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Highlights
We study the problem of tracking and outperforming large stock-market indices.
We compare linear and quadratic objective functions used in the literature.

We consider various real-life constraints that are relevant in practice.

We propose novel MIP formulations and novel matheuristics. &
We find that the tracking error variance, a quadratic function, should be optimizm\(Q
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Abstract

Enhanced index-tracking funds aim to achieve a small target excess return over a given financial benchmark
index with minimum additional risk relative to this index, i.e., a minimum tracking error. These funds are
attractive to investors, especially when the index is large and thus well diversified., Weseonsider the problem
of determining a portfolio for an enhanced index-tracking fund that is ben¢hmarked against a large stock-
market index subject to real-life constraints that may be imposed by investors, stock’exchanges, or investment
guidelines. In the literature, various solution approaches have been proposed to enhanced index tracking that
are based on different linear and quadratic tracking-error functioms. However, it remains an open question
which tracking-error function should be minimized to determinesgood enhanced index-tracking portfolios.
Moreover, the existing approaches may neglect real-life constraints such as the minimum trading values
imposed by stock exchanges or may not devise good feasiblegportfolios within a reasonable computational
time when the index is large. To overcome these shortcomings, we propose novel mixed-integer linear and
quadratic programming formulations and novel matheuristics. To address the open question, we minimize
different tracking-error functions by applying the proposed matheuristics and exact solution approaches
based on the proposed mixed-integer programming formulations in a computational experiment using a set
of problem instances based on large stoek-market indices with up to more than 9,000 constituents. The results
of our study suggest that minimizing thé so-called tracking error variance, which is a quadratic function, is
preferable to minimizing other tracking-error functions.

Keywords: Enhanced*Index Tracking, Mixed-Integer Programming, Matheuristics

1. Introduction

A stock-market index reflects the overall development of the stocks that constitute that index. Examples of
suchsindices inelude the Standard & Poor’s 500 index, the EURO STOXX 50 index, and the Thomson Reuters
Global/index, which reflect the development of national, regional, and global stock markets, respectively.
Stock-market indices serve as benchmarks for evaluating the performance of professional managers of both
active and passive investment funds. A passive fund, also known as an index-tracking fund, aims to replicate

the return of an index, whereas an active fund aims to achieve an excess return over its benchmark index.
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Passive funds tend to be less risky and incur lower management costs than active funds (cf. [2]). However,
active funds have a higher potential return. Recently, a new type of investment fund has emerged, so-called
enhanced index-tracking funds, which are based on the idea of combining the advantages of both active
and passive funds by aiming at a small target excess return with minimum additional risk relative to the
index, i.e., a minimum tracking error (cf. [8]). Note that we regard index-tracking funds as a special type
of enhanced index-tracking funds with a target excess return of zero. Enhanced index-tracking funds are
attractive to investors, especially when such a fund is benchmarked against an index that has a’large number
of constituents and thus is well diversified.

We consider the enhanced index-tracking problem (EITP) faced by the portfolio manageriof an enhanced
index-tracking fund that is benchmarked against a large stock-market index. In"the EITP, the portfolio
manager is given the current composition of the index and the current compesition,of the portfolio, which
can consist of stocks from the index and cash. The portfolio manager can| receive cash deposits and cash
withdrawal requests. The available investment budget consists of the net _cash flow from deposits and with-
drawals plus the value of the current portfolio. Furthermore, the portfoliemanager is given the following
data from the past, i.e., the in-sample period: the values of thedindex, the prices of the stocks that currently
constitute the index, and the interest rates on cash. The portfelio.manager needs to decide how to revise
(rebalance) the current portfolio such that the rebalanged portfolio will exhibit a small tracking error and
achieve a given target excess return in the future,d.e., thé out-of-sample period. Because future outcomes
are not known in advance, the portfolio manager aimsyto minimize the expected tracking error subject to
a constraint that prescribes some minimum expected excess return. When rebalancing the portfolio, the
manager must consider a budget constraint that ensures that the investment in the stocks plus the total
transaction costs spent for rebalaneing do net exceed the investment budget. Furthermore, the portfolio
manager must also consider variousiyreal-life constraints that may be imposed by investment guidelines, the
investors, or stock exchanges. Specifically, we consider the following real-life constraints, which are common
both in the literature and in practice (cf., e.g., [8, 13, 30]). The number of stocks included in the portfolio,
i.e., the portfolio cardinality; must not exceed a given upper bound because investing in all constituents
of a large index-would, be/impractical due to the consequent prohibitive management costs. The trading
value of each traded stock and the weight of each stock in the portfolio must be within given ranges. The
total proportional and fixed transaction costs spent for rebalancing must not exceed a given fraction of the
investment budget. Finally, the short selling of stocks is prohibited, and it is assumed that fractional units
of stocks can be traded. Note that the EITP also includes the construction of a new portfolio as a special
case when the portfolio before rebalancing consists only of cash.

