID : 0000-0001-8798-0897) 

 

 

Article type      : Resource Article 

 

 

Genome-wide variation in nucleotides and retrotransposons in alpine populations 

of Arabis alpina (Brassicaceae) 

 

Aude Rogivue
1,+,

, Rimjhim R. Choudhury
2,3,+

, Stefan Zoller
4
, Stéphane Joost

5
, François 

Felber
2,6

, Michel Kasser
7
, Christian Parisod

3,*
, Felix Gugerli

1,*
 

 

1
 WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH–8903 Birmensdorf, 

Switzerland
 

2
 University of Neuchâtel, Rue Emile-Argand 11, CH–2000 Neuchâtel 

3
 Institute of Plant Sciences, University of Berne, Altenbergrain 21, CH–3013 Bern, 

Switzerland 

4
 Genetic Diversity Centre, ETH Zürich, CH–8092 Zürich, Switzerland 

5
 Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and 

Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 

CH-1015 Lausanne, Switzerland 

6
 Musée et Jardins botaniques cantonaux, Avenue de Cour 14bis, CH–1007 Lausanne, 

Switzerland 

7
 HEIG-VD, Rte de Cheseaux 1, CH–1400 Yverdon-les-Bains, Switzerland 

 

 

s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
2
4
6
9
6
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
7
.
1
2
.
2
0
2
0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/212388997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

+
 AR and RRC equally contributed to this article as joint first authors 

*
 CP and FG are joint senior authors of this article 

 

*Correspondence: felix.gugerli@wsl.ch, christian.parisod@ips.unibe.ch  

 

Abstract 

Advances in high-throughput sequencing have promoted the collection of reference genomes 

and genome-wide diversity. However, the assessment of genomic variation among 

populations has hitherto mainly been surveyed through single-nucleotide polymorphisms 

(SNPs) and largely ignored the often major fraction of genomes represented by transposable 

elements (TEs). Despite accumulating evidence supporting the evolutionary significance of 

TEs, comprehensive surveys remain scarce. Here, we sequenced the full genomes of 304 

individuals of Arabis alpina sampled from four nearby natural populations to genotype SNPs 

as well as polymorphic long terminal repeat retrotransposons (polymorphic TEs; i.e. 

presence/absence of TE insertions at specific loci). We identified 291,396 SNPs and 20,548 

polymorphic TEs, comparing their contributions to genomic diversity and divergence across 

populations. Few SNPs were shared among populations and overall showed high population-

specific variation, whereas most polymorphic TEs segregated among populations. The 

genomic context of these two classes of variants further highlighted candidate adaptive loci 

having a putative impact on functional genes. In particular, 4.96% of the SNPs were 

identified as non-synonymous or affecting start/stop codons. In contrast, 43% of the 

polymorphic TEs were present next to Arabis genes enriched in functional categories related 

to the regulation of reproduction and responses to biotic as well as abiotic stresses. This 

unprecedented dataset, mapping variation gained from SNPs and complementary 
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polymorphic TEs within and among populations, will serve as a rich resource for addressing 

microevolutionary processes shaping genome variation. 

 

Keywords: Arabis alpina, Genome-wide diversity, Linkage disequilibrium, Single-

nucleotide polymorphisms, Transposable elements. 

 

Introduction 

The drivers of genetic variation in natural populations across diverse environments is a 

fundamental issue in evolutionary biology. Such knowledge is important to understand the 

impact of climate change on adaptive responses of extant populations. Advances in high-

throughput sequencing technologies have increasingly facilitated studies dissecting the 

genotypic basis of phenotypic variation. Such methodological progress and the availability of 

high-quality reference genomes has led to the increasing use of single-nucleotide 

polymorphisms (SNPs) in population genetic studies, efficiently applied to a wide range of 

questions and organisms including non-model species.  

 

Parallel sequencing of DNA fragments covering the whole genome of multiple 

individuals has been used to develop large catalogues of genomic variation. Accordingly, 

whole-genome sequencing has generated large datasets comprising more than 100 individual 

plants, such as 948 inbred accessions of Arabidopsis thaliana from the entire species range 

(Hancock et al., 2011), 419 accessions of upland cotton from diverse locations (Ma et al., 

2018), or 302 wild and cultivated accessions of Glycine max (Zhou et al., 2015). The 

application of whole-genome sequencing to surveys of genomic variation within populations 

of Chinese Gossypium arboreum (230 accessions; Du et al., 2018), the Rice Genome Project 

(3,010 accessions; Wang et al., 2018) or outcrossing Capsella grandiflora (188 individuals; 
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Josephs, Lee, Stinchcombe, & Wright, 2015) provided new insights regarding their evolution. 

However, few studies so far investigated variation among large numbers of individuals from 

natural populations of non-model species with whole-genome sequencing. Such studies at a 

local scale (i.e. within less than 10km distance) are expected to offer important resources to 

address interactions between genomic and environmental variation, shedding new light on the 

neutral and adaptive responses to changing environments at the population level. The 

distribution of genetic variation at hundreds of thousands of loci across the genome of 

individuals from various environments or populations indeed offers unprecedented insights to 

understand ecological and evolutionary processes.  

 

 The reliability and power of whole-genome SNP data to investigate natural 

populations is well established (Morin, Luikart, & Wayne, 2004) and the detection of SNPs 

has nowadays become routine (Garvin, Saitoh, & Gharrett, 2010; Seeb et al., 2011). Such 

data have been regularly used to infer the genetic basis of adaptive traits (Atwell et al., 2010; 

Exposito-Alonso et al., 2018) or, in association with environmental features, to detect gene 

variants underlying local adaptation (Rellstab, Gugerli, Eckert, Hancock, & Holderegger, 

2015). SNP data can further accommodate sophisticated modelling approaches to infer the 

drivers of genomic variation through neutral and adaptive processes. In particular, the whole-

genome sequencing of 38 individuals of A. alpina from populations with divergent levels of 

outcrossing/selfing allowed to evaluate the effect of mating system on the purging of 

deleterious alleles (Laenen et al., 2018).  

 

 Individual whole-genome sequencing can detect a wide range of genome-wide 

molecular variants to possibly complement SNPs to address the demographic and adaptive 

components of genome evolution. In particular, transposable elements (TEs) correspond to a 
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major fraction of many plant genomes (Bennetzen, 2005; Lisch, 2013), but only a small 

fraction of population genomics studies have provided detailed datasets with the 

presence/absence of TE insertions at specific loci (polymorphic TEs) in natural plant 

populations. Although first described as “controlling elements” to illustrate the capacity of 

TEs to regulate phenotypes in maize (McClintock, 1956), recent studies increasingly support 

TEs as central to the evolution of gene regulation in plants and other genome rearrangement 

such as gene duplication (Doolittle, 2013).  

