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Abstract
The Zika virus (ZIKV) outbreak in the Americas has causedBackground. 

international concern due to neurological sequelae linked to the infection, such
as microcephaly and Guillain-Barré syndrome (GBS). The World Health
Organization stated that there is “sufficient evidence to conclude that Zika virus
is a cause of congenital abnormalities and is a trigger of GBS”. This conclusion
was based on a systematic review of the evidence published until 30.05.2016.
Since then, the body of evidence has grown substantially, leading to this
update of that systematic review with new evidence published from 30.05.2016
– 18.01.2017, update 1.

We review evidence on the causal link between ZIKV infection andMethods. 
adverse congenital outcomes and the causal link between ZIKV infection and
GBS or immune-mediated thrombocytopaenia purpura. We also describe the
transition of the review into a living systematic review, a review that is
continually updated.

Between 30.05.2016 and 18.01.2017, we identified 2413Results. 
publications, of which 101 publications were included. The evidence added in
this update confirms the conclusion of a causal association between ZIKV and
adverse congenital outcomes. New findings expand the evidence base in the
dimensions of biological plausibility, strength of association, animal
experiments and specificity. For GBS, the body of evidence has grown during
the search period for update 1, but only for dimensions that were already
populated in the previous version. There is still a limited understanding of the
biological pathways that potentially cause the occurrence of autoimmune
disease following ZIKV infection.

This systematic review confirms previous conclusions that ZIKVConclusions. 
is a cause of congenital abnormalities, including microcephaly, and is a trigger
of GBS. The transition to living systematic review techniques and methodology
provides a proof of concept for the use of these methods to synthesise
evidence about an emerging pathogen such as ZIKV.
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Introduction
Outbreaks of Zika virus (ZIKV) infection in the Americas have 
caused international concern owing to the severity of neurologi-
cal sequelae linked to the infection (WHO statement IHR 2005).  
During 2016, the number of countries affected by the ZIKV  
outbreak had grown from 33 countries (WHO situation report 
05.02.2016) to 75 countries (WHO situation report 05.01.2017). 
By March 9, 2017, 31 countries had reported microcephaly  
or other congenital central nervous system (CNS) abnormalities 
potentially associated with ZIKV infection and 23 had reported 
an increase in the incidence of the immune-mediated condi-
tion Guillain-Barré syndrome (GBS) or laboratory confirmed  
ZIKV in persons with GBS (WHO situation report 10.03.2017). 
The causal association between ZIKV and adverse neurological 
outcomes has now been examined in many systematic and non- 
systematic reviews of research1,2. Case reports of other conditions  
in people with ZIKV infection, including immune-mediated  
idiopathic thrombocytopaenia purpura (ITP), have also been  
published3–6.

The World Health Organization (WHO) based its assessment, 
that there is “sufficient evidence to conclude that Zika virus is a  
cause of congenital abnormalities and is a trigger of GBS”  
(WHO Zika causality statement), on a review of systematically 
identified studies up to May 30, 2016 and nonsystematically  
identified studies up to July 29, 20167. The review addressed 
specific questions about 10 dimensions of causal associations, 
based on the work of Bradford Hill8 and organised as a causality  
framework (Supplementary Table 1) that covers: temporality  
(cause precedes effect); biological plausibility of proposed  
biological mechanisms; strength of association; exclusion of 
alternative explanations; cessation (reversal of an effect by  
experimental removal of, or observed decline in, the exposure); 
dose-response relationship; experimental evidence from animal 
studies; analogous cause-and-effect relationships found in other 
diseases; specificity of the effect; and the consistency of findings 
across different study types, populations and times. The review 
included 108 articles about congenital abnormalities or GBS 
but there was no, or insufficient evidence to answer questions  
in several dimensions of the causality framework7. The causality 
framework included questions about ITP, but the review authors 
judged the number of published articles to be too low to assess  
causality. Since the WHO statement and accompanying  
publication, about 200 scientific publications every month  
are added to the body of evidence about all aspects of research 
about ZIKV.

A living systematic review would help to overcome some of the 
challenges of keeping up to date with the high volume of ZIKV 
research publications. A living systematic review is a systematic 
review that is “continually updated, incorporating relevant new  
evidence as it becomes available”9, which can help in fields where 
evidence is emerging rapidly and where new review outcomes 
might change policy or practice decision10. Technical solutions are  
available to facilitate the reviewing process, such as automated 
searching and deduplication and computer-assisted screening 
of article titles and abstracts, increase the efficiency and speed  

of a review team and transform the review into a living  
document.

This article aims to fulfil two separate objectives. First, we 
update our systematic review7 with new evidence published from  
May 30, 2016 to January 18, 2017 about all 10 dimensions of 
the causal associations between ZIKV and (a) congenital brain  
abnormalities, including microcephaly, in the foetuses and off-
spring of pregnant women and (b) GBS/ITP in any population.  
Second, we describe the transition of the review into a living  
systematic review.

Methods
Classic protocol
We performed the review according to the protocol registered in 
PROSPERO CRD42016036693 (PROSPERO protocol). The  
eligibility criteria, information sources and search strategy, study 
selection and data extraction are the same as reported in the  
protocol and in the previous publication7. In brief, the search  
covers PubMed, Embase and LILACS electronic databases; the 
Pan American Health Organization (PAHO), WHO, the Centers  
for Disease Control and Prevention (CDC) and the European Cen-
tre for Disease Prevention and Control (ECDC) websites; and  
several preprint databases (BioRxiv, PeerJ and ArXiv). Search 
terms included ‘Zika virus’ and ‘ZIKV’ and corresponding MESH  
terms. Two reviewers screen and select articles for inclusion and 
extract data independently. We included publications that held  
information on at least one of the ten dimensions of the causality  
framework, regardless of the study design7. We gathered  
publications systematically from May 30, 2016 to January 18, 
2017 for this update. We refer to the previous version of the review 
as the baseline review7 and to this current update as update 1.  
Reporting of the results follows the Preferred Reporting Items 
of Systematic reviews and Meta-Analyses (PRISMA) statement  
(Supplementary File 1)11.

