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Antimicrobial resistance prediction 
and phylogenetic analysis of 
Neisseria gonorrhoeae isolates 
using the Oxford Nanopore MinION 
sequencer
Daniel Golparian1, Valentina Donà2,5, Leonor Sánchez-Busó   3, Sunniva Foerster1, 
Simon Harris   3, Andrea Endimiani2, Nicola Low4 & Magnus Unemo1

Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is common, compromising gonorrhoea 
treatment internationally. Rapid characterisation of AMR strains could ensure appropriate and 
personalised treatment, and support identification and investigation of gonorrhoea outbreaks in nearly 
real-time. Whole-genome sequencing is ideal for investigation of emergence and dissemination of 
AMR determinants, predicting AMR, in the gonococcal population and spread of AMR strains in the 
human population. The novel, rapid and revolutionary long-read sequencer MinION is a small hand-
held device that generates bacterial genomes within one day. However, accuracy of MinION reads has 
been suboptimal for many objectives and the MinION has not been evaluated for gonococci. In this first 
MinION study for gonococci, we show that MinION-derived sequences analysed with existing open-
access, web-based sequence analysis tools are not sufficiently accurate to identify key gonococcal 
AMR determinants. Nevertheless, using an in house-developed CLC Genomics Workbench including 
de novo assembly and optimised BLAST algorithms, we show that 2D ONT-derived sequences can be 
used for accurate prediction of decreased susceptibility or resistance to recommended antimicrobials 
in gonococcal isolates. We also show that the 2D ONT-derived sequences are useful for rapid 
phylogenomic-based molecular epidemiological investigations, and, in hybrid assemblies with Illumina 
sequences, for producing contiguous assemblies and finished reference genomes.

Gonorrhoea is a sexually transmitted infection caused by Neisseria gonorrhoeae (gonococcus). In 2012, the World 
Health Organization (WHO) estimated that there were 78 million new gonorrhoea cases worldwide1, which can 
cause serious reproductive tract complications2–4. Resistance to ceftriaxone and azithromycin in N. gonorrhoeae 
threatens the recommended dual antimicrobial therapy (last remaining option for empiric therapy), mainly cef-
triaxone 250–500 mg plus azithromycin 1–2 g, and no new therapeutic antimicrobials are available4–15. WHO 
included N. gonorrhoeae in its first list of AMR “priority pathogens” in 20178,16. Timely detection and surveillance 
of AMR gonococcal strains, their AMR determinants and their emergence and dissemination in the populations 
globally are crucial5–8,11,17–19.

Next generation sequencing (NGS) is ideal for the elucidation of the molecular determinants of AMR, their 
dissemination throughout the gonococcal population, and the emergence and dissemination of AMR strains 
in the human population, nationally and internationally20,21. Third-generation sequencing (TGS)22 has benefits 
such as increased read length, reduction of sequencing time and reduction of sequencing bias introduced by PCR 
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amplification steps23. Individual DNA molecules can also be sequenced by monitoring their transfer through var-
ious types of pores24,25, which can potentially result in very long and unbiased sequence reads, because no ampli-
fication or chemical reactions are used for the sequencing26. Oxford Nanopore Technologies (ONT) (Oxford, UK) 
have introduced this approach with their single-molecule nanopore genome sequencing device MinION, a TGS 
platform with unique technology that was commercialized in mid-201526–30. When both strands are sequenced, 
a consensus sequence of the molecule can be produced; these consensus reads are termed two-directional reads 
(1D2 or 2D ONT reads) and generally have higher accuracy than reads from only a single pass of the molecule 
(1D ONT reads). The MinION provides several new advantages: small size (10 × 3 × 2 cm), portability, speed, 
low cost, and direct connection to a laptop through a USB 3.0 interface; the library construction involves simpli-
fied methods; no amplification step is required, and data acquisition and analysis occur in real time. The MinION 
is promising for microbiological applications including describing the microbiome31, rapid diagnostics32, trans-
mission and surveillance33,34, de novo assemblies35–37, and microbial AMR profiling38,39. However, the high error 
rate for the MinION sequencer27,28 has limited its ability to compete with existing sequencing technologies and 
the MinION has not been previously evaluated for gonococci.

We evaluated the performance characteristics, ideal sequence analysis (tools and workflow for taxon-
omy, assembly, assembly improvement (“polishing”) and mapping), phylogenomic analysis, and prediction of 
decreased susceptibility or resistance to recommended therapeutic antimicrobials in N. gonorrhoeae isolates using 
the Oxford Nanopore MinION sequencer. We sequenced the 2016 WHO gonococcal reference genomes/strains40 
and clinical gonococcal isolates, and evaluated the performance of ONT assemblies and hybrid assemblies includ-
ing both ONT and Illumina reads. The assemblies were evaluated against the PacBio RS II-sequenced 2016 WHO 
gonococcal reference genomes (Bioproject PRJEB14020)40 for sequence variation and to assess whether the 
assemblies were of sufficient quality for characterisation of AMR determinants and phylogenomic-based molec-
ular epidemiology of gonococci.

Methods
N. gonorrhoeae isolates, culture, antimicrobial susceptibility testing and DNA isolation.  
Twenty-eight gonococcal isolates, including the previously PacBio-sequenced 2016 WHO reference strains 
(n = 14)40,41 and 14 clinical isolates, were examined. The clinical isolates were selected from 140 isolates from 
the RaDAR-Go project, Switzerland, in 2015-201642. Selection was based on having decreased susceptibility or 
resistance to ceftriaxone and/or cefixime, resistance to azithromycin or ciprofloxacin, and to represent differ-
ent AMR phenotypes. All clinical isolates were cultured as part of routine diagnostics, and no human clinical 
samples or information enabling patient identification was available for this study, so ethical approval was not 
required. All strains were subsequently cultivated and preserved as described43. We determined minimum inhib-
itory concentrations (MICs) of ceftriaxone, cefixime, azithromycin, spectinomycin, ciprofloxacin, tetracycline, 
and benzylpenicillin using the Etest (bioMérieux). Resistance breakpoints from the European Committee on 
Antimicrobial Susceptibility Testing (EUCAST; www.eucast.org/clinical_breakpoints/) were applied. Nitrocefin 
test (Thermo Fisher Scientific, Wilmington, DE, USA) was used to detect β-lactamase production. Genomic 
DNA was isolated using the Wizard Genomic DNA Purification Kit (Promega Corporation, Madison, WI, USA). 
Isolated DNA was quality controlled using fluorometric quantification (Qubit; Thermo Fisher Scientific) and 
electrophoresis (Tapestation; Agilent, Santa Clara, CA, USA).

