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Introduction
Advanced chronic liver disease (CLD) represents 
the fourth cause of death due to noncommunica-
ble diseases worldwide. Its high mortality is mainly 
due to long-time asymptomatic stages during dis-
ease progression and, thus, is diagnosed after 
appearance of portal hypertension (PH) and its 
clinical complications such as hepatic encepha-
lopathy, variceal hemorrhage or ascites. In fact, 
PH is the major driver of the complications of 
CLD, the measurement of hepatic venous pres-
sure gradient (HVPG) being a predictor of the risk 
of clinical decompensation and survival in com-
pensated cirrhotic patients.1,2

Clinically significant PH is defined as an HVPG 
of 10 mmHg or greater and depends on changes 
in portal blood flow or in intrahepatic vascular 
resistance (IHVR). During cirrhosis develop-
ment, elevation in IHVR due to deregulation of 
hepatic cells and liver fibrosis is the primary fac-
tor involved in increasing portal pressure (PP) 
leading to secondary splanchnic vasodilation 
and extrahepatic shunt formation, which further 
aggravate PH and liver dysfunction. Notably, 
current treatments do not target the main 

underlying mechanism, but consist in extrahe-
patic vasoconstrictors [i.e. nonselective beta 
blockers (NSBB) and somatostatin] aimed at 
ameliorating PH by reducing the hyperdynamic 
circulation, or in strategies focused on the pre-
vention of PH-derived complications such as 
infections or encephalopathy. In the specific 
case of NSBB, it should be noted that carvedilol 
may also exert intrahepatic vasodilatation due 
to its anti-α1-adrenergic properties.3 Despite 
the extended use of these drugs as the most 
effective treatment for PH, a recent analysis 
based on over 100,000 cases showed that 30-day 
mortality following a decompensation in cirrho-
sis remains equal, or even higher, than that 
observed 10 years ago,4 strongly suggesting 
there is a need for new therapeutic approaches 
for PH and CLD.

In this review we summarize the potential ther-
apeutic strategies for the treatment of PH, 
which importantly derive from preclinical 
knowledge and mainly target the increased 
IHVR. These approaches consist of pharmaco-
logical, cell-derived or lifestyle interventions, as 
shown below.
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Vasoprotective strategies
CLD is characterized by persistent injury of the 
liver due to different etiologies, including alco-
holic and nonalcoholic steatohepatitis (NASH) or 
viral infections. This in turn leads to alterations of 
the hepatic microvasculature, which in combina-
tion with fibrosis constitute the main components 
of increased IHVR. This scenario of vascular 
alterations has led to the assessment of different 
vasoprotective strategies for the treatment of 
intrahepatic-derived PH, mainly vasomodulators, 
anticoagulants and antiangiogenic approaches.

Vasomodulators
One of the causes of the abovementioned micro-
vascular alterations during CLD is a shift/altera-
tion in the synthesis of vasoactive molecules in the 
liver, where vasoconstrictors prevail over vasodi-
lators. Thus, several vasomodulator strategies 
aimed at enhancing intrahepatic vasodilation and 
normalizing excessive vasoconstriction have been 
recently proposed (Figure 1).

Inhibition of vasoconstriction.  One of the most 
potent vasoconstrictors that contributes to micro-
vascular dysfunction in CLD is endothelin. This 
molecule is synthesized by the activated endothe-
lium and acts as a ligand for the endothelin recep-
tors (ET) on hepatic stellate cells (HSCs), which 
are the final effectors of vasoconstriction. Indeed, 
the use of antagonists targeting ET (either ETA, 
ETB or both) showed improvements in the hepatic 
sinusoid and in liver fibrosis in preclinical models5,6 
and decreased PP in a small clinical study.7 How-
ever, its possible beneficial effects were not fur-
ther validated in human randomized-controlled 
trials (RCTs).8,9 Currently ongoing human RCTs 
evaluating the unspecific antagonist macitentan10 
and ambrisentan11 will provide essential informa-
tion to support or discard this therapeutic strat-
egy in cirrhosis and PH.

Urotensin is another vasoconstrictor playing a 
role in PH, known to correlate with HVPG  
levels.12 Similar to ET, blockage of the urotensin 
II receptor with the antagonist palosuran decreases 

Figure 1.  Schematic representation of different therapeutic approaches for portal hypertension focused on 
their liver vasomodulation effect.
Drugs in bold denote currently ongoing RCT and known mechanisms of action are indicated in parenthesis.
APAP, acetaminophen; COX, cyclooxygenase; ECA, enzyme converter of angiotensin; ERβ, estrogen receptor beta; FXR, 
farnesoid X receptor; OCA, obeticholic acid; 5-MTHF, 5 methylfolate; eNOS, endothelial nitric oxide synthase; ET, endothelin 
receptor; GTP, guanosine triphosphate; cGMP, cyclic guanosine monophosphate; KLF2, Kruppel-like factor 2; NO, nitric 
oxide; sGC, soluble guanylate cyclase; L-arg, L-arginine; LTC, leukotriene; MAS, Mas receptor; PDE, phosphodiesterase; 
NCX, NO-donor compound derived from ursodeoxycholic acid; JNK, Jun N-terminal kinases; PLA2, phospholipase A2; RhoK, 
Rho kinase; RAA, renin–angiotensin–aldosterone; RCT, randomized controlled trial; TXA2, thromboxane A2.
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PP in experimental models.13 Nevertheless, there 
are no current studies on cirrhotic patients in 
order to validate the translatability of these results 
to the bedside.

