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Abstract

Here we report on the synthesis, biophysical properties and molecular modeling of oligonucleotides containing unsaturated
6’-fluoro[4.3.0]bicyclo nucleotides (6’F-bc*3-DNA). Two 6’F-bc*3 phosphoramidite building blocks (T and C) were synthesized
starting from a previously described [3.3.0]bicyclic sugar. The conversion of this sugar to a gem-difluorinated tricyclic intermedi-
ate via difluorocarbene addition followed either by a NIS-mediated or Vorbriiggen nucleosidation yielded in both cases the
B-tricyclic nucleoside as major anomer. Subsequent desilylation and cyclopropane ring opening of these tricyclic intermediates
afforded the unsaturated 6’F-bc*? nucleosides. The successful incorporation of the corresponding phosphoramidite building blocks
into oligonucleotides was achieved with tert-butyl hydroperoxide as oxidation agent. Thermal melting experiments of the modified
duplexes disclosed a destabilizing effect versus DNA and RNA complements, but with a lesser degree of destabilization versus
complementary DNA (AT,/mod = —1.5 to —3.7 °C). Molecular dynamics simulation on the nucleoside and oligonucleotide level
revealed the preference of the C1’-exo/C2’-endo alignment of the furanose ring. Moreover, the simulation of duplexes with comple-
mentary RNA disclosed a DNA/RNA-type duplex structure suggesting that this modification might be a substrate for RNase H.

Introduction

A powerful strategy for the treatment of various disorders like  ment of the endonuclease RNase H1 which selectively cleaves

cancer, viral and inherited diseases is the use of therapeutic  the RNA strand of a DNA/RNA hybrid duplex [8]. To activate

antisense oligonucleotides (AONs) [1-4]. These short, synthetic
fragments bind through Watson—Crick base pairing to cellular
RNA, thus modulating or silencing the gene expression through

various mechanisms [5-7]. One mode of action is the recruit-

this process, fully modified DNA-like oligonucleotides (ONs)
or gapmer AONs are used [9,10]. However, the widespread use
of oligonucleotide-based therapeutics is limited by several

factors amongst which the cellular delivery, the biostability, the
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affinity and specificity for target RNA sequences are crucial
[11]. A powerful strategy to increase the affinity for comple-
mentary RNA and to improve the ON biostability is the confor-
mational restriction of the flexible backbone by additional ring
systems and bridges [12]. Prominent members of this class of
conformationally restricted nucleic acids are locked nucleic
acids (LNAs) [13-15], hexitol nucleic acids (HNAs) [16,17],
cyclohexenyl nucleic acids (CeNAs) [18,19], tricyclo-DNAs
(tc-DNAs, Figure 1) [20-22], and [4.3.0]bicyclo-DNAs (bc*3-
DNAs, Figure 1) [23].
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Figure 1: Chemical structure of selected nucleic acid analogs.

Another strategy to overcome some of the limitations deals with
the insertion of one or several fluorine atom(s) in the sugar
moiety of the nucleic acid analog. The polar hydrophobic nature
[24] of the fluorine atom can positively alter the furanose con-
formation, basicity and/or polarizability of the modified
nucleotide, and therefore influences the metabolic stability, the
membrane permeability, the RNA- and protein-binding affinity
of the AON [25-29]. Over the last almost two decades, fluori-
nated oligonucleotide analogs like 2’-deoxy-2’-fluoro-RNA
(F-RNA) [26,30,31], 2’-deoxy-2’-fluoroarabino nucleic acid
(F-ANA) [32-34], 3’-hexitol nucleic acids (FHNA and Ara-
FHNA) [35], 2’-fluorocyclohexenyl nucleic acid (F-CeNA)
[36], and other modifications [37-41] were evaluated for their
antisense properties. In this context, our research group has
systematically analyzed the effect of the fluorine atom on the
bc-DNA and the tc-DNA scaffold. 6’-pB-Fluorination of
[3.3.0]bicyclo-DNA led to a pseudohydrogen bond interaction
between the fluorine atom and the C(6) hydrogen atom of the
thymine base, fixing the torsion angle x. As a consequence, an

