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Abstract 

Alcohol has consistently been shown to increase breast cancer (BC) risk. This association may be 

modified by single nucleotide polymorphisms in alcohol dehydrogenase isoenzymes ADH1B and 

ADH1C. The Netherlands Cohort Study comprises 62 573 women, aged 55-69 years at baseline (1986). 

Follow-up for postmenopausal BC for 20.3 years was available. Genotyping of 6 tag SNPs in ADH1B and 

ADH1C, respectively, was performed on DNA from toenails. A case-cohort approach was used for 

analysis (complete data available for: nsubcohort= 1301; ncases= 1630). Cox regression models for 

postmenopausal BC were applied to determine marginal effects of alcohol intake and SNPs using a 

dominant genetic model, as well as multiplicative interaction of the two. Results were also obtained 

for subtypes by estrogen (ER) and progesterone receptor (PR) status. Multiple testing was adjusted for 

by applying the false discovery rate (FDR). Alcohol intake (categorical) increased the risk of 

postmenopausal BC (ptrend=0.031). Trends for ER and PR subgroups followed a similar pattern. 

Continuous modelling of alcohol resulted in a hazard rate ratio (HR) for overall postmenopausal BC of 

1.09 (95% CI: 1.01 – 1.19) per 10g/d of alcohol. SNPs were not associated with BC risk. No effect 

modification of the alcohol-BC association by SNP genotype was seen after FDR-correction in overall 

BC and ER/PR subgroups. In conclusion, alcohol was shown to increase the risk of postmenopausal BC. 

This association was not significantly modified by common ADH1B and ADH1C SNPs, neither in overall 

BC nor in hormone receptor defined subtypes.  

 

SUMMARY: 

Drinking alcohol is associated with increased breast cancer risk. Common SNPs in ADH1B and ADH1C 

might modify this association. In the Netherlands Cohort Study, no such modification is seen, neither 

in overall disease nor in hormone receptor subtypes. 
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Introduction 

Breast cancer (BC), being the most frequently diagnosed cancer in females as well as the second most 

common cause of cancer death in females worldwide, accounted for 1.7 million cases and 521 900 

deaths in 2012[1]. Alcohol consumption has consistently been shown to be an important risk 

factor[2,3]. Meta-analyses of observational studies show increased risk estimates already for one drink 

per day with a linear dose response increase. The population attributable proportion of BC due to 

alcohol consumption ranges between two percent for the United States and five percent for 

Europe[4,5]. The precise mechanisms of alcohol-associated tumorigenesis in BC are under 

discussion[3,6,7]. Two effects are considered to be especially important, the carcinogenic metabolite 

acetaldehyde and the estrogen-enhancing effect of ethanol[6]. Enhanced estrogen levels result in an 

increased cumulative lifetime exposure, which is an important risk factor for BC[8]. Both effects are 

closely linked to alcohol metabolism. Reviews showed a positive association between alcohol and 

estrogen receptor (ER) positive as well as ER negative tumors, with effect estimates being larger in ER+ 

tumors[9,10]. Acetaldehyde is a mutagenic and carcinogenic compound that causes formation of DNA 

adducts and inhibits DNA repair mechanisms[11].   

The first step in alcohol metabolism is the oxidation process that leads to acetaldehyde, catalyzed by 

the enzyme alcohol dehydrogenase (ADH). Subsequently acetaldehyde is oxidized to acetate by 

acetaldehyde dehydrogenase (ALDH)[12]. Both enzymes are subject to genetic variability by SNPs.  

Individuals who carry alleles that cause an accumulation of acetaldehyde usually consume less alcohol 

due to the unpleasant effects of acetaldehyde, such as flushing. Alleles of ALDH that impact alcohol 

tolerance are widely absent in Caucasian populations. However, the ADH gene cluster consists of seven 

isoenzymes. ADH1B and ADH1C show polymorphisms in Caucasians, for which functional studies have 

been performed[13,14].  

Genotypes of ADH1B and ADH1C could either directly influence BC risk or modify the association of 

alcohol and BC. Several case-control studies have investigated the effect of ADH1B genotypes on BC 
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risk without finding an association[15-19]. Effect modification of the alcohol-BC association by the 

ADH1B SNP rs1229984 has been reported[17,20,21], but this variant is rare in Caucasian populations 

(minor allele frequency <5%).  Case-control and nested case-control studies have also investigated the 

effect of the two well-characterized SNPs rs698 and rs1693482 in ADH1C on BC risk as well as putative 

effect modification of the established alcohol-BC association[15,18-20,22-25]. The SNPs rs698 and 

rs1693482 are in complete linkage disequilibrium (r2=1). A recent meta-analysis showed no direct 

effect on BC risk of these SNPs[26]. Effect modification by rs698 and rs1693482 has been reported in 

two studies[15,23], but with conflicting results. Another meta-analysis[27] of four studies[19,22,23,25] 

reported increased risks for drinkers versus non-drinkers in fast metabolizers only (rs698 (TT)). 

This study used data from the Netherlands Cohort Study on Diet and Cancer (NLCS), in which a previous 

analysis after 3.3 years of follow-up has already shown an association of alcohol with postmenopausal 

BC risk[28].  We investigated the association between alcohol and postmenopausal BC risk after 20.3 

years of follow-up and potential effect modification by genetic variability in ADH1B and ADH1C using 

a tag SNP approach. In doing so, we also studied genetic variability in ADH1B and ADH1C in relation to 

postmenopausal BC directly. A potential role for alcohol in modulating estrogen was further explored 

by distinguishing between ER and PR status of BC in the analyses.  

Materials and Methods 

Study population and follow-up 

The NLCS[29] is a large prospective cohort study that was initiated in September 1986, among 120 852 

Dutch men and women who completed a self-administered questionnaires on diet and other potential 

cancer risk factors. Approximately 75 percent (90 000 participants) of subjects provided toenail 

samples for analysis of trace elements in addition to their questionnaires. These toenails were 

subsequently found to be suitable for genotyping[30,31]. Follow-up of cancer occurrence in the whole 

cohort was performed through annual record linkage to the Netherlands Cancer Registry and PALGA, 
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a nationwide database of histo- and cytopathology reports[32]. The full cohort consisted of 62 573 

women and 58 279 men aged 55-69 years at baseline. A case-cohort approach has been chosen for 

reasons of efficiency relating to data processing and analysis[33]. Therefore, a subcohort of 5000 

persons (2411 men and 2589 women) was sampled randomly from the full cohort at baseline. Follow-

up of the subcohort for migration and vital status in order to estimate the accumulated person-time 

at risk, was achieved by record linkage with the Municipal population (GBA) registries (>99.9% 

completeness). Supplementary Figure 1 (http://carcin.oxfordjournals.org/) shows numbers of 

subcohort members and cases with additional information on BC subtypes based on hormone receptor 

status. After 20.3 years of follow-up, 2438 subcohort members and 3339 cases of postmenopausal 

breast cancer were available after exclusion of prevalent cancer cases at baseline and cases of non-

epithelial and borderline invasive cancer. Further exclusions were due to missing toenail material (767 

cases, 456 subcohort members), genotyping call rates <95% (242 cases, 153 subcohort members), 

incomplete information on exposure (147 cases, 134 subcohort members) and missing values for 

traditional risk factors for BC (408 cases, 311 subcohort members), which lead to 1775 cases and 1384 

subcohort members with complete data for analysis. Further exclusions, for at least one not 

successfully genotyped SNP among the twelve tag SNPs resulted in 1630 cases and 1301 subcohort 

members. ER status was available for around 60 percent of cases and progesterone receptor (PR) 

status for around 45 percent, respectively.  

