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Abstract We propose a supersymmetrisation of the cos-
mological constant in ordinary N = 1 supergravity that
breaks supersymmetry spontaneously by a constant Fayet-
Iliopoulos (FI) term associated to a U (1) symmetry. This
term is a variation of a new gauge invariant FI term proposed
recently, which is invariant under Kähler transformations and
can be written even for a gauged R-symmetry on top of the
standard FI contribution. The two terms are the same in the
absence of matter but differ in its presence. The proposed
term is reduced to a constant FI-term up to fermion interac-
tions that disappear in the unitary gauge in the absence of
any F-term supersymmetry breaking. The constant FI term
leads to a positive cosmological constant, uplifting the vac-
uum energy from the usual anti-de Sitter supergravity to any
higher value.

1 Introduction

It is well known that the cosmological constant � in super-
gravity is highly constrained. For given gravitino mass term
m3/2, there is a lowest value of � = −3m2

3/2 corresponding
to the anti de Sitter (AdS) supergravity, describing a massless
spin-3/2 spinor in AdS [1]. It is obtained in the absence of
matter fields by a constant superpotential. Uplifting this value
breaks supersymmetry and can be done in principle dynami-
cally by minimising a scalar potential. Supersymmetry break-
ing then occurs by a vacuum expectation value (VEV) of an
F-auxiliary component of a chiral superfield containing the
goldstino.
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In the absence of matter, one could still break supersym-
metry by a VEV of a D-auxiliary component of a vector
superfield which requires the addition of a constant Fayet-
Iliopoulos (FI) contribution [2]. This can be done only when
the vector superfield gauges the R-symmetry, under which
the chiral compensator of N = 1 supergravity becomes
charged [3,4]. A constant superpotential is however forbid-
den in that case, since it must be charged under R-symmetry,
and there is no explicit gravitino mass term, although super-
symmetry is broken in de Sitter (dS) space. In the presence
of matter, a charged superpotenial can be written but then
supesymmetry is also broken by the VEV of a chiral mul-
tiplet upon minimisation of the corresponding scalar poten-
tial. Thus, the cosmological constant cannot be added as an
independent parameter in supergravity for arbitrary breaking
scale (gravitino mass).

An exception to the above situation is when supersym-
metry is non-linearly realized by introducing a constrained
goldstino superfield X satisfying the nilpotent condition
X2 = 0 [5–7]. This eliminates the scalar component (sgold-
stino) in terms of the goldstino bilinear and the scalar poten-
tial (in the absence of matter) becomes an arbitrary constant
uplifting the minimal value � = −3m2

3/2 [7]. However in
this case supersymmetry is not spontaneously broken in a
linear way and the number of bosonic and fermionic degrees
of freedom are not equal, invalidating in particular the usual
ultraviolet properties of N = 1 supergravity and of its low
energy softly broken supersymmetric theory.

Recently, a new FI term was proposed that allows an arbi-
trary uplifting of the vacuum energy in the absence of matter
fields [8,9].1 It does not require gauging the R-symmetry and
in the unitary (super)gauge of massive gravitino, it is reduced
to just an additive positive constant to �. In the presence

1 Another approach to the new FI term was proposed in [10].
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of matter, however, it leads to an additional field-dependent
contribution to the scalar potential. Moreover, it breaks the
invariance of the standard two-derivative supergravity action
under Kähler transformations.

In this work, we propose a modification/generalisation
of this FI term that has the following properties: (1) it can
be written independently whether the corresponding U (1)

gauges or not the R-symmetry; (2) in the absence of matter
fields and in the case of an ordinary (non-R) U (1), it coin-
cides with the one proposed in [8]; (3) in the case of aU (1)R ,
it can be written on top of the standard constant FI term; (4)
in the presence of matter fields the action is invariant under
Kähler transformations and its bosonic contribution is always
a constant FI term that uplifts in particular the vacuum energy
by an arbitrary positive constant.

The outline of the paper is the following. In Sect. 2, we
review the new FI term and its properties. In Sect. 3, we
present a modification/generalisation that is invariant under
Kähler transformations. In Sect. 4, we compute its bosonic
contribution to the standard supergravity action. Section 5
contains some concluding remarks. Finally, we have two
appendices; “Appendix A” contains useful formulae used in
the text, while in “Appendix B” we compute the fermionic
part of the supergravity action.

