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Abstract22

Positive-sense RNA viruses hijack intracellular membranes that provide niches for viral RNA 23

synthesis and a platform for interactions with host proteins. However, little is known about host 24

factors at the interface between replicase complexes and the host cytoplasm. We engineered a 25

biotin ligase into a coronaviral replication/transcription complex (RTC) and identified >500 26

host proteins constituting the RTC microenvironment. siRNA-silencing of each RTC-proximal 27

host factor demonstrated importance of vesicular trafficking pathways, ubiquitin-dependent 28

and autophagy-related processes, and translation initiation factors. Notably, detection of 29

translation initiation factors at the RTC was instrumental to visualize and demonstrate active 30

translation proximal to replication complexes of several coronaviruses.31

Collectively, we establish a spatial link between viral RNA synthesis and diverse host factors32

of unprecedented breadth. Our data may serve as a paradigm for other positive-strand RNA 33

viruses and provide a starting point for a comprehensive analysis of critical virus-host 34

interactions that represent targets for therapeutic intervention.35
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Introduction36

Positive-strand RNA viruses replicate at membranous structures that accommodate the viral 37

replication complex and facilitate RNA synthesis in the cytosol of infected host cells (1-5).38

Rewiring host endomembranes is hypothesized to provide a privileged microenvironment 39

physically separated from the cytosol, thereby ensuring adequate concentrations of 40

macromolecules for viral RNA synthesis, preventing recognition of replication intermediates 41

such as double-stranded RNA (dsRNA) by cytosolic innate immune receptors (6, 7), and 42

providing a platform that facilitates molecular interactions with host cell proteins.43

Ultrastructural studies have reported the origin, nature, and extent of membrane modifications 44

induced by coronaviruses (order Nidovirales, family Coronaviridae), which materialize as an 45

ER-derived network of interconnected double-membrane vesicles (DMVs) and convoluted 46

membranes (CM) in perinuclear regions of infected cells to which the viral 47

replication/transcription complex (RTC) is anchored (4, 8, 9). The RTC is generated by 48

translation of the genomic RNA into two large polyproteins that are extensively auto-49

proteolytically processed by viral proteases to give rise to 16 processing end-products, termed 50

non-structural proteins (nsps) 1-16. Nsp1 is rapidly cleaved from the polyproteins and not 51

considered an integral component of the coronaviral RTC, but interferes with host cell 52

translation by inducing degradation of cellular mRNAs (10-12). Although it has not yet been 53

formally demonstrated, the remaining nsps (2-16) are thought to comprise the RTC and harbor 54

multiple enzymes and functions, such as de-ubiquitination, proteases, helicase, polymerase, 55

exo- and endonuclease, and N7- and 2’O-methyltransferases (13-18). Many of these functions 56

have been studied using reverse genetic approaches, which revealed their importance in virus-57

host interactions (19-23). In most cases phenotypes were described via loss-of-function 58

mutagenesis, however, in the context of virus infection, the specific interactions of RTC 59

components with host cell factors remain largely unknown.60

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/417907doi: bioRxiv preprint first posted online Sep. 14, 2018; 

http://dx.doi.org/10.1101/417907
http://creativecommons.org/licenses/by-nc-nd/4.0/


4

A number of individual host cell proteins have been shown to impact coronavirus replication 61

by using various screening methods, such as genome-wide siRNA, kinome, and yeast-two-62

hybrid screens (24-28). Likewise, genome-wide CRISPR-based screens have been applied to 63

other positive-stranded RNA viruses, such as flaviviruses, and identified critical host proteins 64

required for replication (29, 30). Some of these proteins were described in the context of 65

distinct ER processes, such as N-linked glycosylation, ER-associated protein degradation 66

(ERAD), and signal peptide insertion and processing. Although individual proteins identified 67

by these screens may interact with viral replication complexes, they likely constitute only a 68

small fraction of the global replicase microenvironment.69

To capture the full breadth of host cell proteins and cellular pathways that are spatially 70

associated with viral RTCs, we employed a proximity-based labeling approach involving a 71

promiscuous E. coli-derived biotin ligase (BirAR118G). BirAR118G biotinylates proximal (<1072

nm) proteins in live cells without disrupting intracellular membranes or protein complexes, and 73

hence, does not rely on high affinity protein-protein interactions, but is able to permanently tag 74

transient interactions (31). Covalent protein biotinylation allows stringent lysis and washing 75

conditions during affinity purification and subsequent mass spectrometric identification of 76

captured factors. By engineering a recombinant MHV harboring BirAR118G as an integral 77

component of the RTC we identified >500 host proteins reflecting the molecular 78

microenvironment of MHV replication structures. siRNA-mediated silencing of each of these 79

factors highlighted, amongst others, the functional importance of vesicular ER-Golgi apparatus 80

trafficking pathways, ubiquitin-dependent and autophagy-related catabolic processes, and 81

translation initiation factors. Importantly, the detection of active translation in close proximity 82

to the viral RTC highlighted the critical involvement of translation initiation factors during 83

coronavirus replication. Collectively, the determination of the coronavirus RTC-associated 84

microenvironment provides a functional and spatial link between conserved host cell processes 85
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and viral RNA synthesis, and highlights potential targets for the development of novel antiviral 86

agents.87

88

Results89

Engineering the BirAR118-biotin ligase into the MHV replicase transcriptase complex 90

To insert the promiscuous biotin ligase BirAR118G as an integral subunit of the MHV RTC, we 91

used a vaccinia virus-based reverse genetic system (32, 33) to generate a recombinant MHV92

harboring a myc-tagged BirAR118G fused to nsp2. This strategy was recently employed by 93

Freeman et al. for a fusion of green fluorescent protein (GFP) with nsp2 (34). MHV-BirAR118G-94

nsp2 retained the cleavage site between nsp1 and BirAR118G, while a deleted cleavage site 95

between BirAR118G and nsp2 ensured the expression of a BirAR118G-nsp2 fusion protein (Fig.96

1a).97

MHV-BirAR118G-nsp2 replicated to comparable peak titers and replication kinetics as the 98

parental wild-type MHV-A59 (Fig. 1b). MHV-EGFP-nsp2, which was constructed in parallel 99

and contained the coding sequence of EGFP (34) instead of BirAR118G, was used as a control 100

and also reached wild-type virus peak titers, with slightly reduced viral titers at 9 hours post-101

infection (h.p.i.) compared to MHV-A59 and MHV-BirAR118G-nsp2 (Fig. 1b).102

To confirm the accommodation of BirAR118G within the viral RTC, MHV-A59-, MHV-103

BirAR118G-nsp2-, and mock-infected L929 fibroblasts were visualized using indirect104

immunofluorescence microscopy. BirAR118G-nsp2 remained strongly associated with the MHV 105

RTC, as indicated by the co-localization of BirAR118G-nsp2 with established markers of the 106

MHV replicase, such as nsp2/3 and nsp8 (Fig. 1c; Supplemental Fig. S1). This observation 107

corroborates previous studies demonstrating that nsp2, although not required for viral RNA 108

synthesis, co-localizes with other nsps of the coronaviral RTC (35-37). Importantly, by 109
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supplementing the culture medium with biotin, we could readily detect biotinylated proteins 110

with fluorophore-coupled streptavidin that appeared close to the MHV RTC in MHV-111

BirAR118G-nsp2-infected cells, demonstrating efficient proximity-dependent biotinylation of 112

RTC-proximal host factors (Fig. 1c; Supplemental Fig. S1). Furthermore, to define the 113

localization of the nsp2 fusion protein at the ultrastructural level, we replaced the BirAR118G114

biotin ligase with the APEX2 ascorbate peroxidase to generate recombinant MHV-APEX2-115

nsp2. APEX2 mediates the catalysis of 3,3’-diaminobenzidine (DAB) into an insoluble 116

polymer that can be readily observed by electron microscopy (38). As shown in figure 1d,117

APEX2-catalized DAB polymer deposition was readily detectable at characteristic coronavirus 118

replication compartments, such as DMVs and CM, categorically demonstrating that the nsp2 119

fusion proteins localize to known sites of coronavirus replication (4, 8).120

Importantly, our collective results establish that the recombinant MHV-BirAR118G-nsp2121

replicates with comparable kinetics to wild-type MHV-A59, expresses a functional BirAR118G122

biotin ligase that is tightly associated with the MHV RTC, and that biotinylated, RTC-proximal 123

proteins can be readily detected in MHV-BirAR118G-nsp2 infected cells.124

125

Determination of the coronavirus RTC-proximal proteome126

To further demonstrate the efficiency and specificity of BirAR118G-mediated biotinylation we 127

assessed, by western blot analysis, fractions of biotinylated proteins derived from MHV-A59-128

, MHV-BirAR118G-nsp2-, or non-infected cells that were grown with or without the addition of 129

biotin (Fig. 2a,b). A characteristic pattern of endogenously biotinylated proteins was observed130

under all conditions where no exogenous biotin was added to the culture medium (Fig. 2b).131