Exposure assessment 

The self-administered questionnaire was completed at baseline providing information regarding 

anthropometric characteristics, dietary habits and demographic and lifestyle factors. The 150-item 

food frequency questionnaire (FFQ) included items on drinking patterns, such as alcohol intake, types 

of alcoholic beverages as well as stability of drinking as compared to five years before baseline. Six 

items measured alcohol consumption: 1) beer 2) red wine 3) white wine 4) sherry, vermouth, port, 

Campari 5) sweet liquor, egg-nog 6) liquor (e.g. gin, brandy, whiskey). Frequency of consumption of 

http://carcin.oxfordjournals.org/
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these items as well as average number of glasses consumed per occasion were asked. The total amount 

of daily alcohol consumption was calculated based on alcohol content of these items. Validity of the 

measure of alcohol consumption by the FFQ was investigated by comparing the baseline alcohol 

consumption to dietary records over nine days in a subgroup of the full cohort. Pearson’s correlation 

coefficient for alcohol intake was 0.86[34]. A good reproducibility for alcohol consumption has been 

demonstrated by repeating the FFQ in random samples of the NLCS annually from 1987 to 1991[35], 

as well as a general good performance in ranking participants due to their intake of nutrients and 

alcohol.  

SNP-Selection and genotyping 

Toenail DNA has been shown to be suitable for analysis of genetic polymorphisms[30,31]. A tag SNP-

approach was used to cover as much genetic variability in ADH1B and ADH1C as possible. Tag SNPs 

were selected between 5 kilobases up- and downstream of these genes, in order to cover all SNPs with 

minor allele frequencies of at least 5%. From the HapMap CEU (Utah Residents with Northern and 

Western European Ancestry) population, 13 SNPs were ascertained. Using the option of aggressive 

tagging with an r2 threshold of 0.8, seven tag SNPs were selected to cover 84% of the genetic variation 

in ADH1B and six tag SNPs were selected to cover 96% of the genetic variation in ADH1C. The selected 

SNPs were rs1159918, rs2075633, rs1693439, rs9307239, rs4147536, rs3811802 and rs17033 for 

ADH1B, and rs698, rs1662033, rs3114046, rs4147542, rs283415 and rs4699741 for ADH1C. 

Genotyping was performed via iPLEXTM assay for the MassARRAY® system (Agena Bioscience GmbH, 

Hamburg, Germany), a method using single-base primer extension and matrix-assisted laser 

desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry[36]. Adherence of SNPs to 

Hardy-Weinberg Equilibrium was tested in the subcohort and found to be in place, except for 

rs4699741 (p = 0.002). Nevertheless, this deviation from Hardy-Weinberg Equilibrium is unlikely due 

to genotyping errors, because all SNPs were genotyped at once using a single assay. Therefore, 

rs4699741 was not excluded from the analysis.Genotyping for rs17033 was not successful as only one 
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allele was called, and it had to be excluded from the analysis. Therefore, the final number of SNPs is 

six for each gene. The coverage of genetic variation was 76% in ADH1B and 96% in ADH1C.    

Statistical analysis 

Descriptive analysis was done by calculating the distributions of covariates and genotypes across levels 

of alcohol intake in the subcohort. For the subsequent analysis of main effects of alcohol intake and 

genotype, as well as the interaction between both, observations with missing data on covariates were 

excluded list-wise. Cox -regression was performed to estimate hazard rate ratios (HR) for incident 

postmenopausal BC and corresponding 95% confidence intervals (CI). The proportional hazard 

assumption was tested using scaled Schoenfeld residuals[37]. Uninformative censoring can be ruled 

out, as no women from the subcohort were lost to follow-upduring the 20.3 years of follow-up. 

Standard errors were estimated using the robust Huber-White sandwich estimator to account for the 

additional variance due to sampling from the subcohort.  

The analysis of the effect of alcohol on postmenopausal BC was conducted in two different models: 

age-adjusted and multivariable-adjusted. Alcohol intake was modeled categorically in five categories 

(non-drinkers, 0.1-<5g/d, 5-<15g/d, 15-<30g/d, >=30g/d) and continuously as per 10g/d. To test for a 

linear trend across hazard ratios for postmenopausal BC as estimated using the categorical variable, 

category codings were replaced by the median of alcohol intake in each category and the variable was 

entered as a continuous variable in the Cox model. For the multivariable-adjusted analysis, a fixed set 

of known risk factors was included to adjust for potential confounding: age (55-59 years, 60-64 years, 

65-69 years), history of benign breast disease, family history of BC, age at menarche (<12 years, 13-14 

years, 15-16 years, >17 years), parity and age at first child birth (nulliparous, 1-2 children and age <25 

years, 1-2 children and  age>=25 years, >=3 children and age<25 years, >=3 children and age>=25 

years), ever use of contraception, ever use of hormone replacement therapy, age at menopause (<45 

years, 45-49 years, 50-54 years, >=55 years), level of education (primary school or lower vocational, 

secondary or medium vocational, higher vocational or university), smoking status (never, ex-smoker, 
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current), daily energy intake, height, BMI (<18.5, 18.5-<25, 25-<30, >=30kg/m2), and non-occupational 

physical activity (<=30min/d, >30-<=60min/d, >60-<=90min/d, >90min/d). Marginal effects of tag SNP 

genotypes were analyzed in age-adjusted models, as confounding of the SNP-BC association is unlikely. 

A dominant genetic model was used to model SNPs. Multiplicative interactions between alcohol intake 

and tag SNPs were tested by using cross-product terms in the statistical model. Continuous modelling 

of alcohol intake (per 10g/d) was chosen for the interaction analysis to overcome power restrictions 

due to small numbers in some cells of hormone receptor subtypes. Also, generally, a linear relationship 

was seen between alcohol intake and postmenopausal BC risk. The test statistic, used for tests of 

interaction between alcohol intake and genotype, and tests of linear trends between alcohol intake 

and breast cancer risk, was the Wald test.   