In the literature, various mathematical programming formulations have been proposed for the problem
of determining an enhanced index-tracking portfolio. These formulations differ with respect to the real-life
constraints considered, the way the expected tracking error is attempted to be minimized, and whether

and how the expected excess return is integrated. With respect to the real-life constraints, some authors



have determined enhanced index-tracking portfolios without considering real-life constraints (cf., e.g., [23]),
whereas others have considered all real-life constraints as defined in the EITP (cf., e.g., [30]). With respect
to the expected tracking error, the earliest studies attempted to minimize the tracking error variance (TEV),
which is a quadratic function of the covariances between the returns of the stocks, the weights of the stocks
in the portfolio, and the weights of the stocks in the index (cf., e.g., [23]). Minimizing the TEV corresponds
to minimizing the estimated variance of the return differences between the portfolio and the index in the
out-of-sample period (cf. [22]). By contrast, later studies attempted to minimize the expécted tracking
error by using as the objective function a dissimilarity function that captured the devidation between the
historical developments of the portfolio and the index. One of the most widely used.dissimilarity functions
is the mean-absolute deviation (MAD) between the historical values of the portfolic and the‘index (cf., e.g.,
[8, 13, 16]). In the most recent study, the goal of minimizing the TEV was revisited (cf. [22]). With respect
to the expected excess return, some studies have focused on the problem of determining the portfolio for
an index-tracking fund without considering the expected excess return (efs, e.g., [30]). In other studies,
the expected excess return has been considered by using a bi-objective, approach with the maximization of
the expected excess return as a second competing objective (cff, e.gy, [8]), by introducing into the objective
function a second term that captures the expected excess returns(efy.e.g., [2]), or by introducing a constraint
that prescribes a minimum expected excess return (cfiy, e.g., [23]). From an optimization point of view,
these various means of integrating the expected excess réturn are very similar because all functions used
for the expected excess return are linear. Various exaet approaches, such as mixed-integer programming,
and metaheuristic approaches, such as population-based heuristics or local-search heuristics, have all been
proposed as solution approaches for the/problem of determining an enhanced index-tracking portfolio.

We have identified four gaps in the literature on enhanced index tracking. Gap 1: it remains an open
question whether it is preferablelinitérms of the out-of-sample tracking error to use the TEV as the objec-
tive function, which, together with the real-life constraints, constitutes a cardinality-constrained quadratic
optimization problem that is known to be very challenging to solve (cf. [3, 33]), or whether it is preferable
to use a dissimilarity’function such as the MAD, which can be formulated as a linear objective function and
thus is less challenging.to optimize. Gap 2: the EITP as defined above has not been previously considered
because the problems/studied in the literature may neglect the minimum expected excess return or some
of the real-life constraints. Hence, the EITP as defined above has not been formulated as a mathematical
program. Mereover, the existing mathematical programming formulations for problems related to the EITP
that consider transaction costs allow the implicit holding of cash because the budget constraint is modeled
as an inequality or because the modeled transaction costs correspond to merely an upper bound on the true
transaction costs. Consequently, these cash holdings are not considered in the formulation of the expected
tracking error and the expected excess return. Gap 3: the existing solution approaches for the related prob-
lems studied in the literature may not be appropriate for the EITP when the TEV is used as the objective

function. The existing exact approaches would require the solution of a series of quadratic programming re-



laxations, which may become computationally very expensive when large indices are considered. The existing
metaheuristic approaches would require adaptation to the real-life constraints of the EITP, which may reduce
their effectiveness because they are tailored for other specific problems that are less constrained. Gap 4: there
are no available instances of the EITP based on large stock-market indices; the existing instances of related
problems either are based on small indices or do not provide information about the index composition.