2 Review and definitions

In [8] a new FI term has been proposed of the form

LFI = −ξ

[
S0 S̄0

w2w̄2

T (w̄2)T̄ (w2)
(V )D

]
D

, (1)

where we put the Planck mass to 1, and ξ is a constant
parameter. We use the conventions of [1,11]. Here S0 =
(s0, PL�0, F0) and S̄0 = (

s̄0, PR�0, F̄0
)

are the chiral (and
anti-chiral) compensator fields with (Weyl, Chiral) weights
(1, 1) and (1,−1) respectively, and V is a real (vector)
supermultiplet with weights (0, 0) and components V =(
v, ζ,H, Aμ, λ, D

)
, where the first three components are

zero in the Wess-Zumino gauge v = ζ = H = 0. The
linear projection (V )D has weights (2, 0) and is defined by

(V )D =
(
D, /Dλ, 0, Db F̂ab, − /D /Dλ, − �C D

)
. (2)

The chiral (and anti-chiral) multiplets w2 (and w̄2) are given
by

w2 = λ̄PLλ

S2
0

, w̄2 = λPR λ̄

S̄2
0

, (3)

where the components of λ̄PLλ are,2

λ̄PLλ =
(

λ̄PLλ ;√
2PL

(
−1

2
γ · F̂ + i D

)
λ;

2λ̄PL /Dλ + F̂− · F̂− − D2
)

, (4)

where the self-dual and anti-self-dual tensors are defined by

F̂±
μν = 1

2

(
F̂μν ± ˜̂Fμν

)
,

˜̂Fμν = −1

2
iεμνρσ F̂

ρσ , (5)

and the definitions of the covariant field strength F̂ and the
covariant derivative /Dλ can be found in “Appendix A”. The
conformal d’Alembertian is given by �C = ηabDaDb. Note
that w2 has weights (1, 1), w̄2 has weights (1,−1), and λ̄PLλ

has weights (3, 3).
The chiral (and anti-chiral) projection operators T (and T̄ )

are defined in [11,12]. In particular if C is a general (uncon-
strained) multiplet of weights (ω, ω − 2) given by

C = (C,Z,H,K,Ba,�,D), (6)

then T (C) has weights (ω + 1, ω + 1) and is given by

T (C) =
(

−1

2
K,−1

2

√
2i PL ( /DZ + �),

1

2
(D + �CC + iDaBa)

)
.

(7)

The resulting chiral multiplet T (C) has weights (ω + 1, ω +
1). The operation T acting on a chiral multiplet X =
(φ, PLχ, F) vanishes, i.e. T (X) = 0, while its action on an
anti-chiral multiplet X̄ = (

φ̄, PRχ, F̄
)

of weights (1,−1) is
defined as

T (X̄) =
(
F̄, /DPRχ,�C φ̄

)
. (8)

For more information, the reader is referred to “Appendix A.1”.
In rigid supersymmetry, this corresponds to the usual chiral
(and anti-chiral) projection operators D̄2 (and D2).

For simplicity, we assume a constant gauge kinetic func-
tion. The kinetic terms for the gauge multiplet are given by

Lkin = −1

4

[
λ̄PLλ

]
F . (9)

The extension to a non-trivial gauge kinetic function is given
in [9].

The operation [ ]F acts on a chiral multiplet X =
(φ, PL�, F) with weights (3, 3), giving [11],3

2 Note that in this notation the field strength superfield Wα is given by
W2 = λ̄PLλ, and (V )D corresponds to DαWα .
3 Note that the definitions of [ ]F and [ ]D below do not involve the
spacetime integral

∫
d4x , which appears in the corresponding expres-

sions in [11].
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[X ]F = e

[
F + 1√

2
ψ̄μγ μPL� + 1

2
φψ̄μγ μν PRψν

]
+ h.c. .