From systematic review to living systematic review
To keep up with the quantity of published research, we developed  
a living systematic review workflow (Supplementary File 2). We 
have identified three modules that could be automated (Figure 1).  
As of December 2017, module 1, searching and deduplication,  
and part of module 3, the output of the report have been  
automated. Reviewers can be notified daily with a list of new 
unique search results so that screening can be performed rapidly. 
Following manual data extraction and synthesis, the output can be 
updated semi-automatically. We use the online database Research 
Electronic Data Capture (REDCap)12 to maintain the references, 
perform screening and extract data into piloted extraction forms.  
We plan to update the review twice per year with formal peer  
reviewed updates (Figure 2), and continually through a web  
platform.

We synthesised the findings as narrative summaries of the evi-
dence according to causality dimension and outcome, as previ-
ously described7, and compare them with the the baseline review. 
We use the term ‘confirmation’ to summarise findings of new  
studies included in update 1 if they report the same findings  
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Figure 1. Living systematic review automation. Blue boxes and arrows represent the conceptual steps in a systematic review process. 
Automation is divided in three modules. Module 1 is the automation of the searching and deduplication of information from different data 
sources. Module 2 partly automates screening. Module 3 automates the production of tables and figures and outputs the data to a web 
platform (Data visualisation). Blue arrows represent automated information flows; red arrows represent manual input. The blue-red dashes 
arrow represents a blended form where reviewers verify automated decisions of the system. The white boxes show the practical implementation 
of the system and the data flow.

Figure 2. Timeline of review conduct, publication and transition to a living systematic review. The baseline review (BR,7) and Update 
1 (U1) this version classic, manual systematic review. During 2017 automation of the workflow was conducted resulting in a projected  
Update 2 (U2) and 3 (U3) with more rapid throughput. LSR, living systematic review.

as those in the baseline review. We use the term ‘expansion’  
of evidence if studies included in update 1 provide new findings.

Results
Between May 30, 2016 and January 18, 2017, we identified 2413 
publications. After deduplication, we retained 1699 unique records. 
Based on screening of title and abstract, we discarded 1025 pub-
lications, retaining 674 items; after screening of the full text,  
101 publications were included. Figure 3 shows the PRISMA 
flow diagram for this review11. Seventy-seven publications 
held information on one or more dimensions of the causality  
framework on adverse congenital outcomes and 25 on GBS or 
idiopathic thrombocytopaenia purpura. Table 1 compares the  
included publications, study types and the causality dimension(s) 
they address in the baseline review7 and update 1 of the review.

Adverse congenital outcomes
A detailed overview of the new evidence is provided in Table 2 
and Supplementary Table 2. In the search period for review  

update 1, an additional 548 cases of adverse congenital outcomes 
were described in 32 studies12–43. Adverse congenital outcomes 
described were: clinical microcephaly12–17,20–24,26–31,33,35,37,40–42, imag-
ing confirmed brain abnormalities12,15,17,19–24,26–31,35,37,38,40,42, intrau-
terine growth restriction15,17,31,38,40,42, ocular disorders12,17,27–29,31,38,40  
and auditory disorders12,18,29.

Temporality. This update confirms the previous conclusion  
that ZIKV infection precedes the adverse congenital outcomes. 
We found an additional 21 publications in which ZIKV infection  
preceded the adverse congenital outcome at an individual  
level12,15–18,26-31,35-40,42,44,45 and at a population level45,46. Infections  
in the first and second trimester seemed to be related to the  
most adverse outcomes31,40. Cohort studies of pregnant women  
from French Guiana and Brazil found a higher proportion of  
congenital abnormalities in babies born from mothers infected in 
the first and the second trimester31,40.

Biological plausibility. This update includes an additional  
42 studies14,17,23,24,32–36,38,39,42,47–76, some of which expand the  
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Figure 3. PRISMA flow diagram of included studies.

evidence base. Whereas in the baseline review, we found  
inconclusive evidence of whether ZIKV particles in infants 
were capable of replication, both in vivo and ex vivo studies now  
demonstrate that this is the case33,36,47,50,53-55. Furthermore, there 
was a strong expansion of the evidence clarifying how ZIKV causes 
adverse congenital outcomes. ZIKV uses receptors from the  
TAM family to enter cells47–52, where the virus induces cell  
death, primarily in developing neuronal cells60,61,64,65,67,69,70,75.

Strength of association. We included five publications that  
confirm a strong association between ZIKV infection and adverse 
congenital outcomes21,22,31,40,41. The strength of association at an  
individual level was high but imprecise, owing to small sample  
sizes. Estimates from cohort studies31,40 appeared to be lower  
than those from case-control studies21,22,41. The definition of the  
outcomes and the outcomes assessed, varied between studies.  
The risk of any adverse congenital outcomes was higher and  
more variable than the risk of microcephaly. The risk ratio 
for microcephaly between ZIKV unexposed and exposed was  

4.4 (95% CI: 0.2-80.8) in a cohort in Brazil31 and 6.6 (95% 
CI: 0.8-56.4) in a cohort in French Guiana40. In the Brazilian  
cohort31, the proportion of any adverse congenital outcomes 
among ZIKV infected women was high (41.9% [49/117]),  
compared with the uninfected group (5.2% [3/57]). In a pro-
spective case- control study in Brazil, women with laboratory- 
confirmed ZIKV had 55.5 (95% CI: 8.6-infinity) times the odds  
of having a baby with microcephaly compared with women  
without evidence of ZIKV infection21. A retrospective case-
control study in Hawaii found an odds ratio of 11.0 (95%  
CI: 0.8-147.9)41. In the latter, however, exposure was assessed  
retrospectively using serology.

