Predicting verbal episodic memory changes with longitudinal measures of brain atrophy in mild cognitive impairment

UNIVERSITÄT

Katharina Klink¹, Ahmed Abdulkadir^{1,2}, Lora Minkova^{1,3}, Michel Grothe⁴, Stefan Teipel⁴, Lena V. Schumacher⁵, Christoph P. Kaller⁶, Jacob Lahr³, Stefan Klöppel¹, Jessica Peter¹

- ¹ University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
- ² Department of Computer Science, University of Freiburg, Germany
- ³ Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Germany
- ⁴ German Centre for Neurodegeneration Diseases (DZNE), Rostock/Greifswald, Germany
- ⁵ Medical Psychology and Medical Sociology, Faculty of Medicine, University of Freiburg, Germany
- ⁶ Freiburg Brain Imaging, Department of Neurology, Faculty of Medicine, University of Freiburg, Germany

Introduction

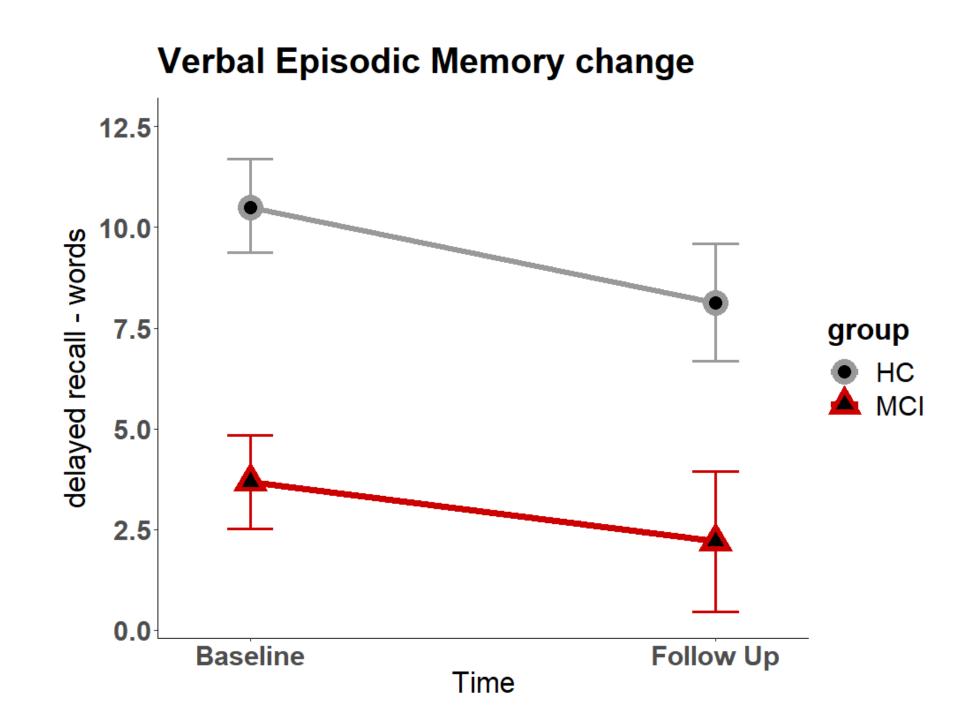
The goal of this study was to predict episodic memory change with several markers of neurodegenerative processes in patients with mild cognitive impairment (MCI). Cross sectional studies have shown that degeneration of the basal forebrain cholinergic system (BFCS) is associated with cognitive decline in MCI¹. Longitudinally, atrophy rates in the BFCS - but not in the hippocampus – were predictive of general cognitive decline in a sample of healthy elderly participants and patients with mild AD².