The main contribution of this paper is to address the open question corresponding to gap 1 by providing
novel theoretical arguments and novel experimental results. The theoretical arguments indicate’that minimiz-
ing the TEV instead of a dissimilarity function may lead to superior out-of-sample tracking errors, especially
when the index is large, because dissimilarity functions may not exploit the known indéx composition. To be
able to provide experimental results, we first had to address the gaps 2 to 4. To address gap 2, we present a
novel mixed-integer quadratic programming (MIQP) formulation and a novel mixed=integer linear program-
ming (MILP) formulation of the EITP. In the MIQP formulation, we use the TEV as the objective function.
In the MILP formulation, we use the MAD as the objective function.| Thesnovelties in these formulations
are a formulation of the considered real-life constraints in which cash holdings are explicitly considered and
insights that allow to remove redundant variables and constraintsay, To/address gap 3, we present a con-
struction matheuristic and two improvement matheuristics®basedron the proposed MIQP formulation that
are able to determine good feasible portfolios, i.e., portfolios that satisfy all considered constraints, within
a reasonable computational time for the EITP when the/TEV is used as the objective function, especially
for instances based on large indices. The construction heuristic, which can be used to find an initial feasible
portfolio quickly, is based on a novel idea of linearizing the TEV by using the identity matrix as a simplified
covariance matrix and by considering absolute instead of squared deviations in the terms of the resulting
function. The first improvement heutisticiis based on the concept of local branching, which has been success-
fully applied to various combinatorial optimization problems (cf. [9]). In local branching, starting from the
initial feasible solution, the golution space to be searched is iteratively defined with an upper bound on the
number of binary variables whose values flip. The novelty of this improvement heuristic is that we consider
a subset of promising stocksithat differs in each iteration to reduce the required computational time. The
second improvement heuristic is based on the concept of iterated greedy heuristics (cf., e.g., [26]). In iterated
greedy heuristics, a current feasible solution is iteratively deconstructed and subsequently reconstructed in
a greedy manner, to form a new feasible solution. The novelties of this improvement heuristic are that we
also consider,a.different subset of promising stocks in each iteration and that, in contrast to existing iterated
greedy, heuristics (cf., e.g., [31]), we apply mixed-integer quadratic programming for the reconstruction. The
proposed matheuristics are particularly suitable for the EITP because they are simple to implement and
because they combine the flexibility of mathematical programming to easily incorporate complex constraints
such as the considered real-life constraints with the ability of heuristics to find good feasible solutions quickly.
Hence, the proposed matheuristics exhibit the properties of accuracy, speed, simplicity, and flexibility, which

are the four essential attributes of good heuristics according to Cordeau et al. [7]. Finally, to address gap 4, we



generated a set of novel instances of the EITP based on nine large regional and global real-world stock-market
indices maintained by Thomson Reuters. The largest of these indices has more than 9,000 constituents. In
a computational experiment based on these instances, we tested two heuristic solution approaches that are
based on the two proposed improvement matheuristics initialized with the proposed construction matheuris-
tic and two exact solution approaches that are based on the MIQP and the MILP formulation along with a
commercial mixed-integer programming solver. This computational experiment yielded the following three
main findings. 1) An exact solution approach may be appropriate for the EITP when the MAD ig,used as the
objective function, but may not be appropriate when the TEV is minimized, which indicates the potential
improvements that may be achieved by applying heuristics to the EITP when the TEV.is used as the objec-
tive function. 2) The proposed matheuristics are indeed able to achieve substantial improvements in terms
of the TEV compared to an exact solution approach within a limited computational time. 3) Minimizing the
TEV instead of the MAD leads to superior portfolios in terms of the out-of-sample tracking error.

The remainder of this paper is organized as follows. In Section 2, we.review the existing solution ap-
proaches in the literature for problems that are related to the EITP. In\Section 3, we present the MIQP and
the MILP formulation and provide the arguments to address gap 1 theoretically. In Section 4, we present the
construction matheuristic and the two improvement matheutistiessIn Section 5, we report the computational
results to address gap 1 experimentally. In Section 6, we offer some concluding remarks and an outlook on

future research.