(10)

Note that this already contains the Hermitian conjugate. The
operation [ ]D acts on a real multipletC = (

C, ζ,H, vμ, λ, D
)

of weights (2, 0), giving [11]

[C]D = 1

2
e

[
D − i

2
ψ̄ · γ γ∗λ − 1

3
CR(ω)

+1

6
(Cψ̄μγ μρσ − iζγ ρσ γ∗)R′

ρσ (Q)

+1

4
εabcdψ̄aγbψc

(
vd − 1

2
ψ̄dζ

)]
. (11)

Here ψ is the gravitino, and R(ω) and R′
ρσ (Q) are the gravi-

ton and gravitino curvatures.
The Lagrangian contains a term,

LFI/e = −ξs0s̄0D. (12)

After the auxiliary field D is integrated out with the contri-
bution from the kinetic term D2/2 taken into account, the
scalar potential contains a term proportional to ξ2,

VFI = ξ2

2
(s0s̄0)

2 . (13)

In the absence of additional matter fields, one can use the
Poincaré gauge s0 = s̄0 = 1, resulting in a constant D-
term contribution to the scalar potential. However, when
matter fields are included, the Einstein frame gauge gives
s0 = s̄0 = eK/6 fixing the conformal symmetry, leading to a
field dependent FI contribution to the scalar potential:

VFI = ξ2

2
e2K/3. (14)

The implications of such a term to inflation have been studied
in [9,13].

In the presence of matter fields the FI term (1) is not invari-
ant under Kähler transformations. The purpose of this paper
is to construct a term, similar to Eq. (1), invariant under Käh-
ler transformations. As a consequence, the contribution to the
scalar potential will no longer depend on e2K/3 as in Eq. (14).

3 Kähler invariant generalization of the new FI term

In this section we find a generalization of the new FI term
in Eq. (1) that is invariant under Kähler transformations in
the presence of matter multiplets. For simplicitly, we denote
generically the chiral multiplets by X . The standard N = 1
supergravity Lagrangian is given by

LX = −3
[
S0 S̄0e

−K/3
]
D

+
[
S3

0W
]
F

, (15)

for a Kähler potential K (X, X̄) and a superpotential W (X).
A Kähler transformation with parameter J (X) is given by

K (X, X̄) → K (X, X̄) + J (X) + J̄ (X̄),

W (X) → W (X)e−J (X),

S0 → S0e
J (X)

3 . (16)

It is clear that LX in Eq. (15) is invariant under Kähler trans-
formations. However, the new FI term proposed in [8] and
given in Eq. (1) is not.

In [8] it is suggested that a Kähler invariant generaliza-
tion can be found by making the FI constant field dependent,
i.e. ξ = ξ(X, X̄). However, T̄ (w2) is not Kähler covariant
since the conformal compensator S0 transforms under Käh-
ler transformations. Thus, under a Kähler transformation,
w2 transforms as w2 → w2e−2J/3 while T̄ (w2e−2J/3) �=
T̄ (w2)e−2J/3. Instead, in this paper we keep ξ constant, and
modify the new FI term by requiring the compensator fields
S0 and S̄0 to appear in the new FI term only through the
Kähler invariant combination S0 S̄0e−K/3.

First, recall that the operators T and T̄ should act on multi-
plets with weights (ω, ω−2) and (ω, 2−ω) respectively. We
therefore want to replace w̄2 with a multiplet proportional to
λPR λ̄ with weights (ω, ω−2). Since λPR λ̄ is Kähler invari-
ant and has weights (3,−3), we should multiply it with the
Kähler invariant combination S0 S̄0e−K/3 of weights (2, 0)

to obtain a multiplet of weights (ω, ω − 2). Indeed,

w̄′2 =
(
S0 S̄0e

−K/3
)m

λPR λ̄ (17)

has weights (2m+3,−3). Thus, (2m+3,−3) = (ω, ω−2)

can be solved for ω = −1 and m = −2, and one can define
a Kähler invariant combination w̄′2 with weights (−1,−3),

w̄′2 = λ̄PRλ(
S0 S̄0e−K/3

)2 . (18)

The resulting T (w̄′2) has weights (0, 0). Similarly, one can
construct T̄ (w′2) with weights (0, 0), where

w′2 = λ̄PLλ(
S0 S̄0e−K/3

)2 . (19)

By the same arguments, the new FI contribution to the
Lagrangian has the form,

LFI,new = −ξ

[(
S0 S̄0e

−K/3
)k (λ̄PLλ)(λPR λ̄)

T (w̄′2)T̄ (w′2)
(V )D

]
D

.