 

 TEs can be classified into copy-and-paste-based retrotransposons (Class I), which 

proliferate via RNA intermediates, and cut-and-paste-based DNA transposons (Class II), 

which proliferate via excising from one location and inserting into another in the genome 

(Wicker et al., 2007). In plants, the most abundant TEs are the long terminal repeat (LTR) 

retrotransposons, representing from 5.6% (8.8Mb) of the compact Arabidopsis thaliana 

genome (Pereira, 2004) to 75% (1.5Gb) of the complex maize genome (Baucom et al., 2009) 

or 48% (9.4Gb) of the Picea abies genome (Nystedt et al., 2013). Such TEs thus represent a 

major source of raw evolutionary material not only when inserting into new genomic 

locations, but also as interspersed targets of ectopic recombination and other mechanisms of 

chromosome rearrangement (Gray, 2000). Several TEs further contain regulatory sequences 

that can affect the structure and expression of nearby genes and thereby have an impact on 

phenotypes (Chuong, Elde, & Feschotte, 2016; Elbarbary, Lucas, & Maquat, 2016). 

Similarly, it has been shown that epigenetic marks repressing inserted TEs can regulate the 

expression of nearby genes (Fedoroff, 2012; Hollister et al., 2011; Lisch & Bennetzen, 2011). 

Finally, specific TE families (or related inserted copies having evolved as quasi-species 

within a given genome; Casacuberta, Vernhettes, Audeon, & Grandbastien, 1997) appear 

activated in association to hybridization (e.g. Senerchia, Felber, & Parisod, 2015) and various 
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abiotic stresses (e.g. Cavrak et al., 2014; Grandbastien et al., 2005; Kalendar, Tanskanen, 

Immonen, Nevo, & Schulman, 2000), supporting genome changes and possibly adaptation in 

plants facing challenging situations (Rey, Danchin, Mirouze, Loot, & Blanchet, 2016). Given 

their possible consequences on the evolution of host genomes, TEs would ideally be included 

in population surveys aiming at shedding light on the underpinnings of adaptation in 

Eukaryotes (Bonchev & Parisod, 2013).  

 

 Variation associated with TEs is often ignored because TE-rich genomic regions are 

difficult to assemble and annotate in genome drafts (Hoban et al., 2016; Treangen & 

Salzberg, 2012). The genotyping of polymorphic TEs (i.e. presence/absence of TE insertions 

at specific loci) benefits from the availability of high-quality TE annotation and, thus, allows 

for the assessment of their significance (Choudhury & Parisod, 2017). In contrast to the 

detection of SNPs, the development of appropriate computational tools to detect polymorphic 

TEs from current sequence data is still in its infancy. However, challenges can be overcome, 

and appropriate software packages properly calling reference TE polymorphisms, accurately 

estimating breakpoint intervals and treating TE polymorphisms as codominant loci should be 

favored (Bergman, 2012; Rishishwar, Mariño-Ramírez, & Jordan, 2016). Accurate 

genotyping of polymorphic TEs among large numbers of samples is further improved by 

considering evidence of TE variation from related samples such as implemented in specific 

approaches designed for population studies (e.g. TEPID; Stuart et al. 2016). Keeping such 

caveats in mind, studies that included TEs highlighted their important role for adaptive 

evolution in various organisms (Bennetzen & Wang, 2014; Casacuberta & González, 2013).  
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 Ecologists and evolutionary biologists have recently turned their attention to species 

related to the model plant Arabidopsis thaliana. In particular, Arabis alpina has become an 

established model plant for highlighting candidate loci with molecular function of possible 

adaptive significance (Wang et al. 2009; Toräng et al., 2015; de Villemereuil, Mouterde, 

Gaggiotti, & Till-Bottraud, 2018). This short-lived perennial plant shows variation in the 

mating system from nearly strict outcrossing to almost full selfing (Tedder et al., 2011; 

Laenen et al., 2018) and further grows in diverse ecological niches, overcoming some 

shortcomings of A. thaliana as a model species while benefiting from the broad and diverse 

knowledge on the molecular and developmental biology of the latter species. Accordingly, a 

high-quality assembly of the 370Mb genome of A. alpina has recently been released (Jiao et 

al., 2017; Willing et al., 2015), making it possible to address challenging evolutionary 

questions difficult to pursue in other species (Woetzel et al., submitted).  

 

Here, we investigated the distribution of SNPs and polymorphic insertions of LTR 

retrotransposons (hereafter referred to as polymorphic TEs) that may be important for 

deciphering patterns of demographic processes and of local adaptation in A. alpina. 

Benefitting from the latest high-quality reference genome of a Spanish accession (Pajares; 

Jiao et al., 2017), we assembled a dataset with whole-genome sequencing data from 304 

individuals collected in four nearby alpine regions to provide in-depth annotation of their 

SNPs and TE content. Our aim was to establish a genomic resource and describe nucleotide 

and LTR retrotransposon variation and their putative impact on genes in natural populations. 

SNPs as well as polymorphic TEs close to or within genes suggest that both types of genomic 

variation may have a key impact on adaptive variation in A. alpina. 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Material and methods  

Study species and sampling 

The alpine rock cress Arabis alpina L. is a perennial arctic-alpine herb of the Brassicaceae 

family. It grows mainly on calcareous bedrock along a wide elevational range and occupies 

various habitat types (Buehler et al., 2013). We chose four study regions in the western Swiss 

Alps, which are descending from the same original population that recolonized the Alps from 

the East after the last glaciation (Rogivue, Graf, Parisod, Holderegger, & Gugerli, 2018). 

Rosette leaves of 306 individuals were sampled between 2016m and 2457m a.s.l.: 70 in La 

Para (1), 70 in Pierredar (2), 70 in Les Essets (3), and 96 in Les Martinets (4; Figure S1 in 

Supplementary Information) and stored in silica gel until DNA extraction. The four sampled 

regions cover an average area of 0.42 km
2
, within which plants were sampled, with few 

exceptions, at least 1m apart. Despite their common post-glacial ancestry (Rogivue et al., 

2018), we treated plants from each region as different populations, as they are situated in 

topographically separated Alpine valleys presumably with limited gene flow among them 

(Buehler, Graf, Holderegger, & Gugerli, 2012). Alpine populations of A. alpina sexually 

reproduce mainly by selfing (Ansell, Grundmann, Russell, Schneider, & Vogel, 2008; 

Buehler et al., 2012) or, rarely, asexually via stoloniferous above-ground growth, but mixed-

mating and predominant outcrossing is also found within the European range (Tedder et al.; 

2011; Laenen et al., 2018).  

