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A B S T R A C T

The metacestode stage of the fox tapeworm Echinococcus multilocularis causes the lethal disease alveolar echi-
nococcosis. Current chemotherapeutic treatment options are based on benzimidazoles (albendazole and me-
bendazole), which are insufficient and hence alternative drugs are needed. In this study, we screened the 400
compounds of the Medicines for Malaria Venture (MMV) Pathogen Box against E. multilocularis metacestodes.
For the screen, we employed the phosphoglucose isomerase (PGI) assay which assesses drug-induced damage on
metacestodes, and identified ten new compounds with activity against the parasite. The anti-theilerial drug
MMV689480 (buparvaquone) and MMV671636 (ELQ-400) were the most promising compounds, with an IC50 of
2.87 μM and 0.02 μM respectively against in vitro cultured E. multilocularis metacestodes. Both drugs suggested a
therapeutic window based on their cytotoxicity against mammalian cells. Transmission electron microscopy
revealed that treatment with buparvaquone impaired parasite mitochondria early on and additional tests
showed that buparvaquone had a reduced activity under anaerobic conditions. Furthermore, we established a
system to assess mitochondrial respiration in isolated E. multilocularis cells in real time using the Seahorse XFp
Analyzer and demonstrated inhibition of the cytochrome bc1 complex by buparvaquone. Mice with secondary
alveolar echinococcosis were treated with buparvaquone (100mg/kg per dose, three doses per week, four weeks
of treatment), but the drug failed to reduce the parasite burden in vivo. Future studies will reveal whether
improved formulations of buparvaquone could increase its effectivity.

1. Introduction

Alveolar Echinococcosis (AE) is a life-threatening disease caused by
infections with the fox tapeworm Echinococcus multilocularis which is
endemic in the Northern hemisphere. The natural life cycle of E. mul-
tilocularis typically includes canids (often foxes) as definitive hosts and
voles as intermediate hosts (Conraths and Deplazes, 2015). However, a
large variety of mammals (including humans) can be infected as acci-
dental intermediate hosts by ingesting parasite eggs shed by the defi-
nitive hosts during defecation. In humans, E. multilocularis forms larval
metacestodes which primarily infect the liver, but they can also form
metastases and affect other organs, especially at the late stage of in-
fection (Kern, 2010). Metacestodes grow aggressively and infiltrate the
host tissue, thus causing AE. AE has many pathological resemblances
with a slow growing, malignant hepatic tumor, and for surgical excision

of parasite lesions, the general rules of hepatic tumor surgery are fol-
lowed accordingly (Kern et al., 2017). However, complete surgical re-
moval of the parasitic lesions is often not possible, due to the diffuse
and infiltrative nature of the metacestode tissue (Grüner et al., 2017;
Kern et al., 2017). In such cases, chemotherapy remains the only widely
used treatment option against AE. The current drugs of choice are the
benzimidazole derivatives albendazole (ABZ) and mebendazole. How-
ever, they have several drawbacks, most importantly they act para-
sitostatic rather than parasiticidal (Hemphill et al., 2014, 2007), hence
they have only limited potential to bring about a cure from infection,
and massive doses of these drugs usually have to be administered
throughout life (Kern et al., 2017). Additionally, benzimidazoles are not
always well tolerated and can cause severe side effects, such as hepa-
totoxicity in some patients (Grüner et al., 2017). All these shortcomings
make it urgent to develop alternative chemotherapeutic options against
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AE.
Given the relatively small target population, commercial support for

neglected diseases such as echinococcosis is modest. Thus, one of the
most promising strategies to find new drugs against AE (and likewise
also other neglected diseases) is the repurposing of substances with
already described activities against other pathogens. Open source drug
discovery is fundamental to enable drug repurposing in an academic
environment, and supported by organizations such as the Medicines for
Malaria Venture (MMV) (Wells et al., 2016). MMV is a product devel-
opment partnership with the declared goal of “[…] discovering, de-
veloping and facilitating the delivery of new, effective and affordable
antimalarial drugs” (http://www.mmv.org). In 2013, MMV launched
the open-access Malaria Box, a collection of 200 drug-like and 200
probe-like molecules with in vitro inhibitory activity against the malaria
parasite Plasmodium falciparum (Spangenberg et al., 2013). The MMV
Malaria Box was since then screened in over 290 assays against a wide
range of organisms, including various parasites, bacteria, yeasts, and
cancer cell lines (Voorhis et al., 2016). The 400 compounds from the
Malaria Box were screened against E. multilocularis metacestodes, seven
were found to be active in vitro at 1 μM, and one of them (MMV665807)
was studied in more detail (Stadelmann et al., 2016). Following the
success of the Malaria Box, MMV launched the Pathogen Box which
contains 400 drug-like molecules with confirmed activity against var-
ious pathogens including parasites, bacteria, and viruses. Also included
in the Pathogen Box are 26 reference compounds, which are well de-
scribed drugs that are frequently used in clinical applications against
various pathogens.

In this study, we screened the compounds from the MMV Pathogen
Box in vitro against E. multilocularis metacestodes by applying the PGI-
assay (as an indicator for physical drug-induced damage) and the
Alamar Blue assay to monitor decreased viability of the metacestode
tissue. Four compounds with promising activities were further tested
for their cytotoxicity against rat hepatoma cells and human foreskin
fibroblasts in vitro. Overall, we found two novel compounds with dis-
tinct activities against E. multilocularis metacestodes. One of them is
buparvaquone (BPQ; MMV689480), which is a known anti-theilerial
drug that was subsequently also tested in mice experimentally infected
with E. multilocularis. To further study the mode of action of BPQ, we
performed transmission electron microscopy (TEM) and established a
system to measure its effect on the oxidative phosphorylation in the
mitochondria of E. multilocularis cells.