Oxford Nanopore Technologies library preparation and MinION sequencing.  Three µg of 
genomic DNA was sheared to an average fragment length of 8 kb with g-TUBES (Covaris, Woburn, WA, USA). 
Sequencing libraries were prepared according to the 2D library preparation protocol with the SQK-LSK208 2D 
ligation kit (Oxford Nanopore Technologies), including the DNA repair step with the NEBNext FFPE DNA repair 
module (New England Biolabs, Ipswich, MA, USA). The sequencing libraries were purified using MyOne C1 
beads (Thermo Fisher Scientific), and 6 μl of sequencing library were loaded onto a R9.4 SpotON flow cell and 
sequenced with the MinION Mk 1B sequencing device (Oxford Nanopore Technologies) for 24 hours, includ-
ing a top-up with additional 6 µl of DNA library after the first 6 hours of the sequencing run. Base-calling was 
performed using the Metrichor cloud software and all ONT reads (quality passed 1D and 2D) as well as only 2D 
ONT reads were then extracted using Poretools44 for downstream analysis.

Illumina library preparation and sequencing.  The sequencing libraries for all clinical isolates (n = 14) 
were prepared using Nextera XT DNA library preparation kit (Illumina, San Diego, CA, USA) and sequenced 
on the MiSeq Platform (Illumina), according to manufacturer’s instructions, resulting in an average of 967,369 
reads with an average read length of 257 bp after quality control and average coverage of 86.5× per base. The raw 
sequence files for the 2016 WHO gonococcal reference strains40 were obtained from the European Nucleotide 
Archive (ENA; Bioproject PRJEB14020). The 2D ONT reads and Illumina reads were species confirmed using the 
online tool One Codex (www.onecodex.com). All sequenced reads are available from the European Nucleotide 
Archive with the following accession number: PRJEB25703.

Assembly and assessment.  To identify the ideal tool for obtaining a high quality de novo assembly using 
only ONT reads, we evaluated Canu (v1.6)45, Miniasm (vr122)46, PBcR (v8.3)47, and SMARTdenovo (availa-
ble from https://github.com/ruanjue/smartdenovo) for assembly of all ONT reads (1D and 2D) and only the 
extracted 2D ONT reads. Canu was executed with default parameters including error correction and –genome-
size 2.2M. Miniasm was run with default parameters. PBcR was executed with the following parameters: 
-length 500, -partitions 200 and –genomeSize = 2200000. SMARTdenovo was run with default parameters 
and –c 1 to run consensus step. Subsequently, hybridSPAdes (v3.11.1)48 and MaSuRCA (v3.2.2)49 were used 
separately to produce hybrid assemblies by including paired-end Illumina reads in the assembly process. 

http://www.eucast.org/clinical_breakpoints/
http://www.onecodex.com
https://github.com/ruanjue/smartdenovo
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hybridSPAdes was executed with the careful option and –nanopore command. MaSuRCA was performed 
using the following parameters: GRAPH_KMER_SIZE = auto, USE_LINKING_MATES = 0, LIMIT_JUMP_
COVERAGE = 60, CA_PARAMETERS = cgwErrorRate = 0.25, NUM_THREADS = 64, JF_SIZE = 23000000, 
DO_HOMOPOLYMER_TRIM = 0.

The assemblies obtained from Miniasm using 2D ONT reads were error corrected twice using Racon (v1.3.0)50 
and polished with the signal-level consensus software, nanopolish (v0.7.1) (available from: https://github.com/jts/
nanopolish). Briefly, 2D ONT reads were mapped as all-vs-all read self-mapping using Minimap with the follow-
ing options: -S, –w 5, -L 100, -m 0. Subsequently, Miniasm was executed with default options. The 2D ONT reads 
were mapped back to the assembly with Minimap (default parameters) and corrected with Racon with default 
parameters, and this was repeated one time. Burrows-Wheeler Aligner (v0.7.17-r1188) (BWA-MEM)51 with the 
–x ont2d option was then used to map all reads back to the Racon-corrected assembly to be used as the input 
for Nanopolish. Nanopolish was run with default parameters and --min-candidate-frequency 0.1. Furthermore, 
Canu assemblies were error corrected with Pilon (v1.22)52, Circlator (v1.5.3)53 and Nanopolish. All error correc-
tions for the Canu assemblies with the above-mentioned tools were performed with default parameters.

Finally, to evaluate the accuracy of our assemblies, the ONT (corrected and non-corrected) and hybrid assem-
blies for the WHO reference strains were compared with the finished and closed 2016 WHO gonococcal reference 
genomes40. All 2D ONT reads were aligned to the genome sequence of the respective WHO reference strain, to be 
able to easily and directly determine the quality and accuracy using BWA-MEM (for mapping and phylogenetics) 
and Quast (v4.6.0) (for de novo assemblies). The top three assessed ONT de novo assemblies and the best hybrid 
assemblies were subjects for downstream analysis. Coding sequences (CDS) were annotated using Prokka (v1.12) 
on the chosen assemblies54.

Multiple-sequence alignment and phylogenetics.  All Illumina and 2D ONT reads were mapped to 
the chromosome of FA1090 (GenBank: NC_002946.2) separately using BWA-MEM, the 2D ONT reads were 
specified using the nanopore option (-x –ont2d). All consensus sequences were merged into a multiple sequence 
alignment, single-nucleotide polymorphisms (SNPs) were called, and a maximum-likelihood phylogenetic tree 
based on SNPs was obtained using RAxML (version 8.2.8)55. This was also performed on Illumina sequences and 
2D ONT sequences separately and the phylogeny was compared in a tanglegram.