2. Related literature

Various papers in the literature have studied problems that are related to the EITP. Table 1 lists, for
each of these papers with a v-symbolpwhether it considers the real-life constraints of the EITP mentioned
above and whether the objective is index tracking (IT) or enhanced index tracking (EIT). We categorize the
papers into two groups based on whether the objective function used is non-linear or linear. In the following,
we describe the proposed solution approaches of both groups.

The first group“of problems consists of those that involve the optimization of a non-linear objective
function. In some papers; only indices with a small number of constituents are considered, such that exact
approaches~are ‘applicable (cf. [10, 14, 24]). In other papers, the real-life constraints are neglected, which
allows closed-form solutions to be devised (cf. [15, 23]). In the remaining papers, metaheuristics such as
evolutionary algorithms (cf. [1, 6, 17, 21, 27, 28, 29]) or local-search heuristics (cf. [18, 22, 32]) are proposed.
The majority of the papers in this first group neglect most of the real-life constraints of the EITP. An
exception is the paper by Beasley et al. [2], in which the goal is to optimize the trade-off between a non-
linear dissimilarity function and the expected excess return subject to a cardinality constraint, minimum
and maximum weights for the stocks included in the portfolio, and a budget for proportional transaction
costs. An evolutionary algorithm is presented that uses cross-over and mutation operators to combine and

modify, respectively, individuals that represent feasible and infeasible solutions. The presented algorithm



Table 1: Problems related to the EITP considered in the literature.

Paper Real-life constraints Objective

Cardinality Min./max. weights Transaction costs Min./max. trades IT EIT
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includes a customized proeédure for-determining portfolio weights, a repair operator, and a penalty term in
the objective functionsto handle infeasible solutions.

The second grotuprof’ problems consists of those that involve the optimization of a linear objective function.
For these problems, exaet approaches such as linear programming and MILP approaches are able to devise
good feasible ‘solutiens within a reasonable computational time, even when real-life constraints and large
indices are,considered (cf. [4, 8, 11, 13, 25, 30]). Among all these problems, those studied in the following
papers are.most similar to the EITP in terms of the real-life constraints considered. Strub and Baumann
[30] introduce a MILP formulation for determining the portfolio for an index-tracking fund in which a linear
dissimilarity function is minimized subject to all real-life constraints of the EITP. Guastaroba and Speranza
[13] minimize the MAD between the historical values of the portfolio and the index, which is modeled as a
linear dissimilarity function, subject to a budget for fixed and proportional transaction costs, minimum and
maximum portfolio weights, and a cardinality constraint. They also present a heuristic called Kernel Search,

which is a matheuristic that can easily handle various real-life constraints. In this heuristic, the information



from the solution to the linear programming relaxation is exploited to construct different sub-problems that
can be solved quickly. They also show that their heuristic can be applied for enhanced index tracking by
tracking an artificial index that represents the index return plus the target excess return. Filippi et al. [§]
alm to maximize a linear excess-return function and minimize the same linear dissimilarity function subject
to the same real-life constraints as those of Guastaroba and Speranza [13]. They modify the Kernel Search
heuristic such that it can be applied to the considered problem. In the MILP formulation presented by
Strub and Baumann [30], implicit cash holdings can occur because the budget constraint is meodeled as an
inequality, which is necessary because the total transaction costs spent for rebalancing plus the value of the
portfolio may not exactly match the investment budget. In the MILP formulations preposed by Guastaroba
and Speranza [13] and Filippi et al. [8], implicit cash holdings can occur because”the modeled transaction
costs correspond merely to an upper bound on the true transaction costs. A drawbagk of these implicit cash
holdings is that they are not considered in the calculation of the historical portfolio /values and thus are also
ignored in the dissimilarity and excess return functions.