The same pattern was detectable in non-infected and wild-type MHV-A59-infected cells when 132

the culture medium was supplemented with biotin, suggesting that the addition of biotin in the 133
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absence of the BirAR118G biotin ligase does not recognizably change the fraction of 134

endogenously biotinylated proteins. In contrast, we observed a greatly increased fraction of 135

biotinylated proteins in lysates derived from MHV-BirAR118G-nsp2-infected cells treated with 136

biotin. This result demonstrates that virus-mediated expression of the BirAR118G biotin ligase 137

results in efficient biotinylation when biotin is added to the culture medium. Moreover, we 138

could readily affinity purify, enrich, and recover the fraction of biotinylated proteins under 139

stringent denaturing lysis and washing conditions by using streptavidin-coupled magnetic 140

beads (Fig. 2b). 141

Affinity purified proteins derived from biotin-treated MHV-A59- and MHV-BirAR118G-nsp2-142

infected cells were subjected to mass spectrometric analysis (n=3). Liquid chromatography 143

tandem-mass spectrometry (LC-MS/MS) was performed from in-gel digested samples and log-144

transformed label free quantification (LFQ) levels were used to compare protein enrichment 145

between samples (Fig. 2c). Overall, 1381 host proteins were identified, of which 513 were 146

statistically significantly enriched in MHV-BirAR118G-nsp2-infected samples over MHV-A59-147

infected samples. These host proteins represent a comprehensive repertoire of RTC-proximal 148

factors throughout MHV infection (Fig. 2c, table S1). Importantly, viral replicase gene 149

products nsp2-10 and nsp12-16, and the nucleocapsid protein were significantly enriched in 150

fractions derived from MHV-BirAR118G-nsp2-infected cells (Fig. 2c, d). This is in agreement 151

with studies demonstrating co-localization and interactions amongst individual nsps, and with 152

studies showing association of the nucleocapsid protein with the coronavirus RTC (8, 39-41).153

It also highlights the specificity and effectiveness of the labeling approach in live cells and is 154

the first experimental evidence showing that collectively these viral nsps and the nucleocapsid 155

(N) protein are subunits of the coronavirus RTC. Furthermore, these results corroborate 156

previous reports that nsp1 is likely not an integral component of the coronavirus RTC (10-12, 157

42). Amongst the “not detected” or “not enriched” viral proteins are (i) nsp11, which is a short 158
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peptide of only 14 amino acids at the carboxyterminus of polyprotein 1a with a yet unassigned 159

role or function in coronavirus replication, (ii) the structural proteins spike (S) protein, 160

envelope (E) protein, and membrane (M) protein, which mainly localize to sites of viral 161

assembly before being incorporated into newly-formed viral particles, and (iii) all accessory 162

proteins (NS2a, HE, ORF4, ORF5a). Altogether, these results validate the proximity-163

dependent biotinylation approach and demonstrate the specific and exclusive labeling of MHV-164

RTC-associated proteins (Fig. 2d).165

The BirAR118G biotin ligase biotinylates proteins in its close proximity that must not necessarily 166

have tight, prolonged, or direct interaction (31). Therefore, the identified RTC-proximal host 167

proteins, recorded over the entire duration of the MHV replication cycle, likely include proteins 168

that display a prolonged co-localization with the MHV RTC, proteins that may locate only 169

transiently in close proximity to the RTC, and proteins of which only a minor fraction of the 170

cellular pool may associate with the RTC. To this end, we assessed the localization of a limited 171

number of host proteins from our candidate list in MHV-infected cells. Accordingly, we 172

identified RTC-proximal host proteins displaying a pronounced co-localization with the MHV 173

RTC, such as the ER protein reticulon 4 (rtn4; Fig. 2e), and host proteins where co-localization 174

by indirect immunofluorescence microscopy was not readily detectable, such as the eukaryotic 175

translation initiation factor 3E (eIF3E; Fig. 2e). However, in the latter case, a more sensitive 176

detection technique, such as a proximity ligation assay that relies on proximity-dependent 177

antibody-coupled DNA probe amplification (43), demonstrated proximity of eIF3E and 178

dsRNA in MHV-infected cells (Fig. 2f).179

Collectively, our results show that the approach of integrating a promiscuous biotin ligase as 180

an integral subunit into a coronavirus RTC revealed a comprehensive list of host cell proteins 181

that comprises the RTC microenvironment. The efficacy and specificity of our approach is best 182

illustrated by the fact that we were able to identify all expected viral components of the MHV 183
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RTC, while other viral proteins, such as nsp1, structural proteins S, E, and M, and accessory 184

proteins, were not amongst the significantly enriched proteins. Our data further suggest that 185

the RTC microenvironment may be highly dynamic and likely also contains proteins that are 186

only transiently present in the microenvironment or only comprise a sub-fraction of the cellular 187

pool in close proximity to the MHV RTC.188

189

Functional classification of RTC-proximal host factors 190

To categorize functionally-related proteins from the list of RTC-proximal host proteins and 191

identify enriched biological themes in the dataset, we performed a functional classification of 192

RTC-proximal factors using Gene Ontology (GO) enrichment analysis. 86 GO biological 193

process (BP) terms were significantly enriched in the dataset (p-value <0.05), of which 32 194

terms were highly significant (p-value <0.005) (Fig. 3a, Table S2). Additional analysis using 195

AmiGO revealed that 25 of these 32 highly significant GO BP terms fell into 5 broad functional196

categories, namely cell adhesion, transport, cell organization, translation, and catabolic 197

processes. To examine these categories further, identify important cellular pathways within 198

them, and extract known functional associations among RTC-proximal host proteins, we 199

performed STRING network analysis on the RTC-proximal proteins in each category (Fig. 3b, 200

c, Fig S2).201

Despite “cell-cell adhesion” scoring high, it likely represents a typical limitation of gene 202

annotation databases, where many genes play multiple roles in numerous pathways and 203

processes. Accordingly, most genes assigned to the GO BP term cell-cell adhesion are also 204

found in the other categories described below.205

The category “transport” included protein trafficking and vesicular-mediated transport 206

pathways and comprised the majority of RTC-proximal factors (Fig. 3a, b). Protein interaction 207
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network analysis, using STRING, revealed at least 4 distinct clusters of interacting factors208

within this category (Fig. 3b). Cluster I, protein transport, comprised nuclear transport 209

receptors at nuclear pore complexes, such as importins and transportins. Interestingly, this 210

cluster also contained Sec63, which is part of the Sec61 translocon (44) and has been implicated 211

in protein translocation across ER membranes. The list of RTC-proximal factors also included212

signal recognition particles SRP54a and SRP68 (Table S2) proteins that promote the transfer213

of newly synthetized integral membrane proteins or secreted proteins across translocon 214

complexes. Furthermore, the list contained Naca and BTF3, which prevent the translocation of215

non-secretory proteins towards the ER lumen (45, 46). Interestingly, genome-wide CRISPR 216

screens have identified proteins involved in biosynthesis of membrane and secretory proteins 217

as required for flavivirus replication (29, 30), suggesting similarities between flaviruses and 218

coronaviruses concerning the requirement of ER-associated protein sorting complexes for viral 219

replication. 220

Cluster II included vesicle components, tethers and SNARE (Soluble N-ethylmaleimide-221

sensitive-factor Attachment protein Receptor) proteins characteristic of the COPII-mediated 222

ER-to-Golgi apparatus anterograde vesicular transport pathway whereas, cluster III contained 223

components of the COPI-related retrograde Golgi-to-ER transport machinery. Moreover, 224

Cluster IV was comprised of proteins that mediate clathrin-coated vesicle (endosomal) 225

transport between the plasma membrane and the trans-Golgi network (TGN), which is also 226

closely associated with the actin cytoskeleton. Together with sorting nexins, cluster IV 227

components can be regarded as regulating late-Golgi trafficking events and interacting with the 228

endosomal system. 229

Many of the cellular processes and host proteins assigned to “transport” (specifically in clusters 230

II-IV) are also listed in the category “cell organization” (Fig. 3a, S2a). However, this category 231

actually extends the importance of vesicular transport as it also contains factors involved in the232
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architecture, organization, and homeostasis of the ER and Golgi apparatus, and the 233

cytoskeleton-supporting these organelles. The prominent appearance of biological processes 234

linked to protein and vesicular transport between the ER and both the cis- and trans-Golgi 235

network, is in agreement with previous findings that have reported the relevance of the early 236

secretory pathway for a number of RNA viruses, including coronaviruses (24, 26, 47-50).237