Eicosanoids represent another important family of 
vasoconstrictors derived from the conversion of 
arachidonic acid. Indeed, cyclooxygenase (COX)-
derived prostanoids (a subclass of eicosanoids) are 
overexpressed in the cirrhotic liver.14,15 In this 
regard, several drugs have been used to chroni-
cally inhibit either their synthesis (i.e. by COX 
inhibition with nitroflurbiprofen16 or celecoxib17,18) 
or to block their receptor (e.g. thromboxane A2 
receptor with terutroban19). Although these strat-
egies decreased PP in preclinical models of cirrho-
sis, there is only one ongoing RCT with the 
thromboxane receptor antagonist ifetroban.20 
Similar strategies aimed at reducing arachidonic 
acid metabolites focused on inhibiting epoxyge-
nases using MS-PPOH21 and cysteinyl leukot-
rienes with montelukast.22

In addition to the increased synthesis of vasocon-
strictors, the cirrhotic liver is also hypersensitive 
to these molecules. Thus, research aimed to 
inhibit the effect of not only hepatic vasoconstric-
tors, but also systemic ones. In this regard, the 
renin–angiotensin–aldosterone (RAA) system is 

a hormone system that controls blood pressure 
and fluid balance, playing also an important role 
regulating hepatic hemodynamics. Importantly, 
angiotensin II is a potent vasoconstrictor peptide 
with hepatic effects that favors the development 
of PH.23 Several strategies have been developed 
to reduce its effects on the liver: angiotensin-
converting-enzyme inhibitors (captopril) and 
angiotensin receptor blockers (losartan, cande-
sartan, irbesartan) have been tested in preclini-
cal and clinical settings and showed beneficial 
effects on reducing PH but mainly in compen-
sated patients with Child A cirrhosis.24 Given 
the potential of these drugs, some strategies 
aimed at focusing on the RAA system down-
stream pathway. Indeed, the Janus kinase inhibi-
tor AG490 showed a PP-lowering effect additive 
to propranolol in preclinical models,25–27 while 
the Rho-kinase inhibitors Y-2763228 and fasudil29 
showed comparable beneficial effects. Indeed, 
RhoA modulation using sodium ferulate30 or dia-
rylpropionitrile31 showed beneficial effects in 
preclinical PH, and interestingly, pointed out the 
relevance of the latter (which is an estrogen-
receptor β agonist) in postmenopausal women. 
On the other hand, the receptor Mas also repre-
sents an alternative downstream target of the 
RAA pathway. Its activation showed promising 
effects in experimental models of cirrhosis, also 

Figure 2.  Schematic representation of different therapeutic approaches for portal hypertension based on their 
effect on apoptosis, oxidative stress or inflammation as main features of chronic liver damage.
Known mechanisms of action are indicated in parenthesis.
ASK1, apoptosis signal-regulating kinase; CeO2, cerium oxide; EET, epoxyeicosatrienoic acids; GLP-1R, glucagon-like 
peptide 1 receptor; JAK2, janus kinase 2; NADPH, nicotinamide adenine dinucleotide phosphate; NO, nitric oxide; rMn, 
Recombinant Manganese; ROS, reactive oxygen species; SOD, superoxide dismutase.
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reducing PP and liver fibrosis.32 Nevertheless, 
another study blocking the Mas receptor with 
A779 led to the same decrease in PP,33 leaving the 
Mas receptor role in a paradigm.

Vasopressin, also named antidiuretic hormone, is a 
hormone that contributes to the regulation of water 
and electrolyte homeostasis and constricts arteri-
oles, increasing vascular resistance and blood pres-
sure. The blockage of vasopressin using conivaptan 
has been recently tested in an RCT and showed no 
beneficial effects on PP.34 Indeed, previous data 
support the concept that vaptans may not only be 
ineffective but also have negative secondary effects 
in terms of morbidity and mortality in patients with 
cirrhosis.35,36 Partial vasopressin agonists in the 
mesentery may have better projection. Indeed, a 
recent study demonstrated beneficial effects of FE 
204038 reducing PP in cirrhotic rats,37 and a 
recently started RCT evaluates the compound FE 
204205 in cirrhotic patients with PH.38

Promotion of vasodilation.  Nitric oxide (NO) is a 
potent vasodilator synthesized by the NO syn-
thase (NOS) that regulates vascular tone and 
inflammation; however, it becomes markedly 
deregulated in the cirrhotic liver. Several thera-
peutic approaches focused at increasing its levels, 
either by enhancing NO production (NOS-
dependent strategies), or by providing NO as an 
exogenous source or decreasing NO degradation 
(NOS-independent strategies).