All of the above described analyses were also performed in subtypes of postmenopausal BC as defined 

by hormone receptor status (ER +/- and PR +/-). The statistical analysis was carried out with STATA 

(version 14, StataCorp LP, College Station, TX, USA). Tests of significance were performed two-sided 

with p-values less than 0.05 being considered significant. To account for multiple testing when 

examining putative interactions between the SNPs and alcohol intake, false discovery rate (FDR) Q-

Values[38-40] were calculated. FDR Q-Values are an estimate of the expected proportion of false 

positive findings among the results regarded as significant if the p-value corresponding to the FDR Q-

Value is judged significant. The Benjamini-Hochberg procedure was used to calculate FDR Q-Values 

with the qqvalue package in Stata[41] correcting for 12 tests in analysis of overall effects and for 48 

tests in ER/PR subtype analysis. A decision level of 0.2 for the FDR was chosen, which means that 

among the results that were regarded interesting for further investigation, twenty percent could in 

fact be false positive findings. The decision level of 0.2 has been used for candidate gene studies 

before[42,43]. CIs are reported without correction for multiple testing. 

Sensitivity analysis was done by excluding cases diagnosed in the first two years of follow-up to account 

for potential protopathic bias, by restricting the analysis to those women for whom the questionnaire 
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indicated stability of drinking over a five-year period, and by excluding former drinkers from the 

reference category of non-drinkers. 

Ethics 

Ethical approval for the NLCS has been given by the Institutional Review Boards of Maastricht 

University (Maastricht, The Netherlands) and the TNO Nutrition and Food Research Institute (Zeist, 

The Netherlands).  

Results 

Descriptive analysis of baseline characteristics in the subcohort 

Table 1 presents baseline characteristics of subcohort members according to categories of alcohol 

intake as well as the proportion of variant allele carriers for every tag SNP in each category of alcohol 

intake in the 1695 subcohort members for whom genotyping was available. One third (32.6%) of 

women in the subcohort were non-drinkers. Only 3.5 percent were in the highest category 

corresponding to >=30g/d of alcohol intake. Compared to abstainers, women who drank any alcohol 

were more likely to be nulliparous, to have ever used oral contraceptive and hormone replacement 

therapy, to be leaner, to be smokers, to have a higher level of education and a higher daily energy 

intake. Furthermore, drinkers had a smaller proportion of a positive family history of BC.  

The distribution of variant allele carriers across levels of alcohol intake was rather uniform, except for 

ADH1B rs3811802, with a somewhat higher proportion of variant allele carriers in the alcohol intake 

category of >=30g/d and ADH1C rs4147542, which showed higher proportions of variant allele carriers 

for alcohol intake levels of 5-<15g/d and >=30g/d.  
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Association of alcohol and BC 

Table 2 shows the results of multivariable-adjusted analysis of alcohol and postmenopausal BC risk 

overall and by hormone receptor (ER/ PR) status. After multiple exclusion processes (Supplementary 

Figure 1, http://carcin.oxfordjournals.org/), 1775 incident cases and 1384 subcohort members 

contributing 24 275 person-years were available during 20.3 years of follow-up. Alcohol consumption 

showed a statistically significant positive trend with overall postmenopausal BC risk (ptrend=0.031 in 

multivariable-adjusted analysis). Compared to abstainers, the HR for overall BC was 1.69 (95% CI: 1.10-

2.60) for alcohol consumption of >=30g/d, while HRs were non-significant for lower categories of 

alcohol intake. Continuous modelling of alcohol intake per 10 g/d yielded a HR for overall BC of 1.09 

(95% CI: 1.01 – 1.19), and the HR for ER+ breast tumors was similar, i.e. 1.09 (95% CI: 0.99 – 1.20). HRs 

for ER- and PR+ breast tumors were 1.04 (95% CI: 0.87 – 1.25) and 1.05 (95% CI: 0.93 – 1.18) when 

modelling alcohol intake per 10g/d; for PR- breast tumors the HR was 1.16 (95% CI:1.00 - 1.34). The 

results for the age-adjusted model were similar in magnitude and direction to the multivariable-

adjusted model (data not shown). Results differed somewhat in their magnitude but not direction 

when restricting the analysis to those women for whom complete genotyping data was available (1630 

cases, 22 841 person-years) (data not shown). 

Associations of tag SNP genotype and postmenopausal BC 

Table 3 displays the associations between variant allele carriers and overall postmenopausal BC for 

each tag SNP in ADH1B and ADH1C. All point estimates were close to one and none reached 

significance. Results for the analysis of associations of tag SNPs with the risk of hormonal receptor 

subtypes of postmenopausal BC did not show any systematic differences among receptor subtypes as 

compared to overall BC. For rs2075633, HRs for variant allele carriers (TC/ CC) as compared to wild 

type homozygotes (TT) were below one but the HR was not statistically significantly decreased for 

overall BC, while HRS were statistically significantly decreased for all hormone receptor subgroups, 

indicating an inverse association (data not shown).  

http://carcin.oxfordjournals.org/
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Interaction analysis of alcohol intake and tag SNP genotype 

Results of the interaction analysis of alcohol intake as per 10g/d with tag SNPs in relation to overall 

postmenopausal BC risk are presented in Table 4. Associations of alcohol intake with overall 

postmenopausal BC were not significantly different between wild type and variant allele carriers as 

indicated by the P for interaction after correction for multiple testing. Effect modification of the 

alcohol-BC association by rs1159918 was closest to significance (pinteraction=0.018, qinteraction=0.216). 

Within variant allele carriers (AC/ AA) for this tag SNP, a HR for BC of 1.18 (95% CI: 1.07 – 1.31) was 

observed per 10g/d of alcohol intake, whereas within wild type homozygotes (CC), the HR for BC was 

0.98 (95% CI: 0.86 – 1.11) per 10g/d of alcohol intake. For rs4147536, effect modification was second 

closest to significance. Within variant allele carriers (CA/ AA), a HR for BC of 1.20 (95% CI: 1.06 – 1.35) 

was observed per 10g/d of alcohol intake, while for wild type homozygotes (CC) the HR was 1.03 (95% 

CI: 0.93 – 1.14) per 10g/d (pinteraction=0.051, qinteraction=0.306).  

Table 5 shows the results for the interaction analysis applying a continuous model of alcohol intake, 

specified by hormone receptor status. Similar patterns as for the analysis of interaction in overall BC 

were seen in the different tumor subtypes. None of the results for interaction analysis were statistically 

significant after correction for multiple testing.  

Marginal effects of alcohol intake on postmenopausal breast cancer and interaction analysis using  

categories of  alcohol intake 

Modelling alcohol intake in three categories (non-drinkers, 0.1-<30g/d, >=30g/d) yielded HRs of 1.10 

(95% CI: 0.93-1.31) for drinkers of 0.1-<30g/d and 1.69 (95% CI: 1.10-2.59) for drinkers of >=30g/d 

compared to abstainers for overall postmenopausal BC (data not shown). Results for the interaction 

analysis between alcohol intake and tag SNPs using a dominant genetic model showed similar patterns 

of alcohol associated with overall postmenopausal BC risk in wild type homozygotes and in variant 

allele carriers. Generally, point estimates increased with increasing alcohol intake (data not shown). 