(20)
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The operation [ ]D is defined only on a multiplet with weights
(2, 0), from which it follows that k = −3.

We conclude that the new FI term is given by,

LFI,new = −ξ

[(
S0 S̄0e

−K/3
)−3 (λ̄PLλ)(λPR λ̄)

T (w̄′2)T̄ (w′2)
(V )D

]
D

,

(21)

with w′2 and w̄′2 defined in Eqs. (18) and (19) that are invari-
ant under Kähler transformations and have the correct Weyl
and Chiral weights. It remains to be shown in the next sec-
tion that this indeed leads to a constant D-term contribution
to scalar potential.

4 A constant FI contribution to the scalar potential

In this section we calculate the (purely) bosonic contributions
to the D-term scalar potential of the Lagrangian

L = LX + Lkin + LFI,new, (22)

with the matter contributionsLX given by Eq. (15), the gauge
kinetic terms Lkin given by Eq. (9), and the new FI term
LFI,new defined in Eq. (21).

For compactness, we put the fermions to zero, and post-
pone the treatment of the fermion couplings to “Appendix B”.
The purely bosonic contributions to λ̄PLλ are

λ̄PLλ =
(

0, 0, F−·F− − D2
)

, (23)

while the purely bosonic contributions to w′2 are given by,4

w′2 =
(

0, 0, 2
(
s0 s̄0e

−K/3)−2
(D2 − F−·F−), 0,

0, 0, 4
(
s0 s̄0e

−K/3)−2
(
D2 − F−·F−)(

F̄0

s̄0
− Kφ̄ F̄

3

))
.

(24)

The bosonic contributions to the anti-chiral projection
T̄ (w′2) are

T̄ (w′2) =
((

s0 s̄0e
−K/3)−2

(
F−·F− − D2

)
, 0,

2
(
s0 s̄0e

−K/3)−2
(
D2 − F−·F−) (

F̄0

s̄0
− Kφ̄ F̄

3

))
. (25)

Here the chiral multiplet X is defined as X = (φ, PLχ, F)

and Kφ = ∂φK .

4 Note that w′2 has seven components since w′2 is neither real nor
chiral. As for w̄′2, its third component vanishes and instead the fourth
one becomes the complex conjugate of the third one of w′2.

Next, we notice that the real multiplet

R =
(
S0 S̄0e

−K/3
)−3 (λ̄PLλ)(λ̄PRλ)

T (w̄′2)T̄ (w′2)
, (26)

is a function of chiral multiplets Zα = X, S0, λ̄PLλ, T (w̄′2)
and their anti-chiral counterparts Z̄ ᾱ . Its components are

R =
(
R, 0, − 2RαF

α, iRαDμZ
α − iRᾱDμ Z̄

ᾱ, 0,

2Rαβ̄

(
−DμZ

αDμ Z̄ β̄ + Fα F̄ β̄
))

, (27)

where Rα = ∂R
∂Zα and all fields are replaced by their lowest

components. Note also that obviously fermionic contribu-
tions are ignored in Eq. (27). As a result, the components of
R only with bosonic fields are given by,

R =
(

0, 0, 0, 0, 0, 2s0s̄0e
−K/3

)
. (28)

It follows that the contribution to the new FI term Lagrangian
Eq. (21) is given by,

LFI,new/e = −ξs0s̄0e
−K/3D. (29)

In the Einstein frame gauge s0 = s̄0 = eK/6, this becomes a
constant FI term,

LFI,new/e = −ξD. (30)

We therefore conclude that the Lagrangian of the U(1) gauge
field sector is,
(Lkin + LFI,new

)
/e = −1

4
FμνF

μν + 1

2
D2 − ξD + fermions, (31)

which results in a constant FI contribution to the scalar poten-
tial. However, the terms in the denominator of Eq. (21) are
proportional to D2 − F− · F− and D2 − F+ · F+ (see
Eq. (25)). The new FI term is therefore local only if 〈D〉
is non-vanishing. The theory becomes ill-defined as ξ → 0,
as was the case in [8], since in this limit 〈D〉 = 0.