Exclusion of alternatives. We included 23 new studies in this  
update12,14,17–19,21–28,30,31,34,36–38,40,42,45,77. Many studies included in this 
review that reported on adverse outcomes of congenital ZIKV 
excluded TORCH infections12,14,17–19,21–28,30,31,34,36–38,40,42,45,77; exposure  
to toxic chemicals12,14,18,23,28 or genetic conditions12,18,23,28,30,36,42. 
Maternal or foetal malnutrition, hypoxic-ischaemic lesions and 
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Table 1. Summary of included publications by study type and on 
which causality dimension they provide evidence. One publication 
can address multiple causality dimensions. Comparison between the 
current (U1) and the baseline review (BR, 7) stratified by outcome. GBS/ITP, 
adverse autoimmune outcomes (Guillain Barré syndrome/idiopathic 
thrombocytopaenia purpura). NA, not applicable; evidence about 
analogous conditions was not searched systematically; the dimension 
of consistency used information in items included for all other causality 
dimensions. 

Condition and version Adverse 
congenital 
outcomes

GBS/ITP

BR, N U1, N BR, N U1, N

Study type

Case report 9 13 9 5

Case series 22 12 5 11

Case-control study 0 3 1 1

Cohort study 1 8 0 0

Cross-sectional study 2 1 0 1

Controlled trials 0 0 0 0

Ecological study/outbreak report 5 4 19 7

Modelling study 2 0 0 0

Animal experiment 18 8 0 0

In vitro experiment 10 22 0 0

Sequencing and phylogenetics 3 3 2 0

Biochemical/protein structure studies NA 3 NA 0
Total: 72 77 36 25

Causality dimensions

Temporality 21 21 26 21

Biological plausibility 25 42 4 0

Strength of association 3 5 2 4

Alternative explanation 18 23 6 11

Cessation 2 0 6 2

Dose-response relationship 0 0 0 0

Experiment 20 11 0 0

Analogy NA NA NA NA

Specificity 0 1 0 0

Consistency NA NA NA NA

underlying genetic conditions were not excluded. No single  
alternative explanation could be given to explain the relation 
between ZIKV and adverse congenital outcomes.

Cessation. We did not find any new publications for this cau-
sality dimension. Evidence is still lacking on the effect of  
intentional removal due to lack of vaccination or elimination of 
mosquitoes on a large scale.

Dose-response. There is still no direct evidence about  
the association between Zika viral load and probability of 
adverse congenital outcome in observational studies, or of an  
association between symptomatic status and outcome. In a study 
in the United States, Honein et al. found similar proportions of 
adverse congenital outcomes in symptomatic and asymptomatic 
ZIKV-infected mothers32.

Animal experiments. This update of the review includes an 
additional 11 studies63,71,78–86. These studies confirm a consistent  
relation between a range of contemporary ZIKV and adverse 
congenital outcomes, including from Brazil85, Puerto Rico79 and 
Mexico80,81. The body of evidence coming from animal studies  
has grown; both in mice and macaques, congenital anomalies 
such as intra-uterine growth restriction and signs of microcephaly  
were observed after ZIKV infection78,84,85.

Analogy. As for the baseline review, evidence for this  
dimension was not reviewed systematically because our search 
strategy did not include terms for other infections or conditions.  
Studies included in this version of the review confirm the anal-
ogy between congenital ZIKV and TORCH infections87. Vertical  
transmission of West Nile virus and dengue virus were summa-
rised in the baseline review. In update 1, we included a case series  

Page 6 of 20

F1000Research 2018, 7:196 Last updated: 04 JAN 2019



Table 2. Summary of the evidence on the relation between ZIKV infection and adverse congenital outcomes. Evidence is displayed 
for each dimension and for each question of the causality framework. Zika virus (ZIKV); Dengue virus (DENV); West Nile virus (WNV); 
Chikungunya virus (CHIKV); Toxoplasmosis, Other [Syphilis, Varicella-zoster, Parvovirus B19], Rubella, Cytomegalovirus, and Herpes 
infections (TORCH); Central Nervous System (CNS). NA, not applicable; evidence about analogous conditions was not searched 
systematically; the dimension of consistency used information in items included for all other causality dimensions. the baseline review (BR), 
update 1 (U1).

Question BR, N U1, N Summary

Temporality

1.1a 18 19 Confirmation. Sufficient information to conclude that ZIKV infection precedes the development of congenital 
abnormalities in individuals12,15–18,26–31,35–38,40,42,44,45.

1.1b 2 1 The peak of adverse congenital outcomes in Colombia was 24 weeks after infection45 (similar to Brazil, 34 and 
30 weeks7).

1.2 18 19 Confirmation. Most mothers of infants with adverse outcomes were exposed to ZIKV during the first or the 
second trimester of their pregnancy34,94.Third trimester exposure can lead to brain malformations as well19. 

Biological plausibility

2.1 1 6 Confirmation of the role of viral entry factors (receptor-ligand interaction)47–52.

2.2 1 4 Substantial expansion of the evidence on which cells express the receptors responsible for cell entry of 
ZIKV47,50–52. 