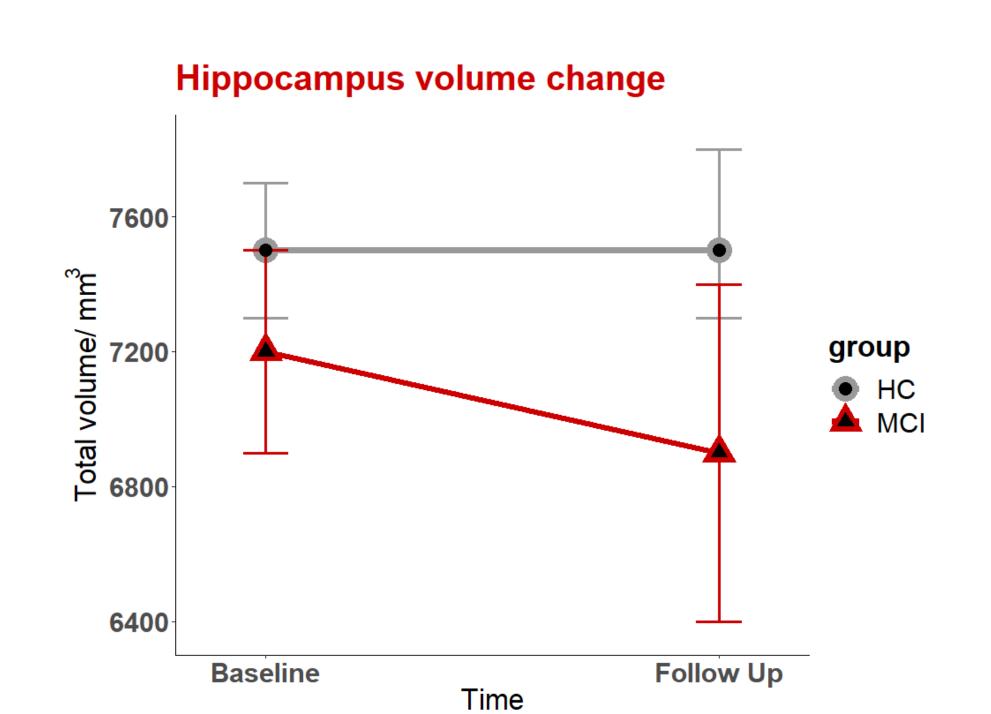
Method

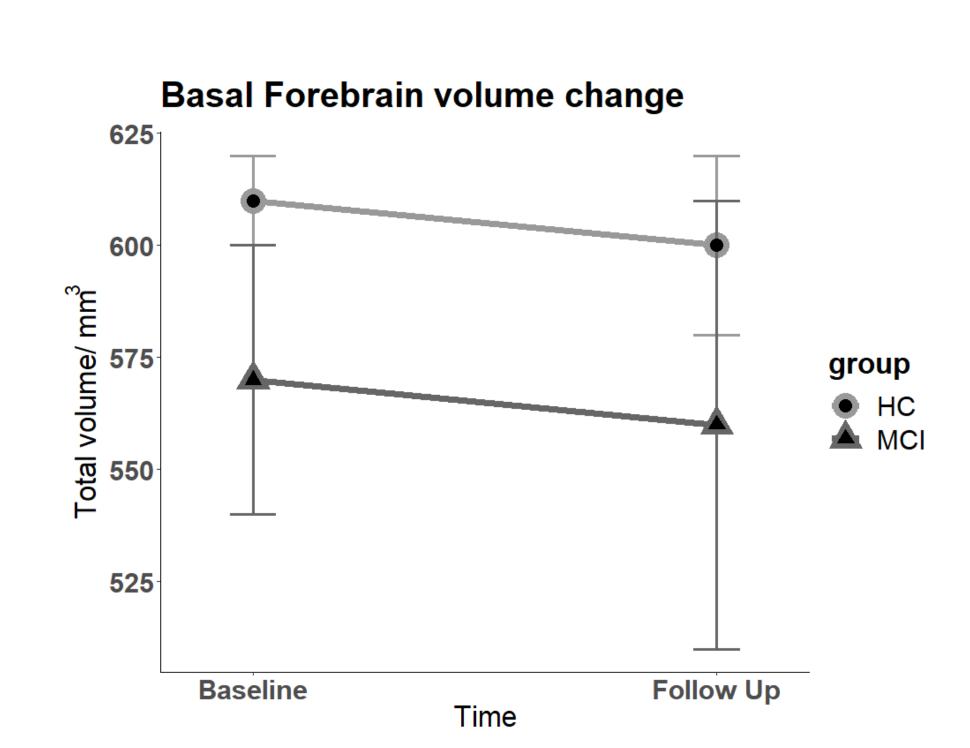
We obtained baseline and follow-up data in healthy elderly participants as well as in patients with MCI within a time interval of 1.5 years (range: 15-18 months). We extracted grey matter volumes of the BFCS (CH 1- 4) and automatically processed MRI data with the FreeSurfer longitudinal stream (version 6.0.0)³. For the evaluation of verbal episodic memory, we repeatedly assessed the delayed free recall by using the verbal learning and memory test (VLMT)⁴.