Notably, a number of MHV RTC-proximal factors were part of the host translation machinery238

and assigned to category “translation” (Fig. 3a, c). We found enrichment of factors involved in 239

the initiation of translation, particularly multiple subunits of eIF3 and eIF4 complexes, as well 240

as eIF2, eIF5, the Ddx3y helicase, and the Elongation factor-like GTPase 1, which are required 241

for the formation of 43S pre-initiation complexes, 48S initiation complexes, and the assembly 242

of elongation-competent 80S ribosomes (51). The high degree of interaction between these243

subunits is suggestive of the presence of the entire translation initiation apparatus in close 244

proximity to the viral RTC. The 60S ribosomal protein L13a (Rpl13a), ribosome biogenesis 245

protein RLP24 (Rsl24d1), ribosome-binding protein 1 (Rbp1), release factor Gspt1, and 246

regulatory elements, such as Igf2bp1, Gcn1l1, Larp, Fam129a and Nck1, are further indicative 247

of the host cell translation machinery near sites of viral RNA synthesis. Notably, our results 248

are in line with a recent genome-wide siRNA screen where translation factors were suggested 249

to play a role in the replication of avian infectious bronchitis coronavirus (IBV) (27). The 250

implication of this finding has, to our knowledge, not been further investigated. 251

Lastly, the category “catabolic processes” (Fig. 3a, S2b) includes a subset of autophagy-related 252

factors and numerous ubiquitin-dependent ERAD components, including the E3 ubiquitin-253

protein ligase complex and 26S proteasome regulatory subunits (Psmc2, Psmd4). Interestingly, 254

the importance of the ERAD pathway has also been reported in the genome-wide CRISPR 255

screen on flaviviruses, and the ubiquitin-proteasome pathway has been noted to be important 256

for IBV and MHV replication (27, 52).257
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Collectively, the catalogue of coronavirus RTC-proximal proteins greatly expands the 258

repertoire of candidate proteins implicated in the coronavirus replication cycle, and contains259

several factors that have previously been reported to impact the replication of other positive-260

sense RNA viruses. Importantly, since our screening approach was tailored to detect host 261

factors associated with the coronavirus RTC, it provides a spatial link of these factors to the 262

site of viral RNA synthesis.263

264

Identification of proviral factors within the coronavirus RTC microenvironment265

In order to assess the potential functional relevance of RTC-proximal factors identified in our 266

MHV- BirAR118G-nsp2-mediated proximity-dependent screen, we designed a custom siRNA 267

library individually targeting the expression of each of the 513 identified RTC-proximal host 268

proteins. siRNA-treated L929 cells were infected (MOI=0.05, n=4) with a recombinant MHV 269

expressing a Gaussia luciferase reporter protein (MHV-Gluc) (53) and replication was assessed 270

by virus-mediated Gaussia luciferase expression (Fig. 4a). Cell viability after siRNA 271

knockdown was also assessed and genes resulting in cytotoxicity following silencing were 272

discarded from further analysis. Importantly, we included internal controls of known relevance 273

for MHV entry (MHV receptor Ceacam1a) and replication (Gbf1, Arf1) on each plate and 274

found in each case that siRNA silencing of these factors significantly reduced MHV 275

replication, which underscores the robustness and effectiveness of our approach (Fig. S3a) (24).276

We found that siRNA-mediated silencing of 53 RTC-proximal host factors significantly 277

reduced MHV replication compared to non-targeting siRNA controls. These factors can 278

therefore be considered proviral and required for efficient replication (Fig. 3b; table S3).279

Notably, siRNA targets that had the strongest impact on MHV replication were in majority280

contained within the functional categories highlighted in Fig. 3a (Fig. 4b). Indeed, in line with 281
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the hypothesis that MHV subverts key components mediating both anterograde and retrograde 282

vesicular transport between the ER, Golgi apparatus and endosomal compartments for the 283

establishment of replication organelles, several factors contained within these pathways 284

impaired MHV replication as exemplified by the siRNA-mediated silencing of Kif11, Snx9, 285

Dnm11, Scfd1, Ykt6, Stx5a, Clint1, Aak11, or Vapa (Fig. 4b). Consistently, ER-associated 286

protein sorting complexes associated with the ribosome and newly synthetized proteins (Naca,287

BTF3, SRP54a, SRP68) that were revealed in the GO enrichment analysis (Fig. 3a, table S2),288

also appear to be required for efficient MHV replication (Fig. 4b).289

Furthermore, we also observed significantly reduced MHV replication upon silencing of core 290

elements of the 26S and 20S proteasome complex (Psmd1 and Psmc2, and Psmb3,291

respectively), suggesting a crucial role of the ubiquitin-proteasome pathway for efficient CoV292

replication (27, 52). Indeed, this finding may provide a link to the described coronavirus RTC-293

encoded de-ubiquitination activity residing in nsp3 that has been implicated in innate immune 294

evasion (16, 17, 54).295

Most interestingly, this custom siRNA screen identified a crucial role of the host protein 296

synthesis apparatus that was associated with the MHV RTC as indicated by the proximity-297

dependent proteomic screen (Fig. 3a, c). Silencing of ribosomal proteins Rpl13a and Rls24d1 298

and several subunits of the eIF3 complex resulted in greatly reduced MHV replication and 299

scored with highest significance in the siRNA screen, suggesting that proximity of the host cell 300

translation machinery to the viral RTC likely has functional importance for coronavirus 301

replication (Fig. 4b).302

303

Active translation near sites of viral mRNA synthesis304
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Due to the striking dependence of MHV replication on a subset of RTC-proximal translation 305

initiation factors, we extended these results in independent assays. For this, we selected all host 306

factors assigned to the category “translation” (Fig. 3a) and assessed virus replication following307

siRNA-mediated silencing of each factor. Measurement of luciferase activity after MHV-Gluc 308

infection confirmed initial findings obtained by screening the entire siRNA library of MHV 309

RTC-proximal factors (Fig. 4c). Specifically for Rpl13a, and eIFs 3i, 3f, and 3e viral replication 310

was reduced to levels comparable to our controls Ceacam1a (MHV receptor) and Gbf1 (24).311

Consistently, cell-associated viral mRNA levels (Fig. 4d) and viral titers (Fig. 4e) were reduced 312

upon siRNA silencing of these factors. Although the silencing of a subset of host translation 313

factors severely restricted MHV replication, effective knockdown of these factors (Fig. S3c)314

did not affect cell viability (Fig. S3b, d) and only moderately affected host cell translation 315

levels (Fig. 4f, S3e). This data demonstrates that the reduced viral replication observed after 316

siRNA knockdown is not due to a general impairment of host translation.317

Subsequently, we aimed to visualize the localization of active translation during virus infection318

by puromycin incorporation into nascent polypeptides on immobilized ribosomes319

(ribopuromycylation) followed by fluorescence imaging using antibodies directed against 320

puromycin (55). In non-infected L929 cells, ribopuromycylation resulted in an expected321

diffuse, mainly cytosolic, staining pattern interspersed with punctate structures indicative of 322

translation localized to dedicated subcellular cytosolic locations (Fig. 5). In striking contrast, 323

MHV-infected L929 cells displayed a pronounced enrichment of actively translating ribosomes 324

near the viral RTC as indicated by the strong overlap between the viral replicase and the 325

ribopuromycylation stain. Interestingly, active translation in vicinity of the RTC was strongest 326

during the early phase of infection at 6 h.p.i., and was observed until 8 h.p.i., before gradually 327

decreasing as the infection advanced along with the appearance of typical syncytia formation 328

indicative of cytopathic effect (CPE).329
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Remarkably, we observed a similar phenotype in Huh7 cells infected with human 330

coronaviruses, such as HCoV-229E or the highly pathogenic MERS-CoV (Fig. 6). The HCoV-331

229E RTC, which was detected with an antiserum directed against nsp8, appeared as small and 332

dispersed perinuclear puncta during early infection and eventually converged into larger 333

perinuclear structures later in infection. Consistent with findings obtained for MHV, we 334

observed a striking co-localization of the HCoV-229E RTC with sites of active translation 335

during the early phase of the infection (Fig. 6, S4). The co-localization gradually decreased as 336

the infection reached the late phase with upcoming signs of CPE. Finally, we further 337

demonstrated that active translation is localized to the site of MERS-CoV RNA synthesis as 338

dsRNA puncta highly overlapped with the ribopuromycylation stain in MERS-CoV-infected 339

Huh7 cells (Fig. 6). Collectively, these results not only confirm the spatial link between 340

individual components of the host cell translation machinery and coronavirus replication 341

compartments as identified by proximity-dependent biotinylation using MHV-BirAR118G-nsp2,342

but they also demonstrate that active translation is taking place in close proximity to the viral 343

RTC.344

345

Discussion346

In this study, we made use of a recently developed system based on proximity-dependent 347

biotinylation of host factors in living cells (31). By engineering a promiscuous biotin ligase 348

(BirAR118G) as an integral component of the coronavirus replication complex, we provide a349

novel approach to define the molecular mircoenvironment of viral replication complexes that 350

is applicable to many other RNA and DNA viruses. 351

We show that nsp2 fusion proteins encoded by recombinant MHV-APEX2-nsp2 and MHV-352

BirAR118G-nsp2, are indeed part of the RTC and localize to characteristic coronavirus 353
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replicative structures. On the ultrastrurctural level, APEX2-catalized DAB polymer 354

depositions were detected at DMVs and CMs, and we observed co-localization of BirAR118G355

with established coronavirus RTC markers, such as nsp2/3 and nsp8, by indirect 356

immunofluorescence microscopy. Notably, in MHV-BirAR118G-nsp2-infected cells the 357

detection of biotinylated coronavirus replicase gene products nsp2-10, nsp12-16, and the 358

nucleocapsid protein by mass spectrometry demonstrates that these proteins are in close 359

proximity during infection. This extends previous immunofluorescence and electron 360

microscopic studies that were limited by the availability of nsp-specific antibodies and could 361

only show localization of individual nsps to coronavirus replicative structures (4, 8, 35-37).362