2. Materials and methods

All chemicals were purchased from Sigma (St. Louis, MO, USA),
unless stated otherwise. Dulbecco's modified Eagle medium (DMEM)
and fetal bovine serum (FBS) were obtained from Biochrom (Berlin,
Germany). The solutions containing Trypsin-EDTA, Penicillin/
Streptomycin, and amphotericin B were purchased from Gibco-BRL
(Zürich, Switzerland). The 400 compounds from the Pathogen Box were
provided by MMV (Geneva, Switzerland) as 10mM solutions in DMSO
and stored at −20 °C. Additional samples of the compounds
MMV021013, MMV671636, MMV687807 (provided by MMV), and

BPQ (Cross Vet Pharm, Dublin, Ireland) were prepared as 10mM stocks
in DMSO upon arrival and stored at −20 °C.

2.1. E. multilocularis metacestode in vitro cultivation

E. multilocularismetacestodes were cultured as described by Spiliotis
et al. (2004). In short, metacestodes (isolate H95) were grown in vivo in
intraperitoneally (i.p.) infected Balb/c mice for 3–5 months. The
parasite material was subsequently resected, pressed through a con-
ventional tea strainer (Migros, Zürich, Switzerland), and incubated
overnight at 4 °C in PBS containing 100 U/ml penicillin, 100 μg/ml
streptomycin, and 10 μg/ml tetracycline. To establish a new in vitro
culture, up to 2ml of parasite tissue was co-cultured with 5× 106

Reuber rat hepatoma (RH) feeder cells and incubated at 37 °C with 5%
CO2 in DMEM containing 10% FBS, 100 U/ml penicillin, 100 μg/ml
streptomycin, and 5 μg/ml tetracycline. Once a week, the culture
medium was changed and new RH cells were added. RH cells were
cultured in parallel in the same culture medium, under the same con-
ditions as the metacestodes, and they were passaged once a week.

2.2. Pathogen box screening design

The 400 compounds of the MMV Pathogen Box were initially
screened at 10 μM in singlets by PGI-assay (see 2.3). The positive
compounds from this initial screen were re-tested by PGI-assay in tri-
plicates to confirm their activity at 10 μM. Thereafter, positive com-
pounds were further tested at 1 μM in triplicates. Compounds were
considered as active if they exceeded 20% PGI activity of the positive
control Triton X-100 (Tx-100). After this screening cascade, four active
compounds remained (BPQ, MMV021013, MMV671636, and
MMV687807) that were serially diluted from 90 μM in 1:2 or 1:3 di-
lution steps to assess their EC50 values in triplicates. EC50 values were
calculated after logit-log transformation in Microsoft Office Excel
(2010). The three screening rounds of the Pathogen Box were each
carried out once, and dilution series to assess the EC50 values were
tested in three independent experiments. Mean values and standard
deviations are given for the EC50 values.

2.3. In vitro drug testing of E. multilocularis metacestodes by PGI-assay

In order to assess the activity of compounds from the Pathogen Box
on E. multilocularismetacestodes, the PGI-assay was employed. The PGI-
assay measures the amount of the enzyme phosphoglucose isomerase
(PGI) that metacestode vesicles release into the medium supernatant
when their integrity is disrupted (Stadelmann et al., 2010). Metaces-
todes used for the PGI-assay were cultured in vitro for 4–10 weeks
(diameter of 2–5mm), washed in PBS, and mixed 1:1 with DMEM
(supplemented with 100 U/ml penicillin, and 100 μg/ml streptomycin)
before distribution in 48-well plates (1 ml vesicle suspension per well).
Drugs were pre-diluted in DMSO and then added to the wells (1 μl per
well). Corresponding amounts of DMSO were used as the negative
control, and the nonionic surfactant Tx-100 (0.1% final concentration)
was applied as positive control. The parasite- and drug-containing

Abbreviations

ABZ albendazole
AE alveolar echinococcosis
FBS fetal bovine serum
EC50 half maximal effective concentration
ELQ endochin-like quinolone
GL germinal layer
HFF human foreskin fibroblasts
LL laminated layer

MAS mitochondria assay solution
MIC minimal inhibitory concentration
MMV Medicines for Malaria Venture
OCR oxygen consumption rate
PGI phosphoglucose isomerase
RH rat hepatoma
ROS reactive oxygen species
TEM transmission electron microscopy
TMPD N,N,N′,N′-tetramethyl-p-phenylenediamine
Tx-100 Triton X-100
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plates were incubated at 37 °C and 5% CO2, under humid atmosphere.
To assess drug-induced metacestode damage by PGI-assay, 120 μl
medium supernatant was collected from each well after 5 and 12 days
of incubation and stored at −20 °C until further measurements were
performed. The amount of PGI released in these media was measured as
described by Stadelmann et al. (2010). The activity of PGI was finally
calculated from the linear regression of the enzyme reaction over time
and expressed as relative activity of the positive control Tx-100 in
Microsoft Excel (2010) and Figures were prepared in Adobe Illustrator
(2015).1.0.

2.4. Vesicle viability assay by Alamar Blue assay

After initial screening by PGI-assay, the vesicle viability assay by
Alamar Blue was applied to the most active drugs (BPQ, MMV021013,
MMV671636, and MMV687807). The setup was the same as for PGI-
assay EC50 calculations and it was performed in triplicates. After 12
days of treatment, viability of metacestodes was measured by Alamar
Blue assay as previously described (Stadelmann et al., 2016). Data was
used to calculate the minimal inhibitory concentrations (MICs) of these
compounds on metacestodes. The MIC was defined as the lowest con-
centration of a drug with no significant difference in viability compared
to the Tx-100 control, where all parasites were dead (p > 0.05 in a
one-tailed Students t-test). MICs were tested in three independent ex-
periments and mean values and standard deviations were calculated in
Microsoft Office Excel (2010).