 

DNA extraction, sequencing, and mapping 

DNA was extracted from silica gel-dried leaf tissue using the DNeasy Plant Mini Kit 

(Qiagen, Hilden, Germany), and quality was checked on agarose gels as well as with the UV-

Vis Spectrometer (NanoDrop 1000, Thermo Scientific Wilmington, DE, USA), while 

quantity was measured with the Quantus™ Fluorometer (Promega Corporation, Madison, 
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WI, USA). Library preparation (NEBNext® Ultra™, New England Biolabs, Ipswich, MA, 

USA) and sequencing with Illumina HiSeq2500 (ATLAS Biolabs GmbH, Berlin, Germany; 

125-bp paired-end reads) were performed by the Functional Genomics Centre Zürich (Zürich, 

Switzerland). Firstly, whole-genome sequencing of 96 individuals from Les Martinets was 

performed on four lanes in order to evaluate output and sequence quality. Subsequently, 

genomes of individuals of the three remaining populations were fully sequenced on eight 

lanes and samples were randomly placed among the lanes to avoid artefacts.  

 

 After quality control using FastQC  

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), adapters were trimmed with 

Trimmomatic v.0.35 (Bolger, Lohse, & Usadel, 2014), polymerase chain reaction (PCR) 

duplicates were removed, and leading and trailing bases were removed below the quality of 

5. The sequenced reads were filtered with a sliding window of 4 and an average Phred score 

of 15 within the window, and reads shorter 50bp were removed. The remaining sequences 

were used for mapping against the reference genome V5.1 (Jiao et al., 2017) with BWA 

v.0.7.12 (Li & Durbin, 2010); more details are found in Appendix S1 in Supplementary 

Information.  

 

Annotation of TEs in the Arabis genome assembly  

LTR retrotransposons were de novo re-annotated in the reference sequence of A. alpina V5.1 

based on Choudhury, Neuhaus, & Parisod (2017), and hereafter referred to as reference TEs. 

More details are found in Appendix S1 in Supplementary Information. This new annotation 

of LTR retrotransposons in the improved V5.1 assembly of the genome of A. alpina 

identified a higher number of copies compared to the same approach on a prior genome 

version (Choudhury et al., 2017). In particular, eight additional monophyletic lineages of 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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LTR-RT sequences shared among Brassicaceae species (i.e. Tribes) have been here identified 

(Table S1 in Supplementary Information). Solo-LTRs were further annotated. 

 

SNP calling 

The SNP calling was done with FreeBayes v.1.0.2 (Garrison & Marth, 2012) with the 

following options: ploidy 2, a minimum alternate fraction of 0.2, base quality at the site > 10 

and coverage > 4. We strongly filtered SNPs according to the following settings: We required 

that a SNP (i) was biallelic (FreeBayes v.1.0.2; Garrison & Marth, 2012) and (ii) had a 

quality/depth > 0.25 (vcffilter from vcflib v.1.0.1; Garrison 2012, 

https://github.com/vcflib/vcflib#vcflib, accessed May 2017). The following filtering steps 

were performed with VCFtools v.0.1.14 (Danecek et al., 2011). We required: (iii) a minimum 

depth of 8 and a maximum of 100, and a minimum count of alternative alleles of 2 and a 

maximum count of 100 (to avoid incorrect SNPs due to the mapping of repeat variants). 

Finally, (iv) we filtered SNPs with a minor allele frequency (MAF) < 0.025 and (v) SNPs 

with more than 10% missing data. Because Ribeiro et al. (2015) showed an enrichment of 

false positive SNPs in TE sequences due to the inherent difficulties for accurate mapping in 

repetitive sequences, we further classified the SNPs into two categories, namely those outside 

and those within annotated TE sequences. Accordingly, we refer to these datasets as “non-TE 

SNPs” as opposed to “SNPs” for the full dataset that also contains SNPs within TE sequences 

(Table 1, Table S2 in Supplementary Information). Our analyses are based on both SNP sets 

for comparative purposes, because standard approaches used in population genomic studies 

rarely account for this difference. For each SNP we calculated the MAF based on the 

frequency of the SNP using option “--freq” of VCFtools (Danecek et al., 2011). 

 

https://github.com/vcflib/vcflib#vcflib
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Polymorphic TE calling 

Polymorphic TEs among the sequenced genomes of individuals of A. alpina were identified 

and genotyped using TEPID v.0.6 (Stuart et al., 2016). This approach described in Figure S2 

employs split and discordant read mapping information, read mapping quality, sequencing 

breakpoints and local variation in sequencing coverage to infer absence of reference TEs 

(i.e. present in the reference assembly but absent in the genotyped individual; hereafter 

referred to as ‘TE-absence’) as well as the presence of non-reference TE insertions (i.e. 

absent in the reference assembly but present in the genotyped individual; hereafter referred to 

as ‘TE-presence’). Quality filtered FASTQ files of sampled individuals were mapped to the 

reference genome assembly using the ‘tepid-map’ algorithm, which identifies the reads split 

between two genomic mapping coordinates. The ‘tepid-discover’ algorithm then identified 

TE-absence and TE-presence with respect to the reference genome. Only the best mapping 

region was considered and a series of stringent filters was applied to accurately identify 

variants with respect to the reference genome. In particular, TE-absence was only called 

when at least 80% of the TE sequence was spanned by split or discordant reads, with the 

annotated TE region covered by less than 10% of the sequencing depth of 2kb flanking 

sequences. The identification of TE-presence relies exclusively on split reads spanning less 

than 5kb, with mapping quality of at least 5 and at least two reads coverage to remove 

possible false candidates. Calls required at least 80% overlap between TE and split/discordant 

read mapping coordinates as well as few independent discordant read pairs in opposite 

orientation at the insertion sites.  

 

Calls of identified variants were further refined using the ‘tepid-refine’ algorithm, 

which reduces false negatives by examining the nearby genome region for corresponding 

non-reference alleles being identified in other individuals of the four populations. 
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Accordingly, this refinement step looks for evidence supporting the non-reference allele in 

the focal individual using lower thresholds as compared to the ‘tepid-discover’ step and thus 

takes polymorphism in the population into account. In case of insufficient sequencing 

coverage in a sample for a given locus, missing information is called as ‘NA’ to account for 

uncertainty. Such a procedure adequately accommodates individuals with a low sequencing 

depth across the genome with about 80% true positives at coverage above 10x (Stuart et al., 

2016).  