increased affinity to complementary RNA targets was observed
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[42]. In the case of tc-DNA, C(6’) fluorination resulted in a
similar affinity to RNA as standard tc-DNA suggesting no
contribution of a fluorine pseudohydrogen bond as in bc-DNA
[43]. Also a similar affinity to complementary DNA or RNA
than the non-fluorinated tc-DNA was observed in fully modi-
fied 2°F-tc-ANA sequences [44]. In contrast, a significant
stabilisation with RNA targets resulted in the case of the 2’F-tc-
RNA modification due to conformational control of the fura-
nose conformation [45]. To further widen the scope of fluori-
nated nucleic acid analogs as building blocks for therapeutic
oligonucleotides, we investigated the bc*3-DNA as scaffold for
the modification. The idea was to place the fluorine atom next
to the internucleosidic linkage. Furthermore, an additional
double bond in the cyclohexane ring was expected to rigidify
the carbocyclic unit and possibly positively impact the duplex
stability. Here we report on the synthesis of the two 6’F-bc*3
pyrimidine analogs with the base T and C, their incorporation
into DNA, their biophysical properties, as well as a structural
analysis by molecular dynamics simulations of hybrid DNA and
RNA duplexes.

Results and Discussion

Synthesis of the phosphoramidite building
blocks

Our strategy for the construction of the two phosphoramidite
building blocks 10 and 16 envisaged as a key step the forma-
tion of a [4.3.0]bicyclic fluoroenone from a tricyclic siloxydi-
fluorocyclopropane through a ring enlargement via selective
cyclopropane ring opening [46-49]. Consequently, the synthe-
sis started from the previously described bicyclic silyl enol
ethers 1a/B (Scheme 1) [50,51]. The two anomers of 1 were
individually transformed into the trimethylsilyl (TMS)-pro-
tected sugars 2a/p by adapting and improving the already
existing protocol [50]. The sugars 2a/p were then individually
treated with the Ruppert—Prakash reagent (TMSCF3) as difluo-
rocarbene precursor and sodium iodide as initiator [52],
furnishing the exo-tricyclic sugars 3a/p as major isomers. The
closer evaluation of this reaction revealed that the type of silyl
enol ether drastically influenced the yield of the corresponding
siloxydifluorocyclopropane. Whereas the TMS enol ethers were
not suitable for the reaction due to instability of the silyl group,
the fert-butyldimethylsilyl (TBDMS) enol ethers were poorly
reactive most likely due to the hindrance of the difluorocarbene
attack on the double bond. The stereochemistry around the
cyclopropane ring (endo vs exo) could be assessed by the char-
acteristic coupling pattern between the fluorine atom and the
H-C(1) or C(7) in the endo-tricyclic sugars in the correspond-
ing 'H and 13C NMR spectra (Supporting Information File 1).

The plan for the pyrimidine nucleoside synthesis comprised the

use of the meanwhile well-established B-selective N-iodosuccin-
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Scheme 1: Synthesis of the gem-difluorinated glycal 4 from the silyl enol ethers 1a/B. Reagents and conditions: a) BSA, DCM, rt, 17 h, 86%; b) BSA,
DCM, rt, 18 h, 88%; c) TMSCF3, Nal, THF, 70 °C, 2 h, 71%; d) TMSCF3, Nal, THF, 70 °C, 4 h, 75%; e) TMSOTf, 2,6-lutidine, DCM, 0 °C to rt, 2 h,
41% (4), 39% (50/B); f) TMSOTT, 2,6-lutidine, DCM, 0 °C to rt, 7 h, 58% (4), 29% (50/B).