2.5. Cytotoxicity measurements in human fibroblasts and rat hepatoma cells

The in vitro toxicity of selected compounds was tested against con-
fluent and pre-confluent human foreskin fibroblasts (HFF) as well as RH
cells. HFF were kept in DMEM supplemented with 10% FBS, 100 U/ml
penicillin, 100 μg/ml streptomycin, and 0.25 μg/ml amphotericin B at
37 °C and 5% CO2 in a humid atmosphere. To start the assay, HFF were
seeded in 96-well plates (10,000 cells per well for confluent cells and
1000 cells per well for pre-confluent cells). The cells were incubated in
100 μl HFF cultivation medium at 37 °C and 5% CO2 to attach to the
well and let grow for 4 h (pre-confluent HFF) or 22 h (confluent HFF)
before the drugs were added. Drugs were serially diluted starting at
100 μM in 1:2 or 3:4 dilution steps and added to the cells. The final
dilution series was adapted individually for each drug. The cells were
subsequently incubated for 5 days at 37 °C and 5% CO2 in humid at-
mosphere. RH cells were treated the same way as the HFF, with the
difference that 50,000 cells were seeded per well to obtain a confluent
monolayer, and 5000 cells per well for pre-confluent wells. RH cells
were incubated in DMEM containing 10% FBS, 100 U/ml penicillin,
100 μg/ml streptomycin, and 5 μg/ml tetracycline.

To measure the viability of the cells after treatment, the Alamar
Blue assay was employed (Stadelmann et al., 2016). Therefore, the cells
were washed three times in PBS and resazurin was added to 10mg/l.
The fluorescence at 595 nm was subsequently measured after 0 h and
2 h (or after 0 h and 5 h for preconfluent HFF) with an EnSpire 2300
plate reader (PerkinElmer Life Sciences, Schwerzenbach, Switzerland).
IC50 values were calculated in Microsoft Excel (2010) after logit-log
transformation of relative growth. Each drug concentration was exe-
cuted in triplicates for one experiment, and averages and standard de-
viations of three independent experiments were calculated for each
drug.

2.6. Transmission electron microscopy

The preparation of the samples for transmission electron microscopy
(TEM) was done according to the protocol of Hemphill and Croft
(1997). In short, E. multilocularis metacestodes were distributed to 48-
well-plates and incubated with DMSO or BPQ (30–0.04 μM) as de-
scribed above. After an incubation period of 5 days, metacestodes were

fixed in 2% glutaraldehyde in 0.1M sodium cacodylate buffer;
pH=7.3 for 1 h. Next, the samples were stained for 2 h in a 2% osmium
tetroxide solution cacodylate buffer, and subsequently pre-stained in a
saturated uranyl acetate solution for 30min. After washing the samples
with water, they were dehydrated stepwise by washing in increasing
concentrations of ethanol (30%, 50%, 70%, 90%, and three times
100%). The samples were then embedded in Epon 812 resin with three
subsequent resin changes during 2 days and incubated at 65 °C over-
night for polymerization. Sections for TEM (80 nm) were cut using an
ultramicrotome (Reichert and Jung, Vienna, Austria), and were loaded
onto formvar-carbon coated nickel grids (Plano GmbH, Marburg, Ger-
many). The specimens were finally stained with uranyl acetate and lead
citrate, and were viewed on a CM12 transmission electron microscope
(Philips Electron Optics, Eindhoven, Netherlands) that operates at
80 kV.

2.7. Treatment of E. multilocularis metacestodes with BPQ under
anaerobic/aerobic conditions

In an additional experiment, effect of oxygen on the activity of BPQ
on E. multilocularis metacestodes was assessed. BPQ was serially diluted
from 30 μM down to 4.57 nM in 1:3 dilution steps and added to meta-
cestodes as described above. Corresponding DMSO controls were in-
cluded. The plates with the metacestodes were incubated for 5 days
either under aerobic conditions in a standard incubator (37 °C, sup-
plemented with 5% CO2, humid atmosphere) or under anaerobic con-
ditions at 37 °C in a defined gas mixture containing 80% N2, 10% CO2,
and 10% H2, humid atmosphere. Subsequently, samples were taken for
PGI-assay and processed as described above (2.3). The experiment was
repeated three times independently. Figures were prepared in Adobe
Illustrator (2015) 1.0.

2.8. Isolation of E. multilocularis germinal layer cells

To obtain germinal layer (GL) cells from in vitro grown metacestode
vesicles, the protocol described by Spiliotis and Brehm (2009) was
followed with few modifications. Prior to the isolation process, condi-
tioned medium (cDMEM) was prepared as follows: 106 RH cells were
seeded in 50ml DMEM (supplemented with 10% FBS, 100 U/ml peni-
cillin, 100 μg/ml streptomycin, and 5 μg/ml tetracycline) in a T175 cell
cultivation flask. These cells were incubated for 6 days at 37 °C with 5%
CO2, under humid atmosphere. In addition, 107 RH cells were culti-
vated the same way but incubated only for 4 days. After the incubation
periods, medium supernatants were sterile filtrated, mixed 1:1, and
stored at 4 °C until further use. To isolate GL cells, E. multilocularis
metacestode vesicles (approximately 3 months old) from in vitro culture
were harvested and washed in PBS. The vesicles were mechanically
disrupted using a pipette. The remaining vesicle tissue was incubated in
EDTA-Trypsin and occasionally gently shaken for 20min. Thereafter
the mixture was sieved through a 50 μm polyester tissue sieve (Sefar
AG, Heiden, Switzerland) and rinsed with PBS. The flow-through con-
taining the GL cells was collected, centrifuged, and the pellet was taken
up in cDMEM. To standardize the amount of cells present in the mix-
ture, the O. D. 600 of the cell suspension (diluted 1:100) was measured.
An O. D. 600 of 100 was defined as one arbitrary unit per μl of the
undiluted cell suspension. 700 units of GL cells were then seeded in 5ml
cDMEM and incubated overnight at 37 °C in a humified, oxygen-free
environment of N2.

2.9. Assessment of mitochondrial respiration in E. multilocularis GL cells by
Seahorse XFp analyzer

A Seahorse XFp Analyzer (Agilent Technologies, Bucher Biotec,
Basel, Switzerland) was used to assess the oxygen consumption rate
(OCR) as an indicator of the mitochondrial respiration of E. multi-
locularis GL cells in real time. Plasma membrane permeabilizer (PMP,
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Agilent Technologies), was applied to selectively permeabilize only the
plasma membrane of GL cells and thereby exposing the mitochondria
directly to the assay medium. The assays were done according to the
manufacturer's manuals and to Divakaruni et al. (2014).