2.3 11 11 Expansion of evidence, sufficient information to conclude that ZIKV particles can be found in the umbilical 
cord blood and/or amniotic fluid of previously or currently infected mothers14,23,24,32–36,38,39,42.

2.4 0 7 The evidence that ZIKV particles found in tissue of the offspring are capable of replication was inconclusive in 
the previous version. In this update we found that in vitro evidence strongly indicates these ZIKV particles are 
capable of replication47,50,53–55. Ex vivo experiments demonstrate ZIKV capable of replication as well33,36. 

2.5 6 7 Expansion of evidence, sufficient information to conclude that particles can be found in the brain and other 
tissues of cases with congenital abnormalities14,17,23,24,33,34,56.

2.6 7 6 Confirmation. ZIKV particles found in the brain are capable of replication33,56–60.

2.7 9 22 Strong expansion of evidence; Expansion of the understanding of how ZIKV causes congenital 
anomalies49,52,54,57,58,60–76.

Strength of association

3.1 2 5 Expansion of evidence on the strength of association at an individual level21,22,31,40,41. However, the estimation 
of the effect size remains imprecise.

3.2 1 0 At a population level, confirmation lacks on the strength of association. However, 29 countries reported a 
relative increase in microcephaly cases during the ZIKV outbreak (WHO situation report 05.01.2017).

Exclusion of alternatives

4.1 18 23 Confirmation. In many epidemiological studies TORCH infections are assessed12,14,17–19,21–28,30,31,34,36–38,40,42,45,77.

4.2 4 5 Confirmation. Exposure to toxic chemicals has been excluded12,14,18,23,28.

4.3 0 0 No exclusion of alternative explanation: maternal/foetal malnutrition.

4.4 0 0 No exclusion of alternative explanation: hypoxic-ischaemic lesions.

4.5 3 7 Confirmation of evidence where the role of genetic conditions was excluded12,18,23,28,30,36,42.

4.6 0 0 No exclusion of alternative explanation: radiation.

Cessation

5.1 0 0 No publication with evidence that intentional removal of ZIKV infection in individuals leads to a reduction in 
congenital abnormalities.

5.2 0 0 No publication with evidence that intentional removal of ZIKV infection at population-level leads to a reduction 
of cases of congenital anomalies

5.3 2 0 Natural removal (end of epidemic) leads to a reduction in microcephaly cases in Brazil; Other countries have 
shown a decrease in reported microcephaly cases as the cumulative ZIKV incidence plateaued (http://www.
paho.org/hq/index.php?option=com_content&view=article&id=12390&Itemid=42090&lang=en).

Dose-response

6.1 0 0 No publication with evidence that the risk of adverse congenital outcomes is associated with the viral load in 
the mother.

6.2 0 0 No publication with evidence that the clinical severity of the infection of the mother determines the severity of 
the congenital anomalies. In one cohort study, symptoms in the mother did not influence the outcome32.
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Question BR, N U1, N Summary

Animal experiments

7.1 3 3 Expansion of the evidence that the inoculation of pregnant female animals (mice and macaques) with ZIKV 
causes congenital anomalies in the offspring78,84,85.

7.2 10 3 Confirmation of the evidence that the intracerebral inoculation of newborn mice with ZIKV leads to ZIKV 
replication in the CNS81,82,86.

7.3 8 3 Expansion of the evidence that other routes of inoculation of newborn animals with ZIKV leads to ZIKV 
replication in the CNS (intravaginal infection of adult mice, subcutaneous infection of newborn mice)79,80,84.

7.4 1 8 Expansion of the evidence that other experiments with animals or animal-derived cells support the 
association of ZIKV infection and congenital anomalies63,71,78–83.

Analogy

8.1 NA NA CHIKV was shown to be vertically transmissible and lead to adverse congenital outcomes88.

8.2 NA NA Confirmation. Congenital ZIKV analogous to other TORCH infections87.

8.3 NA NA For most analogous pathogens, infections earlier in the pregnancy have a higher risk of adverse outcomes.

Specificity

9.1 0 1 Expansion of evidence for distinct congenital Zika syndrome. Unique pattern of five features suggested: 
severe microcephaly with overlapping cranial structures, subcortical location of brain calcifications, macular 
scarring and retinal mottling, congenital contractures and early pyramidal and extrapyramidal symptoms89.

Consistency

10.1 NA NA Confirmation. ZIKV-related adverse congenital outcomes in different regions (South America, Central America, 
and the Pacific region). The proportion of cases varies over geographic regions/time.

10.2 NA NA Confirmation. ZIKV exposure and adverse congenital outcome in different populations (people living in ZIKV 
endemic areas and travellers.

10.3 NA NA No publication with evidence of consistency across lineages due to circulation of single strain.

10.4 NA NA Confirmation. ZIKV exposure and adverse congenital outcomes found in different study types.

from El Salvador that reported Chikungunya virus in 169 
newborns of women with symptomatic infection; a minority  
had CNS infection, but microcephaly was not reported88. For  
most analogous pathogens, infections earlier in the pregnancy  
have a higher risk of adverse outcomes87.

Specificity. We included one study89, suggesting an expan-
sion of evidence of a distinct congenital Zika syndrome (CZS)89. 
In a review of 34 published reports, the authors suggest five  
congenital abnormalities that, in conjunction, comprise a pat-
tern that is unique to ZIKV: severe microcephaly with overlap-
ping cranial structures, subcortical location of brain calcifications,  
macular scarring and retinal mottling, congenital contractures  
and early pyramidal and extrapyramidal symptoms89.