imide (NIS)-mediated addition of a persilylated nucleobase to a
tricyclic glycal [43,45,53,54]. Therefore, the gem-difluorinated
tricyclic sugars 3a/p were individually reacted with trimethyl-
silyl trifluoromethanesulfonate (TMSOTT) in order to produce
the corresponding glycal 4. Surprisingly, apart from the desired
glycal 4 its hydrolysis products 5a/p were produced as main
side products. In the case of the a-tricyclic sugar 3a the ratio of
products 4 to Sa/p could be influenced by the reaction time. A
shorter reaction time furnished the tricyclic alcohols Sa/p as
major product, while prolongation of the reaction time pro-
duced the glycal 4 as main component (Table S1, Supporting
Information File 1). Treatment of the glycal 4 with persilylated
thymine in the presence of NIS (Scheme 2), followed by radical

reduction of the iodide intermediate with tributyltin hydride

(Bu3SnH) generated an anomeric mixture of nucleoside 60/
with the B-anomer as major component (o/p ratio = 1:4.5 ac-
cording to 'H NMR). The inseparable anomers of nucleoside
60/B were subjected to the next reaction step, where the simul-
taneous desilylation and cyclopropane ring opening to the
bicyclic fluoroenone 7 occurred. HF-pyridine smoothly facili-
tated this conversion. At this stage the two anomers of fluo-
roenone 7 were separable. The configurational assignment of
the nucleobase was conducted by 'H,'H-ROESY experiments
(Supporting Information File 1). The B-anomer 7§ then was
subjected to Luche reduction [55,56] producing selectively the
desired S-configuration at the C(5) position due to hydride
delivery from the less hindered exo-side of the carbonyl group.
The relative configuration at C(5”) could be assigned by 'H,'H-

0
iPr),;N-R
(iPr), Y5 _CN

10

Scheme 2: Synthesis of the thymidine phosphoramidite building block 10. Reagents and conditions: a) i) thymine, BSA, NIS, DCM, 0 °C to rt, 4.5 h;
ii) BugSnH, AIBN, toluene, 90 °C, 30 min, 70%; b) HF-pyridine, DCM/pyridine 5:1, 0 °C to rt, 1.5 h, 71%; c) CeCl3-7H,0, NaBHy4, MeOH, 0 °C, 1 h,
92%; d) DMTr-CI, pyridine, rt, 3 d, 76%; d) CEP-CI, DIPEA, THF, rt, 4 h, 62%.
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ROESY experiments (Supporting Information File 1). Trityla-
tion of allylic alcohol 8 with 4,4-dimethoxytrityl chloride
(DMTr-Cl) afforded intermediate 9 which was subsequently
phosphitylated with 2-cyanoethyl N,N-diisopropylchlorophos-
phoramidite (CEP-C1) furnishing thymidine phosphoramidite
10.

Since significant amounts of the alcohols Sa/p were obtained, it
was decided to redirect our initial synthetic plan for the cyti-
dine phosphoramidite. Hence, the sugars Sa/p were first acety-
lated yielding the intermediate 11a/p (Scheme 3), which is a
standard glycosyl donor for nucleoside synthesis. The nucleosi-
dation was carried out by applying classical Vorbriiggen condi-
tions [57] on the sugars 11a/p, yielding the f-nucleoside 12 as
major anomer. The a/B-ratio of 1:1.5 was acceptable and the
configuration at the C(1°) was assigned by 'H,'H-ROESY ex-
periments (Supporting Information File 1). The gem-difluori-
nated tricyclic nucleoside 12p was then converted into the
bicyclic fluoroenone 13 via desilylation and ring-enlargement
by short exposure to HF-pyridine. During the following Luche
reduction of derivative 13 the benzoyl protecting group of the
nucleobase was partially removed. As a consequence an addi-
tional benzoylation step was needed to obtain the allylic alcohol
14 in high yields. Verification of the configuration at C(5”) was
again accomplished by 'H,'H-ROESY experiments (Support-

5 OTES 5 OTES
F 1-":.. O F )“‘ln.. o
: oH -2, :
OTMS OTMS
50/ Masp
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ing Information File 1). Tritylation of the nucleoside 14 with in
situ-prepared 4,4-dimethoxytrityl methanesulfonate (DMTr-
OTY) [58,59] provided the protected derivative 15 which was
phosphitylated yielding the cytidine phosphoramidite 16.