Moreover, the close proximity of BirAR118G-nsp2 to MHV replicative enzymes, such as the 363

RNA-dependent RNA polymerase (nsp12), the NTPase/helicase (nsp13), the 5’-cap 364

methyltransferases (nsp14, nsp16), the proof-reading exonuclease (nsp14), in MHV-BirAR118G-365

nsp2-infected cells further suggest close proximity of nsp2 to the site of viral RNA synthesis. 366

We thus propose that nsp2-16 and the nucleocapsid protein collectively constitute a functional 367

coronavirus replication and transcription complex in infected cells. 368

The analysis of the host proteome enriched at MHV replication sites revealed a comprehensive 369

list of host proteins that constitute the coronavirus RTC microenvironment. This included370

several individual factors and host cell pathways, especially transport mechanisms involving 371

vesicle-mediated trafficking, which have previously been shown to assist coronavirus 372

replication. (24, 26, 27, 49, 52). Moreover, numerous coronavirus RTC-proximal host proteins 373

and pathways also have documented roles in the life cycle of other, more intensively studied,374

positive-stranded RNA viruses, suggesting considerable commonalities and conserved virus-375

host interactions at the replication complexes of a broad range of RNA viruses (29, 30, 56).376

Importantly, our list of RTC-proximal proteins by far exceeds the number of host cell proteins 377

currently known to interact with viral replication complexes and the vast majority of MHV 378
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RTC-proximal proteins have not been described before. These likely include proteins with 379

defined temporal roles during particular phases of the viral life cycle and proteins that did not 380

yet attract our attention in previous screens because of functional redundancies. We therefore 381

expect that this approach will find wide application in the field of virus-host interaction, target 382

identification for virus inhibition, and provides a starting point to reveal similarities and 383

differences between replication strategies of a broad range of viruses.384

One novel finding that arose immediately from our RTC-proximity screen is the demonstration 385

of a close spatial association of host cell translation with the coronavirus RTC. Indeed, the 386

biotin ligase-based proteomic screen identified a number of translation initiation factors, most 387

prominently several eIF3 subunits that were found to have functional importance for viral 388

replication, and numerous ribosome- and translation-associated proteins within the coronavirus 389

RTC microenvironment (Fig. 3, 4). In addition, the presence of subunits of the signal 390

recognition particle in proximity to the coronavirus RTC and their functional relevance for 391

viral replication is indicative of an importance for the translation of membrane proteins. 392

Notably, the coronavirus RTC is translated as two polyproteins that contain nsp3, 4 and 6 with 393

multiple trans-membrane domains that are believed to anchor the RTC at ER-derived 394

membranes (4, 47). It is thus tempting to speculate that the coronavirus RTC is either attracting, 395

or deliberately forming in proximity to, the ER-localized host translation machinery in order 396

to facilitate replicase translation and insertion into ER membranes. This idea is also applicable 397

to many other positive-stranded RNA viruses that express viral polyproteins with embedded 398

trans-membrane domains to anchor the viral replication complex in host endomembranes.399

Recent experimental evidence for Dengue virus supports this hypothesis. By using cell 400

fractionation and ribosomal profiling it has been shown that translation of the Dengue virus 401

(family Flaviviridae) genome is associated with the ER-associated translation machinery 402

accompanied by ER-compartment-specific remodeling of translation (57). Moreover, several 403
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recent genome-wide CRISPR screens demonstrated the functional importance of proteins 404

involved in biosynthesis of membrane and secretory proteins, further supporting a pivotal role 405

of the ER-associated translation machinery for virus replication (30).406

Compartmentalization of cellular translation to sites of viral RNA synthesis has been described 407

for dsRNA viruses of the orthoreovirus family, which replicate and assemble in distinct 408

cytosolic inclusions known as viral factories to which the host translation machinery is 409

recruited (58). The data presented here indicate that coronaviruses have evolved a similar 410

strategy by compartmentalizing and directing viral RNA synthesis to sites of ER-associated 411

translation. Likewise, this strategy has a number of advantages. Coronaviruses would not 412

require sophisticated transport mechanisms that direct viral mRNA to distantly located 413

ribosomes. A close spatial association of viral RNA synthesis and translation during early post-414

entry events would rather allow for remodeling the ER-associated translation machinery to 415

ensure translation of viral mRNA in a protected microenvironment. Viruses have evolved 416

diverse mechanisms to facilitate translation of their mRNAs including highly diverse internal 417

ribosomal entry sites, recruitment of translation-associated host factors to viral RNAs, and even 418

transcript-specific translation (59, 60). Accordingly, by remodeling defined sites for viral 419

mRNA translation, the repertoire and concentration of translation factors can be restricted to 420

factors needed for translation of these viral mRNAs. A microenvironment that is tailored 421

towards the translational needs of viral mRNAs in proximity to the viral replicase complex 422

would also make virus replication tolerant to host- or virus-induced shut down of translation at 423

distal sites within the cytosol. Finally, proximity of viral mRNA synthesis and translation can 424

also be considered a mechanism to evade cytosolic mRNA decay mechanisms and innate 425

immune sensors of viral RNA.426

The novel finding of a close association of the host translation machinery with sites of viral 427

RNA synthesis during coronavirus infection exemplifies the power of the MHV-BirAR118G-428
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nsp2 –mediated labelling approach to identify RTC-proximal cellular processes that 429

significantly contribute to viral replication. Indeed, the ability of BirAR118G to label viral and 430

host factors independently of high affinity and prolonged molecular interactions enables the 431

establishment of a comprehensive repertoire reflecting the history of protein association with 432

the viral RTC, recorded during the entire course of infection. In future studies it will be 433

important to provide an “RTC-association map” with temporal resolution. Like we have seen 434

for translation initiation factors in this study, association of host cell proteins with the viral 435

RTC might not persist throughout the entire replication cycle but might be of importance only 436

transiently or during specific phases of the replication cycle. Given its short labelling time, 437

APEX2 indeed offers this possibility to dissect protein recruitment to the viral RTC in a time-438

resolved manner, i.e. to detect RTC-associated host proteins at specific time points post 439

infection. This will ultimately result in a dynamic, high resolution molecular landscape of 440

virus-host interactions at the RTC and provide an additional impetus to elucidate critical virus-441

host interactions that take place at the site of viral RNA synthesis. These interactions should 442

be exploited in the development of novel strategies to combat virus infection, based on 443

conserved mechanisms of interactions at replication complexes of a broad range of positive-444

stranded RNA viruses.445

446

Acknowledgements447

We thank Mark Denison, Susan Baker, and John Ziebuhr for sharing virus sequence 448

information and antisera. We thank Sandra Huber and Kerry Woods for helpful discussions.449

This work was supported by the Swiss National Science Foundation (SNF; grants #450

310030_173085, and # CRSII3_160780 to V.T.). S.P. was supported by the European 451

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/417907doi: bioRxiv preprint first posted online Sep. 14, 2018; 

http://dx.doi.org/10.1101/417907
http://creativecommons.org/licenses/by-nc-nd/4.0/


20

Commission -452

Curie grant agreement no. 748627.453

454

Author Contributions455

Conceptualization, P.V., V.T.; Investigation, P.V., M.G., S.P., N.E., S.B.L., J.P., H.P., V.G., 456

R.D.; Formal Analysis, J.K., S.B.L., C.S., M.H.; Writing – Original Draft, P.V., V.T.; 457

Supervision, V.T., R.D., M.H., R.B., M.S.; Funding Acquisition, V.T., R.D., M.H., R.B., M.S., 458

S.P.459

460

Declaration of Interests461

The authors declare no competing interests462

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/417907doi: bioRxiv preprint first posted online Sep. 14, 2018; 

http://dx.doi.org/10.1101/417907
http://creativecommons.org/licenses/by-nc-nd/4.0/


21

Methods463

Cells464

Murine L929 fibroblasts (Sigma) and murine 17Cl1 fibroblasts (gift from S.G. Sawicki) were 465

cultured in MEM supplemented with 10% (v/v) heat-inactivated fetal bovine serum (FBS), 100 466

g/ml streptomycin and 100 IU/ml penicillin (MEM+/+). Huh-7 hepatocarcinoma cells (gift 467

from V. Lohnmann) and Vero B4 cells (kindly provided by M. Müller) were propagated in 468

Dulbecco’s Modified Eagle Medium-GlutaMAX supplemented with, 1 mM sodium pyruvate, 469