One day prior to the assay, the sensor cartridge was hydrated
overnight in XF calibrant solution (Agilent Technologies) at 37 °C and a
Seahorse XFp miniplate was coated with CellTak (Fisher Scientific,
Schwerte, Germany) according to the manufacturer's protocol to pre-
pare them for cell attachment.

The assays were carried out in mitochondria assay solution (MAS)
which consisted of 220mM mannitol, 70mM sucrose, 10mM KH2PO4,
5mM MgCl2, 2 mM HEPES, and 1mM EGTA, at a pH of 2.7. A stock
solution of 3 x MAS was prepared as described by the manufacturer's
manual and stored at 4 °C, and BSA was added to 1 x MAS at a final
concentration of 0.2% for each assay (assay medium). To run an assay,
the test compounds to be injected were prepared as ten times stock in
MAS and then loaded to the delivery ports of the sensor cartridge. The

final concentrations of the test compounds for injections were 1 μM
(BPQ), 10mM (succinate and glycerol-3-phosphate), 20mM (ascorbate)
and 0.6mM (N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD)). GL
cells that had been isolated the previous day (section 2.8) were washed
in MAS and taken up in assay buffer which consisted of 1x MAS sup-
plemented with 10mM succinate, 2 μM rotenone, 4mM ADP, and
3.6 nM PMP. The cells were then distributed to a CellTak coated XFp
miniplate with 50 units GL cells per well in 180 μl assay medium. The
plate was centrifuged at 300 g for 1min and transferred to the Seahorse
XFp Analyzer to start measurements with 30 s mix time, 30 s delay time,
and 2min measure time without an equilibration step. BPQ was in-
jected after the fourth measurement, and after the seventh measure-
ment the substrates of interest (succinate, glycerol-3-phosphate, or as-
corbate/TMPD) were added to the wells. Measurements were
performed in triplicates and data analysis was performed in Wave
(version 2.6, Agilent Technologies). The experiment was repeated three
times, and one representative figure is shown. The figure was prepared

Fig. 1. Screening of the MMV Pathogen Box on E.
multilocularis metacestodes in vitro. (A–C) Relative
PGI release as assessed by PGI-assay is shown. 100%
PGI release was defined as the release upon treatment
with the positive control Tx-100 (0.1%). Compounds
were considered as active if they exceeded 20% re-
lative PGI release (dashed line). (A) Initial screen of
the 400 compounds of the MMV Pathogen box at
10 μM in singlets after 12 days of treatment (values
for 5 and 12 days are given in Supplementary
Table 1). MMV compounds are listed in numerical
sequence. (B) Confirmation of active compounds by
testing at 10 μM in triplicates (values are given in
Supplementary Table 2). (C) Testing of active com-
pounds from (B) at 1 μM in triplicates (values are
given in Supplementary Table 3). PGI release is
shown for 5 and 12 days of treatment in (B) and (C).
Data is represented as means and standard devia-
tions. (D) Structural formula of the four compounds
that were active at 1 μM and further followed.
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in Adobe Illustrator (2015).1.0.

2.10. Ethic statements and animal maintenance

The in vivo studies were performed in compliance with the Swiss
animal protection law (TschV, SR 455). The study was approved by the
Animal Welfare Committee of the Canton of Bern (license number BE
112/14).

Balb/c mice, 6 weeks old, were purchased from Charles River
Laboratories (Sulzheim, Germany) and used for in vivo experiments
when they were 8 weeks old and weighted approximately 20 g. The
mice were housed in a type 3 cage containing enrichment in the form of
a cardboard house and paper and woodchip bedding with a maximum
of seven mice per cage. They were maintained in a 12 h light/dark
cycle, controlled temperature of 21 °C–23 °C, and a relative air humidity
of 45%–55%. Food and water was provided ad libitum.

2.11. BPQ treatment of E. multilocularis infected mice

Experimentally infected mice were treated with BPQ to elucidate
the efficacy of the drug in vivo. To infect mice, in vitro grown E. multi-
locularis metacestodes (isolate H95) were washed in PBS, were me-
chanically destroyed by pipetting and the resulting suspension was
centrifuged for 5min at 500 g. The parasite tissue was then taken up in
an equal volume of PBS. Each mouse was subsequently infected in-
traperitoneally (i.p.) with 200 μl of this suspension. 32 infected mice
were randomly distributed into 3 treatment groups (8 animals per
group) with 4 animals per cage. Group 1 (negative control) received
only the solvent corn oil; group 2 (positive control) received ABZ
(200mg/kg per day); and group 3 received BPQ (100mg/kg per day).
Treatments of mice started 2 weeks post-infection and lasted for 4
weeks, with consecutive treatment of mice for 5 days per week, fol-
lowed by an interruption of treatment for 2 days for recovery. All
treatments were administered by oral gavage in a volume of 50 μl, with
ABZ and BPQ being suspended in corn oil. After four weeks, all mice
were anesthetized with isoflurane and subsequently euthanized by CO2.
The parasitic tissue from each mouse was completely resected and
weighed. The mass of the resected parasitic tissue was used for statis-
tical analyses of the experiment. The three groups were analyzed by
two-sided exact Wilcoxon rank-sum test and p-values were Bonferroni
adjusted (R version 3.4.2). The significance level was set to p < 0.05.
Figures were prepared in R and Adobe Illustrator 2015.1.0.

3. Results

3.1. Screening the Pathogen Box identifies four compounds with promising
in vitro activity against E. multilocularis metacestodes

400 compounds from the MMV Pathogen Box were initially
screened in vitro on E. multilocularis metacestodes at 10 μM. This screen
was carried out in singlets and resulted in 13 active compounds after 5
days and 46 active compounds after 12 days of incubation (Fig. 1A).