No statistically significant associations or interactions remained after correction for multiple testing. 
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Regarding hormonal receptor subtypes of tumors, no significant interaction between alcohol intake 

and ADH1B and ADH1C genotype was observed after correction for multiple testing (data not shown). 

For ER+ and PR- breast tumors, risk estimates increased or remained constant with increasing alcohol 

intake in variant allele carriers as well as in wild type homozygotes. For ER- and PR+ breast tumors, 

patterns across different tag SNPs were not as uniform. In general, risk estimates increased with 

increasing alcohol intake in wild type homozygotes as well as in variant allele carriers. However, 

interactions between alcohol intake and the tag SNPs investigated were not statistically significant 

after correction for multiple testing.  No tag SNP was shown to consistently modify postmenopausal 

BC risk due to alcohol intake in a continuous as well as a categorical model of alcohol intake. 

Sensitivity Analysis 

A sensitivity analysis for protopathic bias was done by exclusion of the first two years of follow-up. The 

general pattern observed for the alcohol-associated risk of postmenopausal BC did not change overall 

or for subgroups of disease defined by hormone receptor status after exclusion of the first two years 

of follow-up. (data not shown).  

Restricting the analysis to women who reported stable drinking behavior as compared to five years 

before baseline resulted in a somewhat weaker association of alcohol intake with postmenopausal BC. 

Directions of risk estimates for postmenopausal BC were similar for the continuous modelling of 

alcohol intake, whereas risk estimates for the categorical modelling of alcohol intake showed reversed 

directions for some of the risk estimates which, nevertheless, stayed close to one (data not shown) 

Results for the association of alcohol with postmenopausal BC risk after exclusion of former drinkers 

from the category of non-drinkers, which separates the abstainers from former-drinkers in the 

reference category, are shown in table 6. There was no change in the direction of the risk estimates. 

Magnitudes were only mildly changed.  
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Discussion 

While alcohol intake was shown to be associated with postmenopausal BC risk in this large population-

based cohort study, tag SNPs in ADH1B and ADH1C were not significantly associated with 

postmenopausal BC risk. No significant effect modification of the well-established alcohol-BC 

association  by tag SNPs was seen in overall BC or by ER or PR subtype. 

Ethanol is thought to potentially cause BC through several mechanisms: by its main and cancerous 

metabolite acetaldehyde, by production of free radicals, by influencing levels of estrogen, as well as  

by interference with one carbon metabolism[7]. Ethanol and acetaldehyde are both classified as group 

1 carcinogens by the IARC[44], meaning that there is sufficient evidence of carcinogenicity in humans. 

In the absence of ALDH alleles that cause slow oxidation of acetaldehyde, the levels of acetaldehyde 

produced in the liver after ingestion of alcohol depend on the kinetic property of ADH. Mutations 

associated with fast metabolism by this enzyme will therefore result in higher systemic acetaldehyde 

levels that could potentially reach and affect breast tissue.  This mechanism has been described as a 

likely pathway for the association of alcohol and cancers such as head and neck, esophageal, colorectal, 

liver, and stomach cancer[45,46]. On the other hand, slow oxidation of ethanol to acetaldehyde results 

in longer systemic circulation of ethanol. Additionally, ethanol influences levels of estrogen which plays 

a role, at least in ER+ BC. Ethanol intake has been shown to elevate estrogen levels in premenopausal 

as well as postmenopausal women, with effects being more pronounced in a premenopausal state[6]. 

Fast metabolizers will clear ethanol faster, which could therefore decrease the BC risk associated with 

this mechanism. As these potential mechanisms of pathogenesis, i.e. the elevated levels of 

acetaldehyde on the one hand and the elevated levels of estrogens on the other hand, depend on 

opposed properties of ADH (fast/ slow metabolizer), but might still both be involved in the progression 

of BC disease, only large changes in kinetic properties are likely to contribute to a relevant change in 

BC risk. For example, for ADH1B rs1229984, the increase in velocity of ethanol turn-over is almost by 

a factor ninety in variant allele homozygotes as compared to wild type homozygotes, whereas for 
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ADH1C rs698, the velocity of turn-over is around half the size in variant allele homozygotes as 

compared to wild type homozygotes[14].  

In the cohort under study, main effects of alcohol on overall as well as ER- and PR-specified 

postmenopausal BC were in line with previous reports[9,10]. Non-significance of results in subtypes of 

tumors by receptor status are most likely explainable by relatively small sample sizes in the hormone 

receptor strata. Generally, risk estimates for ER+ tumors aligned best with overall postmenopausal BC 

risk, which reflects the high proportion of ER+ tumors among all cases. As we did not see substantial 

differences in alcohol-associated risk estimates between hormone receptor subtypes, our results 

render the potential involvement of estrogen in alcohol-associated BC less likely. Several studies 

investigated associations of functional SNPs in ADH1B[15-21] and ADH1C[15,18-20,22-24,26,27] with 

BC risk. All of these studies used a candidate SNP approach. For ADH1B, most published research has 

focused on rs1229984, a functional SNP largely absent in Caucasian populations and therefore not 

included in our analysis. No evidence, so far, is available for direct effects on BC risk. Nevertheless, 

effect modification of the alcohol-BC association by this SNP was found in three case-control 

studies[17,20,21]. A direct effect of ADH1C genotype (rs698) on BC risk has been reported by two 

studies[24,25], but was not confirmed in a more recent meta-analysis[26]. This aligns well with the 

absence of a direct effect of rs698 genotype on BC risk in our study. Effect modification of the alcohol-

BC association by ADH1C genotypes was shown by Terry et al[23] and Benzon et al[15] with conflicting 

directions. BC-risk was elevated for slow/intermediate metabolizers (rs698 CC/ CT) in a continuous 

model of alcohol intake[15] with a RR of 1.14 (95% CI: 1.04 – 1.24) per 10g/d, whereas fast metabolizers 

(rs698 TT) showed a RR of 0.99 (95% CI: 0.89 – 1.11). In contrast, Terry et al[23] reported an OR of 2.00 

(95% CI: 1.10 – 3.50) for fast metabolizers (rs698 TT) who drank 15 to 30 g/d compared to abstainers, 

an OR of 1.50 (95% CI: 0.90 – 2.40) for intermediate (rs698 CT) and 1.30 (95% CI: 0.50 – 3.50) for slow 

metabolizers (rs698 CC) in a categorical model of lifetime alcohol intake[23]. In our study, the HR for 

postmenopausal BC was of comparable size, i.e. 1.13 (95% CI: 1.02 – 1.24) per 10g/d of alcohol intake 
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in rs698 variant allele carriers (rs698 CC/ CT), as the one reported by Benzon et al[15]. Nevertheless, 

effect modification was not present.   