10% (v/v) heat-inactivated fetal bovine serum, 100 g/ml streptomycin, 100 IU/ml penicillin470

and 1% (w/v) non-essential amino acids.471

472

Viruses473

Recombinant MHV strain A59 (WT), MHV-Gluc (61), which expresses a Gaussia luciferase 474

reporter replacing accessory gene 4 of MHV strain A59, and HCoV-229E  were generated as 475

previously described(32, 33, 62). Viruses were propagated on 17Cl1 cells (MHV) and Huh-7476

cells (hCoV-229E) and their sequence was confirmed by RT-PCR sequencing. MERS-CoV477

(63, 64) was propagated and titrated on Vero cells. 478

479

Generation of recombinant MHV viruses480

Recombinant MHV viruses were generated using a vaccinia virus-based system as described 481

before (33). In short, a pGPT-1 plasmid encoding an Escherichia coli guanine 482

phosphoribosyltransferase (GPT) flanked by MHV-A59 nt 447-950 and 1315-1774 was used 483

for targeted homologous recombination with a vaccinia virus (VV) containing a full-length 484

cDNA copy of the MHV-A59 genome (32). The resulting GPT-positive VV was further used 485

for recombination with a plasmid containing the EGFP coding sequence flanked by  MHV-486

A59 nt 477-956 and 951-1774 for the generation of MHV-GFP-nsp2, based on the strategy 487
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employed by Freeman et al.(34). Alternatively, a plasmid containing the BirAR118G coding 488

sequence (31) or the APEX2 coding sequence (65), with a N-terminal myc-tag or V5-tag, 489

respectively, and a C-terminal (SGG)3 flexible linker flanked by MHV-A59 nt 477-956 and 490

951-1774 was used for the generation of MHV- BirAR118G-nsp2 and MHV-APEX2-nsp2. The 491

resulting VV were used to generate full-length cDNA genomic fragments by restriction 492

digestion of the VV backbone.  Rescue of MHV-GFP-nsp2, MHV-BirAR118G-nsp2 and MHV-493

APEX2-nsp2 was performed by electroporation of capped in vitro transcribed recombinant 494

genomes into a BHK-21-derived cell line stably expressing the nucleocapsid (N) protein 495

layered on permissive 17Cl1 mouse fibroblasts. Recombinant MHV viruses were plaque-496

purified three times and purified viruses were passaged three times for stock preparations. All 497

plasmid sequences, VV sequences and recombinant MHV sequences were confirmed by PCR 498

or RT-PCR sequencing. Viruses were propagated on 17Cl1 cells and virus stocks were titrated 499

by plaque assay on L929 cells.500

501

Viral replication assay502

L929 cells were infected with MHV-A59, MHV-GFP-nsp2, MHV-BirAR118G-nsp2 or MHV-503

APEX2-nsp2 in quadruplicate at an MOI=1. Virus inoculum was removed 2 h.p.i., cells were 504

washed with PBS and fresh medium was added. Viral supernatants were collected at the 505

indicated time point and titrated by plaque assay on L929 cells. Titers reported are the averages 506

of three independent experiments ± standard error of the mean (SEM).507

508

Immunofluorescence imaging 509

Biotinylation assays were carried out as described before with minor modifications(66). 106 510

L929 cells grown on glass coverslips were infected with MHV-A59, MHV-BirAR118G-nsp2 or 511

MHV-APEX2-nsp2 at an MOI=1, or non-infected in medium supplemented with 67 μM biotin 512
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(Sigma B4501). Cells were washed three times with PBS at the indicated time points and fixed 513

with 4% (v/v) neutral buffered formalin before being washed three additional times. Cells were 514

permeabilized in PBS supplemented with 50 mM NH4Cl, 0.1% (w/v) Saponin and 2% (w/v) 515

BSA (CB) for 60 min and incubated 60 min with the indicated primary antibodies diluted in 516

CB (polyclonal anti-MHV-nsp2/3 or nsp8 (gift from S. Baker), 1:200 (35, 67); anti-myc, 517

1:8000 Cell Signalling 2276). Cells were washed three times with CB and incubated for 60 min 518

with donkey-derived, AlexaFluor488-conjugated anti-mouse IgG (H+L) and donkey-derived, 519

AlexaFluor647-conjugated anti-rabbit IgG (H+L) (Jackson Immunoresearch). Cells were 520

additionally labelled with streptavidin conjugated to AlexaFluor 594 (Molecular Probes) to 521

detect biotinylated proteins. Coverslips were mounted on slides using ProLong Diamond 522

Antifade mountant containing 4',6-diamidino-2-phenylindole (DAPI) (Thermo Fisher 523

Scientific). 524

For indirect immunofluorescence detection of viral and host proteins, L929 cells were grown 525

on glass coverslips in 24-well plates and infected with MHV-A59 or MHV-BirAR118G-nsp2 526

(MOI=1). At the indicated time point, cells were fixed with 4% (v/v) formalin and processed 527

using primary monoclonal antibodies directed against dsRNA (J2 Mab, English Scientific and 528

Consulting) or myc-tab (Cell signalling 2276) and polyclonal antibodies recognizing eIF3E 529

(Sigma, HPA023973) or RTN4 (Nogo A+B, Abcam 47085) as well as secondary donkey-530

derived, AlexaFluor488-conjugated anti-mouse and AlexaFluor647-conjugated anti-rabbit IgG 531

(H+L), as described above.532

For proximity ligation assays, L929 cells were seeded in 24-well plates on glass coverslips and 533

infection with MHV-A59 or MHV-BirAR118G-nsp2 (MOI=1). At the indicated time point, cells 534

were washed with PBS, fixed with 4% (v/v) formalin and permeabilized with 0.1% (v/v) Triton 535

X-100. Proximity ligation was performed as recommended by the manufacturer (Duolink In 536

Situ detection reagents Red, Sigma) using monoclonal antibodies directed against dsRNA (J2, 537
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English & Scientific Consulting) or myc-tag (Cell Signaling 2276) and polyclonal antibodies 538

recognizing eIF3E (Sigma, HPA023973) or RTN4 (Nogo A+B, Abcam 47085). Coverslips 539

were mounted using Duolink® In Situ Mounting Media with DAPI (Sigma).540

All samples were imaged by acquiring 0.2 μm stacks over 10 μm using a DeltaVision Elite 541

High-Resolution imaging system (GE Healthcare Life Sciences) equipped with a 60x or 100x 542

oil immersion objective (1.4 NA). Images were deconvolved using the integrated softWoRx 543

software and processed using Fiji (ImageJ). 544

545

Biotinylation assay – western blot – mass spectrometry546

L929 cells were infected with MHV-A59 or MHV-BirAR118G-nsp2, and for comparison 547

MHVH277A and MHVH227A-BirAR118G-nsp2, at an MOI=1 in medium supplemented with 67 μM 548

biotin (Sigma B4501). At 15 h.p.i., cells were washed three times with PBS and lysed in ice-549

cold buffer containing 50 mM TRIS-Cl pH 7.4, 500 mM NaCl, 0.2% (w/v) SDS, 1 mM DTT 550

and 1x protease inhibitor (cOmplete Mini, Roche). Cells were scraped off the flask and 551

transferred to tubes. Cells were kept on ice until the end of the procedure. Triton X-100 was 552

added to each sample to a final concentration of 2%. Samples were sonicated for two rounds 553

of 20 pulses with a Branson Sonifier 250 (30% constant, 30% power). Equal volumes of 50 554

mM TRIS-Cl were added to each sample and samples were centrifuged at 4 °C for 10 min at 555

18000 x g. Supernatants were incubated with magnetic beads on a rotator at 4 °C overnight 556

(800 μl Dynabeads per sample, MyOne Streptavidin C1, Life Technologies) that were 557

previously washed with lysis buffer diluted 1:1 with 50 mM TRIS-Cl. Beads were washed 558

twice with buffer 1 (2% (w/v) SDS), once with buffer 2 (0.1% (w/v) deoxycholic acid, 1% 559

(v/v) Triton X-100, 1 mM EDTA, 500 mM NaCl, 50 mM HEPES pH 7.5), once with buffer 3 560

(0.5% w/v deoxycholic acis, 0.5% NP40, 1 mM EDTA, 250 mM LiCl, 10 mM TRIS-Cl pH 561
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7.4) and once with 50 mM TRIS-Cl pH 7.4. Proteins were eluted from beads by the addition 562

of 0.5 mM biotin and Laemmli SDS-sample buffer and heating at 95 °C for 10 min.563

For SDS-PAGE and western blot analysis, cells were cultured in 6-well plates and lysates were 564

prepared and affinity purified as described above. Proteins were separated on 10% (w/v) SDS-565

polyacrylamide gels (Bio-Rad), and proteins were electroblotted on nitrocellulose membranes 566

(Amersham Biosciences, GE Healthcare) in a Mini Trans-Blot cell (Bio-Rad). Membranes 567

were incubated in a protein-free blocking buffer (Advansta) and biotinylated proteins were 568

probed by incubation with horseradish peroxidase-conjugated Streptavidin (Dako). Proteins 569

were visualized using WesternBright enhanced chemiluminescence horseradish peroxidase 570

substrate (Advansta) according to the manufacturer's protocol.571

For mass spectrometry analysis, lysates and affinity purification were performed as described 572

above from 4*107 cells cultured in 150 cm2 tissue culture flasks. Proteins were separated 1 cm 573

into a 10% (w/v) SDS-polyacrylamide gel. A Coomassie stain was performed and 4x 2 mm 574

bands were cut with a scalpel. Proteins on gel samples were reduced, alkylated and digested 575

with Trypsin(68). Digests were loaded onto a pre-column (C18 PepMap 100, 5 μm, 100 A, 300576