The 46 compounds that were positive in the initial screen were con-
firmed in a second screening round at 10 μM in triplicates to exclude
false-positives. This yielded 8 positive hits after 5 days, and 5 additional
active compounds after 12 days (13 active compounds in total; Fig. 1B).
From these active compounds, four were reference compounds of the
Pathogen Box (MMV000016, mefloquine; MMV688978, auranofin;
MMV688991, nitazoxanide, and MMV689480, BPQ), four compounds
were from the tuberculosis disease set (MMV021013, MMV090930,
MMV687730, and MMV687807), two compounds were from the ma-
laria disease set (MMV011903 and MMV026468), and one compound
each was from the onchocerciasis, cryptosporidiosis, and kinetoplastid
disease set (MMV671636, MMV675994, and MMV690102). In order to
assess the efficacies of those 13 active compounds at low concentra-
tions, they were further tested at 1 μM in triplicates (Fig. 1C). Four
compounds (BPQ, MMV021013, MMV671636, and MMV687807, see
Fig. 1D) were found to exhibit distinct in vitro activities against meta-
cestodes at this lower concentration. The numerical results of the full
screening of the compounds from the Pathogen Box are provided in
Supplementary Tables 1-3. Subsequently, we assessed EC50 and MIC
values on E. multilocularis metacestodes for these four compounds
(Table 1). The EC50 are representative for the activity in the metaces-
tode PGI-assay, and the MIC for the parasiticidal potential in the vesicle
viability assay by Alamar Blue assay. The compound with the highest
activity after 5 and 12 days of incubation was MMV671363, followed
by MMV687807, both with 5 day EC50 and MIC values below 1 μM.
BPQ was a little less active after 5 days, but activity also increased to
the sub-micromolar range at day 12. MMV021013 did not exhibit a
specifically low EC50, although longer exposure of metacestodes to the
drug increased its efficacy as well.

3.2. Cytotoxicity measurements on pre-confluent and confluent HFF and
RH cell cultures identifies two compounds with specific activity against E.
multilocularis metacestodes

We determined the IC50 values of BPQ, MMV021013, MMV671636,
and MMV687807 on mammalian RH cells and HFF (Table 1). Large
differences between the IC50 values were observed depending on the
confluence and type of the host cell, but all four compounds had
commonly lower IC50 values against pre-confluent cells than against
confluent cells. BPQ was less toxic against all tested host cells than
against E. multilocularis metacestodes. MMV021013 was generally as
toxic to host cells as it was to E. multilocularis metacestodes; only con-
fluent HFF were more resistant. MMV671363 was less toxic against all
tested cell lines than against E. multilocularis, indicating a potential
therapeutic window. Additionally, it had a notably lower IC50 for RH
cells than for HFF. MMV687807 showed the highest toxicity against
HFF, and accordingly this compound could only exhibit a potential
therapeutic window for RH cells. Taken together, only BPQ and
MMV671363 exhibited specific toxicity against E. multilocularis meta-
cestodes.

Since BPQ is an already marketed drug for the treatment of thei-
leriosis in cattle, and other potential applications include leishmaniasis

Table 1
Summarized parasite toxicity and mammalian cell toxicity of the four most active compounds from the MMV Pathogen box. EC50 and IC50 values were
calculated based on PGI-assay (for E. multilocularis metacestodes) and Alamar Blue assay (for mammalian cells) after incubation for 5 days in vitro. MIC values were
calculated based on Alamar Blue vesicle viability assay after 12 days of incubation. Mean values and standard deviations (in parentheses) from at least three
independent experiments are given in μM.

BPQ; MMV689480 MMV021013 MMV671636 MMV687807

E. multilocularis EC50 2.87 (1.45) 15.75 (8.75) 0.02 (0.01) 0.36 (0.16)
E. multilocularis MIC 0.56 (0.33) 20 (10.00) 0.01 (0.00) 0.59 (0.44)
HFF preconfluent IC50 5.99 (3.39) 5.14 (2.74) 12.31 (6.95) 0.15 (0.02)
HFF confluent IC50 48.61 (8.83) 53.09 (5.1) 74.82 (38.43) 0.37 (0.07)
RH preconfluent IC50 8.47 (3.89) 1.1 (0.77) 0.25 (0.11) 1.27 (0.23)
RH confluent IC50 17.42 (2.09) 2.07 (0.35) 2.07 (1.67) 20.13 (10.92)
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and babesiosis, this compound was chosen for further characterization.

3.3. Transmission electron microscopy of BPQ-treated metacestodes reveals
distinct changes in the mitochondrial ultrastructure

The morphological alterations induced by BPQ on E. multilocularis
metacestodes were thoroughly investigated by TEM (Fig. 2). The E.
multilocularis metacestode is composed of two layers: an outer, acellular
and protective layer (the laminated layer, LL) that is composed of
highly glycosylated mucins, and an inner layer denominated GL, where
various cells (including muscle cells, lipid storage cells, nerve cells, and
undifferentiated stem cells) reside. In between the LL and the GL is the
tegument, which is a syncytial tissue containing villi-like microtriches
that protrude into the LL. In vitro-cultured E. multilocularis metacestodes
were cultured in the presence of different concentrations of BPQ during
5 days. Ultrastructural damage was observed at concentrations as low
as 0.3 μM (Fig. 2D): The most distinct effects at this low concentration
were seen within the mitochondria, which appeared less electron dense
than those of the untreated control. At 1 μM, membrane stacks were
observed, and the GL started to separate from the LL (Fig. 2E). The
metacestode integrity was seriously impaired at 3 μM of BPQ, with the
LL being detached completely from the GL (Fig. 2F). Due to the al-
terations of mitochondria upon treatment with BPQ, further studies on
the mode of action of BPQ in E. multilocularis focused on oxygen-de-
pendence.

3.4. Under anaerobic culture conditions, the activity of BPQ against E.
multilocularis metacestodes is dramatically diminished

As assessed by PGI-assay, incubation of E. multilocularis metaces-
todes under anaerobic conditions resulted in a reduction of activity of
BPQ. After 5 days of incubation in an oxygen-free atmosphere, the drug

did not induce damage on metacestodes at 10 μM or lower concentra-
tions. Only at 30 μM BPQ was active, and less pronounced compared to
metacestodes that were incubated under aerobic conditions (Fig. 3).