The existing solution approaches presented in the literature may not begappropriate for the EITP when
the TEV is used as the objective function. The existing exact{approaches and the Kernel Search heuristic
would first require the solution of the continuous relaxationfthesMIQP formulation of the EITP, which is a
quadratic program that becomes computationally very expensiveto solve when large indices are considered.
The existing metaheuristics would require adaptation to/the real-life constraints of the EITP, which may
reduce their effectiveness because they are tailored forother specific problems that do not include all of the
real-life constraints of the EITP. A further drawback of metaheuristics is that they may investigate many

infeasible solutions and thus be ineffective.

3. Mixed-integer linear andsquadratic programming formulations

In this section, we present theynovel MIQP formulation and the novel MILP formulation of the EITP.
In Subsection 3.1, we firstipresent the objective functions and the constraint on the expected excess return
that are used in thé twe mixed-integer programming (MIP) formulations. In Subsection 3.2, we present new
arguments thatfusing the TEV instead of a dissimilarity function as the objective function may lead to superior
portfolios in terms_of the out-of-sample tracking error. In Subsection 3.3, we introduce the formulation of
the real-life constraints. In Subsection 3.4, we provide insights that allow to remove redundant variables and
constraints from the formulation of the real-life constraints, and we present the complete MIP formulations
without the removed variables and constraints.

Table 2 shows the nomenclature used in the MIP formulations. The set of available assets consists of
the set of index constituents U = {1,...,n} and an asset n + 1 that represents the explicitly modeled cash
holdings. Note that in Table 2, the decision variables are defined only for a set of considered stocks I, with
I being a subset of the set of index constituents U and a superset of the set I that contains the stocks

that must always be included in the portfolio after rebalancing, i.e., Iy C I C U. Thereby, the set I, must



always contain the stocks included in the portfolio before rebalancing that cannot be sold off completely due
to the minimum and maximum trading values. Then, let T" be the point in time at which the EITP must be
solved, P;; be the prices of the stocks i € U at the point in time ¢ € {1,...,T}, and P,41+ be the values of
the asset that represents cash calculated as P41, = Pn41,7 exp(— Zz=t+1 is) for t € {1,...,T — 1}, with
Poi10 =100 and i, for t € {2,...,T} corresponding to the continuously compounded interest rate on the
cash holdings. Furthermore, let ¥; be the number of units of the assets ¢ € UU{n+ 1} in the portfolio before

rebalancing, x be the net cash flow from deposits and withdrawals, and C' =k + ) Y, P;r be the

i€eUU{n+d1}
investment budget. Then, the stocks that cannot be sold off completely are those that have a value in the
portfolio before rebalancing of P;7Y; that is greater than the maximum trading value.of.n; Clor greater than
zero but smaller than the minimum trading value of (;C, i.e., I 2 {i € U : PirY; > niC V0 PirY; < (;C}.
We define the MIP formulations in this general form based on the sets I and~Fs because this simplifies the
notation for the MIP formulations without the removed redundant variables and constraints presented in

Subsection 3.4 and because we can then use the MIQP formulation with enly minor modifications for the

heuristic solution approaches presented in Section 4.

3.1. Objective functions and the constraint on the expected excess\return

The two competing objectives in enhanced index tracking are the minimization of the expected tracking
error and the maximization of the expected excess return,/In this subsection, we present the functions used
to model these objectives in the proposed MIP formulations. In the MIQP and the MILP formulation, we
use the TEV and the MAD, respectively, for the,expected tracking error. In both formulations, we use the
function presented by Roll [23] for the expected excess return. We adjust all functions to account for the set
of considered stocks I and the expligitly modeled cash holdings.

We define X; > 0 to be the main decision variables that correspond to the number of units of the assets
i € TU{n + 1} in the portfolioyafter rebalancing. Then, the TEV, which is used in the MIQP formulation,
is a function of the covariances o;; between the returns of assets ¢ € U U {n + 1} and j € U U {n + 1}, the
weights 12X of the dssets @€ U U {n + 1} in the portfolio, and the weights w/ of the assets i € U U {n+ 1}
in the index, withuw!yg = 0. Any stock that is not included in I will have a portfolio weight of zero. Thus,
the following function represents the TEV:

PrX; PirX, PrX;
Z Oij (%—w;’) (?—w;)—? Z Z O’ij< 2 ’LUJI—’LU{IUJI>+ Z aijw{wjl»

i,jETU{n+1} i€lU{n+1} jeU\T 1,j€UNT
(1)

Based on the expected returns 7; of the assets i € U U {n + 1}, the expected excess return is calculated

as the difference between the expected return of the portfolio and the expected return of the index:

i€lu{n+1} ieUU{n+1}

In the MIQP formulation, we minimize the TEV subject to a constraint that prescribes a minimum



Table 2: Nomenclature for the MIP formulations.