Antimicrobial resistance determinants.  To detect relevant gonococcal AMR determinants as quick and 
straight-forwardly as possible for future routine use of MinION sequencing, we evaluated several open-access 
and user-friendly web-based sequence analysis tools. The top three assessed ONT assemblies and the best 
hybrid assembly were examined using the Whole Genome Sequence Analysis (WGSA; www.wgsa.net)21 and 
the PubMLST N. gonorrhoeae AMR (still in development) scheme (www.pubmlst.org)56. The focus was on AMR 
determinants for ceftriaxone and cefixime (penA, mtrR, penB), azithromycin (23S rDNA, mtrR), ciprofloxacin 
(gyrA), tetracycline (rpsJ, tet(M) (plasmid-mediated resistance)), and benzylpenicillin (penA, ponA, mtrR, penB, 
blaTEM (plasmid-mediated resistance)). We only detected the AMR determinants on the plasmids and no addi-
tional downstream analysis was performed on the plasmids.

Furthermore, the 2D ONT reads were examined in our in house-customised CLC Genomics Workbench 
workflow to characterise the AMR determinants based on alleles in the N. gonorrhoeae Sequence Typing for 
Antimicrobial Resistance (NG-STAR) database (www.ngstar.canada.ca)57. The NG-STAR database lacked the 
possibility to run contig assemblies at the time of this study. The workflow employed de novo assembly with-
out mapping and used BLAST with optimised algorithms for the identification, with the highest (%) hit being 
reported58.

The best performing tool of assembly and subsequent detection of AMR determinants was subsequently used 
to characterise the clinical isolates (n = 14).

Results
Overview of sequenced data.  The 14 2016 WHO reference strains40 and 14 clinical isolates were 
sequenced using the ONT MinION platform. In these MinION runs, we obtained between 105 Mb and 922 Mb 
of 2D sequences with longest reads ranging from 26.0 to 58.6 kb and an average read length of 4.6–6.4 kb. The 
number of passed 2D ONT reads ranged from 17,500 to 147,700 with an average of 33% of all reads. For evalua-
tion of the ONT sequences and further downstream analysis (taxonomy, hybrid assemblies and phylogeny), we 
used the 2 × 100 bp Illumina HiSeq paired-end reads with >250 depth for each WHO reference genome40 and 
2 × 300 bp Illumina MiSeq paired-end reads with 80–100× depth for each clinical isolate. Taxonomy was defined 
for all reads using One Codex and 97–99% and 100% of all reads were classified as N. gonorrhoeae using ONT 
(Fig. 1) and Illumina MiSeq, respectively.

Comparison of MinION de novo assemblies with the 2016 WHO gonococcal reference genomes.  
Assemblies were compared and selected based on the Quast results when comparing to the WHO reference 
genomes40 using the following criteria: lowest number of mismatches, misassemblies and number of contigs, and 
highest fraction of genome coverage (Supplementary Table). We selected and analysed ONT assemblies produced 
by Canu using only 2D ONT reads and polished with Nanopolish, Miniasm twice error corrected with Racon 
and polished with Nanopolish, and SMARTdenovo. Furthermore, the MaSuRCA hybrid assemblies (based on 
the ONT plus Illumina reads) were selected for downstream analysis (Table 1). Generally, ONT assemblies based 
on only the 2D ONT reads had a higher accuracy compared with assemblies using all reads (1D and 2D ONT 
reads) with fewer mismatches but very modest to no change in contiguity of the assemblies and fraction of the 
WHO reference genome covered. All error corrections were made using only 2D ONT reads and statistics such as 
mismatches and indels improved. Nanopolish had the best performance of the tested error correction tools and 

https://github.com/jts/nanopolish
https://github.com/jts/nanopolish
http://www.wgsa.net
http://www.pubmlst.org
http://www.ngstar.canada.ca
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reduced the number of indels by up to 13 times. Assemblies produced with hybridSPAdes were more affected by 
the lower numbers of ONT reads, i.e. when using only 2D ONT reads. The hybrid assembly using SPAdes had 
less contiguity (up to 5.5 times more contigs) with higher numbers of mismatches (up to 4.4 more mismatches 
per 100 kb) and introductions of misassemblies (Supplementary Table). In general, the 2D ONT reads were used 
more efficiently by MaSuRCA for hybrid assembly, with overall improved statistics, especially for contiguity and 
mismatches.

Although the length of the assemblies based on the ONT sequences did not largely differ from the WHO ref-
erence genomes, the number of CDS was vastly different. The 2016 WHO gonococcal reference genomes include 
2295–2450 CDS40. However, 3210–4712 CDS were identified using Prokka in our selected ONT assemblies. In 
contrast, Prokka identified 2228–2400 CDS in the MaSuRCA hybrid assemblies, which was more in line with the 
published WHO reference genomes (Table 1).

Error corrections using Pilon and Circlator, which is not designed for error correction, did not substantially 
improve the assemblies (Supplementary Table) and the assemblies error corrected with these tools were not used 
in the downstream analysis.