3.5. BPQ treatment inhibits mitochondrial respiration in E. multilocularis
GL cells

To further elucidate the mode of action of BPQ, we established an in
vitro system using a Seahorse XFp analyzer and isolated, permeabilized
GL cells of E. multilocularis that allows us to monitor the mitochondrial
respiration. The Seahorse XFp analyzer measures the OCR of cells,
which directly correlates with the activity of mitochondrial complex IV.
After addition of 1 μM BPQ to E. multilocularis GL cells, the OCR rapidly
decreased (Fig. 4). Moreover, addition of ascorbate together with TMPD
could restore the OCR (Fig. 4), and ascorbate/TMPD are generally
known to feed electrons directly into complex IV. However, neither the

Fig. 2. Transmission electron microscopy of E. multilocularis metacestodes treated by BPQ in vitro. (A–C) Control-incubated metacestodes with mitochondria.
(D) Metacestodes treated with 0.3 μM BPQ showing first signs of altered mitochondria (indicated by arrows). (E) Metacestodes treated with 1 μM BPQ. Note the
partial separation of the laminated layer from the tegument and the membrane stacks (indicated by arrow heads). (F) Metacestodes treated with 3 μM BPQ. The
laminated layer is completely detached from the tegument, as indicated by arrow heads. Abbreviations: GL, germinal layer; LL, laminated layer; Te, tegument; mt
mitochondria; uc undifferentiated cell. Thin arrows depict mitochondria and arrow heads show the separation of the laminated layer from the tegument. The
respective size bars are in A=2.8 μm, in B= 0.26 μm, in C=0.32 μm, in D=1 μm, in E= 2.2 μm, and in F= 2.2 μm.

Fig. 3. In vitro activity of BPQ on E. multilocularis metacestodes under
anaerobic conditions. Relative PGI release as assessed by PGI-assay is shown.
100% PGI release was defined as the release upon treatment with Tx-100
(0.1%) E. multilocularis metacestodes were incubated for 5 days in the presence
of various concentrations of BPQ (30–0.04 μM) under aerobic versus anaerobic
conditions. The experiment was performed three times and in triplicates. Mean
values and standard deviations from one representative experiment are shown.
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addition of succinate (the substrate of complex II of the mitochondrial
respiratory chain), nor glycerol 3-phosphate (which donates electrons
to coenzyme Q via mitochondrial glycerol 3-phosphate dehy-
drogenase), could restore the OCR, as they are both taken up upstream
of complex III. Taken together, this strongly suggests that BPQ selec-
tively inhibits complex III in the mitochondrial electron transport chain
of E. multilocularis GL cells.

3.6. BPQ treatment of infected mice does not result in a reduction of
parasite burden

The in vivo efficacy of BPQ treatment was assessed in experimentally
infected Balb/c mice. Mice were treated during 4 weeks p.o. with
100mg/kg BPQ during 5 days per week. ABZ (200mg/kg during 5 days
per week as the standard drug for patients suffering from AE was used
as a positive control (Fig. 5). None of the mice showed signs of adverse
effects due to treatment with BPQ or ABZ during the whole course of
treatment. While treatment with ABZ led to a significant reduction in
parasite burden when compared to the control (Bonferroni adjusted p-
value = 4.7*10−4) or the BPQ treated group (Bonferroni adjusted p-
value = 1.9 * 10−3), there was no significant difference between the
control group and the BPQ treated group (Bonferroni adjusted p-
value=0.8; Fig. 5).

4. Discussion

Alveolar echinococcosis (AE) is a serious and life-threatening dis-
ease caused by the cestode E. multilocularis. Current chemotherapies
rely on benzimidazole treatment. However, they are insufficient since
they can cause severe side effects, and they can only inhibit the growth
and dispersion of metacestodes, but do not kill the parasite (Hemphill
et al., 2014). Thus, alternative treatment options are urgently needed.

In recent years, major advances have been achieved for the E.

multilocularis model. These include the development of new in vitro
culture methods which allow the large-scale production of metacestode
vesicles (Spiliotis and Brehm, 2009), as well as the introduction of the
PGI-assay as a medium-throughput drug-screening method providing
an objective read-out (Stadelmann et al., 2010). These breakthroughs
enabled the screening of hundreds of compounds against E. multi-
locularis. An in vitro cascade to screen drug libraries against E. multi-
locularis has recently been introduced by Stadelmann et al. (2016) and
it was applied to the MMV Malaria Box.

In the present study, we screened the MMV Pathogen Box in vitro for
active compounds against E. multilocularis metacestodes. From the 400
compounds, 13 (or 3.25%) were active at 10 μM and 4 (or 1%) of these
also at 1 μM. This is a similar hit ratio when compared to the outcome
of the MMV Malaria box, where 24 (6%) and 7 compounds (1.75%)
were found to be active at 10 μM and 1 μM respectively (Stadelmann
et al., 2016). Of the four compounds that were active at 1 μM, only BPQ
and MMV671636 exhibited a high specificity against the parasite.
MMV021013 showed only a moderate EC50 against E. multilocularis
metacestodes and was as toxic to mammalian cells as it was against the
parasite. MMV687807 was very effective against E. multilocularis, but
unfortunately also exhibited substantial toxicity against HFF. Interest-
ingly, MMV687807 is structurally very similar to MMV665807, the top
hit from the screening of the Malaria Box against E. multilocularis
(Stadelmann et al., 2016). However, MMV665807 did not exhibit any
specific toxicity against HFF, in contrast to the here tested
MMV687807. Both, MMV665807 and MMV687807, are salicylanilide-
derivatives related to the well-known anthelmintic niclosamide, with
the only difference that MMV687807 has an additional trifluoromethyl
group attached to the benzene ring. Both BPQ and MMV671636 were
highly active against E. multilocularis metacestodes and less against
mammalian cells, thus suggesting for a potential therapeutic window
and rendering these two compounds suitable for further analyses.
MMV671636 (also known as ELQ-400) belongs to a group of novel anti-
malarial compounds called endochin-like quinolones (ELQ), some of
which, including ELQ-400, also exhibit excellent activities against other
apicomplexan parasites such as Toxoplasma, Babesia and Neospora
(Lawres et al., 2016; Müller et al., 2017). We here further focused on
the marketed hydroxynaphthoquinone BPQ, which is related to par-
vaquone and ubiquinone and currently used in the treatment of thei-
leriosis in cattle. BPQ also has reported in vivo activity against Leish-
mania spp. in mice and Babesia equi in horses (Croft et al., 1992; Zaugg
and Lane, 1992). It has been shown that BPQ acts via a mechanism
involving the inhibition of cytochrome bc1 complex in the mitochondria
of Theileria (Ortiz et al., 2016). Another study in Theileria annulata
suggested that BPQ is also targeting the peptidyl-prolyl isomerase PIN1
(Marsolier et al., 2015). According to our TEM observations, the

