
CE: A.G.; ANNSURG-D-18-00089; Total nos of Pages: 9;

ANNSURG-D-18-00089

ORIGINAL ARTICLE

s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
2
0
1
6
7
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
6
.
1
.
2
0
2
0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)
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Objective: To investigate whether exercise improves outcomes of surgery on

fatty liver, and whether pharmacological approaches can substitute exercising

programs.

Summary of Background Data: Steatosis is the hepatic manifestation of the

metabolic syndrome, and decreases the liver’s ability to handle inflammatory

stress or to regenerate after tissue loss. Exercise activates adenosine mono-

phosphate-activated kinase (AMPK) and mitigates steatosis; however, its

impact on ischemia-reperfusion injury and regeneration is unknown.

Methods: We used a mouse model of simple, diet-induced steatosis and

assessed the impact of exercise on metabolic parameters, ischemia-reperfu-

sion injury and regeneration after hepatectomy. The same parameters were

evaluated after treatment of mice with the AMPK activator 5-aminoimida-

zole-4-carboxamide ribonucleotide (AICAR). Mice on a control diet served as

age-matched controls.

Results: A 4-week-exercising program reversed steatosis, lowered insulin

levels, and improved glucose tolerance. Exercise markedly enhanced the

ischemic tolerance and the regenerative capacity of fatty liver. Replacing

exercise with AICAR was sufficient to replicate the above benefits. Both

exercise and AICAR improved survival after extended hepatectomy in mice

challenged with a Western diet, indicating protection from resection-induced

liver failure.

Conclusions: Exercise efficiently counteracts the metabolic, ischemic, and

regenerative deficits of fatty liver. AICAR acts as an exercise mimetic in
settings of fatty liver disease, an important finding given the compliance
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issues associated with exercise. Exercising, or its substitution through

AICAR, may provide a feasible strategy to negate the hepatic consequences

of energy-rich diet, and has the potential to extend the application of liver

surgery if confirmed in humans.

Keywords: AMPK activation, ischemia-reperfusion injury, liver resection,

nonalcoholic fatty liver disease, physical activity, treadmill running

(Ann Surg 2018;xx:xxx–xxx)

M etabolic diseases associated with Western-style diet are con-
tinuing to spread.1 The liver as the central metabolic organ is a

primary target of nutritional overload. The consumption of energy-rich
diet is strongly associated with a progressive cascade of diseases, typically
starting with nonalcoholic fatty liver disease (NAFLD) that may progress
to nonalcoholic steatohepatitits (NASH) and even liver cancer.2,3

Exercise is well known to mitigate the negative consequences
of energy-rich diet by re-directing metabolism towards the consump-
tion of fat stores. Exercise – also in the absence of body weight loss –
can reduce hepatic steatosis and improve insulin sensitivity.4–6 More
so, exercising individuals display increased b-oxidation with
improved insulin sensitivity even when maintaining a high caloric
intake.7 In experimental models of fatty liver disease, the effects of
exercise on lipid oxidation, lipogenesis, and glucose tolerance are
superior over those of dietary restriction.2,8 The molecular changes
occurring under exercise may hence point to pharmaceutical targets
against metabolic liver disease.

Exercise is believed to exert its beneficial effects via metabolic
reprogramming. The adenosine monophosphate-activated kinase
(AMPK) in its role as an intracellular fuel sensor is a central player
in these processes. Drops in adenosine triphosphate: adenosine
diphosphate/ adenosine monophosphate (ATP:ADP/AMP) ratios
during exercise activate AMPK to respond to energy deprivation.
In turn, AMPK suppresses lipogenesis and stimulates b-oxidation by
modulating a number of metabolic pathways, such as the dampening
of growth-related mechanistic target of rapamycin (mTOR) activities
or the promotion of catabolic peroxisome proliferator-activated
receptor alpha (PPARa) action.2

Given the obvious benefits of exercise in metabolic liver
disease, we sought to determine whether similar gains for liver
health can be achieved through an AMPK activator. Indeed, nutri-
tional overload does not only disturb the metabolic function of liver
as exemplified through insulin resistance and glucose intoler-
ance.1,2,4,6 Fatty liver also displays a markedly reduced ability to
tolerate ischemic injury or to regenerate after tissue loss.9 The impact
of exercise on acute liver stress however is unknown. We therefore
established a mouse model of diet-induced steatosis, where we were
able to replicate the known metabolic benefits of exercising. Using

this validated model of steatosis, we went on to compare the effects
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of exercise on steatosis, ischemic tolerance and regenerative capacity
with those of a pharmacological AMPK activator.

MATERIAL AND METHODS

Animals
All animal experiments were performed in accordance with

Swiss Federal Animal Regulations and approved by the Veterinary
Office of Zurich. Male C57BL6 mice (Harlan, Horst, the
Netherlands) aged 8 to 10 weeks were kept on a 12-hour day/night
cycle. After 1 week accommodation, high-fat diet (HFD; total energy
22 MJ/kg, 60 kJ% fat and 8.4 kJ% sucrose; ssniff, Soest, Germany) or
control diet (CD; total energy 15 MJ/kg, 11 kJ% fat; ssniff) was fed
for 10 weeks.10 Treatments were done from week 7 to 10 without

dietary changes (Fig. 1A).