Delivering NO to precise cellular locations, like 
the liver sinusoid, represents a challenge. 
However, nanoparticle delivery has lately become 
an important and emerging field. In fact, recent 
studies using NO-releasing nanoparticles coated 
with vitamin A, which is mainly stored in HSCs 
in the liver, reduced PP in a preclinical cirrhotic 
model.39 Similar effects were observed when NO 
synthesis was enhanced: the NOS cofactor tet-
rahydrobiopterin (sapropterin) and the NOS 
transcription enhancer (AVE 9488) decreased PP 
in cirrhotic animal models,40,41 nevertheless no 
benefits were observed in an RCT evaluating the 
first.42 In this same strategy, a currently ongoing 
RCT will describe the effectiveness of serelaxin, a 
drug that has been used for the treatment of acute 
heart failure due its capability to activate the 
relaxin receptor and NOS.43

The soluble guanylate cyclase (sGC) is the only 
known receptor for NO and represents its 

downstream mediator. When sGC is activated by 
NO, it induces the formation of the intermediate 
cyclic guanosine monophosphate (cGMP), which 
confers potent vasodilation. In this regard, the 
stimulation of the nonoxidized form of sGC or the 
oxidized and free-sGC form may represent novel 
approaches for activating cGMP production and 
subsequently ameliorate the vasoconstrictor envi-
ronment. In fact, a recent study using the nonoxi-
dized and free-sGC stimulator riociguat showed 
improved liver fibrosis and PP in cirrhotic ani-
mals.44 However, no studies have evaluated the 
potential of activators of the oxidized form of sGC 
for the treatment of PH. Considering that oxida-
tive stress plays a key role in cirrhosis and PH, and 
that sGC activators are able to generate cGMP 
even in these detrimental conditions,45 their use-
fulness as a therapeutic option for PH deserves fur-
ther investigation.

In addition to sGC strategies, there are other 
approaches aimed at potentiating the effects of 
cGMP by preventing its degradation by phospho-
diesterase-5 (PDE-5). Indeed, different PDE-5 
inhibitors showed lowering effects on PP in cir-
rhotic patients.46–48

Transcriptional modulators.  In addition to specific 
modulators of vasoactive molecules, other strate-
gies rely on the modulation of transcription factors 
that regulate the expression of many of these pro-
teins. For example, farnesoid X receptor (FXR) is 
a bile-acid-responsive transcription factor highly 
expressed in the liver that controls the expression 
of many genes involved in metabolic regulation, 
hepatic fibrosis, vascular homeostasis and inflam-
mation, and thus it has been considered a promis-
ing therapeutic target in CLD. Obeticholic acid 
(OCA), a semisynthetic FXR agonist, has been 
tested in preclinical models of cirrhosis showing 
beneficial effects on PH by reducing the IHVR.49 
Indeed, different ongoing clinical trials are investi-
gating its effects in advanced CLD,50–52 including 
patients with NASH cirrhosis.53,54 This drug, how-
ever, has raised some cases of overdose-related tox-
icity in patients with severe or even mild liver 
dysfunction, so its dosage needs to be carefully 
adjusted.55 In addition to OCA, new nonsteroidal 
FXR agonists have been developed to evade 
enterohepatic recirculation. These drugs (e.g. 
PX201606, GS-9674), have been tested in animals 
with CLD showing increased endothelial NOS 
expression, reduced inflammatory response and 
improved liver injury.56,57 The effects of these newly 
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formulated compounds on advanced CLD and 
PH require further investigation.

On the other hand, statins are lipid-lowering 
drugs that have shown strong hepatosinusoidal 
protective effects in preclinical models of CLD, 
ultimately leading to PP decrease.58–60 Underlying 
mechanisms of statins mostly rely on their capa-
bility to induce the expression of the transcription 
factor Kruppel-like factor 2 that leads to liver 
sinusoidal endothelial cell (LSEC) phenotype 
amelioration, HSC deactivation, and global 
improvement in hepatic injury.61–66 Encouraged 
by the preclinical results, several clinical studies 
have tested statins in PH-cirrhotic patients. 
Recent analyses have shown that statins are asso-
ciated with decreased risk of decompensation, 
death and hepatocellular carcinoma develop-
ment.67,68 Moreover, simvastatin has shown ben-
eficial effects when administered alone69 or 
combined with beta blockers.70 Future and ongo-
ing RCTs will extend our knowledge regarding 
the use of statins for the treatment of PH.71

Anticoagulants
It is widely accepted that cirrhotic patients have 
an imbalance in anti- and procoagulant factors, 
leading to both increased risk of bleedings and 
microthrombosis in the liver, which may in turn 
increase liver hypoxia and inflammation.72 
Therefore, different anticoagulants have been 
lately tested in the setting of CLD with success in 
the prevention of hepatic fibrosis.73 Indeed, the 
direct antithrombin enoxaparin has been shown 
to reduce PP and liver fibrosis in experimental 
CLD,74 confirming at the bench side its clinical 
benefits on cirrhosis decompensation and sur-
vival.75 A different anticoagulant strategy is the 
direct inhibitor of factor Xa rivaroxaban, which 
has been shown to reduce liver microthrombosis, 
HSC activation and PP in experimental models of 
cirrhosis.76 Moreover, it is currently being tested 
in RCTs on patients with cirrhosis77 or with por-
tal-vein thrombosis.78 Additional, ongoing RCTs 
will provide more data on the use of anticoagu-
lants for CLD-patients.79