We used a tag SNP approach to cover as much genetic variability in ADH1B and ADH1C as possible. As 

no main effects of tag SNP genotype were seen, the lack of effect modification of the alcohol BC 

association by tag SNP genotype is in line with expectations. Tag SNPs usually only show minimal risk 

associations, possibly due to imperfect correlations with represented SNPs and/or additional gene-

gene interactions that are not depicted by the tag SNP approach[47].  

So far, no approach has been undertaken to comprehensively investigate the potential effect 

modification by covering a large genetic variability in ADH1B and ADH1C. With a considerably high 

coverage of 76% of common genetic variability in ADH1B and 96% in ADH1C our results do not support 

an important role of common ADH1B and ADH1C variations in breast cancer development, neither in 

women who drink, nor in abstainers.  

Strengths of our study are its prospective design, the large number of participants, its population-

based approach and the almost complete and long (20.3 years) follow-up through data linkage with 

cancer registries. Information on alcohol intake was recorded by a well validated FFQ which was shown 

to rank participants well[34,35]. 

Our study also has limitations. Self-reported intake of alcohol can cause non-differential 

misclassification due to social desirability and attenuate risk estimates. This attenuation of the 

regression coefficient might be greater using a continuous model of alcohol intake than with a 

categorical model of alcohol intake. Nevertheless, women in our study were between 55 and 69 years 

at baseline and showed a stable dietary intake[35]. Alcohol intake in particular correlated well with 

dietary records in a validation study[34].   Ascertainment of hormone receptor status was done in 

different laboratories over many years which can result in nondifferential misclassification due to 

differing techniques and protocols. Hormone receptor status was only available for around 60 percent 
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of cases, which reduced the power of subtype analyses. Finally, the cut-off value chosen for the FDR 

Q-values of 0.2 is arbitrary, however it has been used in candidate gene studies before[42,43].  

In conclusion, in this large prospective cohort study, alcohol intake was associated with overall 

postmenopausal BC risk as well as with subtypes defined by ER and PR status. No significant effect 

modification of this association by ADH1B and AHD1C variability was observed.  
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Table 1 Distribution of baseline characteristics and genotype of subcohort membersa according to levels of 
alcohol intake. Netherlands Cohort Study, 1986-2006. 

 
Average daily alcohol intake (g/day)  

0 0.1-<5 5-<15 15-<30 >=30 

Demographic and lifestyle  
Characteristics of subcohort members: 

     

Participants, N (%) 552 (32.6) 612 (36.1) 317 (18.7) 154 (9.1) 60 (3.5) 

Age [years], mean (SD) 61.7 (4.3) 61.4 (4.3) 61.3 (4.2) 61.0 (4.5) 60.4 (3.5) 

Age at menarche [years], mean (SD) 13.6 (1.8) 13.8 (1.8) 13.8 (1.8) 13.5 (1.6) 13.4 (1.5) 

Age at first birth [years], mean (SD) 26.7 (4.5) 27.1 (4.4) 26.9 (3.7) 26.8 (3.2) 25.8 (3.2) 

Nulliparous women, % 17.5 18.7 17.3 22.0 21.7 

Age at menopause [years], mean (SD) 48.3 (4.8) 49.0 (4.3) 48.9 (4.6) 49.0 (4.3) 48.9 (4.4) 

Ever use of oral contraception, % 21.0 23.5 32.1 34.0 33.3 

Ever use of HRT, % 10.3 12.5 14.0 17.1 15.0 

Positive family history of breast cancer, % 10.0 9.2 7.9 7.8 6.7 

Positive history of benign breast disease, % 6.7 8.0 8.8 5.2 6.7 

Height [cm], mean (SD) 164.8 (6.5) 165.2 (6.2) 165.3 (5.8) 166.2 (5.5) 164.7 (6.1) 

BMI [kg/m2], mean (SD) 25.5 (3.8) 25.1 (3.5) 24.5 (3.3) 24.4 (3.3) 24.5 (3) 

Current Smoker, % 17.9 16.2 23.0 34.4 45.0 

Higher vocational schooling or university, % 4.9 7.7 14.6 13.2 21.7 

Daily energy intake [kcal], mean (SD) 1622 (417) 1689 (375) 1732 (379) 1777 (394) 1865 (448) 

Non-occupational physical activity <=30min/d, % 28.6 22.9 18.8 21.6 13.6 

Genotype and variant allelesb      

ADH1B       

rs1159918    (AA/AC), % 61.8 59.6 57.7 58.6 61.7 

rs1693439    (AA/AG), % 15.0 15.0 18.0 13.6 15.0 

rs2075633    (CC/CT), % 46.7 49.6 53.3 53.2 43.3 

rs3811802    (GG/GA), % 71.6 71.4 63.4 71.8 83.3 

rs4147536    (AA/AC), % 37.1 39.2 33.5 31.4 35.0 

rs9307239    (TT/TC), % 58.6 60.9  63.7 59.7 63.3 

ADH1C      

rs1662033    (GG/GT), % 51.8 53.9 49.8 48.7 48.3 

rs283415      (CC/CT), % 67.0 68.3 63.7 63.0 61.7 

rs3114046    (TT/TC), % 15.0 15.0 18.0 13.6 15.0 

rs4147542    (CC/CT), % 41.7 48.0 56.5 45.3 50.9 

rs4699741    (CC/CT), % 15.4 11.3 13.6 11.7 11.7 
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rs698             (CC/CT), % 64.5 66.4 60.6 59.7 58.3 

Abbreviations: BMI, body mass index; HRT, hormone replacement therapy, rsID, reference SNP ID number;  
A, adenine; C, cytosine; G, guanine; T, thymine 
aSubcohort members with missing data on alcohol intake were excluded, whereas no exclusions due to missing 
data on covariates occurred.  
Continuous variables are displayed as mean and standard deviation (SD). Categorical variables are given in 
column percentages per category of alcohol intake 
bPercentages of variant allele carriers (variant homozygotes and heterozygotes) are given for each tag SNP. The 
total number of subcohort members for whom toenail-DNA and data on alcohol intake were available, was 
1695. 
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Table 2 Multivariable-adjusteda HRs and 95% CIs according to alcohol intake for postmenopausal breast cancer risk overall and by hormone receptor status. Netherlands Cohort 

Study, 1986-2006. 