Synthesis of oligonucleotides

A series of oligonucleotides containing single or multiple incor-
porations of the thymidine or cytidine building blocks 10 and 16
were synthesized to study the pairing properties of the new
modification with complementary DNA and RNA. At the
beginning, the synthesis of the oligonucleotides was conducted
using standard automated phosphoramidite chemistry (for
details see the experimental part in Supporting Information
File 1). However, in the synthesis of ON1 and ON2 the yield
dropped to approximately 40% after the incorporation of the
modified unit. The analysis of the crude product by LC-MS
after cleavage from the solid support and deprotection, revealed
the presence of 5’-phosphorylated fragments originating from a
3’-cleavage of the modification. We propose, that these frag-
ments were formed through an E2 elimination during the oxida-
tion step, most likely on the iodophosphonium ion level
(Figure 2) [60]. Based on this hypothesis, we changed the oxi-
dation agent from iodine to fert-butyl hydroperoxide (TBHP),
which previously has been successfully applied for the synthe-
sis of iso-tricyclo-T (iso-tc-T) or bc®"-T containing oligonucleo-

5 OTES
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OAc —2» ' N  )—NHBz
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12p

N/:>*NHBZ
N
Ve

Scheme 3: Synthesis of the cytidine phosphoramidite building block 16. Reagents and conditions: a) Ac,0, pyridine, 0 °C to rt, 17 h, 87%;
b) N-benzoylcytosine, BSA, TMSOTf, ACN, 0 °C to rt, 3.5 h, 41%; c) HF-pyridine, DCM/pyridine 5:1, 0 °C, 15 min, 91%; d) i) CeCl3-7H20, NaBHg4,
MeOQOH, =78 °C, 20 min; ii) Bzo,O, DMF, rt, 7 h, 94%; e) DMTr-OTf, DCM/pyridine 1:2, rt, 19.5 h, 44%; f) CEP-CI, DIPEA, THF, rt, 75 min, 43%.
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Figure 2: Proposed mechanism for the formation of the 5’-phosphorylated fragments during the oxidation step in the synthesis of ON1 and ON2.

tides [61]. Indeed, under these conditions high coupling yields
(>98%) of ON3-7 were obtained and the absence of the
5’-phosphorylated fragment was noticed.

Pairing properties with complementary DNA
and RNA

To evaluate the effect of the unsaturated 6’F-bc*3 modification
on the thermal duplex stability we conducted UV-melting ex-
periments of the modified oligonucleotides with DNA and RNA
(Table 1). These studies showed that ON1—4 bearing the modi-
fied thymidine unit exhibited a duplex destabilization when
paired to DNA (AT /mod = —1.5 to —3.7 °C). The Ty, depres-
sion was more pronounced for multiple (A7,/mod =~ —3.5 °C)
than for single (AT;/mod = —2.0 °C) inclusions. When the same
four oligonucleotides were hybridized to RNA the duplex
stability further decreased (AT,,/mod = —4.0 °C). However, the
number of modified units seemed not to have an influence on
the Ty, value. The three oligonucleotides ON5—7 bearing the
cytidine modification also expressed a destabilizing pattern with
both complements, but to a lesser amount than in the thymidine
series. Again, the T}, depression was higher with complementa-
ry RNA, with pronounced sequence effects in the case of single
inclusions. The less destabilizing behaviour of the 6’F-bc*>-
modified oligonucleotides versus complementary DNA sug-
gested that this modification more presents a DNA than a RNA

mimic. The better tolerance of the cytidine modification in both
duplex types could be assigned to the nature of the nucleobase
and was also observed in the case of the 7°,5’-bc-DNA [62].