Antiangiogenics
Angiogenesis is an important feature in the devel-
opment of PH, being triggered by hypoxia and 
inflammation which are present during hepatic 
fibrogenesis.80

Vascular endothelial growth factor (VEGF) is the 
main proangiogenic factor promoting neovascu-
larization in the mesentery and contributes to the 
development of increased splanchnic vasodila-
tion. Therefore, different studies have focused on 
blocking VEGF receptors (VEGFr) to decrease 
splanchnic circulation and improve PP. Initially, 
monoclonal antibodies and specific inhibitors of 
VEGFr2 were used in PH animals showing 
improvement in portosystemic collateral vessel 
formation but showing no effect on PP.81,82 
Subsequent preclinical studies investigated oral 
tyrosine kinase inhibitors that block VEGFr2, 
such as sorafenib,83,84 brivanib84,85 and 
regorafenib86 and showed improved PP and sys-
temic shunting in cirrhotic and noncirrhotic rats 
with PH. Indeed, tyrosine kinase inhibitors have 
also been shown to decrease liver fibrosis.87 
These beneficial preclinical results were con-
firmed in a small clinical trial where sorafenib 
significantly improved PH in patients with liver 
cirrhosis and hepatocellular carcinoma.88

Apart from VEGF, other molecules such as pig-
ment epithelium-derived factor (PEDF) or vasohi-
bin-1 have been shown as potent endogenous 
inhibitors of angiogenesis. In fact, overexpression 
by adenovirus of PEDF or vashoihin-1 resulted in 
decreased mesenteric angiogenesis, portosystemic 
shunting, PH and liver fibrosis.89,90 Nevertheless, 
no current RCTs are being performed following 
this approach. It is important to highlight that angi-
ogenesis is not only deleterious but also required 
for repairmen of hepatic tissue during liver fibrosis 
resolution, therefore total angiogenesis blockade 
may not be a realistic therapeutic approach.

Cell death, oxidative stress and 
inflammation

Prevention of cell death
The main factor in the progression of cirrhosis is 
chronic liver injury. This is a scenario of persis-
tent cell death (due to different etiologies), 
which leads to excessive inflammation and asso-
ciated cytotoxicity, and oxidative stress. This 
sequence of events has led to the hypothesis that 
pharmacological inhibition of cell death may 
represent a therapeutic option for the treatment 
of PH and CLD (Figure 2).

Emricasan is an orally active pan-caspase inhibitor 
that has proven promising potential in the setting 
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of CLD. Indeed, a preclinical study presented as 
a meeting abstract describes that CCl4-cirrhotic 
rats receiving emricasan displayed improved PP 
and IHVR compared with vehicle-treated rats, in 
addition to improved liver function and microcir-
culation, and these effects were accompanied by 
improved LSEC and HSC phenotype and 
reduced inflammation.91 More recently, another 
study in bile-duct-ligated (BDL) mice reported 
similar effects of this caspase inhibitor.92 At the 
bedside, emricasan did not show positive effects 
in acute-on-chronic liver failure.93 However, a 
proof-of-concept clinical study suggests that 
emricasan ameliorates PP in patients with com-
pensated cirrhosis and severe PH.94 The comple-
tion of a bigger ongoing clinical trial95 may 
confirm these promising results in the near future.

These findings are in agreement with other stud-
ies assessing the use of caspase inhibitors in 
chronic liver diseases, such as NASH (reviewed 
elsewhere96). Of note, inhibition of the apoptosis 
signal-regulating kinase 1 is another potential 
candidate strategy in CLD, as it has shown sig-
nificant results in reducing the fibrosis stage of 
NASH patients.97

Despite the exciting results, there is still contro-
versy on the role of cell-death modulation in 
CLD. Indeed, a recent study suggests that the use 
of caspase inhibitors would not avoid cell death, 
as hepatocytes may still die from necrosis.98 On 
the other hand, some vasoprotective drugs modu-
late hepatic fibrosis at least in part due to selective 
apoptosis of HSCs,65 while other studies suggest 
that treatment with low doses of an apoptotic 
agent (gliotoxin) may achieve similar effects with-
out affecting hepatocyte viability.99

Future studies will clarify the usefulness of cell-
death inhibition in a context where the injury is 
not present anymore, such as the regression of 
CLD after the removal of the hepatic injury.