Consistency. The studies included in this version of the review 
confirm the pattern of consistency observed in the baseline review.  
ZIKV infection in association with adverse congenital outcomes 
were reported in a range of study designs from different regions 
(WHO situation report 05.01.2017), although the proportion of 
affected infants varies over geographic region and time. ZIKV  
exposure resulted in adverse congenital outcome in people liv-
ing in ZIKV endemic areas12–19,21–34,40–42,44,45,77,90,91 and in female  
travellers who returned to non-endemic countries34–39,92,93.  
Direct evidence from epidemiological studies comparing different 
lineages is lacking due to circulation of a single strain.

Conclusion. The evidence added in update 1 of the review  
confirms the conclusion of a causal association between ZIKV 
and adverse congenital outcomes. New findings expand the  
evidence base in the dimensions of biological plausibility, strength  
of association, animal experiments and specificity. In vitro and  
in vivo studies elucidate pathways on how these outcomes likely 
occur. Conclusive evidence on the strength of association is  
lacking. Studies provide crude overall measures of association,  
not taking into account potential co-factors.

GBS/ITP
In the search period for update 1 of the review, an additional  
154 cases of ZIKV-related GBS95 and 11 ZIKV-related cases  
of ITP3–6 were described in 18 studies. Table 3 summarises  
the evidence for specific questions in each of 10 causality  
dimensions (detailed overview in Supplementary Table 3).

Temporality. We found an additional 17 publications that con-
firmed that ZIKV infection preceded the GBS or ITP at an indi-
vidual level3,5,6,95–108 or at a population level103,109–111. ZIKV infec-
tions seems to be followed by GBS on average between 5 and 
10 days. In one case series from Colombia103, the authors dis-
tinguished between rapid onset of GBS symptoms after ZIKV 
symptoms (para-infectious) and post-infectious onset, with an 
asymptomatic period after ZIKV symptoms before the start of  
GBS symptoms.
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Table 3. Summary of the evidence on the relation between ZIKV infection and adverse autoimmune outcomes. Evidence is 
displayed for each dimension of the causality framework and for each question. Zika virus (ZIKV); Dengue virus (DENV); Guillain-
Barré syndrome (GBS); immune-mediated idiopathic thrombocytopaenia purpura (ITP). NA, not applicable; evidence about 
analogous conditions was not searched systematically; the dimension of consistency used information in items included for all other 
causality dimensions. the baseline review (BR), Update 1 (U1).

Question BR,N U1, N Summary

Temporality

1.1a 9 17 Expansion of the evidence. Additional case reports and case series were identified that confirmed that 
ZIKV infection preceded adverse autoimmune outcomes3,5,6,95–102,103–108.

1.1b 9 4 Expansion of the evidence that on the population level ZIKV precedes GBS or ITP103,109–111.

1.2 7 14 Expansion of evidence that the interval between exposure to ZIKV and occurrence of symptoms is 
typical for para- or post-infectious autoimmune-mediated disorders5,6,95–102,103–106,112.

Biological plausibility

2.1 3 0 No additional evidence was identified that ZIKV epitopes mimic host antigens (molecular mimicry).

2.2 1 0 No additional evidence was identified that ZIKV infection leads to an increased in detectable 
autoreactive immune cells or autoreactive antibodies.

2.3 0 0 There is no evidence on other biologically plausible mechanisms of ZIKV infection leading to GBS/ITP.

Strength of association

3.1 1 0 No additional evidence was identified on the association between Zika infection and GBS/ITP at the 
individual level.

3.2 2 4 Expansion of evidence. GBS incidence increased in several regions, during the same time ZIKV was 
circulating103,109–111.

Exclusion of alternatives

4.1 7 9 Confirmation of the evidence where other infections were assessed. However, often previous DENV 
infection was reported, and not excluded4–6,95,98,101,103,104,111.

4.2 0 1 Expansion on the evidence where vaccines were excluded5.

4.3 0 5 Expansion on the evidence where other systemic illnesses were excluded4–6,95,99,112.

4.4 0 2 Expansion on the evidence where medication, drugs or other chemicals was excluded99,112.

Cessation

5.1 0 0 No relevant studies identified that intentional removal or prevention of ZIKV infection in individuals 
leads to a reduction in cases with GBS/ITP.

5.2 0 0 No relevant studies identified that intentional removal or prevention of ZIKV infection at population level 
leads to a reduction in cases with GBS/ITP.

5.3 6 2 Expansion. Additionally, in Venezuela and the Dominican Republic, it was shown that GBS cases 
decreased with a decrease in reported ZIKV cases103,111.

Dose-response

6.1 0 0 No relevant studies identified that the risk and the clinical severity of GBS/ITP are associated with viral 
titres.

Animal experiments

7.1 0 0 No relevant studies identified where the inoculation of animals with ZIKV leads to an autoimmune 
reaction resulting in peripheral neuropathy or thrombocytopenia.

7.2 0 0 No relevant studies identified that other animal experiments support the association of ZIKV infection 
and GBS/ITP.

Analogy

8.1 NA NA No additional studies identified that other flaviviruses or arboviruses cause GBS/ITP.

8.2 NA NA No additional studies identified that other pathogens cause GBS/ITP.

8.3 NA NA No additional studies identified that explain which pathogen or host factors facilitate the development 
of GBS/ITP.

Specificity

9.1 0 0 No relevant studies identified that pathological findings in cases with GBS/ITP are specific for ZIKV 
infection.
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Biological plausibility. We did not find any publications about  
the biological plausibility of ZIKV as a cause of GBS or ITP.