MinION for molecular epidemiology, including rapid outbreak investigations.  The Illumina 
reads mapped to the PacBio-produced WHO reference genomes (n = 14)40 with no SNPs detected except for 
WHO M (one SNP) and a range of 93.3% to 96.4% of the reads mapped to the respective PacBio reference 
genome. The ONT reads mapped with 2–58 SNPs per genome sequence and 95.2% to 98.3% of the reads mapped. 
By executing BWA-MEM with the nanopore –x ont2d option, no SNPs between the ONT reads and the respec-
tive reference genomes were detected, but we found variation in the number of 2D ONT reads and percentage 
mapped to the FA1090 reference genome (Fig. 2). Therefore, the BWA-MEM nanopore option was used when 
mapping all 2D ONT reads to the FA1090 reference genome for the phylogenetic analysis (Figs 3 and 4). By cre-
ating the phylogeny with the ONT-produced genomes (n = 28) and Illumina MiSeq genomes (n = 28) separately, 
we showed that the ONT sequenced libraries produced a phylogenetic tree topology that was comparable with 
the one using the Illumina dataset (Fig. 4). The main difference in the tree topology was that WHO G and WHO 
N were closer to the root when Illumina sequences were used for the phylogeny. Moreover, all identical isolates 
separately sequenced with ONT and Illumina clustered together, except for some (n = 7) of the clinical isolates 
where the Illumina sequences were more closely related. In four of these cases (11 cervix (C)/12 rectum (R) and 
13 (R)/14 urethra (U)), the isolates were from the same patients but from different anatomical sites. For three 
isolates (5, 6 and 7), the Illumina sequences were also more closely related but all of the separately sequenced 
datasets were still on the same branch showing that these isolates were very similar (Fig. 3).

MinION for detection of AMR determinants.  To investigate the four final de novo assemblies using 
Canu (polished), Miniasm (polished), SMARTdenovo, and MaSuRCA (Illumina hybrid) for detection of AMR 
determinants in the 2016 WHO gonococcal reference genomes40, we used the WGSA (www.wgsa.net)21 and 
PubMLST (www.pubmlst.org).

WGSA is an easy-to-use web interface where you drag-and-drop the assemblies into the web browser and the 
characterisation is done in minutes21. We used this interface for all chosen assemblies (n = 112) and the analysis 
of AMR determinants took 15 minutes. We observed good concordance overall with the verified AMR determi-
nants in the reference genomes (Table 2), with the exception of the 23S rDNA macrolide resistance determinant 
C2611T, which was incorrectly identified in the Canu (polished) and Miniasm (polished) assemblies. No ONT 
assembly was able to correctly characterise penA in WHO W and none, including the MaSuRCA hybrid assembly, 

Figure 1.  Readcount for the MinION (Oxford Nanopore Technologies (ONT)) dataset and read taxonomy 
classification of 2D ONT reads, when sequencing the 2016 WHO Neisseria gonorrhoeae reference strains 
(n = 14)40,41 and 14 clinical N. gonorrhoeae isolates. Percentage within each bar represents the proportion of 
reads classified as N. gonorrhoeae. The number above each bar represents the total number of reads that were 
classified.

http://www.wgsa.net
http://www.pubmlst.org
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was able to correctly characterise penA in WHO K (Table 2). The characterisation of plasmid-mediated AMR 
determinants was inaccurate in all four chosen assemblies for the detection of tet(M). Also, the chosen assemblies 
failed to detect blaTEM in WHO M, WHO O and WHO V and incorrectly reported presence of blaTEM in WHO G 
in the Miniasm (polished), SMARTdenovo and MaSuRCA assemblies (Table 3). Out of the 2D ONT assemblies, 
the SMARTdenovo assembly performed the best.

We also used the PubMLST database, which is another easy-to-use web-based tool, that can mine assem-
bly data for various purposes. The database uses assemblies as input and delivers results in few minutes. The 
PubMLST database (www.pubmlst.org), using 2D ONT assemblies, was only able to characterise the mtrR AMR 
determinant and this was only done in the Canu assemblies. However, using the MaSuRCA hybrid assembly 
PubMLST had 100% concordance with the published reference genomes for detection of penA, mtrR, penB, ponA, 
23S rDNA, gyrA, and tet(M). PubMLST does not include rpsJ in its gonococcal AMR characterisation module and 
also failed to detect the blaTEM gene in WHO M and WHO N (Table 3).

The NG-STAR database57, included in the WHO CC in house-customised CLC Genomics Workbench, gave 
100% concordance for the presence of all AMR determinants characterised in NG-STAR57 with the reference 
genomes (Table 2). All the plasmid-mediated AMR determinants (Table 3) and the AMR determinants penB, 16S 

WHO F WHO G WHO K WHO  L WHO M WHO  N WHO O WHO P WHO U WHO V WHO W WHO X WHO Y WHO Z

Canu45 +  
Nanopolish

Genome  
fraction  
(%)

98.96 99.99 100.00 99.97 99.59 100.00 99.99 99.96 99.81 100.00 89.93 100.00 100.00 99.48

Contigs 1 5 3 3 2 3 3 1 1 1 1 1 1 1

Largest  
contig (bp) 2266147 1611568 1415719 2166845 2178610 2182677 2178602 2170535 2244376 2231681 1997317 2190700 2234645 2222403

Mismatches 
/100 kb 301.10 205.07 194.76 278.69 226.92 146.03 258.56 266.96 186.77 113.13 277.04 190.09 268.69 196.64

Indels 
/100 kb 309.39 412.92 182.73 261.07 207.51 208.12 255.61 257.39 158.88 92.15 239.01 191.75 320.37 265.95

Annotated  
CDS 3893 4172 3632 3783 3717 3898 3770 3561 3726 3639 3210 3543 3863 3850

Miniasm46 +  
Racon50 +  
Nanopolish

Genome  
fraction  
(%)

99.48 99.96 100.00 100.00 100.00 95.67 99.99 99.89 100.00 99.99 99.97 100.00 99.99 98.22

Contigs 7 6 6 9 7 6 4 7 6 3 7 1 1 71

Largest  
contig (bp) 761198 744021 1060644 1288971 938255 2063596 2168124 1621005 1775729 2220894 1171322 2171999 2229595 1847314

Mismatches 
/100 kb 249.03 262.03 161.07 291.29 107.47 310.14 290.36 198.44 229.38 265.48 119.6 256 340.97 237.81

Indels 
/100 kb 275.87 616.64 394.5 448.49 120.41 497.18 393.58 495.94 276.87 327.2 140.89 255.68 358.28 238.45

Annotated  
CDS 3997 4485 4321 4276 3789 4240 3999 4418 4146 3848 3967 3515 3969 4373

SMARTdenovo

Genome  
fraction  
(%)

99.02 100.00 100.00 100.00 100.00 99.98 100.00 100.00 99.62 100.00 100.00 100.00 100.00 100.00