Antioxidants
During liver damage, increased inflammation, 
mitochondrial damage and enzymatic alterations 
[i.e. xanthine and nicotinamide adenine dinucle-
otide phosphate (NADPH) oxidases] induce oxi-
dative stress. Antioxidants are molecules that 
compensate this oxidative stress by promoting the 
conversion of reactive oxygen species (ROS) into 
less reactive molecules, either by direct enzymatic 

activity or by transcriptional/post-transcriptional 
modulation of other enzymes. However, cirrhotic 
livers are known to produce reduced levels of 
antioxidants compared with control livers, thus 
further aggravating the increased oxidative stress 
in this setting.100,101 For this reason, several stud-
ies aimed to develop pharmacological antioxi-
dant-enhancing strategies for CLD. One of these 
is mitoquinone, a mitochondria-targeted antioxi-
dant with oral administration approved for human 
use. This drug has already proved positive effects 
in preventing oxidative damage in models of liver 
diseases such as NASH or ischemia/reperfu-
sion.102,103 In a recent study, treatment with mito-
quinone reduced PP and IHVR in two different 
preclinical models of CLD [CCl4 and thioaceta-
mide (TAA)] by reducing oxidative stress and 
fibrosis.101 Importantly, these antifibrotic effects 
were also validated in precision-cut liver slices 
from human tissue, suggesting potential applica-
bility in clinical practice. Moreover, a recent 
abstract reports similar effects of this drug in the 
BDL rat model.104

Apocynin is a natural antioxidant of vegetal origin 
which has a specific inhibitory effect on NADPH 
oxidase and thus has been studied for its antioxi-
dant properties.105–107 In this regard, a recent 
study assessed the effects of apocynin in a model 
of mild fibrosis.108 Although authors described 
amelioration of markers of liver damage, oxida-
tive stress, inflammation and fibrosis, these effects 
were not observed in a previous study using ani-
mals with advanced CLD probably due to a pro-
gressive reduction in NADPH oxidase activity 
during cirrhosis development.109 This advocates 
for the use of NADPH oxidase inhibitors during 
progression but not at advanced stages of CLD. 
Indeed, a study using a new generation of 
NADPH oxidase inhibitor demonstrated anti-
inflammatory and hepatoprotective effects in a 
preclinical model of NASH without significant 
fibrosis,110 altogether encouraging future studies 
to ascertain which would be the appropriate ther-
apeutic window for this strategy in cirrhosis.

In addition to their protective effects against oxida-
tive stress, antioxidants may also play an important 
role in ameliorating microvascular dysfunction, as 
they prevent the scavenging of NO by the superox-
ide anion (O2

−).100 In this direction, back in 2006, 
Hernández-Guerra and collegues assessed whether 
acute administration of ascorbic acid would pre-
vent the increase in HVPG associated with the 
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defective ability of the cirrhotic endothelium to 
accommodate the postprandial increase in portal 
blood flow. Indeed, patients receiving vitamin C 
displayed lower HVPG after a meal compared with 
placebo, suggesting improved microvascular func-
tion.111 Interestingly, a more recent publication 
demonstrated that consumption of dark chocolate 
had similar effects on the postprandial increase of 
HVPG.112 Since then, several studies have 
addressed the role of antioxidant therapy in the 
improvement of NO bioavailability. In this regard, 
the modulation of the activity of the antioxidant 
enzyme superoxide dismutase (SOD) has proven 
promising effects in animal models of CLD.113,114 
In a study from 2011, administration of tempol, a 
SOD analog, improved the IHVR of cirrhotic rats 
in an NO-dependent manner.114 Similarly, a more 
recent study assessed the administration of a 
recombinant form of human manganese SOD in 
two different animal models of CLD resulting in 
improved liver hemodynamics, as well as reduced 
oxidative stress and liver fibrosis.115 Resveratrol is 
an antioxidant found in the skin of grapes that acti-
vates the histone deacetylase Sirt1, which regulates 
several vasoprotective pathways leading to NO 
overexpression.116 Recent studies have reported 
hepatic antifibrotic effects of resveratrol in models 
of mild liver injury linked to its antioxidant proper-
ties117–119 while its administration to rats with 
severe PH reduced PP and hepatic fibrosis, and 
ameliorated hepatic microvascular dysfunction.120

Strategies targeting inflammation
Anti-inflammatory strategies.  Rapamycin is an 
immunosuppressor that negatively regulates the 
mammalian target of rapamycin (mTOR) com-
plexes, which play a central role in the regulation 
of many of the cellular pathways including prolif-
eration, inflammation, apoptosis and autophagy. 
In the field of CLD, rapamycin has shown the 
ability to reduce the PP in rats with PH due to its 
intrahepatic121,122 and extrahepatic effects.123,124

The Janus kinase 2 protein (JAK2) is involved in 
the toll-like receptor (TLR) signaling in response 
to lipopolysaccharide, and upregulates profibrotic 
and inflammatory genes. As commented above, 
AG490 is a specific inhibitor of JAK2 but it can 
also regulate the TLR signaling pathway. Recently, 
its potent antifibrotic and anti-inflammatory effects 
were proven in livers of BDL-cirrhotic rats,  
partially normalizing PH. Furthermore, the  
same study reported additional extrahepatic 

hemodynamic amelioration in the partial portal-
vein ligation model,26 while combination with 
NSBB achieved additive effects.27

