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Observing the transition from quantum to classical
energy correlations with photon pairs
Stefan Lerch1 & André Stefanov 1

The exact role of entanglement in various quantum metrology schemes is still subject to

debates. This is why it would be interesting to be able to experimentally control the relative

amount of quantum and classical correlations. Here, we demonstrate a method to tune

energy correlations between two photons from a pair emitted by spontaneous parametric

downconversion. Decoherence in the energy basis is achieved by applying random spectral

phases on the photons. As a consequence, a diverging temporal second-order correlation

function is observed and is explained by a mixture between an energy entangled pure state

and a fully classically correlated mixed state. Such source of tunable energy entangled photon

pairs could be used to demonstrate quantum advantages in future energy-time sensing

schemes.

DOI: 10.1038/s42005-018-0027-2 OPEN

1 Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland. Correspondence and requests for materials should be addressed to
A.S. (email: andre.stefanov@iap.unibe.ch)

COMMUNICATIONS PHYSICS |  (2018) 1:26 | DOI: 10.1038/s42005-018-0027-2 |www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/212384856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-5588-7986
http://orcid.org/0000-0002-5588-7986
http://orcid.org/0000-0002-5588-7986
http://orcid.org/0000-0002-5588-7986
http://orcid.org/0000-0002-5588-7986
mailto:andre.stefanov@iap.unibe.ch
www.nature.com/commsphys
www.nature.com/commsphys


Quantum entanglement implies correlations beyond those
allowed by classical models and plays a fundamental role in
quantum metrology1. In optical metrology, photon pairs

generated by spontaneous parametric downconversion (SPDC)2 are
the most practical realization of correlated light beams. Because the
process is coherent, the emitted photons are in essence entangled.
However, it is of interest to experimentally be able to tune the
correlations originating from quantum states, from purely quantum
to classical; in particular, since it is not always obvious to distinguish
between advantages in metrology originating from genuine entan-
glement and effects due to classical correlations3. We distinguish
here effects due to the quantum nature of light, as sub-shot noise
measurements4, from entanglement-induced processes. While some
schemes where previously thought to be based on entanglement,
they actually only rely on classical correlations. For instance in
ghost imaging5, coincidence measurements from a thermal source
allow one to reproduce the image of an object, without the need of
nonclassical transverse correlations as originating from an SPDC
source6. Another example can be found in photon number corre-
lations. In SPDC, the downconverted photons are created pairwise,
leading to a linear absorption rate for two-photon absorption
processes7. However, classical thermal light also shows photon
bunching, and thus, can be exploited to enhance two-photon
absorption as well8. The quantum nature of dispersion cancellation
was also subject to debate9, 10.

Energy entangled biphoton states are an essential tool in the
prospect of experimentally realizing quantum spectroscopy
experiments11, 12, and more generally for any energy-time two-
photon metrology scheme, as for example quantum-optical
coherence tomography13. Here the relevance of entanglement
can also be misleading. For instance, in the case of two inde-
pendent atoms, each of them excited by a single photon, a pre-
dicted enhanced absorption rate was first attributed to energy-
time entanglement between the photons14. Yet it was later shown
that only classical frequency anticorrelations are actually enhan-
cing the absorption rate15. Similarly in ref. 16 a pump–probe
scheme is proposed, where a sample is excited by a classical pulse
and probed by a photon from an entangled pair. Again, such
scheme rely fundamentally on classical energy correlations and
not on genuine entanglement.

In this paper, we propose and experimentally realize a scheme
to control the transition from quantum to classical correlations
with energy correlated photons. A characteristic of entangled
photon pairs is to show very strong energy correlations, together
with strong temporal correlations. By introducing random phases
on their spectral components and measuring the temporal shape
of the two-photon wavefunction, we observe a decrease of the
temporal correlations. The process is non-unitary and differs
from interferometric schemes where a phase parameter control
the degree of entanglement17. For polarization entangled photo-
nic states, adding random phase has been shown to be a useful
tool to generate, in a controlled way, the mixed states required to
test quantum protocols18–24. We observe a decrease of the tem-
poral correlations with increasing noise, that is well described by
a model of the experiments. The possibility to control the amount
of classical versus quantum energy correlations opens the way for
practical demonstration of the genuine advantage of entangle-
ment, for instance as in quantum spectroscopy schemes12.