Sets and parameters:

SN g S

o

Point in time at which the EITP must be solved (today)

Number of stocks in the index

Set of index constituents (U = {1,...,n})

Set of considered stocks (I C U)

Set of stocks that must be included in the portfolio after rebalancing (Is C I)

Maximum portfolio cardinality

Net cash flow from deposits and withdrawals

Continuously compounded interest rate on cash for the period starting at #= 1 and ending at t,
te{2,....T}

Historical value/price of index/asset t € UU{n+ 1} at t €{1,..., T}

Number of units of asset ¢ € U U {n + 1} in the portfolio,before rebalancing

Investment budget

Minimum/maximum trading value of stock i € U if\traded, expressed as a percentage of C
Minimum/maximum weight of stock ¢ € U if included in the portfolio after rebalancing

Fixed transaction cost for trading stock 7.&@U

Proportional transaction cost for buyingy/selling stock ¢ € U as a percentage of the trading value
Maximum total transaction costsyexpressed as a percentage of C'

Weight of asset i € U U {n 1} in the index, with w!_ , =0

Expected return of asset’s €U U fn + 1}

Prescribed minimum' expected’excess return

Covariance between the'discrete returns of asset ¢ € U U {n + 1} and asset j € UU {n + 1}

Continuous non-negative decision variables:

X;
G;
o

Ut/dt

Number of units/of asset ¢ € I U {n + 1} in the portfolio after rebalancing
Total transaction costs associated with stock ¢ € I
Value bought /sold of stock ¢ € I

Abselute upside/downside deviation between the values of the portfolio and the index at ¢t €

o,.... 1)

Binary decision variables:

=1,if X; > 0; =0, otherwise (i € I)
=1,if X; > Y;; =0, otherwise (i € I)
=1,if X; <Y;; =0, otherwise (i € I)




expected excess return of «, as follows:

Min. (1) (3)

s.t. Z PigXi Ti— Z wiT; > a (4)

i€lTu{n+1} ieUU{n+1}

In the MILP formulation, the dissimilarity function captures the MAD over all in-sample time points
t € {1,...,T} between the values of the index I;, scaled to the investment budget C' at time‘point T', and

the values of the portfolio ) P;; X;. With the introduction of the non-negative decision variables

i€Iu{n+1}
us and d; for t € {1,...,T}, the MAD can be minimized subject to the constraint ou the'expected excess

return as follows:
1

Min. - > (w+di) (5)
te{1,....T}
C
st w—di= Y PyuXi—L—  (t€ {1, T} (6)
. It
i€elUu{n+1}
Pir X _ (
Z c i Z wiE, > a (4)
i€TU{n+1} 1€eUU{n+1%}

3.2. TEV: a comparison with dissimilarity functions

In this subsection, we compare the minimization of\the TEV with the minimization of a dissimilarity
function such as the MAD in terms of the out-of-sample tracking error. For this purpose, we consider
all index constituents, i.e., I = U, and we consider only a budget constraint that ensures that the entire
investment budget is invested in the assetsiyWe assume that the number of available assets is much larger
than the number of in-sample time points, i.e.; |U U {n + 1}| > T, and that the matrix consisting of the in-
sample prices of each stock, where each stock corresponds to a column, has full row rank. Both assumptions
are usually satisfied when thedndex islarge. We further assume that the matrix of the covariances is positive
definite. This assumptionsis satisfied when an appropriate estimator is used for the covariances, such as that
of Ledoit and Wolf [20}; but.may be violated when the sample covariance is used as an estimator (cf. Ledoit
and Wolf [19]).