Epoxyeicosatrienoic acids (EETs) are products of 
the arachidonic acid metabolism with anti-inflam-
matory properties.125 These molecules are further 
metabolized by the soluble epoxide hydrolase 
(sEH), thus inhibition of this enzyme represents a 
good strategy in maintaining or increasing EET 
levels. Indeed, the anti-inflammatory effects of 
the sEH inhibitor t-TUCB have been recently 
validated in steatotic livers.126 In addition to these 
effects, EETs have also been described to show 
vasoactive properties,127 thus suggesting addi-
tional potential in liver vascular diseases. Indeed, 
recent studies reported that t-TUCB treatment 
ameliorates PH in CCl4-cirrhotic rats, altogether 
improving fibrogenesis and endothelial dysfunc-
tion128,129 while additionally ameliorating extrahe-
patic circulation.130 Although inflammatory 
markers were also downregulated by this inhibi-
tor, whether the hemodynamic effects were addi-
tive or directly mediated by inflammation was not 
assessed. Despite these promising reports, there is 
some controversy regarding the role of EETs in 
cirrhosis, as another study reported opposite 
effects in the splanchnic territory.21

In addition to conventional anti-inflammatory 
pharmacological strategies, engineered nanopar-
ticles represent an alternative therapeutic option 
with targetable delivery. Cerium oxide nanoparti-
cles have been shown to behave as anti-inflamma-
tory agents, with no exception in the liver. Indeed, 
these nanoparticles prevented macrophage infil-
tration and overexpression of hepatic inflamma-
tory genes, causing a reduction in oxidative stress 
and improving PP in rats with mild PH.131

Antidiabetic drugs.  As expected from drugs aimed 
at normalizing glucose levels, antidiabetic treat-
ments usually target glucose and lipid transport, 
as well as metabolism. However, these drugs have 
also been reported to have vasoprotective effects 
associated with NO bioavailability, inflammation 
and oxidative stress.132–134 In consequence, these 
beneficial effects have been assessed in CLD. One 
such pharmacological strategy is use of liraglu-
tide. This glucagon-like peptide 1 (GLP-1) ana-
log has shown the ability to ameliorate PH and 
liver microvascular function in cirrhotic animals 
by reducing HSC activation and the levels of 
inflammatory markers independently of the 
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GLP-1 receptor.135 In this same study, the effects 
of liraglutide were validated in different human 
models in vitro, thus shortening the gap between 
the preclinical study and clinical trials. Indeed, 
liraglutide has shown antifibrotic effects also in 
NASH patients,136 thus representing a promising 
drug with high probabilities of success as a treat-
ment for PH and CLD. Similarly, the antidiabetic 
drug metformin has shown improvement in liver 
hemodynamic and fibrosis, which were accompa-
nied by a reduction in inflammation and oxidative 
stress.137 Interestingly, the observed hemody-
namic effects were complementary to the effects 
of NSBB. Lastly, fenofibrate, another antidiabetic 
drug with described positive vascular effects, also 
improved PP in cirrhotic rats in addition to 
hepatic fibrosis and microvascular function.138

An additional strategy to these drugs is the use of 
antibodies that specifically block the interaction 
between metabolic hormones and their ligands. 
Leptin, the satiety hormone, is overexpressed in 
obese people, who may suffer from leptin resist-
ance. Furthermore, this hormone has been impli-
cated in fibrosis and is highly expressed in cirrhotic 
patients, probably due to inflammation.139,140 
Interestingly, the use of a competitive antibody 
against leptin receptor proved to be effective in 
ameliorating PP and IHVR in cirrhotic rats, sug-
gesting that leptin is not only a marker in CLD but 
is also a targetable effector.141

Microbiota modulators.  Intestinal bacteria are 
known to modulate splanchnic flow and thus par-
ticipate in the PH-derived hyperdynamic syn-
drome. In addition, during cirrhosis, increased 
gut permeability allows translocation of bacteria 
or their products into the bloodstream, causing 
general and hepatic inflammation.142,143 For this 
reason, different clinical trials have assessed the 
use of antibiotics (rifaximin,144–146 norfloxacin147) 
as prophylactic intervention against general infec-
tions in decompensated cirrhotic patients, which 
overall improved their outcome.

However, recent research suggests that the compo-
sition of the microbiota population may also play a 
role in gut permeability and, interestingly, in liver 
hemodynamics. In this regard, oral administration 
of the probiotic VSL#3 (a mix of four Lactobacillus 
species) prevented the increase in the systemic lev-
els of inflammatory cytokines and vasodilators in a 
rat model of BDL cirrhosis148 and ameliorated liver 
function and pro-inflammatory markers in cirrhotic 

patients compared with the placebo group.149 
Bifidobacterium pseudocatenulatum CECT7765 sup-
plementation had similar anti-inflammatory fea-
tures. On one hand, liver or blood macrophages 
isolated from cirrhotic animals and patients (respec-
tively) switched to an anti-inflammatory M2 phe-
notype when treated in vitro with B. 
pseudocatenulatum150 while on the other hand, oral 
administration of the bifidobacteria to BDL-
cirrhotic rats improved their hepatic hemodynamic 
parameters, liver damage and markers of inflam-
mation in vivo.151