Fig. 4. Mitochondrial respiration in E. multilocularis GL cells. The oxygen
consumption rate (OCR) of isolated, permeabilized GL cells of E. multilocularis
was assessed using as Seahorse XFp Analyzer. The cells were initially fed with
succinate as an electron donor. The OCR dropped after the cells were exposed to
1 μM BPQ, but recovered again after the addition of ascorbate (20mM) with
TMPD (0.6 mM), which donate electrons to mitochondrial respiration chain
complex IV. The addition of 10mM glycerol-3-phosphate (G-3-P, A) or 10mM
succinate (B) had no effect on the OCR after BPQ treatment. The experiment
was repeated three times and one representative plot is shown. Measurements
were done in triplicates, and values are given as means with standard devia-
tions.

Fig. 5. In vivo treatment of E. multilocularis infected mice with BPQ. Balb/c
mice were intraperitoneally infected with E. multilocularismetacestodes 2 weeks
prior to drug treatment. Compounds were administered by p.o. gavage in a
volume of 50 μl in corn oil. ABZ (200mg/kg, n= 8), BPQ (100mg/kg, n=8),
and corn oil only (ctrl, n= 8) were administered five times per week. After four
weeks of treatment, mice were sacrificed, and parasite cysts were resected and
weighted. The data is represented as box-whisker plots.
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mitochondria of E. multilocularis metacestodes are among the first
structures to be affected when treated with BPQ. Moreover, we con-
firmed the mitochondrial cytochrome bc1 complex (complex III) as a
molecular target of BPQ in E. multilocularis. The Seahorse technology
that was applied to perform these experiments has already been em-
ployed to study the metabolism of the trematode Schistosoma mansoni
(Huang et al., 2012), the nematodes Caenorhabditis elegans and Hae-
monchus contortus (Luz et al., 2015; Preston et al., 2016), but so far
never for any cestode or isolated helminth cells.

The cytochrome bc1 complex has already before proven its value as
a valid antiparasitic drug target: Atovaquone for example is another
hydroxynaphthoquinone (like BPQ) and a potent inhibitor of the cy-
tochrome bc1 complex. It is currently widely used (in combination with
proguanil) to treat and prevent malaria, especially in chloroquine re-
sistant patients (Birth et al., 2014).

In E. multilocularis metacestodes, the in vitro activity of BPQ de-
creased under anaerobic conditions. E. multilocularis can perform fer-
mentation (lactic acid, ethanol) under anaerobic conditions (Agosin,
1968; McManus and Smyth, 1978). In addition, as for many other
parasitic flatworms, Echinococcus can perform malate dismutation to
ferment carbohydrates under anaerobic conditions, and is thus not to-
tally dependent on the mitochondrial respiration chain (Tsai et al.,
2013). This could explain, why BPQ is not highly active under anae-
robic conditions. However, as for the in vivo situation, it is expected that
the parasite is depending on a combination of aerobic and anaerobic
energy generating pathways and that it encounters at least micro-
aerobic conditions in the liver (Bryant, 1970). Our in vivo trial in ex-
perimentally infected mice demonstrated that there was no statistically
significant reduction in parasite burden upon treating E. multilocularis
infected mice p.o. with BPQ. One important reason for this discrepancy
between in vitro and in vivo activity could be explained by the fact that
in vitro screening was performed in the absence of any serum, as the
assay was initially established without FBS due to interference with the
test. Another reason for failure of the drug against murine AE could be
the experimental model, which is based on artificial injection of para-
site metacestodes into the peritoneal cavity of mice, and thus growth of
parasites occurs primarily there. Upon natural infection of mice with E.
multilocularis eggs, where the parasite grows primarily in the liver,
higher oxygen concentrations might be reached, and thus also higher
effectiveness of BPQ would be expected. A further explanation for the
different outcome of in vitro and in vivo treatment of the parasite with
BPQ could lay in its mode of action: Blocking the electron transport
chain in the mitochondria is expected to lead to the generation of toxic
reactive oxygen species (ROS) (Ortiz et al., 2016). Whereas the parasite
E. multilocularis is known to be sensitive against ROS as it is lacking
some of the key enzymes for ROS detoxification (e.g. catalase), E.
multilocularis metacestodes might be better protected from ROS in an in
vivo setting where detoxifying host cells are closely surrounding the
parasite (Spiliotis and Brehm, 2004; Williams et al., 2013). However,
the topic of ROS in echinococcosis awaits further investigation in the
future. A third drawback of BPQ is its poor solubility and consequently
poor bioavailability, and in particular poor entry into the parasitic
tissue, which might be a further explanation for lack of in vivo efficacy
thus far. Within the present study, neither plasma levels nor BPQ con-
centrations within the metacestodes were determined. Only one study
so far measured BPQ levels in orally treated mice (Smith et al., 2018),
and reached a Cmax of 1.2 μM when treating with a single dose of 6mg/
kg. Assuming linear correlation, extrapolation of this dosage to the here
applied 100mg/kg would result in a Cmax of 20 μM, which is above the
EC50 of BPQ against E. multilocularis metacestodes in vitro. Some at-
tempts to increase the bioavailability of BPQ were made in the past,
such as formulation of better soluble oxime- and phosphate derivatives
(Mäntylä et al., 2004), which show higher efficacies against leishma-
niasis in vivo (Garnier et al., 2007). Solid lipid nanoparticles loaded
with BPQ were also generated, but these nanoparticles were never
tested against parasites (Soni et al., 2014). More recently, Smith and

colleagues (Smith et al., 2018) presented a BPQ loaded self-nanoe-
mulsifying drug delivery system, which showed a slightly increased
bioavailability, compared to an aqueous dispersion of BPQ, after oral
administration in mice. Such formulations of BPQ should be tested in
the future also for their efficacy against AE in mice.