When the TEV is to be minimized with a positive-definite matrix of covariances, the only solution with
zero TEV/is the portfolio that has the same composition as the index. By contrast, when a dissimilarity
function is\used,i.e., when the known index composition is ignored, infinitely many different portfolios can
exist thateachieve a dissimilarity of zero with respect to the index. To see this, note that finding a portfolio
with zero dissimilarity is equivalent to solving a system of T linear equations with n + 1 unknowns, where
these T equations state that the portfolio value at each time point ¢ € {1,...,T} must match the scaled index
value at that time point. Note that the equation for time point 7" also ensures that the budget constraint is
satisfied because of the scaling of the index values. Under the assumption of a full row rank matrix of stock
prices, infinitely many solutions to this linear system exist, which means that infinitely many portfolios with

zero dissimilarity exist.
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Based on the arguments above, one drawback of minimizing a dissimilarity function is that, in contrast
to the case of minimizing the TEV, many different portfolios can exist that each have an objective function
value of zero but a composition that strongly differs from that of the index. These portfolios may have very
high out-of-sample tracking errors. Hence, for our computational experiment reported in Section 5, we expect
that the compositions of the portfolios obtained when minimizing the MAD will differ more strongly from
the composition of the index than the compositions of the portfolios obtained when minimizing the TEV.
Consequently, we also expect that, over all considered problem instances, the average and _the worst-case

tracking error for the out-of-sample period will be worse when the MAD is minimized instead)of the TEV.

3.3. Real-life constraints

Next, we model the real-life constraints. The constraints expressed in (7)nassign at’least the absolute
value bought or sold of each stock i € I to the non-negative decision variable v? oy v7, respectively. These

decision variables are used to model the transaction costs and the minimum and"maximum trading values.
v v =Pr(X;-Y;) e (7)

The purpose of constraints (8) and (9) is twofold. Firstssthesbinary variables z? and z$ are assigned
a value of one if the variables vf and v, respectively, take a positive value and a value of zero otherwise.
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Second, the constraints prescribe minimum and maximumAvalues of (;C' and 7;C, respectively, for v¢ and v;.

GOzt <Wns i Cz

N (X)) (8)
GGz v] < Czf (tel) (9)

The constraints defined in (10)/€nsure'that for each stock i € I, at most one of the binary variables z?
and z; can be set to one.

A<l Gel) (10)

Together, constraints (8), (9), and (10) ensure that for each stock i € I, either v? or v$ must be set to
zero. Because it isfiot possible for both variables v? and v{ to take positive values simultaneously for a given
stock ¢ € I, the constraints defined in (7) assign the actual values bought or sold of each stock i € I to
the variables v? or v respectively. These actual values are necessary to model the minimum and maximum
trading values (;C and 7,C using constraints (8) and (9).

Let cif , cg, and ¢ be the parameters that determine the fixed transaction costs for trading the stocks
1 € U, the proportional transaction costs for buying units of the stocks ¢ € U, and the proportional transaction

costs for selling units of the stocks i € U, respectively. Then, based on the variables v?, v$, 20, and z¢, the
transaction costs G; for each stock ¢ € I are calculated using the constraints defined in (11). Note that the
variables GG; take values equal to the actual transaction costs associated with each stock i € I, because we

ensure that the variables v? and v§ take the actual values bought and sold of each stock, and that at most
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one of the binary variables z? and 2§ can be set to one if stock i € I is traded, whereas both variables z? and

z; are set to zero otherwise.
Gy =l + vl + el (20 + =) (tel (11)

The budget constraint (12) states that the available investment budget C' must be either held in cash,
invested in the stocks that constitute the index, or spent for transaction costs. Note the possibility that
some stocks were included in the portfolio before rebalancing but are not included in theuset of con-
sidered stocks I. Hence, the shares of these stocks must be sold, incurring total transactioncosts of
ZieU\I:Yi>O (CinPiT + c{) Since the variables G; take values equal to the actual‘transaction costs as-
sociated with each stock i € I, constraint (12) ensures that the variable X, cérresponds exactly to the
part of the investment budget that is not invested in stocks or spent for tramsaction costs. Hence, we can
explicitly account for these cash holdings when formulating the TEV, the MAD, and the expected excess

return.

S PrXi+) G+ Y (qriPnrel)=cC (12)

i€lu{n+1} i€l i€UNI:Y; >0
Constraint (13) prescribes a bu