These findings suggest that not only direct admin-
istration of bacteria but also diets that modify the 
gut microbiota could have therapeutic value in 
CLD and PH. Indeed, a recent clinical trial 
reported that cohorts of healthy controls and 
patients with cirrhosis have different microbiota 
populations, that microbiota diversity negatively 
correlates with the degree of cirrhosis, and that 
cirrhotic patients with diets that ensure higher 
microbiota diversity had lower risk of hospitaliza-
tion.152 Dietary goods associated with microbiota 
diversity included fermented milk products, cof-
fee, tea, dark chocolate and vegetables, while con-
sumption of carbonated drinks (including 
caffeinated ones) was predictor of poor diversity. 
Interestingly, most of the microbiota-beneficial 
products are rich in polyphenols (antioxidants), 
thus holding a potential combined effect to that.

Strategies targeting fibrogenesis
As stated above, it is well known that chronic liver 
damage in combination with paracrine signaling 
from the activated endothelium lead to the activa-
tion of HSCs, promoting fibrogenesis.63,153

Although most of the vasoprotective strategies 
described above ultimately lead to significant ame-
lioration in fibrosis, there are a few pharmacologi-
cal approaches that directly target the process of 
fiber formation/stabilization. One of these is simtu-
zumab, a monoclonal antibody against lysyl oxi-
dase homologue 2 (LOXL2). LOXL2 is a protein 
that participates in the cross-linking of collagens 
and elastin. This protein is highly expressed in 
fibrotic livers (unlike control livers) and its inhibi-
tion with antibodies has shown positive results in 
preventing and reducing liver fibrosis in preclinical 
models.154 Despite these promising results, simtu-
zumab proved to be ineffective in a recent phase II 
RCT in NASH-cirrhotic patients,155 highlighting 
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the controversy that is often found in the transla-
tion of some therapies from the laboratory to the 
clinic.

Cell therapy
The lack of pharmacologic therapeutic options to 
ameliorate PH and cirrhosis has prompted the use 
of regenerative therapies or cell-derived interven-
tions. In 2006, Terai and colleagues performed 
the first clinical trial studying the autologous bone 
marrow cell infusion (ABMi) in decompensated 
cirrhotic patients, showing a decrease in Child-
Pugh score as well as better liver function.156 
Latterly, infusion of mesenchymal stem cells 
(MSCs) from bone marrow or from umbilical 
cord to patients with liver cirrhosis demonstrated 
amelioration in hepatic fibrosis and function with 
increased serum albumin levels and with a good 
safety profile.157 However, the last investigations 
in the field are focused on less invasive therapies 
using induced pluripotent stem cells (iPS).158 iPS 
have been proposed as a new therapeutic option to 
replace damaged hepatocytes by healthy hepato-
cyte-like cells in CLD.159 Nevertheless, hepato-
cyte-like cells induced by reprogramming methods 
remain immature without the specific hepatocyte 
characteristics such as detoxification or produc-
tion of albumin and urea.160 Along this theme, 
transplantation of human fetal hepatocytes161 was 
evaluated in patients with end-stage CLD; 
although the small population size of the study 
was an important limitation for obtaining a robust 
conclusion, model for end-stage liver disease 
(MELD) score and portosystemic encephalopathy 
episodes were ameliorated in transplanted 
patients. Even though several clinical trials evalu-
ating stem cell therapies in CLD are still ongo-
ing,162–164 none of them specifically performs 
HVPG measurements; therefore, these RCTs will 
not provide new results about the effect of stem 
cells in PH.

On the other hand, preclinical studies have evalu-
ated the effectiveness of cell-derived therapy ame-
liorating hepatic fibrosis, inflammation and liver 
hemodynamics using different sources and 
potency of stem cells in fibrotic and cirrhotic 
rodents. Specifically, human placenta-derived 
stem cells (PDSCs) are considered a promising 
therapeutic option for their proliferation and dif-
ferentiation capacities, as well as their low immu-
nogenicity potential.165 In this sense, the 
anti-inflammatory and regenerative effects of 

chorionic plate-derived MSC transplantation in 
CCl4-injured rats166 and the amelioration in fibro-
sis and cirrhosis progression in fibrotic rodents 
receiving human amniotic membrane-derived 
mesenchymal167 or epithelial stem cells168 has 
been reported. In addition, transplantation of 
human amniotic MSCs in TAA-induced cirrhotic 
mice was able to restore the hepatic function and 
improve liver fibrosis;169 importantly, this study 
suggested the PDSCs transplantation as a better 
therapeutic option in comparison with adipose 
tissue-derived MSCs.