The determination of the base pair selectivity of the 6’ F-bc*3
modification was carried out by UV-melting experiments of
ON1 with complementary DNA where the mismatched base
was inserted at the opposing site of the modification (Table S2,
Supporting Information File 1). All three possible mismatches
were evaluated. As expected, in all cases the 7}, value was sig-
nificantly lowered, with the GT-Wobble pair having the least
destabilizing effect (—8.5 °C). The T}, depression of the
GT-Wobble pair and the CT-mismatch (=11.0 °C) was in the
same range than for the natural duplex. However, a lager Ty,
discrimination was found in the TT-mismatch (—14.1 °C) as in
the natural system (—9.7 °C). Taking together, these data
suggest that classical Watson—Crick base pairing also occurs
with this modification.

The thermodynamic parameters of duplex formation of ON4
and the corresponding natural sequence versus both comple-
ments were extracted from their melting curves by a known
curve fitting methodology (Table S3, Supporting Information
File 1) [63]. The comparison of the modified with the natural
duplexes disclosed an entropic stabilization (AAS = +28.9 and

Table 1: Ty, and AT/mod data from UV-melting curves (260 nm) of ON1-7 in duplexes with complementary DNA and RNA.

Entry Sequence? Tm [°C] vs DNA
ON1 5-d(GGA TGT TCt CGA)-3’ 46.0
ON2 5-d(GGA tGT TCT CGA)-3 47.2
ON3 5’-d(GGA TGt tCT CGA)-3’ 41.3
ON4 5'-d(GCA ttt ttA CCG)-3 30.3
ON5 5'-d(GGA TGT TcT CGA)-3’ 471
ON6 5-d(GGA TGT TCT cGA)-3’ 46.8
ON7 5-d(GGA TGT TcT cGA)-3’ 441

AT-/mod [°C] Tm[°ClvsRNA  AT./mod [°C]
-27 46.0 -4.0
-15 476 -24
-37 42.0 -4.0
-34 224 -4.4
-1.6 46.0 -4.0
-1.9 48.3 -1.7
-23 440 -3.0

3Lowercase letters: modified nucleotides, capital letters: natural DNA. Total strand conc. 2 uM in 10 mM NaH,POy4, 150 mM NaCl, pH 7.0. Reference
T values: DNA1/DNA = 48.7 °C, DNA1/RNA = 50.0 °C, DNA2/DNA = 47.4 °C, DNA2/RNA = 44.4 °C; DNA1 = 5'-d(GGA TGT TCT CGA)-3’, DNA2 =

5-d(GCATTT TTA CCG)-3'.
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+38.0 cal'mol™'*K™!) and an enthalpic destabilization
(AAH = +13.8 and +17.0 kcal'‘mol™') for both the DNA
and RNA complement. This pattern was observed along
the whole bc-DNA series and was attributed to the conforma-
tional restriction of the sugar [62,64]. The Gibbs free energy of
duplex formation corresponded well with the observed Ty,

values.

CD spectroscopy

Circular dichroism of ON1-7 paired with DNA or RNA was re-
corded to further analyze their helical conformation and to
compare it with that of the corresponding natural duplexes
(Figure S1, Supporting Information File 1). All seven modified
oligonucleotides exhibited a B-type pattern when paired to
DNA, indicating B-form helices. All modified oligonucleotides
duplexed to RNA disclosed a similar pattern than the natural
hybrid structure, giving evidence of mixed A/B-type helices.

Molecular modeling

To gain more information on the structural features of the 6’F-
bet3 modification, we performed molecular dynamics simula-
tions of the modified duplexes. We first calculated the potential
energy profile versus pseudorotation phase angle of nucleoside
8 using quantum mechanical methods. The calculations were
performed in vacuum with the Gaussian 09 software package
[65] utilizing the second order Meoller—Plesset perturbation
theory (MP2) and the 6-311G* basis set. The energy profile of
nucleoside 8 was obtained through a stepwise variation of the
pseudorotation phase angle P at the range of the maximum
puckering amplitude v,y and was visualized in the pseudorota-
tion wheel (Figure 3a). The two low energy regions appeared in