Contigs 2 2 2 2 3 3 3 1 15 1 2 1 1 1

Largest  
contig (bp) 1749604 2152447 1769445 2167238 2182509 2162509 2160811 2167730 1026600 2213205 2213608 2163199 2210497 2211396

Mismatches 
/100 kb 219.03 111.24 97.38 124.36 179.05 202.09 173.35 114.91 224.47 26.65 226.22 175.3 246.44 237.6

Indels 
/100 kb 680.4 822.11 670.05 690.99 654.08 686.08 662.68 669.96 657.5 641.03 659.5 639.12 817.77 735.46

Annotated  
CDS 4602 4470 4388 4523 4512 4614 4526 4372 4712 4378 4301 4342 4553 4461

MaSuRCA49

Genome  
fraction 
(%)

99.46 99.99 99.91 99.99 99.97 99.99 99.99 99.99 100.00 99.99 99.99 99.99 99.99 99.95

Contigs 1 3 3 2 5 3 5 3 2 7 8 6 4 1

Largest  
contig (bp) 2279985 2176816 2128117 2190405 2189696 2188414 2197012 2204260 2258223 2236154 2238072 2171685 2248815 2255505

Mismatches 
/100 kb 1.89 0.74 2.54 3.97 1.38 2.12 2.31 2.48 2.55 0.14 0.95 2.9 0.45 3.68

Indels 
/100 kb 2.06 1.02 1.71 1.38 1.01 1.66 1.71 1.89 1.61 1.35 2.43 1.98 0.99 1.88

Annotated  
CDS 2304 2229 2228 2261 2307 2264 2306 2241 2312 2362 2400 2230 2333 2259

Table 1.  Statistics for the three chosen MinION (Oxford Nanopore Technologies (ONT)) 2D-only de novo 
assemblies and the MinION 2D ONT-Illumina hybrid assembly, when sequencing the 2016 WHO Neisseria 
gonorrhoeae reference strains (n = 14)40,41. CDS, coding sequence.

http://www.pubmlst.org


www.nature.com/scientificreports/

6SCIeNTIFIC REPOrTS |         (2018) 8:17596  | DOI:10.1038/s41598-018-35750-4

rDNA, and parC were also correctly characterised. The customised CLC Genomics Workbench was therefore 
used to characterise the AMR determinants in the clinical isolates using only the 2D ONT reads.

In house-customised CLC Genomics Workbench for characterisation of AMR determinants in 
clinical gonococcal isolates.  The 14 isolates expressed decreased susceptibility (MIC ≥ 0.032 mg/L)59 or 
resistance to ceftriaxone (11/14) and cefixime (11/14), azithromycin (3/14), and ciprofloxacin (13/14) (Table 4). 
No isolate displayed spectinomycin resistance or produced β-lactamase. The in house-customised CLC Genomics 
Workbench including the NG-STAR database57 correctly characterised all AMR determinants in the isolates 

Figure 2.  Overview of the number of MinION (Oxford Nanopore Technologies (ONT)) 2D ONT reads and the 
mapability of the reads to the genome of the Neisseria gonorrhoeae reference strain FA1090, when sequencing 
the 2016 WHO N. gonorrhoeae reference strains (n = 14)40,41 and 14 clinical N. gonorrhoeae isolates.

Figure 3.  Phylogenetic tree of the genome sequences of the 2016 WHO Neisseria gonorrhoeae reference strains 
(n = 14)40,41 and clinical gonococcal isolates (n = 14) sequenced with Illumina MiSeq and MinION (Oxford 
Nanopore Technologies (ONT)). The tree uses the genome of the N. gonorrhoeae reference strain FA1090 
as reference (shown with black bar). The platform used, number of reads, average read length, and number 
of single nucleotide polymorphisms (SNPs) are displayed as colored bars next to each node in the tree. The 
numbers inside the SNP-bars is the pairwise distance between the Illumina and 2D ONT sequences.
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using only the 2D ONT reads and found 12, 1, and 13 of the 14 isolates carrying AMR mutations in penA (cefix-
ime and ceftriaxone resistance determinant), 23S rDNA (azithromycin resistance determinant), and gyrA (cipro-
floxacin resistance determinant), respectively. Twelve of the 14 isolates also harboured parC resistance mutations, 
which contribute to the high MICs in isolates with high-level ciprofloxacin resistance. Specific mutations in mtrR, 
resulting in an over-expression of the MtrCDE efflux pump, and porB1b (penB AMR determinant), causing a 
decreased influx of antimicrobials through PorB, were identified in 12 of the 14 isolates. No 16S rDNA resistance 
mutations (spectinomycin resistance determinant) or plasmid-mediated AMR determinants (high-level resist-
ance to benzylpenicillin and tetracycline) were detected. Resistance mutation in rpsJ (decreased susceptibility/
resistance to tetracycline) was found in all isolates. There was 100% concordance between the AMR determinants 
detected using the 2D ONT reads only and Illumina reads. Consequently, resistance or decreased susceptibility 
to extended-spectrum cephalosporins, azithromycin, spectinomycin, ciprofloxacin, tetracycline, and benzylpen-
icillin could be accurately predicted using solely 2D ONT reads (Table 4).

Discussion
In the present study, we show that gonococcal genomes can be de novo assembled with high accuracy and con-
tiguity running assemblies with MinION 2D ONT reads in combination with Illumina reads using MaSuRCA. 
These assemblies varied from one to eight contigs and could be further investigated using tools like Circlator53 to 
obtain circular and finished gonococcal genomes. Furthermore, it is possible to obtain accurate de novo assem-
blies for AMR determinant detection by initially performing Illumina-based correction of individual ONT reads 
and subsequently using the reads for de novo assembly. It was also recently shown that complete hybrid genome 
assembly for gonococcal isolates can be obtained by combining short-read (Illumina) and long-read (ONT) 
sequence data14. However, this strategy makes the ONT platform dependent on additional Illumina sequencing. 
Nevertheless, this is another approach for producing accurate finished genomes and, accordingly, an alternative 
to PacBio sequencing of microbial reference genomes.