	Participants							
Descriptives								
	Visit	Group	n	Age	Education	MoCA	Gender	
	1	HC	37	69.6 (5.7)	14.9 (3.3)	27 (1.9)	13 m/ 24 f	
		MCI	31	73.9 (5)	13.2 (3.3)	22.3 (3.2)	14 m/ 17 f	
	2	HC	23	71.4 (5.6)	14.8 (3.4)	26.3 (2.5)	14 m/ 9 f	

76.1 (4)


Note. HC, healthy controls; MCI, mild cognitive impairment; MoCA, Montreal Cognitive Assessment; mean (standard deviation)


15


MCI

Results

We used a linear mixed model, which allows to include drop-outs' baseline data. A significant main effect of change in hippocampal volume $(F_{(1,96.91)} = 7.52, p = 0.007)$ indicated a relationship with changes in verbal delayed recall performance for patients with MCI compared to healthy controls. BFCS volume changes ($F_{(1, 91.98)} = 0.3$, p = 0.59) did not show this association. Mean outcome values of the included variables are shown in Fig. 1.

13.6 (3.2) 20.3 (4.3)

7 m/8 f

Fig 1. Plots showing mean group outcome values of modeled variables for baseline and follow up visit (time interval of 1.5 years (range: 15-18 months); Significant effects are shown in red. Error bars show upper and lower 95 % - CI around the group's mean. The model includes a fixed effect controlling for age.

Discussion

Verbal episodic memory dysfunction in MCI is linked primarily to neurodegeneration in the hippocampus and not to changes in the cholinergic system. Thus, both current memory performance⁵ and the longitudinal change in episodic memory is related to severity of hippocampal damage in MCI.

Outlook

Following up the presented analysis, we will use a logistic regression approach to classify participants according to their atrophy in the BFCS and the hippocampus (both cross-sectional and longitudinal). This will allow us to further our understanding of brain changes in MCI and their impact on cognitive functioning.

Contact:

Katharina Klink University Hospital of Old Age Psychiatry and Psychotherapy University of Bern E-Mail: katharina.klink@upd.unibe.ch Web: http://www.app.unibe.ch/

1.Grothe, M. J., Heinsen, H., Amaro, E., Grinberg, L. T. & Teipel, S. J. Cognitive Correlates of Basal Forebrain Atrophy and Associated Cortical Hypometabolism in Mild

Cognitive Impairment. Cereb. Cortex 26, 2411–2426 (2016). 2.Grothe, M., Heinsen, H. & Teipel, S. Longitudinal measures of cholinergic forebrain atrophy in the transition from healthy aging to Alzheimer's disease. Neurobiol. Aging **34**, 1210–1220 (2013).

3.Reuter, M., Schmansky, N. J., Rosas, H. D. & Fischl, B. Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 61, 1402–1418 (2012). 4. Helmstaedter, C., Lendt, M. & Lux, S. Verbaler Lern- und Merkfähigkeitstest. (2001).

5.Peter, J. et al. Contribution of the Cholinergic System to Verbal Memory Performance in Mild Cognitive Impairment. J. Alzheimers Dis. 53, 991–1001 (2016).