Strength of association. We did not find any comparative obser-
vational studies during the search period for update 1. Several 
surveillance studies confirmed an increase in notified GBS cases 
during ZIKV outbreaks at the population level111. Rate ratios  
were significantly higher for Brazil, Colombia, the Domini-
can Republic, El Salvador, Honduras, Suriname and Venezuela  
when comparing pre-ZIKV GBS incidence and the incidence  
during the outbreak111; this ratio ranged from 2.0 (95% CI: 1.6-2.6) 
to 9.8 (95% CI: 7.6-12.5).

Exclusion of alternatives. We included 11 publica-
tions4–6,95,98,99,101,103,104,111,112 that expanded the list of alterna-
tive causes for autoimmune disease that were excluded, such 
as infections, vaccines, other system illnesses and medication,  
drugs or other chemicals. Many GBS cases in these publica-
tions had serological evidence of previous exposure to DENV,  
as seen in the baseline review. It remains unclear how large  
the potential role of co-factors such as antibody dependent  
enhancement are.

Cessation. We did not identify any publications with evidence 
about the effect of intentional removal/elimination/prevention  
of ZIKV on either GBS or ITP. An additional publication  
confirmed evidence that the natural removal of ZIKV resulted 
in a decrease in GBS cases in Brazil, Colombia, Dominican  
Republic, El Salvador, Honduras, Suriname and Venezuela104,111.

Dose-response. We did not identify any publications about this 
dimension for either GBS or ITP.

Animal experiments. No additional evidence from animal  
experiments was identified that support the association between 
ZIKV infection and GBS/ITP development.

Analogy. As for the baseline review, evidence for this dimension 
was not reviewed systematically because our search strategy did 
not include terms for other infections or conditions. We did not  
identify any new publications addressing this dimension for  
either GBS or ITP.

Specificity. We did not identify any new publications addressing 
this dimension for either GBS or ITP.

Consistency. Studies included in update 1 confirmed the  
consistency of the evidence for 3 of 4 questions about the  
association between ZIKV and GBS. By geographical region, 
ZIKV transmission has been associated with the occurrence of 
GBS in 2 of 4 regions; increased GBS incidence has been reported 
in the WHO regions of the Americas and the Western Pacific 
region, but not in the African or Southeast Asian region, despite 
recent ZIKV circulation113. By study design, the association 
between ZIKV infection and GBS has been found at individual 
and population level and with different study designs. By popu-
lation, ZIKV infection has been linked to GBS in ZIKV endemic  
regions4–6,95,96,98–101,103–105,109,111,114 and travellers from non-affected 
countries who were exposed in these endemic regions3,97,102,106,112. 
There was insufficient evidence to examine the consistency of  
evidence about ZIKV and ITP.

Conclusion. The body of evidence has grown during the search 
period for update 1 but only for dimensions that were already 
populated in the original publication for GBS. There is still a  
limited understanding of the biological pathways that potentially 
cause the occurrence of autoimmune disease following ZIKV 
infection. Additionally, prospective comparative epidemiological  
studies are still lacking. It remains unclear how co-factors such 
as age and previous exposure to flaviviruses influences the  
risk of developing GBS. The evidence supports a temporal  
association between ZIKV and ITP but there is an absence  
of evidence for other dimensions of causality.

Search results from January 19, 2017 to January 05, 2018
Automated search and deduplication processes identified 2410 
publications about any aspect of ZIKV infection. The next  
update of this review will address causality dimensions in 
the realm of epidemiological studies; strength of association,  
dose-response relationship, specificity and consistency.

Discussion
Statement of principal findings. This systematic review con-
firms evidence of a causal association between ZIKV and adverse  
congenital outcomes and between ZIKV and GBS, although  

Question v1, N v2, N Summary

Consistency

10.1 NA NA Confirmation that the association between ZIKV cases and cases with GBS is consistently found 
across different geographical regions.

10.2 NA NA Confirmation that the association between ZIKV cases and cases with GBS is consistently found 
across different populations/subpopulations.

10.3 NA NA No additional studies identified that the association between ZIKV cases and cases with GBS/ITP is 
consistently found across different ZIKV lineages/strains.

10.4 NA NA Confirmation that the association between ZIKV cases and cases with GBS is consistently found 
across different study designs.
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evidence about biological plausibility is still lacking. We  
assessed evidence about an association between ZIKV and ITP 
but found that this only addressed the dimension of temporality.  
The review is transitioning from classic systematic review  
methods to those of a living systematic review.

Strengths and limitations of the study. The strengths of this 
study are the systematic approach to the identification, selec-
tion and extraction of data following a causality framework that 
provides a structure for the consideration of heterogeneous 
sources of evidence and a large set of review questions. Auto-
mation of the review output allows rapid updating of tables of 
results. We have also developed methods to automate search and  
deduplication of search results to make the transition to a liv-
ing systematic review that will allow continual updating of 
results. The main limitation of the classic systematic review of 
such a complex topic is the high workload and time required to  
maintain it. Another limitation, resulting from the large 
number of review questions, is the time taken to resolve inter-
reviewer differences in interpretation of eligibility criteria. This  
could have resulted in subjectivity over decisions about inclu-
sion in the review. Although a second reviewer checked all  
extractions, changes in the review team could introduce incon-
sistency. As in the baseline review, we used case definitions  
as authors described them in individual publications. This 
potential source of information bias is likely to decrease  over  
time as standardised case definitions and protocols are adopted115. 
As in the previous version, we did not systematically apply qual-
ity assessment tools to individual studies. Because much of the  
technical infrastructure was built as the evidence emerged, out-
put was delayed. As much of the LSR methodology was novel,  
it took time to find a balance between speed and efficiency.