  
Total alcohol intake [g/d] P-Value HR (95% CI) 

  
 Non-drinkers >0-<5 5-<15 15-<30 >=30 

Test for 
trend per 10g/d 

Personyears in subcohort 7740 8668 4754 2348 766  24275 

Total breast cancer No. of cases 514 648 343 187 83  1775  
HR (95% CI) 1 (Ref) 1.10 (0.92 - 1.33) 1.06 (0.84 - 1.33) 1.19 (0.89 - 1.59) 1.69 (1.10 - 2.60) 0.031 1.09 (1.01 - 1.19) 

By ER status 
 

       

ER+ No. of cases/ Py 247 311 164 88 35  845  
HR (95% CI) 1 (Ref) 1.10 (0.88 - 1.38) 1.05 (0.80 - 1.38) 1.15 (0.81 - 1.63) 1.51 (0.91 - 2.52) 0.185 1.09 (0.99 - 1.20) 

ER- No. of cases/ Py 66 68 34 20 9  197  
HR (95% CI) 1 (Ref) 0.89 (0.60 - 1.31) 0.78 (0.48 - 1.26) 0.92 (0.51 - 1.65) 1.32 (0.58 - 3.01) 0.694 1.04 (0.87 - 1.25) 

By PR status 
 

       

PR+ No. of cases/ Py 153 184 96 51 18  502  
HR (95% CI) 1 (Ref) 1.03 (0.78 - 1.34) 0.96 (0.69 - 1.34) 1.02 (0.67 - 1.55) 1.23 (0.67 - 2.24) 0.684 1.05 (0.93 - 1.18) 

PR- No. of cases/ Py 83 107 53 31 17  291  
HR (95% CI) 1 (Ref) 1.13 (0.81 – 1.57) 0.97 (0.64 – 1.48) 1.19 (0.72 - 1.98) 1.87 (0.95 - 3.68) 0.147 1.16 (1.00 - 1.34) 

Abbreviations: HR, hazard rate ratio; CI, confidence interval; ER, estrogen receptor; PR, progesterone receptor 
aAll multivariable-adjusted models included the following confounders: age (55-59, 60-64, 65-69), positive history of benign breast disease, positive family history of breast 
cancer, age at menarche (<12, 13-14, 15-16,>17), compound variable of parity and age at first birth (nulliparous, 1-2 children and age <25, 1-2 children and  age>=25, >=3 children 
and age<25, >=3 children and age>=25), ever use of contraception, ever use of HRT, age at menopause (<45, 45-49, 50-54, >=55), level of education (primary school or lower 
vocational, secondary or medium vocational, higher vocational or university), smoking status(never/ex-smoker/current), daily energy intake, height, BMI (<18.5, 18.5-<25, 25-
<30, >=30kg/m2), non-occupational physical activity (<=30min/d, >30-<=60min/d, >60-<=90min/d, >90min/d)    
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Table 3 HR and 95% CI for postmenopausal breast cancer risk according to alcohol dehydrogenase genetic 
variants using a dominant genetic model in women with available toe nail material. Netherlands Cohort Study, 
1986-2006. 

SNP 
No. 

cases 
Person-years HR 95% CI  p Value FDR Q-Value 

ADH1B 

 
     

rs1159918 

 
     

  Homozygote wild type (CC) 938 12828 1 (Ref)    

  Variant allele carrier (AC/AA) 1390 19029 1.00 0.88 - 1.14 0.993 0.993 

rs1693439 
      

  Homozygote wild type (GG) 2006 26957 1 (Ref)    

  Variant allele carrier (GA/AA) 324 4960 0.88 0.74 - 1.04 0.142 0.415 

rs2075633 
      

  Homozygote wild type (TT) 1230 16012 1 (Ref)    

  Variant allele carrier (TC/CC) 1099 15905 0.90 0.79 - 1.01 0.083 0.415 

rs3811802 
      

  Homozygote wild type (AA) 674 9536 1 (Ref)    

  Variant allele carrier (AG/GG) 1655 22369 1.05 0.91 - 1.20 0.517 0.620 

rs4147536 
      

  Homozygote wild type (CC) 1422 20044 1 (Ref)    

  Variant allele carrier (CA/AA) 908 11860 1.08 0.95 - 1.23 0.227 0.454 

rs9307239 
      

  Homozygote wild type (CC) 856 12537 1 (Ref)    

  Variant allele carrier (CT/TT) 1472 19363 1.12 0.98 - 1.27 0.087 0.415 

ADH1C 

    
  

rs1662033 

    
  

  Homozygote wild type (TT) 1101 15493 1 (Ref)    

  Variant allele carrier (TG/GG) 1228 16425 1.05 0.93 - 1.19 0.400 0.533 

rs283415 
      

  Homozygote wild type (TT) 749 10749 1 (Ref)    

  Variant allele carrier (TC/CC) 1580 21189 1.07 0.94 - 1.22 0.298 0.469 

rs3114046 
      

  Homozygote wild type (CC) 2002 26957 1 (Ref)    

  Variant allele carrier (CT/TT) 328 4980 0.89 0.74 - 1.05 0.173 0.415 

rs4147542 
      

  Homozygote wild type (TT) 1125 15856 1 (Ref)    

  Variant allele carrier (TC/CC) 1023 14305 1.01 0.89 - 1.15 0.893 0.974 

rs4699741 
      

  Homozygote wild type (TT) 2066 27792 1 (Ref)    

  Variant allele carrier (TC/CC) 264 4145 0.86 0.71 - 1.04 0.113 0.415 

rs698 
      

  Homozygote wild type (TT) 808 11553 1 (Ref)    

  Variant allele carrier (TC/CC) 1520 20368 1.07 0.94 - 1.22 0.313 0.469 

Abbreviations: rsID, reference SNP ID number; A, adenine; C, cytosine; G, guanine; T, thymine; CI, confidence 
interval; FDR, False Discovery Rate 
Results are age-adjusted and displayed as hazard ratios (HR) for variant allele carriers (heterozygotes and variant 
allele homozygotes versus wild type homozygotes). FDR Q-Values are calculated as described in the methods 
section with correction for 12 tests. A threshold of 0.2 would be considered significant.   
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Table 4 HRs and 95% CIs for postmenopausal breast cancer risk according to alcohol intake (continuous per 10g/d) and 
genotype of Tag SNPs in ADH1B and ADH1C in women with available toe nail material. Netherlands Cohort Study, 1986-
2006a. 