μm i.d. x 5 mm length) at a flow rate of 20 μL/min with solvent C (0.05% TFA in 577

water/acetonitrile 98:2). After loading, peptides were eluted in back flush mode onto the 578

analytical Nano-column (C18, 3 m, 100 Å, 75 m x 150 mm, Nikkyo Technos C. Ltd., Japan) 579

using an acetonitrile gradient of 5% to 40% solvent B (0.1% (v/v) formic acid in 580

water/acetonitrile 4,9:95) in 40 min at a flow rate of 400 nL/min. The column effluent was 581

directly coupled to a Fusion LUMOS mass spectrometer (Thermo Fischer, Bremen; Germany) 582

via a nano-spray ESI source. Data acquisition was made in data dependent mode with precursor 583

ion scans recorded in the orbitrap with resolution of 120’000 (at m/z=250) parallel to top speed 584

fragment spectra of the most intense precursor ions in the Linear trap for a cycle time of 3 585

seconds maximum. Spectra interpretation was performed with Easyprot on a local, server run 586
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under Ubuntu against a forward + reverse Mus musculus (UniprotKB version 2016_04) and 587

MHV (UniprotKB version 2016_07) database, using fixed modifications of 588

carboamidomethylated on Cysteine, and variable modification of oxidation on Methionine,589

biotinylation on Lysine and on protein N-term, and deamidation of Glutamine and Asparagine.590

Parent and fragment mass tolerances were set to 10 ppm and 0.4 Da, respectively. Matches on 591

the reversed sequence database were used to set a Z-score threshold, where 1% false 592

discoveries (FDR) on the peptide spectrum match level had to be expected. Protein 593

identifications were only accepted, when two unique peptides fulfilling the 1% FDR criterion 594

were identified. MS identification of biotinylated proteins was performed in three independent 595

biological replicates. For label-free protein quantification, LC-MS/MS data was interpreted 596

with MaxQuant (version 1.5.4.1) using the same protein sequence databases and search 597

parameters as for EasyProt. Match between runs was activated, however samples from different 598

treatments were given non-consecutive fraction numbers in order to avoid over-interpretation 599

of data. The summed and median normalized top3 peptide intensities extracted from the 600

evidence table as a surrogate of protein abundance (69) and LFQ values were used for statistical 601

testing. The protein groups were first cleared from all identifications, which did not have at 602

least two valid LFQ values. Protein LFQ levels derived from MaxQuant were log-transformed. 603

Missing values were imputed by assuming a normal distribution between sample replicates. A 604

two-tailed t-test was used to determine significant differences in protein expression levels 605

between sample groups and p-values were adjusted for multiple testing using the Benjamini-606

Hochberg (FDR) test.607

608

Computational analysis609

Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used to 610

perform GO enrichment analysis on the RTC-proximal cellular factors identified via mass 611
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spectrometry(70-73). GO BP terms with a p-value <0.05 were considered to be terms that were 612

significantly enriched in the dataset. Additional analysis of significant GO terms was conducted 613

using AmiGO and revealed that the top 32 GO BP terms (p-value <0.005) were predominantly 614

associated with five broad functional categories (cell-cell adhesion, transport, cell organization, 615

translation, and catabolic processes)(74). Alternatively, enrichment analysis was performed 616

using SetRank (data not shown), a recently described algorithm that circumvents pitfalls of 617

commonly used approaches and thereby reduces the amount of false-positive hits (75) and the 618

following databases were searched for significant gene sets: BIOCYC (76), GO (72), ITFP619

(77), KEGG (78), PhosphoSitePlus (79), REACTOME (80), and WikiPathways (81). Both 620

independent approaches lead to highly similar results and consistently complement results 621

obtained upon GO Cellular Components analysis.622

STRING functional protein association networks were generated using RTC-proximal host 623

proteins found within each of the five broad functional categories. Default settings were used 624

for active interaction sources and a high confidence interaction score (0.700) was used to 625

maximize the strength of data support. The MCL clustering algorithm was applied to each 626

STRING network using an inflation parameter of 3 (82, 83).627

628

siRNA screen629

A custom siRNA library targeting each individual RTC-proximal factor (On Target Plus, 630

SMART pool, 96-well plate format, Dharmacon, GE Healthcare) was ordered. 10 nM siRNA 631

were reverse transfected into L929 cells (8*103 cells per well) using Viromer Green 632

(Lipocalyx) according to the manufacturer’s protocol. Cells were incubated 48 hours at 37 °C 633

5% CO2 and cell viability was assessed using the CytoTox 96 Non-Radioactive Cytotoxicity 634

Assay (Promega). Cells were infected with MHV-Gluc (MOI=0.05, 1000 plaque forming 635

units/well), washed with PBS 3 h.p.i. and incubated in MEM+/+ for additional 12 hours. 636
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Gaussia luciferase was measured from the supernatant using Pierce™ Gaussia Luciferase Glow 637

Assay Kit (ThermoFisher Scientific). Experiments were carried out in 4 independent replicates 638

and both cytotoxicity values and luciferase counts were normalized to the corresponding non-639

targeting scrambled control of each plate. A one-way ANOVA (Kruskal-Wallis test, 640

uncorrected Dunn’s test) was used to test the statistical significance of reduced viral replication 641

(mean < 95% as compared to scramble control, n=216). The R package ggplot2 was used to 642

create the bubble plot (Fig 4B).643

644

siRNA screen validation645

L929 cells were transfected with 10 nM siRNA as described above. 48 h post-transfection, cell 646

viability was assessed using the CytoTox 96 Non-Radioactive Cytotoxicity Assay (Promega)647

and visually inspected by automated phase-contrast microscopy using an EVOS FL Auto 2 648

Imaging System equipped with a 4x air objective. Cells were infected with MHV-Gluc 649

(MOI=0.05), washed with PBS 3 h.p.i. and incubated for 9 additional hours. Gaussia luciferase 650

activity, viral titers and cell viability were measured from the supernatant as described above. 651

One-way ANOVAs (ordinary one-way ANOVA, uncorrected Fisher’s LSD test) were used to 652

test the statistical significance.653

Total cellular RNA was isolated from cells using the NucleoMag® RNA Kit (Machery Nagel, 654

Switzerland) on a KingFisher™ Flex Purification System (Thermo Fisher Scientific, 655

Switzerland) according to the manufacture’s instructions. The QuantiTect Probe RT-PCR Kit 656

(Qiagen, Switzerland) was used according to the manufactures instructions for measuring the 657

cell associated viral RNA levels with primers and probe specific to the MHV genome fragment 658

coding the nucleocapsid gene (Table S4). Primers and Probe for mouse Glyceraldehyde 3-659

phosphate dehydrogenase (GAPDH) where obtained from ThermoFisher Scientific 660

(Mm03302249_g1, Catalog Number: 4331182). The MHV levels were normalized to GAPDH 661
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- Ct target). The 662

QuantiTect SYBR® Green RT-PCR Kit (Qiagen, Switzerland) was used according to the 663

manufactures instructions for measuring the expression levels of Rpl13a, eIF3E, eIF3I, eIF3F, 664

eIF4G1, eIF4G2, eIF2ak3, Rsl24d1 and Tbp. All primer pairs where placed over an exon intron 665

junction (T -targeting siRNA 666

- Ct Tbp) (84). One-way ANOVA (ordinary one-way 667

ANOVA, uncorrected Fisher’s LSD test) was used to test the statistical significance.668

669

Total cellular translation670

siRNA-based silencing was performed as described above. 48 h post-transfection, control cells 671

were incubated with 355 M cycloheximide (Sigma) and 208 M Emetin (Sigma) for 30 min 672

to block protein synthesis. Cells were treated with 3 M puromycin for 60 min followed by 673

three PBS washes(85). Total cell lysates were prepared using M-PER mammalian protein 674

extraction reagent (Thermo Scientific) supplemented with protease inhibitors (cOmplete Mini, 675

Roche). Lysates were separated on a 10% (w/v) SDS-PAGE and electroblotted as described 676

above. Western blots were probed using a monclonal AlexaFluor647-conjugated anti-677

puromycin antibody (clone 12D10, Merk Millipore) and a donkey-derived HRP-conjugated 678

anti-mouse (Jackson immunoresearch 715-035-151).  Actin was detected using a monoclonal 679

HRP-conjugated anti-actin antibody (Sigma A3854) and used to normalize input.680

681

Ribopuromycylation assay682

Ribopuromycylation of actively translating ribosomes was performed as described before (55).683

L929, Huh-7 cells were seeded on glass coverslips and infected with MHV-A59 (L929), 684