Results
Theoretical model. Energy entangled photon pairs, as emitted by
SPDC with a pump energy of ωp, are described by a two-photon
join spectral amplitude (JSA) Λ(ωi, ωs) with ωi,s the energies of
the idler and signal photons. One can define shifted energy
variables with Ωi;s ¼ ωi;s � ωp

2 such that the two photon states

reads

Ψj i ¼
Z

dΩidΩsΛ Ωi;Ωsð Þ Ωij ii Ωsj is; ð1Þ

where jΩi;sii;s is the state of an idler, respectively signal, photon
with energy Ωi,s. Equivalently the state can be written in the time
basis

Ψj i ¼
Z

dτi dτs Λ̂ τi; τsð Þ τij ii τsj is; ð2Þ

where the join temporal amplitude (JTA) Λ̂ τi; τsð Þ is the
2D Fourier transform of Λ(Ωi, Ωs). Changing the variables to
Ω±= (Ωi ±Ωs)/2 and τ±= τi ± τs we can write

Λ̂ τþ; τ�ð Þ ¼
Z

dΩþdΩ�Λ Ωþ;Ω�ð ÞeiΩþτþeiΩ
�τ� ð3Þ

In the approximation of a monochromatic pump the JSA is fully
defined by a one-photon spectrum λ(Ω)

Λ Ωi;Ωsð Þ ¼ δ Ωi þ Ωsð Þ=2ð Þλ Ωi � Ωsð Þ=2ð Þ ¼ δ Ωþð Þλ Ω�ð Þ;
ð4Þ

with δ(x) being the Dirac delta function. The quantum state
reduces then to

Ψj i ¼
Z

dΩλðΩÞ Ωj ii �Ωj is: ð5Þ

In this approximation, the SPDC process generates perfect energy
anticorrelations in the continuous energy domain and therefore
its entanglement content diverges to infinity. More generally, for
quasi monochromatic pump, the entanglement of the state, as
quantified by the entropy of entanglement, can be very high25.

In the time domain the JTA only depends on the time
differences τ−.

Λ̂ τþ; τ�ð Þ ¼
Z

dΩ�λ Ω�ð ÞeiΩ�τ� ð6Þ

and

Ψj i ¼
Z

dτidτsλ̂ τi � τsð Þ τij ii τsj is; ð7Þ

where λ̂ðτÞ is the Fourier transform of λ(Ω). It is related
to the second-order correlation function defined by
Gð2Þ τi; τsð Þ ¼ τih j τsjΨh ij j2, such that Gð2Þðτ�Þ / jλ̂ðτ�Þj2. Separ-
able states satisfy an inequality on the product of the variances
V(τ−)V(Ω+) ≥ 1 which can be violated by entangled states26.

In order to demonstrate the real advantage of entanglement for
quantum measurements, it is needed to be able to generate states
of light where the energy correlations can be continuously tuned
from purely quantum, as given by the state of Eq. (5) to fully
classical, all other parameters of the state being egal. The
classically correlated state is described by a mixed state

ρ̂ðcÞ ¼
Z

dΩpðΩÞ Ωj ii;i Ωh j �Ωj is;s �Ωh j; ð8Þ

with pðΩÞ ¼ ΛðΩÞj j2.
The main difference between ρ̂ðqÞ ¼ Ψj i Ψh j and ρ̂ðcÞ is the

coherence terms between different frequencies. Assuming we can
apply an arbitrary transfer function Mj(Ω) on the photons, the
entangled state ρ̂ðqÞ transforms into ρ̂j ¼ jΨjihΨjj with

Ψj

��� E
¼

Z
dΩλðΩÞMjðΩÞMjð�ΩÞ Ωj ii �Ωj is: ð9Þ
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In order to generate an arbitrarily correlated state, we can induce
phase decoherence on ρ̂ðqÞ. This is realized by applying random
transfer functions Mj(Ω) chosen from a set {Mj(Ω)}, j∈ {1, 2, …,
N} with probabilities pj. The state then becomes

ρ̂ ¼
XN
j¼1

pjρ̂j: ð10Þ

We select the transfer functions to be dephasing operations
Mj(Ω)= exp(iϕj(Ω)) with random phases

ϕjðΩÞ ¼
0; Ω<0;

Xj;Ω; Ω � 0:

(
ð11Þ

The random variables Xj,Ω follow a Gaussian distribution
with average 0 and variance σ2. They take not only a random
value for different j but also for different Ω. The sum over all
states in (10) can be evaluated as a sum over all transfer functions.
For a sufficiently large mixture (N →∞), it is given by the
correlation function

MjðΩÞMjð�ΩÞM�
j ðΩ′ÞM�

j ð�Ω′Þ
D E

¼ lim
N!1

PN
j¼1

pjexp i ϕjðΩÞ þ ϕjð�ΩÞ � ϕjðΩ′Þ � ϕjð�Ω′Þ
h in o

¼ 1; Ω′j j ¼ Ωj j
e�σ2 ; Ω′j j≠ Ωj j:

�
ð12Þ

Making use of (12) in (10) leads to the final state

ρ̂ ¼ e�σ2 ρ̂ðqÞ þ 1� e�σ2
� �

ρ̂ðcÞ: ð13Þ

By tuning the variance σ2 of the random phase distribution
from zero to infinity, the final state undergoes a smooth transition
from the entangled pure state ρ̂ðqÞ to a classically frequency anti-
correlated state ρ̂ðcÞ.

Experiment. Figure 1 shows the experimental realization. A
photon from a narrowband pump laser at 532 nm is down-
converted into a pair of photons, idler and signal, each of them
having a broad energy spectrum centered around 1064 nm with
a width of about 40 nm, as measured by a spectrometer. The
generated state is of the form of Eq. (5). In order to verify that the
photons are also temporally correlated according to Eq. (7), the

second-order correlation function G(2)(τ−) has to be measured by
coincidence measurements with a time resolution shorter than its
width. This is achieved by broadband up-conversion of both
photons in a second nonlinear crystal27, 28, and by applying the
required transfer functions on the photons spectrum with the
help of a spectral shaper29. The later is inspired from ultrafast
optics and combines dispersive elements in a prism compressor
configuration with a spatial light modulator (SLM). The disper-
sion introduced by the compressor is tuned by changing the
position of the prisms. It is set such that the total dispersion
induced by the optical setup from the source to the detection
crystal is compensated. The fine tuning is performed by intro-
ducing a quadratic phase on the SLM. The width of the measured
G(2)(τ−) is minimal when the dispersion is fully compensated.
The entanglement in this configuration has been demonstrated by
observing nonlocal dispersion compensation29 and was used for
quantum information protocols30. Explicitly, the second-order
correlation function is given by

Gð2ÞðτÞ ¼
Z

dΩλðΩÞeiΩτ
����

����
2

: ð14Þ

However, as only the even component of the transfer functions is
relevant as seen from (9), we have to express G(2)(τ) solely in
terms of experimentally measurable quantities. Using the sym-
metry property λ(Ω)= λ(−Ω), we derive the identity29

Gð2ÞðτÞ ¼
Z

dΩλðΩÞeijΩjτ
����

����
2

�4
Z1
0

dΩλðΩÞsinðΩτÞ
������

������
2

ð15Þ

The first term in the right-hand side can be implemented by a
transfer function

MaðΩ; τÞ ¼
e�iΩτ=2; Ω<0

eiΩτ=2; Ω � 0;

(
ð16Þ

and the second term by a transfer function

MbðΩ; τÞ ¼
1; Ω<0

sinðΩτÞ; Ω � 0:

�
ð17Þ

Therefore, G(2)(τ) can be computed by taking the difference
between two measured count rates G(2)(τ)∝ S(τ)= Sa(τ)− Sb(τ).
Here, SaðτÞ ¼: S½MjðΩÞMaðΩ; τÞ� is the signal measured with a
total transfer function given by the product of the transfer
function of Eq. (16) and the random function given by Eq. (11)

L0

L1 P1

BD

P2
P3

P4 L2
L3

PPKTP F SPCM

L4
Σ2

SLM

PPKTP

Σ0

Σ1

Fig. 1 Schematic of the experimental setup. The pump laser is focused by lens L0 into a PPKTP (Potassium titanyl phosphate) crystal and generates energy-
time entangled photons at plane Σ0. The photons propagate through a four-prism compressor (P1–P4) and are imaged (lenses L1 and L2) to Σ2. The
spatially separated spectrum is shaped by an spatial light modulator (SLM) at the symmetry plane Σ1. The residual pump is blocked by a beam dump (BD).
In a second PPKTP crystal, the photons are detected by means of upconversion and the resulting upconverted photons are imaged by lenses L3 and L4 to a
single photon counting module (SPCM), while the residual downconverted light is blocked by filters (F)
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inducing decoherence; similarly, SbðτÞ ¼: 4S½MjðΩÞMbðΩ; τÞ�
with the transfer function of Eq. (17).