   Per 10g/d P-value  FDR 

 No. cases Person-years HR 95% CI  Interaction Q-Valueb 

Alcohol effects in full sample 1775 24276 1.09 1.01 – 1.19   

       

Tag SNP       

ADH1B       

rs1159918        

  Homozygote wild type (CC) 725 9603 0.98 0.86 – 1.11    

  Variant allele carrier (AC/AA) 1048 14609 1.18 1.07 – 1.31 0.018 0.216 

rs1693439         

  Homozygote wild type (GG) 1525 20494 1.10 1.01 – 1.20    

  Variant allele carrier (GA/AA) 250 3781 1.08 0.89 – 1.30 0.844 0.875 

rs2075633         

  Homozygote wild type (TT) 937 12029 1.12 0.74 – 1.07    

  Variant allele carrier (TC/CC) 837 12247 1.06 0.94 – 1.19 0.437 0.750 

rs3811802         

  Homozygote wild type (AA) 511 7207 1.11 0.95 – 1.28    

  Variant allele carrier (AG/GG) 1263 17036 1.09 0.99 – 1.19 0.858 0.875 

rs4147536         

  Homozygote wild type (CC) 1096 15284 1.03 0.93 – 1.14    

  Variant allele carrier (CA/AA) 679 8971 1.20 1.06 – 1.35 0.051 0.306 

rs9307239         

  Homozygote wild type (CC) 682 9122 1.09 0.96 – 1.23    

  Variant allele carrier (CT/TT) 1091 15116 1.10 1.00 – 1.22 0.875 0.875 

ADH1C         

rs1662033         

  Homozygote wild type (TT) 838 11829 1.05 0.94 – 1.18    

  Variant allele carrier (TG/GG) 936 12427 1.13 1.01 – 1.26 0.379 0.750 

rs283415         

  Homozygote wild type (TT) 578 8174 1.05 0.92 – 1.21    

  Variant allele carrier (TC/CC) 1196 16101 1.11 1.01 – 1.22 0.492 0.750 

rs3114046         

  Homozygote wild type (CC) 1521 20494 1.10 1.01 – 1.20    

  Variant allele carrier (CT/TT) 254 3781 1.07 0.88 – 1.29 0.779 0.875 

rs4147542         

  Homozygote wild type (TT) 869 11896 1.13 1.00 – 1.27    

  Variant allele carrier (TC/CC) 771 11134 1.05 0.94 – 1.18 0.397 0.750 

rs4699741         

  Homozygote wild type (TT) 1578 21284 1.08 1.00 – 1.18    

  Variant allele carrier (TC/CC) 197 2991 1.19  0.91 – 1.56 0.500 0.750 

rs698         

  Homozygote wild type (TT) 618 8810 1.02 0.89 – 1.16    

  Variant allele carrier (TC/CC) 1155 15448 1.13 1.02 – 1.24 0.203 0.750 

 
Abbreviations: rsID, reference SNP ID number; A, adenine; C, cytosine; G, guanine; T, thymine; FDR, False Discovery Rate 
aAll models were adjusted for the following confounders: age (55-59, 60-64, 65-69), positive history of benign breast disease, 
positive family history of breast cancer, age at menarche (<12, 13-14, 15-16,>17), compound variable of parity and age at first 
birth (nulliparous, 1-2 children and age <25, 1-2 children and  age>=25, >=3 children and age<25, >=3 children and age>=25), 



25 
 

ever use of contraception, ever use of HRT, age at menopause (<45, 45-49, 50-54, >=55), level of education (primary school 
or lower vocational, secondary or medium vocational, higher vocational or university), smoking status(never/ex-
smoker/current), daily energy intake, height, BMI (<18.5, 18.5-<25, 25-<30, >=30kg/m2), non-occupational physical activity 
(<=30min/d, >30-<=60min/d, >60-<=90min/d, >90min/d)    
bFDR Q-Values are calculated as described in the methods section with correction for 12 tests. A threshold of 0.2 would be 

considered significant. 
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Table 5 HRs and 95% CIs for hormonal receptor subtypes postmenopausal breast cancer risk according to alcohol intake (continuous per 10g/d) and genotype of Tag SNPs in ADH1B and ADH1C in 
women with available toe nail material. Netherlands Cohort Study, 1986-2006a. 

 ER +   ER -   PR +   PR -   

 No.  Per 10g/d P-value  No.  Per 10g/d P-value  No.  Per 10g/d P-value  No.  Per 10g/d P-value  
cases HR (95% CI) Interactionb 

 
cases HR (95% CI) Interactionb 

 
cases HR (95% CI) Interactionb 

 
cases HR (95% CI) Interactionb 

Alcohol effects in full sample 845 1.09 0.99 – 1.20   197 1.04 0.87 – 1.25    502 1.05 0.93 – 1.18    291 1.16 1.00 – 1.34   

                    

Tag SNP                             

ADH1B                             

rs1159918                              

  Homozygote wild type (CC) 333 0.99 0.87 – 1.15    91 0.87 0.61 – 1.23    192 0.96 0.79 – 1.16    132 1.08 0.90 – 1.34   

  Variant allele carrier (AC/AA) 511 1.17 1.02 – 1.33 0.099  106 1.19 0.97 – 1.46 0.118  309 1.12 0.96 – 1.30 0.210  159 1.23 1.01 – 1.49 0.365 

rs1693439                                

  Homozygote wild type (GG) 725 1.07 0.96 – 1.19    159 1.04 0.85 – 1.27    429 1.02 0.90 – 1.16    245 1.14 0.98 – 1.34   

  Variant allele carrier (GA/AA) 120 1.20 0.95 – 1.52 0.369  38 1.05 0.69 – 1.59 0.972  73 1.22 0.92 – 1.61 0.243  46 1.21 0.84 – 1.74 0.771 

rs2075633                                

  Homozygote wild type (TT) 459 1.12 0.99 – 1.27    96 1.06 0.84 – 1.33    269 1.04 0.90 – 1.21    158 1.19 0.98 – 1.44   

  Variant allele carrier (TC/CC) 386 1.05 0.91 – 1.22 0.519  100 1.04 0.79 – 1.37 0.923  233 1.06 0.88 – 1.27 0.884  132 1.12 0.90 – 1.39 0.694 

rs3811802                                

  Homozygote wild type (AA) 231 1.10 0.91 – 1.33    64 0.94 0.64 – 1.38    148 1.09 0.90 – 1.32    79 1.18 0.84 – 1.65   

  Variant allele carrier (AG/GG) 614 1.09 0.97 – 1.21 0.888  133 1.08 0.88 – 1.32 0.527  354 1.03 0.90 – 1.19 0.668  212 1.15 0.98 – 1.35 0.885 

rs4147536                                

  Homozygote wild type (CC) 515 1.03 0.91 – 1.71    134 1.01 0.80 – 1.29    300 1.00 0.79 – 1.37    205 1.14 0.95 – 1.37   

  Variant allele carrier (CA/AA) 330 1.19 1.02 – 1.38 0.142  63 1.11 0.85 – 1.44 0.609  202 1.13 0.95 – 1.36 0.268  86 1.19 0.93 – 1.52 0.792 

rs9307239                                
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  Homozygote wild type (CC) 297 1.11 0.95 – 1.30    89 1.07 0.83 – 1.39    176 1.09 0.91 – 1.31    124 1.16 0.93 – 1.45   

  Variant allele carrier (CT/TT) 548 1.08 0.95 – 1.22 0.729  106 1.03 0.80 – 1.34 0.836  326 1.02 0.88 – 1.19 0.590  165 1.16 0.95 – 1.41 1.000 