Regarding the effects of stem cells on PH and 
hepatic microcirculation, much less is known. 
Brückner and colleagues suggested that transplan-
tation of hepatocyte-like cells in vitro differentiated 
from rat adipose tissue MSCs into CCl4-cirrhotic 
rats led to an amelioration in PH after 3 weeks of 
treatment without changes in liver dysfunction or 
fibrosis.170 However, an ongoing preclinical study 
presented as a meeting abstract has shown the ben-
eficial effects of transplantation of human amniotic 
stem cells (mesenchymal or epithelial) in CCl4-
induced cirrhotic rats with PH, improving HSC 
and LSEC phenotype, inflammation and liver 
function, resulting in an amelioration in PH and 
microvascular dysfunction.171

The promising results of cell therapy in preclini-
cal models of CLD and PH support future and 
ongoing clinical trials using this strategy.

Lifestyle and dietary interventions
The basis of most of the abovementioned strate-
gies is to improve deregulated processes in CLD 
(vasoconstriction, oxidative stress, etc.) with 
drugs or other molecules that specifically target 
these molecular pathways. Alternatively, wider 
effects on these pathological processes can also be 
achieved by modification in lifestyle; mainly diet 
and exercise.

Dietary approaches
The effects of certain diet components (dark 
chocolate, coffee/tea, fermented milk) on gut 
microbiota and its implications in CLD have been 
described above.112,152,172 In summary, consump-
tion of these products ensures a proper diversity in 
the gut microbiota while some of them also pos-
sess antioxidant properties, thus ameliorating liver 
damage and hemodynamics in CLD. In addition 
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to these, the following dietary supplementations 
may have the potential to ameliorate PH.

Caffeine intake is extended worldwide, either in the 
form of coffee, tea or carbonated drinks. 
Independently of its effects on the gut microbiota,173 
caffeine consumption (in the form of coffee) has 
been associated with reduced liver fibrosis in precir-
rhotic patients.174 Although there are no reports of 
its effects in PH in humans, prophylactic but also 
therapeutic treatment of BDL-cirrhotic rats with 
caffeine or caffeinated coffee ameliorated PP, liver 
inflammation and fibrosis, while also improving the 
extrahepatic vasculature.175,176

Taurine is an amino-sulfonic acid ubiquitously 
expressed in mammals with many pleiotropic 
effects177 and is also a component of the so-
labeled ‘energy drinks’. It has been reported that 
taurine deficiency leads to CLD in preclinical 
models,178 suggesting a protective role in cirrho-
sis. Indeed, oral taurine administration has been 
proven to ameliorate PP due to reduction in 
fibrosis and systemic vasodilation in a rat model 
of mild cirrhosis179 while more recently, a clinical 
trial in a small cohort of patients with clinically 
significant PH (HVPG >12 mmHg) also reported 
reduction in PP.180 Thus, consumption of low 
carbonated ‘energy drinks’ (which are rich in tau-
rine, and also contain caffeine) may have a posi-
tive impact in PH.

Finally, curcumin is a dietary product most com-
mon in Asian countries but extended worldwide 
that possesses anti-inflammatory, antiangiogenic 
and antiproliferative properties.181 Indeed, its 
administration to BDL-cirrhotic rats decreased 
hepatic fibrosis and ameliorated liver endothelial 
phenotype while inducing splanchnic vasocon-
striction, which led to a reduction in PP.182

Lifestyle interventions
In addition to nutritional strategies, nonsedentary 
lifestyle exerts beneficial effects on CLD compli-
cations such as PH. ‘The SportDiet study’ dem-
onstrated that moderate exercise in combination 
with a controlled diet reduced PP and body 
weight in overweight patients with compensated 
cirrhosis and PH.183 Moreover, another RCT 
evaluating the effects of exercise and diet inter-
vention in patients with cirrhosis and PH showed 
an improvement in HVPG determined before 
and postintervention.184 Moreover, the impact of 

exercise therapy on cirrhosis and its complica-
tions has been extensively studied in patients185,186 
as well as in preclinical models.187

Conclusion
The knowledge about the pathophysiology of 
CLD has improved dramatically in the last few 
years. Consequently, many preclinical studies 
reported novel treatments with promising 
improvements in PH and its complications that, 
importantly, act at different levels of the disease 
(either improving the microcirculation or the liv-
er’s response to damage). Indeed, some of these 
proposed treatments are currently being tested in 
RCTs and could become new options for the 
treatment of CLD in the near future.

However, it seems obvious that the rate of success 
of the preclinical strategies at the bedside is still far 
from optimal. In this regard, new studies on the 
mechanisms of the disease (still to be fully under-
stood) will provide new insights on novel targeta-
ble molecular pathways and metabolites. 
Nevertheless, we believe that in addition to the 
important research on drug development and effi-
cacy, it is time to start wondering why these thera-
pies fail in translation. What are the differences 
between preclinical models and current patients 
that make these therapies ineffective? Should the 
preclinical models integrate important variables 
present in humans, like comorbidities, epigenetics, 
aging, etc.? Are therapeutic windows different in 
humans? If so, could we ‘desensitize’ the human 
liver to these therapeutic windows? In our opinion, 
this second line of research could widen the cur-
rent bottleneck in the translation of pharmacologi-
cal strategies and reopen the box of failed 
therapeutic options in search of second chances.
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