a) v (dew) Pder)
50 4
40
30 —
20 f

0270 = 90

180

AE (kJ/mol)
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the Southern hemisphere. The lowest energy conformer was as-
sociated with the furanose unit in a C2’-endo orientation and the
six-membered ring in a twist-boat conformation (Figure 3b).
Approximately 1 kJ/mol higher in energy was the second
conformer where the furanose unit adopted a C3’-exo arrange-
ment and the cyclohexene unit a half-chair conformation
(Figure 3c). The C(5’) hydroxy group adopted in both
conformers a pseudoaxial position. Consequently, the torsion
angle y was aligned in a +sc arrangement (C2’-endo conformer:
64°; C3’-exo conformer: 83°). The distance between the fluo-
rine atom and the C(5”) oxygen was 3.3 A in the C2’-endo
conformer and 2.9 A in the C3’-exo conformer.

These two conformers were then used to calculate the atomic
charges of the corresponding nucleosides using the R.E.D. IIL.5
tools package [66]. The obtained parameters were added to the
Amber94 force field [67] which besides the GROMACS 5.0.6
simulation package [68] was utilized for the molecular dynam-
ics simulations. The duplexes investigated in the simulation
encompassed: a unmodified DNA strand, ON1, ON4 and a
fully modified 6’F-bc*3-DNA strand duplexed to complementa-
ry DNA and RNA as well as a 6’F-bc*3-DNA homo-duplex
(for details on the simulation see the experimental part in Sup-
porting Information File 1).

The duplex of the fully modified 6’F-bc*3-DNA strand with
DNA still featured a B-type helix (Figure 4a) whereas the 6°F-
be*3-DNA/RNA duplex maintained an A-form (Figure 4b).
Interestingly, the fully modified 6°F-bc*3-DNA strand exhib-
ited almost identical backbone angles and sugar conformation
regardless if paired to DNA or RNA. The preferred sugar

b)

40.00

35.00

I~ 30.00

I~ 25.00

t—20.00

15.00

— 10.00

Figure 3: a) Potential energy profile versus pseudorotation phase angle of nucleoside 8 and its two minimal energy conformers: b) C2’-endo and

c) C3-exo.
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Figure 4: Average structures of the a) 6'F-bc*3-DNA/DNA, b) 6'F-bc*3-DNA/RNA, and c) 6’'F-bc*3-DNA/6’F-bc*3-DNA duplexes obtained from the
last nanosecond of the simulation by firstly extracting a frame each 50 ps and secondly by doing an averaging of them.

arrangement was found in a narrow range in the Southern area
of the pseudorotation wheel (C1’-exo, C2’-endo, Figure 5a and
b), indicating that this modification is a DNA mimic. This
finding is in agreement with the observed T}, values and also
reflects the entropical stabilization of the duplex structure. The
cyclohexene ring of the modified unit adopted either a twist-
boat or a boat alignment in the fully modified strand of both
duplex types. Consequently, the fluorine atom was arranged in a
way that the repulsive electrostatic interactions with the C(5”)
oxygen were minimized. The analysis of the backbone torsion
angles revealed that the fused ring system affected all backbone
torsion angles (Figure Sc and d). Specifically, the angle a
adopted values in the +ap to —sc range which was in contrast to
the canonical parameters (DNA: £sc, —ac; RNA +ac, +ap,
—sc). The angle f was found in the +ac or anti orientation, most
likely due to either the boat or the twist-boat conformation of
the cyclohexene ring. Furthermore, the angle y was constrained
to a +sc arrangement as also found in canonical A- or B-type
helices. The torsion angle € exhibited values in the +sc and anti
range, whereas the angle { adopts all values between 0-360°.
The reason for the flexibility of the angle { might lie in its
compensatory nature to balance the constrained backbone
angles that lay within the carbocyclic system.