When relying only on the ONT data, the assemblies contained high numbers of mismatches (27–607 mis-
matches per 100 kb) and indels (641–1125 indels per 100 kb), using even the best ONT assemblies obtained using 
SMARTdenovo, Canu, and Miniasm with 2D ONT reads. There are several possible reasons for the high and 
incorrect number of CDSs in the ONT assemblies using Prokka, including sequencing artefacts, homopolymers 
and overall high error rate (SNPs, insertions and deletions) in the 2D ONT reads causing the assemblies to con-
tain incorrect internal stop codons and false pseudogenes. Generally, the 2D ONT reads generated more accurate 
assemblies than the 1D ONT reads and were used in the majority of our downstream analysis. We aimed to 
obtain highly accurate de novo assemblies to be able to rapidly identify relevant gonococcal AMR determinants to 
predict AMR, using only user-friendly and rapid online sequence analysis tools such as WGSA (www.wgsa.net)21 
and PubMLST (www.pubmlst.org). Using these online tools, the characterisation of AMR determinants was gen-
erally inaccurate using ONT assemblies and, as expected, highly accurate with hybrid assemblies. However, the 
in house-customised CLC Genomics Workbench workflow, including the NG-STAR database57, provided 100% 
concordance with the AMR determinants of the PacBio sequenced 2016 WHO gonococcal reference genomes40 

Figure 4.  Tanglegram to compare the phylogenetic networks based on sequencing of the 2016 WHO Neisseria 
gonorrhoeae reference strains (n = 14)40,41 and clinical gonococcal isolates (n = 14) using Illumina technology 
and Oxford Nanopore technologies (ONT).

http://www.wgsa.net
http://www.pubmlst.org
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using only 2D ONT reads. We can also extract additional AMR determinants and in general genes of interest that 
are not included in the online tools, because our AMR database is fully customisable. The software workflow is 
based on extraction of the genes of interest in the customised database from a de novo assembly using BLAST 
algorithms optimised for each AMR determinant and reporting the highest hit, i.e. not only the 100% hit, in also 
genes with premature stop codons. This is essential because the ONT de novo assemblies are prone to errors. The 
main limitations of any CLC Genomics Workbench are that it is commercial (not an open-source online tool) 
and it has fairly high system requirements (16–32 GB RAM). Nevertheless, it has a simple general user interface 
for users who are not familiar with command line bioinformatics and is available to all widely used operating sys-
tems. Hopefully, open-source tools and public databases that can handle error-prone assemblies will be inspired 
by this approach and incorporate e.g. NG-STAR data57 rendering costly software obsolete. NG-STAR can cur-
rently not use genome assemblies as input for determining the AMR profiles, which limits its possibilities when 
performing WGS.