HCoV-229E (Huh-7), MERS-CoV (Huh-7) and at MOI=1. One hour after inoculation, cells 685

were washed with PBS and incubated further for the indicated time. Cells were treated with 686

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/417907doi: bioRxiv preprint first posted online Sep. 14, 2018; 

http://dx.doi.org/10.1101/417907
http://creativecommons.org/licenses/by-nc-nd/4.0/


30

355 M cycloheximide and 208 M Emetin (Sigma) for 15 min at 37°C. Cells were further 687

incubated in medium containing 355 M cycloheximide, 208 M Emetin and 182 M688

puromycin (Sigma) for additional 5 min. Cells were washed twice in ice-cold PBS and fix on 689

ice for 20 min in buffer containing 50 mM TRIS HCl, 5 mM MgCl2, 25 mM KCl, 355 M690

cycloheximide, 200 mM NaCl, 0.1% (v/v) TritonX-100, 3% formalin and protease inhibitors 691

(cOmplete Mini, Roche). Cells were blocked for 30 min in CB, and immunostained as 692

described above using polyclonal anti-MHV-nsp2/3 (gift from S. Baker), polyclonal anti-693

HCoV-229E-nsp8 (gift from J. Ziebuhr), or monoclonal anti-dsRNA (J2 MAB, English and 694

Scientific Consulting) as primary antibodies to detect MHV, HCoV-229E and ZIKV695

replication complexes, respectively. Donkey-derived, AlexaFluor488-conjugated anti-mouse 696

or anti-rabbit IgG (H+L) were used as secondary antibodies. Additionally, ribosome-bound697

puromycin was detected using a monoclonal AlexaFluor647-conjugated anti-puromycin 698

antibody (clone 12D10, Merk Millipore). Slides were mounted, imaged and processed as 699

described above. 700

701

DAB staining and transmission electron microscopy702

L929 fibroblasts were seeded in 24-well plates and infected with MHV-APEX2-nsp2, MHV-703

A59, or non-infected for 10 h. 3,3-diaminobenzidine (DAB) stains were performed as described 704

previously (38). Briefly, cells were fixed at 10 h.p.i. using warm 2% (v/v) glutaraldehyde in 705

100 mM sodium cacodylate, pH 7.4, supplemented with 2 mM calcium chloride (cacodylate 706

buffer) and placed on ice for 60 min. The following incubations were performed on ice in ice-707

cold buffers unless stated otherwise. Cells were washed 3x with sodium cacodylate buffer, 708

quenched with 20 mM glycine in cacodylate buffer for 5 min. before 3 additional washes with 709

cacodylate buffer. Cells were stained in cacodylate buffer containing 0.5 mg/ml DAB and 10 710

mM H2O2 for 20 min until DAB precipitates were visible by light microscopy. Cells were 711
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washed 3x with cacodylate buffer to stop the staining reaction. Processing of samples for 712

transmission electron microscopy (TEM) was performed as described previously (86). Briefly, 713

cells were washed once with PBS prewarmed to 37 °C and subsequently fixed with 2.5% (v/v) 714

glutaraldehyde (Merck, Darmstadt, Germany) in 0.1 M cacodylate buffer (Merck, Hohenbrunn, 715

Germany) pH 7.4 for 30 min at room temperature or overnight at 4 °C. After three washes in 716

cacodylate buffer for 10 min each, cells were post-fixed with 1% OsO4 (Chemie Brunschwig, 717

Basel, Switzerland) in 0.1 M cacodylate buffer for 1 h at 4 °C and again washed three times 718

with cacodylate buffer. Thereafter, cells were dehydrated in an ascending ethanol series (70%, 719

80%, 90%, 94%, 100% (v/v) for 20 min each) and embedded in Epon resin, a mixture of Epoxy 720

embedding medium, dodecenyl succinic anhydride (DDSA) and methyl nadic anhydride 721

(MNA) (Sigma Aldrich, Buchs, Switzerland). Ultrathin sections of 90 nm were then obtained 722

with diamond knives (Diatome, Biel, Switzerland) on a Reichert-Jung Ultracut E (Leica, 723

Heerbrugg, Switzerland) and collected on collodion-coated 200-mesh copper grids (Electron 724

Microscopy Sciences, Hatfield, PA, USA). Sections were double-stained with 0.5% (w/v) 725

uranyl acetate for 30 min at 40 °C (Sigma Aldrich, Steinheim, Germany) and 3% (w/v) lead 726

citrate for 10 min at 20 °C (Laurylab, Saint Fons, France) in an Ultrastain® (Leica, Vienna, 727

Austria) and examined with a Philips CM12 transmission electron microscope (FEI, 728

Eindhoven, The Netherlands) at an acceleration voltage of 80 kV. Micrographs were captured 729

with a Mega View III camera using the iTEM software (version 5.2; Olympus Soft Imaging 730

Solutions GmbH, Münster, Germany).731

732
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Figure legends733

Figure 1. Characterization of the recombinant MHV-BirAR118G-nsp2. (a) Genome 734

organization of recombinant MHV-BirAR118G-nsp2. The positive-sense RNA genome of MHV 735

contains a 5’ cap and a 3’ poly(A) tail. ORF1a and ORF1b encode the viral replication and 736

transcription complex (nsp1-16). myc-BirAR118G was inserted as an N-terminal fusion with 737

nsp2 within ORF1a. The cleavage site between nsp1 and myc-BirAR118G was retained (black 738

arrow) while a deleted cleavage site between BirAR118G and nsp2 ensured the release of a 739

BirAR118G-nsp2 fusion protein from the pp1a polyprotein. The cleavage site between nsp2 and 740

nsp3 was also retained. (b) Viral replication kinetics of recombinant MHV-BirAR118G-nsp2 741

were compared to wild-type MHV-A59 and recombinant MHV-GFP-nsp2. Murine L929 742

fibroblasts were infected at a multiplicity of infection (MOI) of 1 plaque forming unit (pfu) per 743

cell. Viral supernatants were collected at the indicated time points, titrated by plaque assay and 744

expressed in pfu per ml. Data points represent the mean and SEM of three independent 745

experiments, each performed in quadruplicate. (c) Immunofluorescence analysis of MHV-746

BirAR118G-nsp2-mediated biotinylation of RTC-proximal factors. L929 cells were infected with 747

MHV-BirAR118G-nsp2 (MOI=1) in medium supplemented with 67μM biotin. Cells were fixed 748

15 hours post infection (h.p.i.) and processed for immunofluorescence analysis with antibodies 749

directed against the BirAR118G (anti-myc), the viral replicase (anti-nsp2/3) and biotinylated 750

factors (streptavidin). Nuclei are counterstained with DAPI. Z-projection of deconvolved z-751

stacks acquired with a DeltaVision Elite High-Resolution imaging system are shown. Scale 752

bars: 20 μm. (d) Ultrastructural analysis of MHV-APEX2-nsp2 infection. L929 cells were 753

infected with MHV-APEX2-nsp2 and MHV-A59 (MOI=2), or mock infected. At 10 h.p.i., 754

cells were fixed, stained with DAB and processed for electron microscopy investigations. 755

Representative low and high magnifications are displayed. 756

757
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Figure 2. Determination of the coronavirus RTC-proximal proteome (a) Schematic 758

overview of the BirAR118G-mediated proximity biotinylation assay using MHV-BirAR118G-759

nsp2. (b) Western blot analysis of MHV-BirAR118G-nsp2-infected L929 cells. L929 cells were 760

infected with MHV-BirAR118G-nsp2, MHV-A59 (parental wild-type strain) or non-infected in 761

medium with and without supplementation of 67 μM biotin. Cells were lysed 15 h.p.i. and 762

biotinylated factors were subjected to affinity purification using streptavidin-coupled magnetic 763

beads. Total cell lysates and affinity-purified fractions were separated by SDS-PAGE and 764

analysed by western blot probed with horse radish peroxidase (HRP)-coupled Streptavidin. (c) 765

Host and viral factors identified by LC-MS/MS. 4*107 L929 cells were infected with MHV-766

BirAR118G-nsp2 or MHV-A59 in medium supplemented with 67μM biotin. 15 h.p.i., lysates 767

were affinity purified and LC-MS/MS was performed from in-gel digested samples. MS 768

identification of biotinylated proteins was performed in three independent biological replicates. 769

Spectral interpretation was performed against a Mus musculus and MHV database and log2-770

transformed LFQ levels (x-axis) were used to determine significant differences in protein 771

enrichment between sample groups (Student's T-test, y-axis). Identified cellular proteins are 772

displayed as black dots, MHV proteins are highlighted in red (nsp: non-structural protein, N: 773

nucleocapsid, S: spike, M: membrane, 2a: accessory protein 2a). (d) Summary of viral proteins 774

identified by LC-MS/MS. nsp2-10, nsp12-16, and nucleocapsid were significantly enriched in 775

fractions derived from MHV-BirAR118G-nsp2-infected cells whereas nsp1, nsp11, structural 776

proteins spike (S), envelope (E) and membrane proteins (M) as well as all accessory proteins 777