Strengths and weaknesses in relation to other publications. 
Our systematic review differs from most standard reviews 
because of the number of questions within the dimensions of 
the causality framework and the number of outcomes. Other  
recent examples of living systematic reviews only distinguish 
between two study types (RCT and non-RCT)116 and are guided by 
only a small set of review questions117,118. Our review conclusion, 
confirming evidence for a causal association between ZIKV and 
GBS differs from that of a review119 of the findings of four case 
reports104,120–122 and one case-control study123. The authors found 
insufficient evidence to confirm the presence of an acute motor 
axonal neuropathy variant of GBS. They did not, however, suggest 
an alternative explanation for the increase in incidence of GBS in 
the countries that experienced ZIKV outbreaks. The two versions  
of our review included 64 publications about ZIKV and GBS  
across ten dimensions of causality.

Meaning of the study: possible mechanisms and implications  
for basic researchers, clinicians or policymakers. The  
conclusions on the causal relation between ZIKV and adverse 
congenital outcomes and ZIKV and GBS did not change with 
this update. We found insufficient evidence about the asso-
ciation between ZIKV and ITP to state with certainty that there  

is a causal association. The total volume of evidence about the  
association between ZIKV and GBS is less than for the asso-
ciation with adverse congenital outcomes. There is, in particular  
a lack of published research to elucidate biological mecha-
nisms for direct neuronal or autoimmune damage in GBS124.  
The descriptive data about the numbers and types of different  
studies over time illustrates how evidence about a new, or re- 
emerging, infection emerges over time. The evidence from many 
regions that were affected by the ZIKV outbreak remains limited  
to anecdotal evidence of adverse outcomes, in the form of case 
reports or case series. The slowing of ZIKV transmission in 
2017 means that fewer people are being affected by ZIKV and its  
complications and fewer people are being enrolled into  
prospective studies. Further progress in epidemiological research 
will rely more heavily on research consortia who are contributing 
to joint analyses of data from existing studies.

Unanswered questions and future research. As the volume 
and complexity of the evidence in different causality dimensions  
accumulates, the need for expert input and interpretation of 
the findings of this systematic review increases. The focus of  
research on ZIKV and causal associations with different 
types of adverse outcomes is also changing. For congenital  
abnormalities resulting from ZIKV vertical transmission, epide-
miological research should examine CZS in comparative studies,  
quantify the strength of association with ZIKV, clarify associations 
with gestational age, symptomatology and viral load and further  
investigate potential co-factors such as previous dengue infec-
tion and flavivirus vaccination. WHO standardised study proto-
cols provide suggestions for exclusion of alternative explanations  
and exploration of co-factors (Harmonization of ZIKV Research 
Protocols). For GBS, epidemiological studies are needed to  
quantify the association with ZIKV more precisely, but also 
to determine whether there are distinct phenotypes resulting  
from autoimmune mechanisms or direct neuronal involvement.  
For ITP, additional evidence across all causality dimensions is 
needed.

Planned updates of a living systematic review. Living  
systematic review methodology and techniques will continue 
to develop. Since a chain is only as strong as its weakest link, 
any processing step has the potential to slow down a living sys-
tematic review. Clearly defined protocols that define update  
frequencies and throughput speed of different actors in the pub-
lishing process are vital. The next update of the systematic reviews 
will use living systematic review methods to assess the evidence  
for 2017 and early 2018 (update 2, Figure 2). The review will, 
for the first time, separate evidence from epidemiological study 
designs from in vitro and in vivo laboratory studies. We will  
narrow down the inclusion criteria based on study type.  
Epidemiological evidence will address the causality dimensions 
‘strength of association’, ‘dose-response’, ‘specificity’ and ‘con-
sistency’. Several co-factors might play a role in the strength 
of association. Thus, we will continue to collect information  
on previous dengue virus infection, yellow fever vaccination  
status, socioeconomic status, gestational age and others factors  
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that might play a role in the severity of the outcome. We will  
amend the protocol with a more focused search strategy and  
inclusion criteria (Supplementary File 3).

Systematic reviews of questions addressed by laboratory studies 
are less frequent than those addressing epidemiological research 
questions. There is still need to update understanding of the  
causality dimensions ‘biological plausibility’ and ‘animal  
experiments’, particularly to increase our understanding of  
biological pathways for ZIKV effects on the peripheral nervous  
system and the immune system. We encourage and welcome  
collaboration from scientists with expertise in these fields to update 
systematic reviews for these causality dimensions.

Conclusion. This systematic review confirms previous conclu-
sions that ZIKV is a cause of congenital abnormalities, including  
microcephaly and is a trigger of GBS. Evidence suggests an asso-
ciation with idiopathic thrombocytopaenia purpura but is not  
conclusive. The transition to living systematic review techniques 
and methodology provides a proof of concept for the use of these 
methods to synthesise evidence about an emerging pathogen  
such as ZIKV, ultimately leading to integration in the whole pub-
lic health information cycle125. With the infrastructure for living  
systematic review methods and open source access to the software 

and outputs, we aim to enhance outbreak preparedness and the 
study of emerging and re-emerging pathogens.
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Certainly, a systematic review (SR) on a such highly relevant topic, as Zika association with congenital
brain abnormalities and Guillain-Barré syndrome. However, I should suggest first, to include other Zika
congenital associated abnormalities, as we have the congenital Zika syndrome (CZS) but also
extra-Central Nervous System (CNS) abnormalities.

The idea to have a living SR is excellent, however very compromising. Right now, this first version,
requires urgently to be updated. As the date of update was till January 2017, as a first update.
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This is a systematic review looking at the strength of evidence supporting the link between Zika virus
(ZIKV) infection and neurological complications. The intention is to create a living review that is constantly
updated as new publications arise, allowing researchers access to a data resource that keeps pace with
the rapidly advancing evidence in the field. This is an extremely important initiative if it can provide truly up
to date (i.e. as fast as a pubmed or similar search) and appropriately sifted information for those wishing
to conduct spot checks on the current status of neuro-ZIKV.