 

 TE-absence and TE-presence were integrated across all individuals using the 

merge_insertion.py module from TEPID to generate the final call sets of TE presence by 

merging calls with the same TE family when their coordinates are within 100bp. The 

merge_deletion.py was used to simply merge TE absence per locus within the four 

populations. The genotype.py module was used to generate a coherent output file with all 

polymorphic TEs recorded as either present or absent in each individual across the four 

populations. It also identified individuals for which ’NA’ was called at that locus by the 

refinement step.  

 

 As SNPs are possibly miscalled in TE-rich regions, inference of the zygosity at each 

identified TE locus was not based on SNPs within TEs but on the coverage at breakpoints of 

polymorphic TEs. The number of reads supporting presence (supportive reads) as well as 

those not supporting presence (non-supportive reads) at the borders of a given TE insertion 

were retrieved in all individuals. Accordingly, the number of properly mapped, discordant 

and soft clipped reads were counted in the region surrounding the predicted border of each 

locus. A custom R script then determined the probability that a TE locus was heterozygous or 

homozygous by using the ratio between the number of supportive and non-supportive reads. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

For an allele to be considered heterozygous, the expected 2:1 ratio of supportive paired-end 

reads (which cover both borders of TE) to the non-supportive paired-end reads (Jiang, Chen, 

Huang, Liu, & Verdier, 2015) was tested through binomial tests (p < 0.05). Zygosity was 

estimated as unknown and coded as ‘NA’ if in total there were less than five uniquely 

mapped reads surrounding the borders. Only polymorphic TEs with a MAF > 0.025 and less 

than 10% NAs were finally retained to focus on the most confident, heritable polymorphic 

TEs for downstream analyses. Accordingly, possible somatic transposition events (e.g. 

Treiber & Waddell, 2017; Baillie et al., 2011) were not considered here. 

 

Distribution of SNPs and polymorphic TEs within/among populations  

For each polymorphism set (SNPs, non-TE SNPs, TEs), we estimated observed 

heterozygosity (Ho), expected heterozygosity (He), population-wise inbreeding coefficients 

(FIS) and pairwise genetic differentiation (FST) among populations with HIERFSTAT v. 

0.4.28 (Goudet, 2005). For mean FIS and FST, 95% confidence intervals were obtained by 

bootstrapping over loci (n = 100).  

 

To compare population genomic results with those obtained from alternative, 

traditional molecular markers, we genotyped 110 samples (20 each from Essets, Martinets 

and Pierredar, and 50 from Para) with 19 nuclear microsatellite markers (Buehler, Graf, 

Holderegger, & Gugerli, 2011) following Rogivue et al. (2018). We performed a one-way 

analysis of variance (ANOVA) with Tukey’s multiple comparison test to check if estimates 

of Ho and FIS based on the different marker types significantly differed. Accordingly, we 

applied a Mantel test implemented in ecodist v.2.0.1 (Goslee & Urban, 2007) with 1000 

permutations to test for correlations between respective values of pairwise FST among 

populations. 
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Genomic variation and linkage disequilibrium along chromosomes 

The genomic context of both SNPs and polymorphic TEs was described using the annotation 

of genes from the A. alpina reference genome V5.1 and our de novo TE annotation. The 

catalogue of SNPs and polymorphic TEs was screened for overlaps with introns, exons, 2kb 

upstream and downstream regions and intergenic regions. SnpEff (Cingolani et al., 2012) was 

used to annotate the SNPs, whereas polymorphic TEs were annotated with Bedtools intersect 

v.2.25 (Quinlan & Hall, 2010). The observed counts of non-TE SNPs and polymorphic TEs 

for each of the functional features were compared to their expectation computed as the total 

number of polymorphisms multiplied by the fraction of the genome occupied by each feature. 

The significance of the differences in the observed versus expected counts for each feature 

were calculated using Fisher's exact tests. Note that the calculation for non-TE SNPs was 

based on the number of annotated SNPs (452,257), as SNPeff can annotate a SNP several 

times given the position of the SNPs according to neighbouring genes. 

 

 For SNP and non-TE SNP sets, we estimated the extent of linkage disequilibrium 

(LD) with the function “pairwise LD measures for multiple SNPs (genome wide)” of Plink 

(Purcell et al., 2007), which calculates the squared correlation coefficient between two loci 

(r
2
); for each SNP we considered adjacent SNPs that were less than 1,000bp apart, separately 

for each chromosome. Knowing that on average LD decays within 10kb in A. thaliana (Kim 

et al., 2007), we estimated LD in different window sizes (between 250kb and 1500kb; Table 

S3), which enabled us to have a considerable amount of data for a good estimation, while 

giving a reasonable number of pairwise comparisons to compute for each chromosome. To 

show the decline of LD with physical distance, we calculated the decay of r
2
 according to 

Remington et al. (2001), with the function implemented in R by Marroni et al. (2011), 

yielding half-decay distance as the distance at which LD is half of its maximum value. This 
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value is commonly used to compare an estimation of LD among chromosomes and 

populations (Vos et al., 2017) like in A. thaliana (Kim et al., 2007).  

 

 We estimated gene density (Jiao et al., 2017), TE density, SNP density and 

polymorphic TE density in 250kb windows along chromosomes. To obtain the measure of 

LD along the chromosomes, we averaged r
2
 for a window of 250kb.  

 

Functional analysis 

Using high-quality annotations of genes from the A. alpina reference, we tested for the 

enrichment of GO biological process terms in genes with at least one non-synonymous SNP 

or genes with at least one polymorphic TE located within it or in the 2kb surrounding region 

using topGO v.2.28.9 (Alexa, Rahnenführer, & Lengauer, 2006). Significance of terms was 

determined using Fisher’s exact tests with the “weight01” algorithm in topGO as it was 

shown to improve the explanatory power of GO group scoring by taking the hierarchical 

relationships between terms into account and eliminating local dependencies between GO 

terms (Alexa et al., 2006). This approach computes p values of a GO term conditioned on the 

neighboring terms to reduce the impact of non-independent comparisons and were thus 

considered as corrected for multiple testing. We further reduced statistical artefacts by relying 

on a stringent p value cut-off of 0.01 and by only considering terms supported by five or 

more annotated genes. REViGO (http://revigo.irb.hr; Supek, Bošnjak, Škunca, & Šmuc, 

2011), which removes redundant and similar terms from long Gene Ontology lists by 

semantic clustering, was applied to visualize the enrichment results. 
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We tested whether significantly enriched GO term categories related to non-

synonymous SNPs include genes with larger coding regions than the overall gene set. Exon 

lengths per gene were extracted using the annotations of genes from the A. alpina reference 

(Jiao et al., 2017). We assessed the difference in length of coding region in each enriched GO 

term with the coding region of all genes using the Bonferroni-corrected one-sided Wilcoxon 

rank-sum test. For polymorphic TEs, we tested whether the overall length of the gene and the 

2kb surrounding regions were longer for enriched GO categories than the overall gene set. 