Each of the signals needed to measure the time difference
between signal and idler are averaged over 100 acquisitions of one
second each with different random transfer functions implemen-
ted on the SLM, such that for k∈ {a, b}

hSkðτ; σÞi /
Z

dΩλðΩÞMkð�Ω; τÞMkðΩ; τÞei ϕjðΩÞþϕjð�ΩÞð
����

����
2

* +

ð18Þ

Because of the linearity of the trace, it is valid to evaluate the
signal contribution of each transfer function setting separately,
and average over all j afterwards. The procedure is repeated for
different values of σ.

The transfer function of the SLM is linear and disentangles the
state by introducing phase decoherence31. As a consequence, we
are able to reduce the temporal correlations without changing the
energy correlations.

Figure 2a shows the results of the measured two photon
temporal correlation functions for various levels of noise σ,
together with curves computed from a model of the density
matrix of the state. The parameters of the theory are determined
by fitting the measurement with σ= 0 rad according to a model of
the signal given by Sðτ; σ ¼ 0Þ ¼ Bcos μτð Þe�σ′2τ2=2, with the
fitting parameters B, μ and σ′. This model is justified by the fact
that the entangled photon spectrum for the chosen SPDC phase
matching can be well approximated by a double Gaussian curve

given by

Sðω; σ ¼ 0Þ ¼ B
2σ′

e�
ðω�μÞ2
2σ′2 þ e�

ðωþμÞ2
2σ′2

� �
: ð19Þ

We find B= 708.71 Hz, σ′= 0.022 rad fs−1, and μ= 0.0275 rad
fs−1. The corresponding spectral width given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ 02 þ μ2

p
is

21 nm. It is smaller than the width measured with a spectrometer,
as only a part of the SPDC spectrum is contributing to the
upconversion signal. In the present experimental configuration it
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is not possible to measure directly the width of the effectively
upconverted spectrum, which therefore is taken as a fitting
parameter of the temporal measurement.

In order to compare the the measurements with the theoretical
model we compute jΨji as given by Eq. (9) for 10,000 random
SLM settings, and simulate the corresponding expected signals.
They are then averaged in order to compute the correlation
function for arbitrary noise σ, as shown in Fig. 2b. It should be
noted that we do not observe a broadening of the correlation
peak, as it would be expected simply from dispersion, but a
mixture of two features in the temporal curves. Apart from a
decreasing correlation peak whose shape remains constant, we
observe an increasing constant background. This is
the component leading to a diverging time-difference variance
V(τ−), as pointed out in ref. 26. The measured standard deviation
of τ− rises from 37 fs for σ= 0 to 106 fs for σ= 10 rad, being here
only limited by the temporal observation window of [−200, 200]
fs. The model allows to compute the fractions of entangled state
and classically correlated state as seen in Fig. 3a. They are equal
for σ ¼ ffiffiffiffiffiffiffiffiffiffi

lnð2Þp � 0:833 rad. In order to further estimate the
relative contributions of those two components of the signal,
we evaluate the mean of the signal Sðτ; σÞh i in the range of
τ∈ {[−200, −180], [180, 200]} fs, indicated in Fig. 2a by the gray
shaded region. The rising background is proportional to the
fraction of ρ̂ðcÞ in (13) that contributes to the measured mixture.
For σ= 2 rad the mixture consists of less than 2% entangled
states, and thus the background reaches its asymptotic value as
seen in Fig. 3b. Its is measured to be (28.8 ± 1.8) Hz, in good
agreement with the value given by the simulations of (26.93 ±
0.03) Hz.

Discussion
In conclusion, we have demonstrated the full control on the
degree of quantum versus classical energy correlations in photon
pairs by adding random phase noise on the photons spectrum.
We have observed a reduction of the strength of the temporal
correlations and the divergence of their variance in agreement
with the theory. Such a tunable entangled source will be an
essential tool to experimentally verify the fundamental advantage
of entangled states against classical correlations in any setup
relying on time-energy measurements.

Data availability. The datasets generated and analyzed during the
current study are available from the corresponding author on
reasonable request.
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