However, in contrast with the term proposed by [8], the
term proposed in Eq. (21) is manifestly Kähler and Weyl
invariant. While both terms can be easily extended to include
charged matter fields, only Eq. (21) is consistent with mat-
ter fields that are charged under a gauged R-symmetry, as a
consequence of its Kähler invariance.

Therefore, while in [9], the new FI term of [8] could only
be added on top of the the usual FI contribution in the Käh-
ler frame where the gauge symmetry is not an R-symmetry,
the new FI term in Eq. (21) is consistent with the usual FI
contribution in any Kähler frame, resulting in two constant
contributions to the D-term contribution in the scalar poten-
tial.

A few remarks are in order:
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• Firstly, notice that one could also obtain a constant FI
contribution to the D-term by making the substitution
S0 → S0e−K/6 and S̄0 → S̄0e−K/6 in Eq. (1), giving,

LFI,c = −ξ

[
S0 S̄0e

−K/3 w2
c w̄

2
c

T (w̄2
c )T̄ (w2

c )
(V )D

]
D

, (32)

with,

w2
c = λ̄PLλ

S2
0e

−K/3
. (33)

The resulting Lagrangian indeed contains the term
ξ S0 S̄0e−K/3D which results in a constant FI term in the
Einstein frame gauge. However, this term is not invari-
ant under Kähler transformations Eq. (16) since T (w̄2

c )

does not transform covariantly, and we therefore do not
analyse this term further.

• Secondly, note that in the absence of matter fields (and
therefore K (X, X̄) = 0), w2 defined in Eq. (3) and w′2
defined in Eq. (19) are related by,

w′2 = S̄−2
0 w2. (34)

By using the property of the anti-chiral projection oper-
ators that for an anti-chiral field Z̄ and a multiplet C,

T̄ (Z̄C) = Z̄ T̄ (C), (35)

we find that,

T̄ (w′2) = S̄−2
0 T̄ (w2), (36)

and similarly,

T (w̄′2) = S−2
0 T (w̄2). (37)

As a result, in the absence of matter fields, our proposed
FI term in Eq. (20) is identical to the one proposed in [8]
and given in Eq. (1).5

5 Conclusions

In summary, in this work, we proposed a supersymmetri-
sation of the cosmological constant in N = 1 supergravity,
arising from a constant FI term associated to an abelian gauge
symmetry as in global supersymmetry. In contrast to the stan-
dard FI term which requires the gauging of R-symmetry, it
can be written for any U (1). It is obtained by a variation of
a new FI term proposed recently in a way that is invariant

5 We thank A. Van Proeyen for bringing our attention to this.

under Kähler transformations, leading to just a constant FI
term up to fermion contributions that disappear in the unitary
gauge in the absence of any F-term supersymmetry breaking.

Since a generalisation of such ‘new’ FI terms is not unique
and may in general involve new field dependent functions,6

an interesting question is whether they can arise in the effec-
tive supergravity of string compactifications and what their
form is. An obvious application of the proposed term is that
it uplifts the vacuum energy with a positive contribution,
allowing to realise ‘realistic’ models of moduli stabilisation
and inflation based on the KKLT mechanism [16] without
the need of introducing anti-D3 branes, using a U (1) factor
of ‘effective’ 3-branes gauge group whose gauge coupling is
fixed by the ten-dimensional dilaton [17,18].
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A Useful formulas

A.1 The chiral projection and complex multiplets

This Appendix is based on [11]. The operation T acts on a
complex multiplet C with weights (Weyl, Chiral) = (ω, ω−
2), producing a chiral multiplet with the first component
− 1

2K. In particular if C is a general (complex) multiplet given
by,

C = (C,Z,H,K,Ba,�,D) , (38)

then T (C) has weights (ω+1, ω+1) and is given in Eq. (7),
repeated here for convenience,7

T (C) =
(

−1

2
K,−1

2

√
2i PL ( /DZ + �),

1

2
(D + �CC + iDaBa)

)
.