WHO F WHO G
WHO 
K

WHO 
L

WHO 
M WHO N

WHO 
O WHO P WHO U

WHO 
V

WHO 
W

WHO 
X

WHO 
Y WHO Z

Incorrect 
calls

wgsa.
net

Canu45 +  
Nanopolish

penA WT WT WT A501V WT WT WT WT WT WT WT Mosaic Mosaic,  
A501P Mosaic 2

mtrR (A-deletion/
G45D) No No Yes Yes Yes No No No No Yes No Yes Yes No 3

penB (G101, A102) WT, WT WT, WT K, D K, D K, D WT, WT K, D WT, D WT, WT K, D K, D K, D K, N K, D 0

23S rDNA C2611T WT WT WT WT WT WT C2611T C261T A2059G WT C2611T C2611T C2611T 5

gyrA (S91F) No Yes Yes Yes Yes Yes No No No Yes Yes Yes Yes Yes 0

ponA (L421P) No Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes 0

rpsJ (V57M) No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 0

Miniasm46 +  
Racon50 +  
Nanopolish

penA WT WT WT A501V WT WT WT WT WT WT WT Mosaic Mosaic,  
A501P Mosaic 2

mtrR (A-deletion/
G45D) No No Yes Yes Yes No No No No Yes Yes Yes Yes No 2

penB (G101,A102) WT, WT WT, WT K, D K, D K, D WT, WT K, D WT, D WT, WT K, D K, D K, D K, N K, D 0

23S rDNA C2611T WT WT WT C2611T WT WT WT C2611T A2059G WT WT WT WT 2

gyrA (S91F) No Yes Yes Yes Yes Yes No No No Yes Yes Yes Yes Yes 0

ponA (L421P) No Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes 0

rpsJ (V57M) No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 0

SMART 
denovo

penA WT WT WT A501V WT WT WT WT WT WT WT Mosaic Mosaic,  
A501P Mosaic 2

mtrR (A-deletion/
G45D) No No Yes Yes Yes No No No No No No No No No 6

penB (G101,A102) WT, WT WT, WT K, D K, D K, D WT, WT K, D WT, D WT, WT K, D K, D K, D K, N K, D 0

23S rDNA WT WT WT WT WT WT WT WT C261T A2059G WT WT WT WT 0

gyrA (S91F) No Yes Yes Yes Yes Yes No No No Yes Yes Yes Yes Yes 0

ponA (L421P) No Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes 0

rpsJ (V57M) No No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 0

MaSuRCA49

penA WT WT WT A501V WT WT WT WT WT WT WT Mosaic Mosaic,  
A501P Mosaic 2

mtrR (A-deletion/
G45D) No Yes Yes Yes Yes No Yes No No Yes Yes Yes Yes No 0

penB (G101,A102) WT, WT WT, WT K, D K, D K, D WT, WT K, D WT, D WT, WT K, D K, D K, D K, N K, D 0

23S rDNA WT WT WT WT WT WT WT WT C2611T A2059G WT WT WT WT 0

gyrA (S91F) No Yes Yes Yes Yes Yes No No No Yes Yes Yes Yes Yes 0

ponA (L421P) No Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes 0

rpsJ (V57M) No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 0

In house- 
customised  
CLC Genomics  
Workbench

penA WT WT Mosaic A501V WT WT WT WT WT WT Mosaic Mosaic Mosaic,  
A501P Mosaic 0

mtrR (A-deletion/
G45D) No Yes Yes Yes Yes No Yes No No Yes Yes Yes Yes No 0

penB (G101,A102) WT, WT WT, WT K, D K, D K, D WT, WT K, D WT, D WT, WT K, D K, D K, D K, N K, D 0

23S rDNA WT WT WT WT WT WT WT WT C2611T A2059G WT WT WT WT 0

gyrA (S91F) No Yes Yes Yes Yes Yes No No No Yes Yes Yes Yes Yes 0

ponA (L421P) No Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes 0

rpsJ (V57M) No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 0

Table 2.  Characterisation of chromosomal antimicrobial resistance (AMR) determinants in the 2016 WHO 
Neisseria gonorrhoeae reference strains (n = 14)40,41 using Whole Genome Sequence Analysis (WGSA; www.wgsa.
net)21 and three MinION 2D ONT-only assemblies, MinION 2D ONT-Illumina hybrid assembly and an in house-
customised CLC Genomics Workbench, including NG-STAR57 and a customised database for AMR determinant 
detection. The discrepant results from the published reference genomes are highlighted in bold letters.

http://www.wgsa.net
http://www.wgsa.net
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Easy and rapid genome sequencing, using platforms such as the ONT MinION, in combination with algo-
rithms that can appropriately predict AMR profiles using only genetic data could be very valuable in future sur-
veillance of gonococcal AMR and spread of AMR gonococcal strains, nationally and internationally. Briefly, using 

WHO 
F

WHO 
G

WHO 
K

WHO 
L

WHO 
M

WHO 
N

WHO 
O

WHO 
P

WHO 
U

WHO 
V

WHO 
W

WHO 
X

WHO 
Y

WHO 
Z

Incorrect 
calls

wgsa.
net

Canu45 +  
Nanopolish

blaTEM No No No No No Yes No No No No No No No No 3

tet(M) No No No No No No No No No No No No No No 2

Miniasm46 +  
Racon50 +  
Nanopolish

blaTEM No Yes No No No Yes No No No No No No No No 4

tet(M) No No No No No No No No No No No No No No 2

SMARTdenovo
blaTEM No Yes No No No Yes No No No No No No No No 4

tet(M) No No No No No No No No No No No No No No 2

MaSuRCA49
blaTEM No Yes No No No Yes No No No No No No No No 4

tet(M) No No No No No No No No No No No No No No 2

In house-customised 
CLC Genomics 
Workbench

blaTEM No No No No Yes Yes Yes No No Yes No No No No 0

tet(M) No Yes No No No Yes No No No No No No No No 0

Table 3.  Detection of plasmid-mediated antimicrobial resistance determinants in the 2016 WHO Neisseria 
gonorrhoeae reference strains (n = 14)40,41 using Whole Genome Sequence Analysis (WGSA; www.wgsa.net)21 
and an in house-customised CLC Genomics Workbench. The discrepant results from the published references 
are highlighted in bold letters.

1 (U) 2 (U) 3 (R) 4 (R) 5 (P) 6 (U) 7 (P) 8 (P) 9 (U) 10 (U) 11 (C) 12 (R) 13 (R) 14 (U)

MIC  
interpretation  
(S/I/R)a

Ceftriaxone  
(MIC, mg/L)

S  
(0.032)

S  
(0.064)

S  
(0.016)

S  
(0.002)

S  
(0.064)

S  
(0.064)

S  
(0.064)

S  
(0.064)

S  
(0.032)

S  
(0.004)

S  
(0.032)

S  
(0.032)

S  
(0.064)

S  
(0.064)

Cefixime  
(MIC, mg/L)

R  
(0.25)

S  
(0.064)

S  
(0.064)

S 
(<0.016)

S  
(0.064)

S  
(0.032)

S  
(0.032)

S  
(0.064)

S  
(0.016)

S 
(<0.016)

S  
(0.125)

S  
(0.125)

S  
(0.064)

S  
(0.064)

Azithromycin  
(MIC, mg/L)

S  
(0.125)

S  
(0.25) I (0.5) I (0.5) S (0.25) S (0.5) S (0.25) S (0.25) S (0.5) R (4) R (1) R (1) I (0.5) I (0.5)

Ciprofloxacin  
(MIC, mg/L)

R  
(>32) R (4) R (>32) R (0.125) R (16) R (32) R (16) R (>32) R (>32) S (0.004) R (>32) R (>32) R (>32) R (>32)

Spectinomycin  
(MIC, mg/L) S (16) S (8) S (8) S (8) S (16) S (16) S (16) S (8) S (16) S (16) S (16) S (16) S (16) S (16)

Benzylpenicillin  
(MIC, mg/L) I (1) R (2) R (2) I (1) R (4) R (4) R (2) R (2) R (2) I (0.5) R (2) R (2) R (2) R (2)

Tetracycline  
(MIC, mg/L) I (1) I (1) R (2) S (0.25) R (2) R (2) I (1) S (0.5) S (0.25) S (0.25) I (1) I (1) S (0.5) S (0.5)

Antimicrobial  
resistance  
determinants  
extracted using  
an in house- 
customised  
CLC  
Genomics  
Workbench

penA (Mosaic/ 
A501V/T) Mosaic A501V Mosaic WT A501V A501V A501V A501T A501T WT Mosaic Mosaic A501T A501T

mtrR  
(A-deletion/ 
G45D)