From an aspirational perspective I support it strongly, but does it work in practice? Setting aside many 
complex methodological considerations that this article raises, how useful is such a resource and who is it
there to serve? We would all welcome tailor-made and up-to-date information at our fingertips to help
navigate the mountain and minefield of information on ZIKV. I suspect that whilst this review will be widely
consulted by those interested in neuro-ZIKV, from policy-makers to researchers, we will still refer back to
primary publication for detailed up-to-date information in our specialist areas. At least it will provide a
generic overview that facilitates more in depth access to and analysis of the primary data.

Are the rationale for, and objectives of, the Systematic Review clearly stated?
Yes

Are sufficient details of the methods and analysis provided to allow replication by others?
Yes

Is the statistical analysis and its interpretation appropriate?
Yes

Are the conclusions drawn adequately supported by the results presented in the review?
Yes

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 04 May 2018Referee Report

https://doi.org/10.5256/f1000research.14886.r33196

 Katrina J. Sullivan
Clinical epidemiology program, Ottawa Hospital Research Institute, Ottawa, ON, Canada

This systematic review assessed the causality of Zika virus in the development of congenital brain
abnormalities and Guillain-Barre syndrome. To accomplish this, the 10 dimensions of casual associations
were reviewed, and evidence obtained for each dimension were narratively reviewed. With the addition of
101 new studies, the authors were able to conclusively establish the causal association between Zika and
adverse congenital outcomes. However, not all dimensions could be assessed concerning Guillain-Barre
syndrome, even with the additional of new studies within this update. As a result, there is limited
understanding within this field of research for Zika virus.

Thank you for allowing me to review this article. Overall it was well written, and did a good job addressing

all aspects of it's complex objective. Please find below my comments:
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1.  

2.  

3.  

1.  

all aspects of it's complex objective. Please find below my comments:

For the methods I would have liked to see more information. This review should be able to stand on it's
own without the reader having to find the baseline review to find important methodological information:

I would have liked to see inclusion/exclusion criteria for the study (something that could easily be in
a figure or table to save room).
Please include your search strategy as a supplementary file (just Embase would be sufficient). It
sounds like a very simple search the way you've described it in the methods. Also would have liked
more information about who designed the search (e.g. information specialist, librarian, the
researchers) and if it was peer reviewed using PRESS. Finally, in the "analogy" section of the
results you indicate this wasn't reviewed in the baseline review as the search strategy didn't include
terms for it. This indicates to me that you must have updated your search between the baseline
review and the update, but you don't say this in your methods.
There is no assessment for methodological quality, which you do address in your limitations. I think
this is an important step when you're including different study designs (although can also be
challenging for the same reason). Probably not appropriate to give the same weight to a case
report as a cross-sectional study, or an animal experiment and an epidemiological study.  

General:
I find Table 1 a bit difficult to read, maybe because instinctively I'd expect the column for "U1, N" to
be the total number of studies in the update, rather than just the new studies added with this
update. This only becomes obvious when you look at rows like "case series" and you see the U1
has less studies than BR. If you keep this structure, it would be nice to add another column that has
total N (as it was the total N that you're drawing conclusion from, the BR and U1 don't stand alone).

Living Systematic Review:
 

Do the authors provide a clear rationale for the living systematic review? YES, it meets all criteria
for doing a living systematic review (priority question for decision making, important level of
uncertainty in the evidence, emerging evidence that will likely impact conclusions) 
Do the authors clearly state how this will be maintained as a living systematic review? Partly -
While they detail the process of U1-U3, the time for search, between updates, etc. changes with
each update (as they anticipate the technology getting better). Living systematic reviews require
explicit decisions on how often searching, data extraction, analysis, etc. will be performed.

I feel this review is premature in saying that it is transitioned to a living systematic review. The intention of
the living systematic review is to provide the reader with up to date evidence so the lag between the
search and publication is minimize. The authors even define a living systematic review as "a systematic
review that is continually updated, incorporating relevant new evidence as it becomes available". The
search for this study ended in January 2017, and technically is out of date even for a regular systematic
review (which we try to publish within a year). The authors say that they plan to update the review twice
per year with formal peer review updates, but if that was the case then another 2 reviews should have
been done since this date. Additionally, they authors indicate that only module 1 and part of module 3 of
their living systematic review automation were in place by December 2017, meaning this wasn't used for
this update.

Figure 2 already looks to be out of date - in it they propose that U2 would be published by Feb 2018. If
they were able to accomplish this then U2 might have been more appropriate to call a living systematic
review (where search looks to be from Jan to Dec 2017, and publication is Feb 2018).  
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I think it would have been more appropriate to publish this as an update of the systematic review, publish
a protocol for how they were going to transition to a living systematic review (where Figures 1 and 2 would
be included), and then treat U2 as their 'baseline" living systematic review, at which point the "living"
aspect of the review is turned on and updates are given every 6 months (as they proposed).  

Do the authors provide a clear rationale for the Living Systematic Review?
Yes

Do the authors clearly state how this will be maintained as a Living Systematic Review?
Partly

Are the rationale for, and objectives of, the Systematic Review clearly stated?
Yes

Are sufficient details of the methods and analysis provided to allow replication by others?
Partly

Is the statistical analysis and its interpretation appropriate?
Partly

Are the conclusions drawn adequately supported by the results presented in the review?
Yes

 No competing interests were disclosed.Competing Interests:

Referee Expertise: Systematic reviews, living systematic reviews

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
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