(39)

6 It is worth noting that shortly after submitting this paper, several
attempts in this direction have been made. See for Example [14] and
[15].
7 The three-component notation of chiral/anti-chiral multiplets will be
defined shortly.
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The anti-chiral projector T̄ (C) acts on a multiplet of weights
(ω, 2 − ω) and results in an anti-chiral multiplet of weights
(ω + 1,−ω − 1) with lowest component − 1

2H.
The restriction of C = C is real produces a real multiplet.

This also implies that the Chiral weight c = 0. Moreover,
Z = η and � = λ are Majorana (PRZ)C = PLZ , and
K = H̄, while Bμ = Bμ and D = D are real,

C =
(
C, ζ,H, H̄, Bμ, λ, D

)
. (40)

For a real multiplet, we usually abbreviate H̄. The chiral
projector T can only act on a real multiplet of weights (2, 0).

A chiral multiplet is obtained by the restrictions,

PRZ = 0, K = 0, Bμ = iDμC, � = 0, D = 0,

(41)

and is given by,

X =
(
X,−i

√
2PLχ,−2F, 0, iDμX, 0, 0

)
. (42)

Similarly an antichiral multiplet is given by,

X̄ =
(
X̄ , i

√
2PRχ, 0,−2F̄,−iDμ X̄ , 0, 0

)
. (43)

However, the chiral multiplet in Eq. (42) is usually denoted
as X = (X, PLχ, F), while the anti-chiral multiplet X̄ =
(X̄ , PRχ, F̄). A chiral multiplet has equal chiral and Weyl
weights c = ω, and an anti-chiral multiplet has c = −ω. As
a result, T can only act on an anti-chiral multiplet of weights
(1,−1) and is given by

T (X̄) =
(
F̄, /DPRχ,�C X̄

)
. (44)

A.2 Covariant derivatives

The definitions of /Dλ and the covariant field strength F̂ab
can be found in Eq. (17.1) of [1], which reduce for an abelian
gauge field to

F̂ab = e μ
a e ν

b

(
2∂[μAν] + ψ̄[μγν]λ

) = Fab + e μ
a e ν

b ψ̄[μγν]λ,

Dμλ =
(

∂μ − 3

2
bμ + 1

4
wab

μ γab − 3

2
iγ∗Aμ

)
λ

−
(

1

4
γ ab F̂ab + 1

2
iγ∗D

)
ψμ. (45)

Here, e μ
a is the vierbein, with frame indices a, b and coordi-

nate indices μ, ν. The fields wab
μ , bμ, and Aμ are the gauge

fields corresponding to Lorentz transformations, dilatations,
and TR symmetry of the conformal algebra respectively,
while ψμ is the gravitino. The covariant derivatives of other
fields can be found in Eq. (4.6) of [11].

A.3 Multiplication laws

Given a set of (complex) multiplets Ci , one can construct a
new multiplet C̃ = f (Ci ) with components

C̃ = f,

Z̃ = fiZ i ,

H̃ = fiHi − 1

2
fi j Z̄ i PLZ j ,

K̃ = fiKi − 1

2
fi j Z̄ i PRZ j ,

B̃μ = fiBi
μ + 1

2
i fi j Z̄ i PLγμZ j ,

�̃ = fi�
i + 1

2
fi j

[
iγ∗ /Bi + PLKi + PRHi − /DCi

]
Z j

− 1

4
fi jkZ i Z̄ jZk ,

D̃ = fiDi + 1

2
fi j

(
KiH j − Bi · B j − DCi · DC j − 2�̄iZ j − Z̄ i /DZ j

)

− 1

4
fi jkZ̄ i

(
iγ∗ /B j + PLK j + PRH j

)
Zk

+ 1

8
fi jklZ̄ i PLZ j Z̄k PRZ l . (46)

For the multiplication laws involving real and (anti-)chiral
multiplets, see section 5 of [11]. The bar on spinors are always
the Majorana conjugate, χ̄ = χT Ĉ , where Ĉ is the charge
conjugation matrix satisfying ĈγμĈ−1 = −γ T

μ . We use this
conjugate even if the spinor is not Majorana. This is the con-
vention in [11].