Several compounds from the MMV Pathogen Box were already
tested before against E. multilocularis or E. granulosus in vitro and/or in
vivo. Pentamidine (MMV000062), alpha-difluoromethylornithine
(MMV001625), and suramine (MMV637953) were all tested in vivo
against E. granulosus, but did not show any effects (Kammerer and
Perez-Esandi, 1975; Miyaji et al., 1993). Rifampicin (MMV688775) and
miltefosine (MMV688990) were both tested in vitro against E. multi-
locularis metacestodes (Reuter et al., 2006) and rifampicin was also
tested in vivo (Kammerer and Perez-Esandi, 1975). However, both
compounds were ineffective in these studies. In accordance to these
findings, the compounds were also inactive in the present in vitro screen
against E. multilocularis. Praziquantel (MMV002529), despite its wide
use against intestinal infections with adult cestodes (including Echino-
coccus spp.) and other parasites, is not active against the metacestode
stage of E. multilocularis, neither in vivo (Vanparijs, 1990), nor in vitro,
as confirmed in this study. This could be explained by the fact that
praziquantel causes paralysis of the parasite musculature, which then
only affects actively moving, adult worms but not sessile metacestode
larvae (Ritler et al., 2017; Vale et al., 2017). The antifungal agent
amphotericin B (MMV689000) was shown to destroy E. multilocularis
metacestodes in vitro at 2.7 μM (Reuter et al., 2003, 2010). Amphoter-
icin B was also tested for treatment of human AE patients, but with
limited success as the drug acted only parasitostatic and was accom-
panied with severe side effects (nephrotoxicity) (Reuter et al., 2003;
Tappe et al., 2009). Amphotericin B was not active in our screen at
10 μM, as Reuter et al. (2003, 2010) employed a different cultivation
system that required medium change (and consequently addition of
new drugs each time) three times a week. Additionally, a different
parasite strain and assay readout (assessing the numbers and sizes of
vesicles) was employed. Another compound with known activity
against E. multilocularis is nitazoxanide (MMV688991). It was pre-
viously shown to be active in vitro against E. multilocularis metacestodes
at 3.3 μM (Stettler et al., 2003; Reuter et al., 2006), as well as against E.
granulosus metacestodes and protoscoleces (Walker et al., 2004). Nita-
zoxanide was also tested in vivo in mice and in human patients suffering
from CE or AE, but virtually no beneficial effects were observed (Pérez-
Molina et al., 2011; Stettler et al., 2004; Tappe et al., 2009; Winning
et al., 2009). Congruently, nitazoxanide was also among the 13 com-
pounds from the Pathogen Box that were active at 10 μM in the present
study, but it did not maintain its activity at 1 μM and was not further
followed here. Mebendazole (MMV003152), together with ABZ, is the
current standard chemotherapeutic treatment for AE patients. One of
the first in vitro studies with E. multilocularismetacestodes demonstrated
an inhibition of parasite proliferation over the course of three weeks
treatment with mebendazole at 1 μM (Jura et al., 1998). Mebendazole
was not active in our screen with a threshold of 20% relative activity
compared to Tx-100, as the PGI-assay only identifies compounds that
are active within a shorter time-span. This finding is line with our
previous observations, where benzimidazoles only induced a slow re-
lease of PGI (Küster et al., 2014; Stadelmann et al., 2010). However,
comparisons of benzimidazoles by electron microscopy showed that the
drugs are having a clear effect on the metacestode ultrastructure early
on (Küster et al., 2014). Auranofin (MMV688978) is a thioredoxin-
glutathione reductase inhibitor that was shown to kill E. granulosus
protoscoleces at 2.5 μM after 48 h (Bonilla et al., 2008). Consistent with
these findings, the drug was also active against E. multilocularis meta-
cestodes at 10 μM, but not at 1 μM. Mefloquine (MMV000016), ori-
ginally developed and used against Plasmodium, has recently been
found to be active against E. multilocularis both in vitro, as well as in vivo
(Stadelmann et al., 2011; Küster et al., 2011, 2015; Rufener et al.,
2018). Mefloquine has a rather high IC50 value against this parasite in
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vitro (> 30 μM), but nevertheless it was identified in our screening at
10 μM. Taken together, the results of our present screening of the Pa-
thogen Box correlate well with already known activities of specific
drugs, underlining the power of the here employed screening cascade.
Moreover, we identified four novel compounds with distinct in vitro
activity against E. multilocularis.

So far, the Pathogen Box has been screened against the nematode H.
contortus (Preston et al., 2016), the fungi Candida albicans and Crypto-
coccus neoformans (Vila and Lopez-Ribot, 2016; Mayer and Kronstad,
2017), Plasmodium and the kinetoplastids Leishmania and Trypanosoma
(Calit et al., 2018; Dennis et al., 2018; Duffy et al., 2017), Neospora
caninum (Müller et al., 2017), Mycobacterium abscessus and M. avium
(Jeong et al., 2018; Low et al., 2017), Toxoplasma gondii (Spalenka
et al., 2017), C. elegans (Partridge et al., 2018), Entamoeba histolytica
(Mi-Ichi et al., 2018), and Giardia lamblia and Cryptosporidium parvum
(Hennessey et al., 2018). Interestingly, all compounds that exhibited
activity against E. multilocularis were also active against at least one
more pathogen other than the one it was selected for by MMV (with the
exception of nitazoxanide), thus underlining the importance and po-
tential of the concept of drug repurposing.

5. Conclusion

We identified two compounds (BPQ and MMV671636) within the
400 compounds of the MMV Pathogen Box with potent in vitro activities
against E. multilocularis metacestodes. Moreover, we studied mi-
tochondrial function in the parasite using a Seahorse XFp Analyzer and
proved the cytochrome bc1 complex as a molecular target of BPQ in E.
multilocularis GL cells. BPQ failed to be active in vivo in the murine
model of AE. New, enhanced formulations of BPQ with increased
bioavailability could overcome this problem in the future and hence
lead to improved prognosis of patients suffering from echinococcosis.
This study underlines that the repurposing of drugs has great potential
when developing alternative treatment options against neglected dis-
eases.
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