The difference in length was assessed using the Bonferroni-corrected one-sided Wilcoxon 

rank-sum test.  

 

Results 

Whole-genome sequencing 

The sequencing of 306 genomes yielded 10,081,497,170 filtered reads (average 32,946,069 

per sample; Table S4 in Supplementary Information) for mapping. After exclusion of 

chloroplast and mitochondrial sequences, 6,873,004,145 reads were properly mapped to the 

reference genome V5.1 (average 22,460,798 per sample), corresponding to an average 

coverage of 11.77x. After excluding two samples due to low coverage (Pa9 = 1.2x and Pi95 = 

0.02x; Table S4 in Supplementary Information), we remained with a dataset of 304 

individuals with mean coverage between 5x and 43x (median 8.79x: range of medians per 

individual 3.30x–33.81x).  

 

SNP and TE variation 

From an initial number of 78,859,801 called SNPs, our stringent filtering steps left us with 

439,670 SNPs, of which 291,396 were non-TE SNPs (Table 1, Figure S3). The two data sets 

comprised 10.3% (SNPs) and 6% (non-TE SNPs) segregating sites that were shared among 
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the four populations (Figure 1a, Figure S4 in Supplementary Information). We observed a 

below-average SNP density at the centromere region and at the end of the chromosomes for 

both SNP sets (Figure 2, Figure S5 in Supplementary Information). By filtering SNPs within 

TEs, we lost SNPs mainly around the centromere region, and peaks of high and low density 

were less extreme, as exemplified by one peak in chromosome 6 highlighted in Figure S5 in 

Supplementary Information. On average, we observed one SNP every 742bp for the SNP set 

and every 1151bp for the non-TE SNP set. 

 

 Following de novo annotation, the reference genome V5.1 of A. alpina consisted of 

36.5% LTR retrotransposons with 244,486 copies of length greater than 80bp. We further 

identified 38,768 loci with presence of non-reference TE insertions and 31,143 loci with 

absence of reference TE insertions among the 304 sequenced genomes. The number of TE-

presence and TE-absence variants identified here were positively correlated with sequencing 

depth (Figure S6), indicating that both types of calls benefit from high coverage. However, 

individuals with low coverage gained more TE-presence and TE-absence calls during the 

TEPID refinement step (Figure S6), indicating effective reduction of false negatives by 

incorporating TE variant information from the whole population. After a filtering step to 

remove polymorphic TEs with MAF < 0.025 and with > 10% missing data, the studied 

individuals of A. alpina presented 20,548 polymorphic TEs (Figure S3). The majority of the 

polymorphic TEs (89.24%) were shared among the four populations (Figure 1b). In contrast 

to the genomic distribution of reference TEs, which showed higher density at the peri-

centromeric region and lower density close to genes, the density of polymorphic TEs 

suggests that they are evenly distributed along chromosomes (Figure 2).  
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Population structure 

Observed heterozygosity Ho of both SNP sets and the nuclear microsatellites had a value of 

0.09 for the 304 individuals, but polymorphic TEs showed Ho of 0.03 (Table 2). Population-

wise values ranged between 0.04 and 0.18 for the SNPs, non-TE SNPs and nuclear 

microsatellites, but were as low as 0.03–0.04 for polymorphic TEs. Accordingly, FIS varied 

between 0.18–0.28 for SNPs, 0.22–0.33 for non-TE SNPs, 0.83–0.86 for polymorphic TEs, 

and 0.49–0.69 for nuclear microsatellites (Table 2). ANOVA revealed that population-

specific estimates were significantly different among the four marker sets for FIS (p < 0.0001; 

except SNPs vs non-TE SNPs, p < 0.68), but not for Ho (p  = 0.22; Table S5 in 

Supplementary Information).  

 

The overall value of FST was 0.13 for both SNP datasets, 0.07 for polymorphic TEs, 

and 0.16 for nuclear microsatellites. The lowest pairwise FST value for SNPs, non-TE SNPs 

and nuclear microsatellites was between Essets and Para for both SNP sets (0.09) and for 

nuclear microsatellites (0.14), whereas Pierredar and Essets showed the lowest value for the 

polymorphic TEs (0.03, Table 3). The largest values occurred between Pierredar and 

Martinets: 0.18 for both SNP sets and 0.09 for polymorphic TEs. Nuclear microsatellites 

showed the largest values between Para and Martinets and between Pierredar and Martinets 

(0.25). There were no significant correlations among the matrices of pairwise FST except 

between SNPs and non-TE SNPs (rMT = 0.99, p = 0.035, Table S5 in Supplementary 

Information). 

 

Genomic context of non-TE SNPs and TEs 

The annotation showed that 32,972 non-TE SNPs (7.29%) occurred in introns, which is 

significantly higher than expected based on the genomic fraction occupied by them 
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(expected: 28,881, p < 0.001; Table 4), and 48,046 (10.62%) occurred in exons (expected: 

47,460, p < 0.05). Thirty-five percent of the non-TE SNPs were located within 2kb upstream 

(78,517, 17.36%) or downstream (81,771, 18.08%) of gene regions, which appeared 

significantly lower than expected (expected: 91,742, p < 0.001 and 91724, p < 0.001, 

respectively), whereas the remaining SNPs occurred in intergenic regions (210,951, 46.64%). 

Of the putatively high-impact non-TE SNPs (likely to cause a loss of function in a protein), 

22,603 (4.96%) were identified as non-synonymous variants and 532 (0.11%) were involved 

in start or stop codon mutations (gain or loss of function).  

 

Polymorphic TEs showed a significant depletion inside both exons and introns with 

1113 loci (5.42%) having interrupted exons (expected: 2156, p < 0.001, Table 4) and 957 loci 

(4.66%) were located within introns (expected: 1312, p < 0.001). However, they were 

significantly enriched within 2 kb of gene regions with 5241 loci (25.51%) upstream 

(expected: 4168, p < 0.001) and 4664 loci (22.70%) downstream of genes (expected: 4167, 

p < 0.001). A total of 2203 loci showed evidence consistent with transposition into regions 

encompassing more than a single genic feature (i.e. either exons and introns, and/or 2kb 

surrounding regions), suggesting that corresponding TEs did not only interrupt, but were 

further involved in rearrangements of genic regions. Out of the 34,218 protein coding genes 

annotated in the A. alpina V5.1 reference genome, 21.85% were interrupted by or located 

within 2kb of 8905 polymorphic TEs. In other words, 43.34% of the polymorphic TEs 

identified among individuals were associated with annotated genes (p < 0.05, observed: 8905, 

expected: 8663).  
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 Whole-genome LD decay was estimated as the half-decay distance (Table S3 in 

Supplementary Information), showing that LD decayed to an r
2
 < 0.1 within 40.09kb for the 

SNPs and within 30.98kb for the non-TE SNPs. In general, the difference between the two 

SNP sets was minor, except for chromosome 8, for which the SNP dataset yielded a value of 

101.99kb, substantially higher than what we observed for all other chromosomes (19.68-

46.83kb). The r
2
 values of the non-TE SNPs strongly varied along the chromosomes, 

especially in the peri-centromeric regions and at the end of the chromosomes (Figure 2). 