A.4 Components

For convenience, we here summarise the multiplets in the
seven-component notation. The multiplet R is made up of
the following multiplets

X =
(
φ, − i

√
2PLχ, − 2F, 0, + iDμφ, 0, 0

)
, (47)

S0 =
(
s0, − i

√
2PL�0, − 2F0, 0, + iDμs0, 0, 0

)
,

(48)

λ̄PLλ =
(
λ̄PLλ, − i

√
2PL�, 2D2−, 0, + iDμ(λ̄PLλ), 0, 0

)
,

(49)

(V )D =
(
D, /Dλ, 0, 0, Db F̂ab, − /D /Dλ, − �C D

)
,

(50)

and their charge conjugates. The chiral multiplet w′2 is
defined by Eq. (3).

B Fermion couplings

This appendix presents the fermionic terms in the new FI con-
tribution (21) up to the quadratic order in fermions. Concern-

123
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ing the fermion couplings, the contribution to the Lagrangian
from (21) is given by [1]

LFI,new/e = −ξ

2

[
(R)DD − Db F̂ab(R)aB − (R̄)λ /Dλ

−1

2
i Dψ · γ γ∗(R)λ + · · · ,

]
, (51)

which is obtained by applying Eq. (11) to the definition
LFI,new/e = −ξ [R·(V )D]D with

R =
(
S0 S̄0e

−K/3
)−3 (λ̄PLλ)(λ̄PRλ)

T (w̄′2)T̄ (w′2)
, (52)

and (V )D given by Eq. (2). We therefore need the Bμ, λ,
and D components of R. Since we are interested in terms
with two fermions in the new FI contribution, we need terms
with up to two fermions for (R)B, (R)D , and terms with
one fermion for (R)λ. It therefore turns out that we need
terms with up to two fermions for the lowest component of
T (w̄′2), terms with one fermion for the fermionic (i.e. sec-
ond) component of T (w̄′2), and terms with no fermions for
the F-component of T (w̄′2). Let us denote these component
fields by

T (w̄′2) = (CT , PLχT , FT ). (53)

Their explicit forms are given by

�2CT = −
[(

D2+
)

0f
+ X̄2f

]
, (54)

�2PLχT

= PL

[
− /D0f�1f + 2

(
/D0f s0

s0
− Kφ /D0fφ

3

)
�1f − 2Kφ(D2+)0f

3
χ

]
,

(55)

�2FT =
(

2

s0
F0 − 2Kφ

3
Fφ

)
(D2+)0f , (56)

where the subscript 2f indicates the two-fermion parts of the
relevant term, and the same definition applies to the sub-
scripts 0f, 1f. We also introduced the following symbols for
compactness of the formulae,

Kφ = ∂K (φ, φ̄)

∂φ
, (57)

� = s0s̄0e
−K/3, (58)

PL� = √
2PL

(
− 1

2
γ · F̂ + i D

)
λ, (59)

D2− = D2 − F̂−· F̂− − 2λ̄PL /Dλ. (60)

Note that � = 1 under the Einstein frame gauge s0 = s̄0 =
e−K/6. The symbol X2f is minus the two-fermion part of the
lowest component of T (w̄′2),

X2f = −(F̂−· F̂−)2f − 2λ̄PL( /Dλ)1f

+ 2

(
F0

s0
− KφF

3

)
λ̄PLλ + 2

3
Kφχ̄ PL�1f . (61)

Combining these results, we find that the components of R
we need are given by

(R)Bμ = �
i

(D2−)0f(D2+)0f
�̄1f PLγμ�1f , (62)

(R)λ = � · √2i

[
PR�1f

(D2+)0f
− PL�1f

(D2−)0f

]
, (63)

(R)D = 2�

(D2−)0f

[(
3F0

s0
− KφF − �2FT

(D2+)0f

)
λ̄PLλ

+�̄1f PL

(
Kφχ + �2

(D2+)0f
χT

)]
+ h.c.

+ 2�

(
(D2−)2f − X2f

(D2−)0f
+ (D2+)2f − X̄2f

(D2+)0f
− �̄1f ( /D�)1f

2(D2−)0f (D2+)0f

)
,

(64)

where we only kept two-fermion contributions in (R)Bμ,

(R)D and one-fermion contributions in (R)λ. Note also that
(D2−)0f = D2 − F−·F−.
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