Yes Yes Yes No Yes Yes Yes Yes Yes No Yes Yes Yes Yes

penB variant Yes Yes Yes WT Yes Yes Yes Yes Yes WT Yes Yes Yes Yes

23S rDNA  
(A2059, C2611) WT WT WT WT WT WT WT WT WT C2611T WT WT WT WT

16S rDNA  
(C1192T) No No No No No No No No No No No No No No

gyrA (S91F) Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes

parC (S86,  
S87, E91) S87R D86N S87R WT D86N D86N D86N E91G E91G WT S87R S87R E91G E91G

ponA (L421P) Yes Yes Yes No Yes Yes Yes Yes Yes No Yes Yes Yes Yes

penA (D345a) No Yes No Yes Yes Yes Yes Yes Yes Yes No No Yes Yes

rpsJ (V57M) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

blaTEM gene  
(plasmid) No No No No No No No No No No No No No No

tet(M)  
(plasmid) No No No No No No No No No No No No No No

Table 4.  Minimum inhibitory concentrations (MIC, mg/L) of seven antimicrobials in 14 clinical Neisseria 
gonorrhoeae isolates and associated antimicrobial resistance determinants characterised using an in house-
customised CLC Genomics Workbench with MinION 2D (Oxford Nanopore Technologies) reads. WT, Wild 
type. aBreakpoints according to the European Committee on Antimicrobial Susceptibility testing (www.eucast.
org) were used.

http://www.wgsa.net
http://www.eucast.org
http://www.eucast.org
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the customised CLC Genomics Workbench, we showed that a mosaic penA allele or a penA A501 substitution 
was detected in all clinical isolates expressing decreased susceptibility to extended-spectrum cephalosporins 
(ESCs; cefixime and ceftriaxone) and predicted decreased susceptibility to ESCs with 100% sensitivity and spec-
ificity. However, these AMR determinants can also be found in gonococcal isolates susceptible to ESCs6,20, so the 
specificity of the prediction of decreased susceptibility or resistance to ESCs is expected to be lower in studies 
that test larger numbers of isolates. Detection of the C2611T mutation in all four alleles of the 23S rRNA gene 
predicted azithromycin resistance in one clinical isolate (MIC = 4 mg/L), but not in two isolates with low-level 
azithromycin resistance (MIC = 1 mg/L). Finally, detection of the GyrA S91F mutation predicted the resistance 
in all (100%) the 13 clinical ciprofloxacin resistant isolates. Molecular tests, including WGS, will probably never 
completely replace culture-based AMR testing because these methods can only detect known AMR determinants; 
some gonococcal AMR determinants remain unknown and new AMR determinants are continuously evolving. 
However, molecular AMR testing can complement culture-based AMR testing. In settings in which molecular 
diagnostics is replacing culture-based diagnostics, rapid and accurate detection of known AMR determinants 
would significantly increase the number of samples tested for antimicrobial susceptibility. Ideally, molecular AMR 
testing should use WGS to identify all known and potentially new AMR determinants that can be used to predict 
AMR and even the MICs of antimicrobials60.

The use of 2D ONT reads for phylogenomics of gonococci, e.g. for molecular epidemiological surveillance 
purposes, would be exceedingly valuable for outbreak investigations and monitoring in nearly real time in local, 
national and international gonococcal surveillance programmes, which aim to replace traditional, labour inten-
sive and less accurate genotyping techniques such as N. gonorrhoeae multi-antigen sequence typing (NG-MAST) 
and multi-locus sequence typing (MLST) with WGS techniques21. Accordingly, we examined the accuracy of 
performing phylogenomic analysis using 2D ONT reads mapped to a reference genome using BWA-MEM with 
the nanopore option and building a phylogeny using the multiple sequence alignment. The ONT data produced a 
phylogenetic tree topology that was comparable with the one using the Illumina dataset and clustered all related 
isolates similarly (Figs 3 and 4). However, the number of isolates was limited and the genomic heterogeneity of 
the strains was high, which might have slightly biased our analysis.

Interestingly, the clustering of isolates was not highly dependent on the number of 2D ONT reads (Fig. 1). 
This suggests that the read length provides sufficient genome coverage even when a relatively low number of reads 
are available. For example, the lower number of 2D ONT reads for WHO G (Fig. 1) still provided a 99.96–100% 
genome fraction (Supplementary Table) and the read length compensated for the low number of reads. For the 
different WHO reference strains, 89.93–100% fraction of the PacBio-sequenced genomes were covered by the 
ONT reads (Supplementary Table). Consequently, for some purposes including gonococcal phylogenomic anal-
ysis, the MinION sequencer has likely collected enough reads in less than one day, which opens up new possi-
bilities in running WGS to investigate gonorrhoea outbreaks in nearly real time, as well as directly from clinical 
samples.

The main benefits of using the MinION for genome sequencing included the very rapid turn-around time, 
high accessibility by connecting the small hand-held device to a laptop, and low cost of the sequencer. The main 
limitations included the lower accuracy and consistency compared to Illumina and PacBio sequencing reads and 
the high cost of each sequencing run. Cost remains a major obstacle to the use of MinION outside well-resourced 
research-focused laboratories. It is essential that the cost of MinION runs is reduced further, for example by using 
cheaper reagents or multiplexing libraries, and/or having international support and funding for use of MinION, 
or similar technologies, at national, regional and local levels in less-resourced settings. Furthermore, new bioin-
formatic tools for analysing the MinION reads are being developed continuously. Future studies should appro-
priately evaluate, for example, different basecalling tools (https://github.com/rrwick/Basecalling-comparison), 
assemblers such as Unicycler61, and mapping tools, e.g., minimap262 and GraphMap63.

In conclusion, we show, in the first MinION study for gonococci, that ONT sequences analysed with currently 
existing open-access, web-based sequence analysis tools are not sufficiently accurate to identify key gonococ-
cal AMR determinants. However, using an appropriate analysis workflow such as an in house-developed CLC 
Genomics Workbench, we show that 2D ONT sequence data can be used for rapid and accurate identification of 
AMR determinants in N. gonorrhoeae isolates to predict decreased susceptibility or resistance to recommended 
therapeutic antimicrobials. We also show that 2D ONT sequence data can be useful for phylogenomics of N. 
gonorrhoeae, e.g. for molecular epidemiological investigations in nearly real time, and, using 2D ONT-Illumina 
hybrid assemblies, for producing contiguous assemblies and finished gonococcal reference genomes. The perfor-
mance of MinION for WGS of N. gonorrhoeae directly from non-cultured nucleic acid amplification test samples 
now needs to evaluated.
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