 

Functional annotation and enrichment analysis  

Gene Ontology (GO) term analysis of the non-TE SNPs revealed that 6,943 of the genes 

presenting non-synonymous variation (i.e. non-synonymous SNPs or SNPs involved in start 

or stop codons; 23,135 SNPs) were significantly overrepresented in 25 GO terms (p < 0.01; 

Figure 3 and Table S6 in Supplementary Information). Among these genes, 941 were 

responsive to stress (plant-type hypersensitive response, defence response, defence response 

signalling pathway). Within a majority of enriched GO categories (i.e. 19/25), genes with 

non-synonymous SNPs also had larger coding regions on average (Bonferroni-corrected 

Wilcoxon rank sum test, Table S6). For the TE dataset, only 4511 of the genes next to 

polymorphic TEs were annotated by Willing et al. (2015) and assigned to GO terms. Among 

those, 850 genes were classified as response to  stress, with 73 genes classified as response to 

heat (Table S7 in Supplementary Information) and 124 genes as response to cold (Table S7 in 

Supplementary Information). We identified 23 GO terms with significant enrichment (p < 

0.01; Figure 3 and Table S7 in Supplementary Information), including 326 genes with nearby 

polymorphic TEs involved in response to wounding, 597 in response to oxidative stress, or 

193 in relation to aging. Wilcoxon rank sum tests showed that only few of the enriched GO 
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categories related to polymorphic TEs (i.e. 5/23) presented significantly longer insertion 

targets than the overall set of loci (Table S7). 

 

Discussion 

Large-scale genotyping of SNPs and TEs 

Assessing genomic variation is a key step when studying natural populations, as patterns of 

genome-wide variation are pertinent to identify signatures imprinted by demographic or 

adaptive processes. Accordingly, genotyping approaches based on whole-genome sequencing 

have been developed to generate hundreds of thousands of SNPs (e.g. Alonso-Blanco et al., 

2016; Branca et al., 2011; Martin et al., 2017; Qiu et al., 2015), but SNPs are representative 

of only one type of molecular variation. In particular, the last decade has offered a deeper 

understanding of the diversity, abundance and global significance of TEs on the evolution of 

functional host genomes (Biemont & Vieira, 2006; Kidwell & Lisch, 2001), and surveys of 

their distribution in natural populations are needed (Bonchev & Parisod, 2013). Although the 

vast majority of TE insertions within genomes is arguably neutral, the few studies having 

assessed TE dynamics within species suggested an adaptive impact (Casacuberta & 

González, 2013) and divergent TE arrangements matching the eco-geographical distribution 

of gene pools (González, Karasov, Messer, & Petrov, 2010; Kalendar, Tanskanen, Immonen, 

Nevo, & Schulman, 2000). The dataset produced here through whole-genome sequencing of 

304 individuals from four closely related alpine Arabis alpina populations served to compare 

the widely used SNPs with genomic variation represented by polymorphic TEs. The 

comparison of genome-wide diversity and differentiation in natural populations and insights 

into the putative functional impact of candidate adaptive loci ideally complement resources 

from the single-individual Spanish Pajares reference genome (Jiao et al., 2017). 
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 A key step towards reliable genotyping of polymorphic TEs using TEPID was the 

determination of loci suffering from low coverage based on the ‘tepid-refine’ step that 

considers genotypes from the population. In the case of A. thaliana, Stuart et al. (2016) 

reported limited gain in TE-absence calls, but on average 4% more TE-presence calls for 

each accession following this refinement step. Here, both TE-presence and TE-absence 

gained considerably more calls following refinement. This may be due to our medium 

coverage per individual that offered multiple opportunities for refinement but could also be 

related to the longer reads used in this study that likely promoted higher recovery of 

informative split/discordant reads to confidently call polymorphic TEs in at least 90% 

genotyped individuals. 

 

Distribution of SNPs and polymorphic TEs within/among populations 

As expected in such selfing populations, heterozygosity (Ho) was generally low. Congruently, 

FIS estimates were significantly higher than zero and showed limited variation among 

populations. The estimations of FIS based on TEs and nuclear microsatellites are coherent 

with values reported from multiple populations of this region based on nuclear microsatellite 

data (average 0.68 (SD = 0.18); Rogivue et al., 2018) and with the predominantly selfing 

regime of the species in the western Alps (Laenen et al., 2018). On the contrary, FIS values 

for both the full vs non-TE SNP sets were substantially lower. We attribute this difference to 

the respective characteristics of these contrasting types of loci, as also demonstrated in other 

studies (e.g. Fischer et al. 2017). These authors pointed out that SNPs were better suited than 

microsatellites for genetic diversity estimations, more reliably reflecting whole-genome 

patterns. Estimates of expected heterozygosity, He, are sensitive to the number of sampled 

alleles and may thus account for the higher FIS values provided by multi-allelic nuclear 

microsatellites as compared to bi-allelic SNPs. Notably, also bi-allelic TE polymorphisms 
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yielded values of FIS above those from microsatellites. This difference may result from our 

conservative inference of zygosity based on coverage. 

 

 The estimates of genetic differentiation among populations, FST, were consistently 

low among different types of loci. Both SNP sets presented a slightly higher degree of 

genetic structure than the polymorphic TEs, reflecting the pattern of shared variants among 

populations. The consistent genetic structure (FIS and FST) inferred from both SNP sets 

appears remarkable provided that they differ by 33% of total SNPs comprised in TE 

sequences. The present dataset suggests that current mapping software coupled with high-

quality genome references may cope with a possible bias in the mapping in repetitive 

sequences (Ribeiro et al., 2015), even though marginal differences between the outcomes 

using all vs only non-TE SNPs remained in our study. 