The DNA or RNA strand in these hybrid duplexes displayed the
same structural preference as in the natural reference structures
(Figures S2 and S3, Supporting Information File 1). The evalua-
tion of the base pair body parameters of the 6°F-bc*3-DNA
strand hybridized to DNA or RNA revealed the expected

Watson—Crick base pairing between the two strands and the
characteristic parameters of a B- or A-type helix, respectively
(Figures S5-S7, Supporting Information File 1) [69]. Further-
more, the examination of the minor groove distances [70]
disclosed for the 6’F-bc*3-DNA/RNA duplex a flexibility
switching between values of an A- and B-helix (Figure S8, Sup-
porting Information File 1). This variation of the minor groove
distance is thought to play a crucial role for RNase H activation
[9,71].

The structure displayed by the fully modified 6’F-bc*3-DNA
homo-duplex was neither an A- nor B-type helix (Figure 4c).
This structure featured a very variable minor groove (=8 to
18 A), an increased rise (=3.4 A), a positive slide (=<1.6 A) and a
positive roll (=4.6 A; Figures S6-S8, Supporting Information
File 1). As a consequence of the latter the x-displacement
(=1.1 A) was shifted towards a positive value. The sugar con-
formation in the two strands (Figure S4, Supporting Informa-
tion File 1) was in the same range (C1’-exo, C2’-endo) as de-
scribed above for the hybrid duplexes. The backbone torsion
angles of the homo-duplex exhibited identical conformations in
both strands (Figure S4, Supporting Information File 1). Some
variations in the torsion angle { (—sc to +ac) and the glycosidic
bond angle y (200-360°) were observed compared to the fully
modified hybrid duplexes.

The structural data of ON1 and ON4 containing either one or

five consecutive modifications are shown in Figures S2, S3, and
S8 in Supporting Information File 1.
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Figure 5: Preferred sugar pucker of a) 6'F-bc*3-DNA/DNA, and b) 6’F-bc*3-DNA/RNA duplexes and torsion angles of c) 6’F-bc*3-DNA/DNA, and
d) 6’F-bc*3-DNA/RNA duplexes extracted from a 100 ns molecular dynamics trajectory.

Conclusion

In this study, we presented the successful synthesis of the two
6’F-bc*3 pyrimidine phosphoramidite building blocks 10 and
16 starting from a bicyclic silyl enol ether. The key step in the
synthesis was the transformation of a gem-difluorinated
tricyclic nucleoside into a ring-enlarged bicyclic fluoroenone by
simultaneous desilylation and cyclopropane ring opening which
proceeded in high yields. The two phosphoramidite building
blocks were successfully incorporated into oligonucleotides by
automated solid-phase DNA synthesis with fert-butyl hydroper-
oxide as the oxidation agent. The CD spectra of the 6’ F-bc*3-T
or -C-modified oligonucleotides displayed a B-type helix when
paired to DNA and an intermediate A/B form when the counter
part was RNA.

The modified oligonucleotides exhibited a significant destabi-
lization versus both complements, but with complementary
DNA being less discriminating (A7,/mod = —1.5 to —3.7 °C)
than complementary RNA. This finding indicates that the
6’F-bc*3 modification is more a DNA mimic than an RNA
mimic. In accordance with this were the results obtained
from the molecular dynamics simulation of the duplexes
where the sugar pucker preferably adopted a Southern
conformation (C1’-exo, C2’-endo). Furthermore the simula-
tions revealed a very rigid bicyclic sugar system with a dimin-

ished conformational adaptability of the cyclohexene unit.

Mainly this rigidity in combination with the repulsive electro-
static interactions of the fluorine atom and the C(5’) oxygen
seem to be responsible for the duplex destabilization. Neverthe-
less, the MD simulations pointed to a flexible minor groove
for the modified oligonucleotides hybridized to RNA, indicat-
ing together with the preferred Southern conformation of the
modified unit, that this modification might be a substrate for
RNase H.

Supporting Information

Additional tables and figures, the experimental part, as
well as copies of the NMR spectra ('H, 13C, I°F, 31P) of
the new compounds are given in the Supporting
Information.

Supporting Information File 1

Additional data, experimental part, and NMR spectra.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-14-288-S1.pdf]
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