ADH1C                                

rs1662033                                

  Homozygote wild type (TT) 412 1.06 0.92 – 1.22    93 0.98 0.74 – 1.29    231 1.02 0.85 – 1.22    146 1.13 0.91 – 1.39   

  Variant allele carrier (TG/GG) 432 1.12 0.98 – 1.28 0.549  104 1.10 0.87 – 1.38 0.526  270 1.08 0.93 – 1.26 0.618  145 1.18 0.97 – 1.44 0.745 

rs283415                                

  Homozygote wild type (TT) 272 1.02 0.85 – 1.22    69 0.94 0.68 – 1.28    151 0.94 0.75 – 1.19    107 1.15 0.89 – 1.48   

  Variant allele carrier (TC/CC) 572 1.12 1.00 – 1.26 0.348  128 1.09 0.88 – 1.35 0.423  351 1.10 0.96 – 1.25 0.256  184 1.16 0.98 – 1.39 0.923 

rs3114046                                

  Homozygote wild type (CC) 722 1.07 0.97 – 1.19    159 1.04 0.85 – 1.27    426 1.02 0.90 – 1.16    245 1.14 0.98 – 1.34   

  Variant allele carrier (CT/TT) 123 1.19 0.94 – 1.50 0.425  38 1.05 0.69 – 1.59 0.972  76 1.20 0.90 – 1.59 0.310  46 1.21 0.84 – 1.74 0.771 

rs4147542                                

  Homozygote wild type (TT) 400 1.13 0.98 – 1.30    107 1.09 0.87 – 1.38    226 1.10 0.93 – 1.29    149 1.18 0.97 – 1.44   

  Variant allele carrier (TC/CC) 382 1.07 0.93 – 1.24 0.610  82 0.99 0.74 – 1.34 0.616  234 1.02 0.85 – 1.22 0.532  127 1.18 0.94 – 1.47 0.983 

rs4699741                                

  Homozygote wild type (TT) 745 1.08 0.97 – 1.20    174 1.03 0.85 – 1.26    431 1.05 0.92 – 1.19    253 1.14 0.98 – 1.34   

  Variant allele carrier (TC/CC) 100 1.20 0.86 – 1.68 0.551  23 1.15 0.69 – 1.91 0.710  71 1.14 0.81 – 1.60 0.634  38 1.35 0.83 – 2.20 0.525 

rs698                                

  Homozygote wild type (TT) 289 1.01 0.85 – 1.20    76 0.88 0.64 – 1.21    161 0.96 0.77 – 1.19    115 1.09 0.84 – 1.41   

  Variant allele carrier (TC/CC) 555 1.13 1.01 – 1.27 0.274  121 1.12 0.91 – 1.38 0.206  341 1.10 0.96 – 1.26 0.282  176 1.19 1.00 – 1.41 0.560 

Abbreviations: rsID, reference SNP ID number; A, adenine; C, cytosine; G, guanine; T, thymine 
aAll models were adjusted for the following confounders: age (55-59, 60-64, 65-69), positive history of benign breast disease, positive family history of breast cancer, age at menarche (<12, 13-14, 
15-16,>17), compound variable of parity and age at first birth (nulliparous, 1-2 children and age <25, 1-2 children and  age>=25, >=3 children and age<25, >=3 children and age>=25), ever use of 
contraception, ever use of HRT, age at menopause (<45, 45-49, 50-54, >=55), level of education (primary school or lower vocational, secondary or medium vocational, higher vocational or university), 
smoking status(never/ex-smoker/current), daily energy intake, height, BMI (<18.5, 18.5-<25, 25-<30, >=30kg/m2), non-occupational physical activity (<=30min/d, >30-<=60min/d, >60-<=90min/d, 
>90min/d)    
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bP-values are shown before correction for multiple testing. FDR Q-Values have been calculated as described in the methods section. All FDR Q-Values were above 0.2. 
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Table 6 Sensitivity Analysis for exclusion of former drinkers from the reference category. Multivariable-adjusteda HRs and 95% Cis for postmenopausal breast cancer risk overall 
and by hormone receptor status are presented according to alcohol. After exclusion of former drinkers from the category of abstainers, 1596 cases and 22029 person-years 
were available for analysis. Netherlands Cohort Study, 1986-2006. 

  
Total alcohol intake [g/d] P-Value HR (95% CI) 

  
 Non-drinkers >0-<5 5-<15 15-<30 >=30 

Test for 
trend per 10g/d 

Personyears in subcohort 7454 8668 4754 2348 766  23990 

Total breast cancer No. of cases 488 648 343 187 83  1749  
HR (95% CI) 1 (Ref) 1.13 (0.93-1.36) 1.07 (0.85-1.35) 1.21 (0.90-1.61) 1.72 (1.12-2.64) 0.029 1.10 (1.01 - 1.19) 

By ER status 
 

       

ER+ No. of cases/ Py 236 311 164 88 35  834  
HR (95% CI) 1 (Ref) 1.11 (0.89-1.40) 1.05 (0.80-1.39) 1.15 (0.81-1.64) 1.52 (0.91-2.52) 0.200 1.09 (0.99 - 1.20) 

ER- No. of cases/ Py 63 68 34 20 9  194  
HR (95% CI) 1 (Ref) 0.90 (0.61-1.34) 0.77 (0.47-1.27) 0.93 (0.51-1.67) 1.33 (0.58-3.04) 0.692 1.05 (0.87 - 1.26) 

By PR status 
 

       

PR+ No. of cases/ Py 145 184 96 51 18  494  
HR (95% CI) 1 (Ref) 1.05 (0.80-1.38) 0.97 (0.69-1.35) 1.03 (0.67-1.57) 1.24 (0.68-2.26) 0.701 1.05 (0.93 - 1.18) 

PR- No. of cases/ Py 79 107 53 31 17  287  
HR (95% CI) 1 (Ref) 1.14 (0.81-1.60) 0.97 (0.63-1.48) 1.19 (0.72-1.98) 1.89 (0.96-3.72) 0.149 1.16 (1.00 - 1.35) 

Abbreviations: HR, hazard rate ratio; CI, confidence interval; ER, estrogen receptor; PR, progesterone receptor 
aAll multivariable-adjusted models included the following confounders: age (55-59, 60-64, 65-69), positive history of benign breast disease, positive family history of breast 
cancer, age at menarche (<12, 13-14, 15-16,>17), compound variable of parity and age at first birth (nulliparous, 1-2 children and age <25, 1-2 children and  age>=25, >=3 children 
and age<25, >=3 children and age>=25), ever use of contraception, ever use of HRT, age at menopause (<45, 45-49, 50-54, >=55), level of education (primary school or lower 
vocational, secondary or medium vocational, higher vocational or university), smoking status(never/ex-smoker/current), daily energy intake, height, BMI (<18.5, 18.5-<25, 25-
<30, >=30kg/m2), non-occupational physical activity (<=30min/d, >30-<=60min/d, >60-<=90min/d, >90min/d)    