 

  As compared to SNPs that showed large numbers of private alleles within closely 

located populations, the total number of polymorphic TEs varied little among the four 

populations with a limited amount of private insertions. Such levels of shared polymorphic 

TEs contrasts with surveys at global scales in A. thaliana (Quadrana et al., 2016), 

Brachypodium distachyon (Stritt, Gordon, Wicker, Vogel, & Roulin, 2018) or Drosophila 

melanogaster (Kofler, Nolte, & Schlötterer, 2015) that rather reported considerable 

contributions of TEs to genome variation among populations. Although our conservative 

exclusion of low-frequency polymorphic TEs may have increased the number of insertions 

shared among our study populations, it seems rather coherent with a reduced transposition 

rate (i.e. TE quiescence) in selfing species (Ågren, 2014) or strong purifying selection against 

new insertions. Accordingly, polymorphic TEs identified here certainly represent standing 

genetic variation segregating among regions. Such standing genetic variation, characterizing 
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divergence from the Spanish Pajares reference genome, offers ample opportunities to gain 

insights into the impact of selection vs drift in driving specific loci to fixation (Barrett & 

Schluter, 2008).  

 

Genome-wide variation 

Both SNP sets presented densities matching gene density along chromosomes of A. alpina 

that show typically large peri-centromeric regions with a considerable amount of TE copies 

and relatively few genes (Willing et al., 2015). Non-TE SNPs were significantly more present 

in genes than expected and affected introns significantly more than exons. Although such a 

pattern is consistent with the removal of SNPs in exons by purifying selection, a quarter of 

the non-TE SNPs reported within genes were detected as putative high-impact SNPs (non-

synonymous SNPs or SNPs involved in start and stop codon gain/loss) that likely affected 

genes involved in different biological processes such as stress responses. Such genomic 

variation may thus support traits related to individual fitness, which remains to be confirmed.  

 

 Other than non-TE SNPs, the even distribution of polymorphic TEs along 

chromosomes of A. alpina contrasted with the overall density of genes and TEs. Lower 

efficiency of TE calls in TE-rich regions may inflate such a pattern that is otherwise coherent 

with random insertion sites (Brookfield, 2005). The common distribution of polymorphic TEs 

across gene-rich regions further indicates that several functional loci may be influenced by 

nearby TE insertions. Nearly half (43.3%) of the polymorphic TEs indeed appeared as 

interrupting or flanking as much as 21.9% of the genes annotated in A. alpina. This fairly 

even distribution of polymorphic TEs suggests a multifactorial balance between insertion and 

deletion along chromosomes. Baucom et al. (2009) showed that LTR retrotransposon 

accumulation is non-random in maize with low-copy-number families primarily inserted into 
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or near genes, whereas high-copy-number families were inserted into other high-copy-

number TEs. Although the distribution of reference TEs showed high abundance near 

pericentromeres of A. alpina, consistent with preferential insertion in heterochromatin, the 

even distribution of polymorphic TEs detected here favors increased removal from gene-rich 

euchromatin. This pattern could be due to lower power in detecting polymorphisms in TE-

dense regions, but strongly contrasts with expectations under differential insertion of TEs 

among genome fractions.  

 

In this dataset, polymorphic TEs belonging to tribes having proliferated in a relatively 

distant past in A. alpina (Choudhury et al., 2017) appeared to outnumber those from TEs 

having recently proliferated. Such a pattern is consistent with predominant removal of ancient 

TE copies from the genome, whereas TEs having recently proliferated are under tight control 

in this selfing species and may not currently show massive transposition (Bennetzen & Park, 

2018). As expected if TEs were excluded from functionally essential regions by purifying 

selection, the observed number of polymorphic TEs within genes was significantly lower 

than expected. However, unlike non-TE SNPs that appeared under-represented around genes, 

polymorphic TEs were significantly enriched in the 2kb surrounding genes. Such deficit in 

polymorphic TEs in, but enrichment near genes was also reported in rice, maize and sorghum 

(Wei et al., 2016) as well as in B. distachyon (Stritt et al., 2018), supporting the hypothesis 

that TEs influence flanking genes and may not always be functionally inert (Feschotte, Jiang, 

& Wessler, 2002; Fedoroff, 2012; Hollister & Gaut, 2009; Sigman & Slotkin, 2016). 

Furthermore, polymorphic TEs in alpine populations of A. alpina were associated with genes 

mostly involved in environmental stimuli and may hence affect fitness in natural populations. 

However, to what extent such candidate adaptive TEs may account for differential gene 
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expression, phenotypic variation and the eco-geographic distribution of species/individuals is 

beyond the scope of the present study.  

 

Possible adaptive impact of the variants 

Variation of both SNPs and polymorphic TEs is potentially adaptive as shown by the gene 

ontology of both types of polymorphisms highlighting functional categories of broad 

diversity. As sampled individuals of A. alpina are enduring harsh, highly heterogeneous 

alpine environments, we expected to find genes related to abiotic conditions such as 

responses to cold and heat (Wingler, Juvany, Cuthbert, & Munné-Bosch, 2015). Such genes 

were found next to polymorphic TEs (response to wounding, oxidative stress, hypoxia, cold 

and heat). Similarly, genes involved in important metabolic pathways related to low-

temperature tolerance (e.g. carbohydrate biosynthesis and lipid metabolic process; Kaplan et 

al., 2004) were also associated with SNPs and polymorphic TEs. Genes with non-

synonymous SNPs in enriched GO categories also appeared longer and may thus represent 

larger mutational targets. In contrast, only very few of the enriched GO categories with genes 

presenting polymorphic TEs showed such a pattern and thus appear consistent with 

functional, possibly selective, consequences of polymorphic TEs. To disentangle the possible 

involvement of such variants in adaptation, it is promising to investigate the frequency of 

candidate adaptive SNPs and TEs in populations (Luikart, England, Tallmon, Jordan, & 

Taberlet, 2003) and to test for their association with individual microhabitat conditions 

(Rellstab, Gugerli, Eckert, Hancock, & Holderegger, 2015). 

 

 Among the four studied populations, SNPs were mostly restricted to nearby 

individuals and showed significant variation within the genes, whereas polymorphic TEs 

were largely shared among individuals, and enriched within 2kb regions of coding loci. 
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Patterns of genetic diversity in SNPs and polymorphic TEs were expectedly similar under a 

drift–migration equilibrium, and to what extent mutation and selection drive the frequency of 

alleles at such different types of loci deserves further attention. The high relatedness and 

spatial proximity of the four populations investigated here, considered to be predominantly 

selfing (Rogivue et al., 2018), supports the assumption that both substitution and 

transposition rates are negligible, arguing for drift or selection as the main drivers of 

observed patterns for SNPs vs TEs. However, it remains elusive to what extent polymorphic 

TEs modify the local recombination rate (He & Dooner, 2009; Zamudio et al., 2015; Kent, 

Uzunović, & Wright, 2017) and may thus influence the fixation of SNPs and polymorphic 

TEs. The unprecedented resolution of SNP and TE diversity across natural landscapes 

presented may serve future studies assessing the evolutionary forces driving genome-wide 

variation within and among populations, at best complemented by functional studies on the 

fitness relevance of the genomic variation observed.  
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Tables and Figures 

 

TABLE 1 Number of single-nucleotide polymorphisms (SNPs) after filtering 

along steps i to vi. Non-TE SNPs exclude SNPs within annotated transposable 

element (TE). 