(NS2a, HE, ORF4, ORF5a) were either not significantly enriched or not detected. (e,f) 778

Immunofluorescence analysis of RTC-proximal cellular factors. L929 cells were seeded on 779

coverslips, infected with MHV-BirAR118G-nsp2 (e) or MHV-A59 (f), fixed at 9 h.p.i. and 780

processed for immunofluorescence using anti-myc, anti-RTN4 and anti-eIF3E antibodies (e) 781

or anti-dsRNA, anti-RTN4 and anti-eIF3E antibodies (f). Secondary fluorophore-coupled 782
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antibodies were used to detect the viral replicase and endogenous levels of RTN4 and eIF3E 783

(e). Proximity ligations were performed using Duolink In Situ detection reagents (f). Nuclei 784

are counterstained with DAPI. Z-projection of deconvolved z-stacks acquired with a 785

DeltaVision Elite High-Resolution imaging system are shown. Intensity profiles highlighted in 786

the magnified regions are shown. Scale bars: 20 μm.787

788

Figure 3. Functional classification of RTC-proximal host factors (a) Gene Ontology 789

enrichment analysis of RTC-proximal cellular factors. 32 terms were highly significant (p-790

value <0.005) and were assigned to 5 broad functional categories: cell-cell adhesion, transport, 791

cell organization, translation, catabolic processes. (b-c) STRING protein interaction network 792

analysis of the categories “transport” (b) and “translation” (c). The nodes represent RTC-793

proximal host proteins and the edges represent the interactions, either direct (physical) or 794

indirect (functional), between two proteins in the network. Cellular proteins assigned to the 795

“transport” category separated into 4 distinct interaction clusters. I: protein transport, II: COPII 796

anterograde transport, III: COPI retrograde transport, IV: clathrin-mediated transport.797

798

Figure 4. Identification of proviral factors within the coronavirus RTC 799

microenvironment (a) Impact of siRNA-silencing of RTC-proximal cellular proteins on viral 800

replication. L929 fibroblasts were reverse-transfected with siRNAs (10 nM) for 48 h before 801

being infected with MHV-Gluc (MOI=0.05, n=4). Replication was assessed by virus-mediated 802

Gaussia luciferase expression at 15 h.p.i. and was normalized to levels of viral replication in 803

cells targeted by scrambled siRNA controls. Target proteins to the left of the dashed line804

represent RTC-proximal factors whose silencing decreased viral replication. (b) Bubble plot 805

illustrating host proteins that significantly impact MHV replication. Bubble size is proportional 806
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to the level of viral replication impairment. Colors correspond to the functional categories 807

highlighted in Figure 3. Light grey bubbles (below the dashed line) represent host proteins that 808

did not significantly impact MHV replication (p-value > 0.05). (c, d, e, f) Silencing of RTC-809

proximal components of the cellular translation machinery. Upon 48h siRNA silencing of 810

factors assigned to the category “translation” (Figure 3), L929 fibroblasts were infected with 811

MHV-Gluc (MOI=0.05, n=3). Luciferase activity (c), cell-associated viral RNA levels (d) and 812

viral titers (e) were assessed at 12 h.p.i.. (f) Western blot quantification of total cellular 813

translation following silencing of a subset of the host translation apparatus. Upon 48h siRNA-814

silencing, L929 fibroblasts were pulsed with 3 μM puromycin for 60 min. Control cells were 815

treated, prior to puromycin incubation, with 355 μM cycloheximide and 208 μM Emetin for 816

30 min to block protein synthesis. Cell lysates were separated by SDS-PAGE and Western 817

blots were probed using anti-puromycin antibodies to assess puromycin incorporation into 818

polypeptides and normalized to actin levels. Error bars represent the mean standard deviation, 819

where * is p 0.05, ** is p 0.005, *** is p 0.0005 and **** is p 0.0001.820

821

Figure 5. Active translation near sites of MHV mRNA synthesis. Visualization of active 822

translation in MHV-infected L929 fibroblasts. Cells infected with MHV-A59 (MOI=1) or non-823

infected cells were cultured for 6, 8, 10 and 12 hours and pulsed with cycloheximide, emetine 824

and puromycin for 5 min to label translating ribosomes.  All cells, including non-treated control 825

infections, were subjected to a coextraction/fixation procedure to remove free puromycin. Cells 826

were labelled using anti-nsp2/3 antiserum and anti-puromycin antibodies. Nuclei are 827

counterstained with DAPI. Z-projection of deconvolved z-stacks acquired with a DeltaVision 828

Elite High-Resolution imaging system are shown. Note the gradual decrease of overlap 829

between the viral replication and actively translating ribosomes highlighted in the intensity 830

profiles. Scale bar: 20 μm.831
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832

Figure 6. Active translation near sites of HCoV-229E and MERS-CoV mRNA synthesis.833

Visualization of active translation during hCoV-229E and MERS-CoV infections. Huh7 cells 834

were infected with HCoV-229E and MERS-CoV (MOI=1) for 12 h and 6 h, respectively. Cells 835

were pulsed with cycloheximide, emetine and puromycin for 5min to label translating 836

ribosomes and subjected to a coextraction/fixation procedure to remove free puromycin. Non-837

infected and/or non-pulsed cells were used as control. Cells were labelled using anti-nsp8 838

(HCoV-229E) or dsRNA (MERS-CoV) and anti-puromycin antibodies. Nuclei are 839

counterstained with DAPI. Z-projection of deconvolved z-stacks acquired with a DeltaVision 840

Elite High-Resolution imaging system are shown. Intensity profiles of magnified regions are 841

shown. Scale bar: 20 μm.842

843
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Supplemental Figure 1. Immunofluorescence analysis of MHV-BirAR118G-nsp2-mediated 1044

biotinylation. MHV-BirAR118G-nsp2, MHV-A59- or non-infected L929 fibroblasts were 1045

cultured in medium supplemented with 67μM biotin. Cells were fixed 12 hours post infection 1046

(h.p.i.) and processed for immunofluorescence analysis with antibodies directed against the 1047

BirAR118G (anti-myc), the viral replicase (anti-nsp2/3 or nsp8) and biotinylated factors 1048

(streptavidin). Nuclei are counterstained with DAPI. Z-projection of deconvolved z-stacks 1049

acquired with a DeltaVision Elite High-Resolution imaging system are shown. Scale bars: 20 1050

μm.1051

1052

Supplemental Figure 2. STRING protein interaction network analysis of the categories “cell 1053

organization” (a) and “catabolic processes” (b). The nodes represent RTC-proximal host 1054

proteins and the edges represent the interactions, either direct (physical) or indirect 1055

(functional), between two proteins in the network.1056

1057

Supplemental Figure 3. (a) siRNA controls contained in each 96-well plate during siRNA-1058

silencing of the RTC-proximal library. Controls included the established factors such as MHV 1059

entry receptor (Ceacam1a), Gbf1, Arf1. Arfgap2 was found to moderately affect MHV 1060

replication during pilot experiments and was included to cover the entire inhibitory range. (b) 1061

Cell viability following 48h siRNA-silencing of components of the cellular translation 1062

machinery. (c) Expression levels of Rpl13a, eIF3E, eIF3I, eIF3F, eIF4G1, eIF4G2, eIF2ak3, 1063

Rsl24d1 following siRNA knockdown compared to expression levels in cells treated with non-1064

targetting siRNA. (d) Visual inspection of L929 treated with siRNA targetting eIF3E, eIF3I, 1065

eIF3F, Rrbp1, Rpl13a, non-targetting siRNA (scramble). Note that RNA silencing (b) and 1066

translation activity (c) in Rpl13a-silenced cells could not be assessed, likely due to cytotoxicity 1067
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observed by visual inspection of cells.  (e) Western blot and western blot analysis of total 1068

cellular translation. Upon 48h siRNA-silencing, L929 fibroblasts were pulsed with 3 μM 1069

puromycin for 60 min. Control cells were treated, prior to puromycin incubation, with 355 μM 1070

cycloheximide and 208 μM Emetin for 30 min to block protein synthesis. Western blots were 1071

probed using anti-puromycin antibodies to assess puromycin incorporation into polypeptides 1072

and normalized to actin levels. Error bars represent the mean standard deviation of three 1073

independent experiments, where * is ** is p 0.005.1074

1075

Supplemental Figure 4. Visualization of active translation during HCoV-229E infections. 1076

Huh7 cells were infected with HCoV-229E (MOI=1) for 12, 15, 18, 24 h. Cells were pulsed 1077

with cycloheximide, emetine and puromycin for 5min to label translating ribosomes and 1078

subjected to a coextraction/fixation procedure to remove free puromycin. Non-infected and/or 1079

non-pulsed cells were used as control. Cells were labelled using anti-nsp8 (HCoV-229E) and 1080

anti-puromycin antibodies. Nuclei are counterstained with DAPI. Z-projection of deconvolved 1081

z-stacks acquired with a DeltaVision Elite High-Resolution imaging system are shown. 1082

Intensity profiles of magnified regions are shown. Scale bar: 20 μm.1083
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