 

Filtering steps 

Number of 

SNPs 

 All SNPs 78,859,801 

i Biallelic SNPs 60,909,867 

ii Quality/Depth >0.25 1,493,089 

iii Depth: min 8, max 100 and alternative alleles counts 

min 2, max 100 

610,027 

iv Minor allele frequency <0.025 443,801 

v SNPs with less than 10 % missing data 439,670 

vi Non-TE SNPs with less than 10 % missing data 291,396 

 

 

 

TABLE 2 Population genomics parameters inferred for all (ALL) individuals (N = 304) and 

separately for each of the four study populations of Arabis alpina, based on single-nucleotide 

polymorphisms (SNPs), SNPs excluding transposable element sequences (non-TE SNPs) and 

polymorphic transposable elements (TEs). A subsample of 110 individuals was genotyped at 

19 nuclear microsatellite loci (Microsat). Observed and expected heterozygosity, Ho and He, 

and inbreeding coefficients, FIS, were estimated.. 
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All 0.09 0.09 0.03 0.09  0.13 0.12 0.23 0.30  - - - - 

Essets 0.07 0.06 0.03 0.09 
 

0.10 0.10 0.22 0.36 
 

0.28 0.33 0.86 0.69 

Martinets 0.05 0.05 0.03 0.04 
 

0.07 0.06 0.23 0.18 
 

0.18 0.22 0.86 0.49 

Pierredar 0.17 0.16 0.04 0.18 
 

0.22 0.21 0.22 0.24 
 

0.22 0.26 0.83 0.55
 

Para 0.08 0.08 0.03 0.06 
 

0.12 0.12 0.23 0.46 
 

0.26 0.30 0.85 0.59 
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TABLE 3 Matrix of pairwise FST values (lower diagonal) of four populations of Arabis 

alpina for single-nucleotide polymorphisms (SNPs), SNPs excluding transposable element 

sequences (non-TE SNPs), polymorphic transposable elements (TEs) and nuclear 

microsatellites, with their 95% confidence intervals obtained by 100 bootstrappings over loci 

presented in italics (upper diagonal).  

 

Markers  Essets Martinets Pierredar Para 

S
N

P
s 

Essets - 0.13-0.13 0.14-0.14 0.08-0.09 

Martinets 0.13
 

- 0.18-0.18 0.09-0.09 

Pierredar 0.14
 
 0.18

 
 - 0.11-0.11 

Para 0.09
 
 0.09 0.11 - 

      

N
o
n

-T
E

 

S
N

P
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Essets - 0.13-0.13 0.13-0.13 0.08-0.09 

Martinets 0.13
 
 - 0.18-0.18 0.10-0.10 

Pierredar 0.14
 
 0.18

 
 - 0.11-0.11 

Para 0.09
 
 0.10

 
 0.11

 
 - 

      

T
E
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Essets - 0.06-0.07 0.03-0.03 0.03-0.04 

Martinets 0.07
  

- 0.09-0.09 0.09-0.09 

Pierredar 0.03
  

0.09
 

- 0.05-0.06 

Para 0.04
 

0.09
 

0.06
 

- 

      

M
ic

ro
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t-
 

el
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Essets - 0.09-0.24 0.12-0.28 0.08-0.19 

Martinets 0.18
 
 - 0.12-0.36 0.17-0.31 

Pierredar 0.20
 
 0.25

 
 - 0.10-0.23 

Para 0.14
 
 0.25

 
 0.17

 
 - 

 

 

TABLE 4 Counts of observed single-nucleotide polymorphisms outside transposable element 

sequences (non-TE SNPs) and of polymorphic transposable elements (TEs) for each 

functional feature compared to their expectation across the assembled genome. Significant 

differences following Fisher's exact test are reported as *** p <0.001, * p <0.05. 

 

Marker 

Functional 

features 

Region 

length 

(Mb) 

Proportion 

in assembly Expected Observed 

Level of 

significance 

N
o
n

-T
E

 

S
N

P
s 

Genes 56.90 0.17 76418.8 81018 *** 

Exon 35.34 0.10 47460.2 48046 * 

Intron 21.50 0.06 28881.4 32972 *** 

Upstream 2kb 68.30 0.20 91741.8 78517 *** 

Downstream 2kb 68.29 0.20 91724.3 81771 *** 

P
o
ly

m
o
rp

h
ic

 

T
E

s 

Genes 56.90 0.17 3472.0 1588 *** 

Exon 35.34 0.11 2156.3 1113 *** 

Intron 21.50 0.06 1312.2 957 *** 

Upstream 2kb 68.30 0.20 4168.2 5241 *** 

Downstream 2kb 68.29 0.20 4167.4 4664 *** 
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FIGURE 1 Venn diagram showing the number of shared and private variants (with 

percentage of loci) in each region for (a) single-nucleotide polymorphisms excluding 

transposable element sequences (non-TE SNPs) and (b) polymorphic transposable elements 

(TEs) among individuals of Arabis alpina sampled in the four study populations (with 

number of sampled individuals). 
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FIGURE 2 Representation of genomic features in 250kb windows along chromosomes of 

Arabis alpina in four alpine populations. Gene density is from Jiao et al. (2017), 

complemented by densities of transposable elements (TE) along with single-nucleotide 

polymorphisms excluding TE sequences (non-TE SNPs) and polymorphic TEs. Linkage 

disequilibrium (LD) is estimated as the half-decay distance of r
2
. Each coloured line 

represents a LOESS smooth of corresponding feature along each chromosome (numbered 

below). 

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

FIGURE 3 Significant enrichment of Gene Ontology (GO) terms (p < 0.01) among loci with 

(a) non-synonymous single-nucleotide polymorphisms excluding transposable element 

sequences (non-TE SNPs) and (b) polymorphic transposable elements (TEs) next to genes in 

alpine populations of Arabis alpina. GO terms are coloured according to significance of 

terms based on the topGO ranking and circle size is representative of the percentage of genes 

annotated with the corresponding term. 
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