FIGURE 1. Exercising effects on metabolic parameters. A, Experim
feeding and treatment periods. C, Chemical lipid content in liver a
lipid content at 6 and 10 weeks. E, Histological steatosis at 10 weeks
N ¼ 5/group, Mann-Whitney (apart from panel G with AUC anal
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Animal Exercising Protocol
Exercise was performed using a special motor-driven mouse

treadmill (Förderband GFB, Elmotec, Kleindöttingen, Switzerland;
Fig. 1A) following a regimen of moderate exercise intensity.11,12

Animals were gradually accommodated to exercising for 1 week to
reach the final speed of 650 m/h. Tired animals or animals not willing
to follow the protocol were encouraged to continue running by gentle
manual tips on their tail.

Animal Surgery
Isoflurane inhalation (2%–4%) and subcutaneous buprenor-

phine application (0.1 mg/kg bodyweight) was used for all surgical
interventions. For ischemia-reperfusion, 1-hour partial hepatic

ischemia (68%) was induced followed by analysis at 6 hours after

ental setup. B, Body weight and liver weight changes during
fter 6 weeks of control diet (CD) or HFD. D, MRI assessment of
. F, Insulin levels at 10 weeks. G, Glucose tolerance at 10 weeks.
ysis), �P < 0.05, �� P < 0.01.
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reperfusion. Partial hepatectomies (68% and extended 86%) were
performed as described.13

AICAR Treatment
The AMP analog 5-aminoimidazole-4-carboxamide ribonu-

cleotide (AICAR) (Sigma, Buchs, Switzerland, #A9978), known to
activate AMPK, was injected i.p. in 100 mL saline at 100 mg/kg.14,15

Each AICAR application was timed to replace 1 exercising unit (5
doses/week for 4 weeks). I.p. saline injections served as control.

MRI Protocol for Liver Fat Determination
A small-animal 4.7-Tesla magnetic resonance imaging (MRI)

scanner (Bruker BioSpin MRI, Inc., Billerica, Massachusetts, US)
was used for in vivo monitoring of steatosis. Signal intensities (SI)
were quantified in axial T2-weighted images using following param-
eters: repetition time: 2500 ms; effective echo time: 45 ms; flip angle:
1808; section thickness: 1 mm; bandwidth 48.076 kHz; acquisition
time: 10 minutes. Cross-sectional images containing liver paren-
chyma were analyzed using ParaVision 5.1 software (Billerica,
Massachusetts, US). Mean SI were determined in regions of interest
(ROI) covering all visible liver parenchyma.

Chemical Liver Fat Measurement
Lipid quantification in liver tissue was performed using a

vanillin based method.16

Serum Analyses
Serum alanine transaminase (ALT) and aspartate transaminase

(AST) levels were measured using a multiple biochemical analyzer
(Dri-Chem 4000i, Fujifilm; Minato-ku, Tokyo, Japan). Serum
HMGB1 and insulin levels were determined by enzyme linked
immunosorbent assay (ELISA) (from Shino-Test, Hamburg,
Germany, and from Mercodia, Uppsala, Sweden, respectively).

Intraperitoneal Glucose Tolerance Test (IPGTT)
After overnight fasting, D-glucose (2 g/kg, Merck, Darmstadt,

Germany) was i.p. injected followed by a glycemic readout on tail
vein blood (Glycemia reader Accu-Chek Aviva, Roche Diagnostics,
Basel, Switzerland).

Histological Analyses
Archived liver sections (3 mm) were stained with hematoxylin/

eosine or with antibodies listed in Supplementary Table 1, http://
links.lww.com/SLA/B448.13 Quantification was performed by man-
ual counting 10 random visual fields in a blinded fashion. As a note
of caution, visual field counting may differ from automated counting
scores. For pAMPK and PPARa scores, ImageJ software (Bethesda,
Maryland, US) was used.

Quantitative Real-Time Polymerase Chain Reaction
(qPCR)

RNA was extracted from 30 to 50 mg of tissue using Trizol
reagent (Invitrogen, Basel, Switzerland). qPCR was performed on
cDNA (Thermo Script reverse transcription PCR System, Invitrogen)
using an ABI Prism 7500 Sequence Detector system (PE Applied
Biosystems, Rotkreuz, Switzerland).13 Results represent mean fold
induction (2-DCt)� SD relative to the normalization control 18S
rRNA. TaqMan gene expression assays are listed in Supplementary
Table 2, http://links.lww.com/SLA/B448.

Hepatic ATP Content and ADP/ATP Ratio
Frozen liver tissue was powdered, homogenized in HEPES

buffer (25 mmol/L HEPES, 10 mmol/L MgCl2, 0.02% NaAc), and

incubated for 10 minutes with 150 mL 6% trichloroacetic acid

� 2018 Wolters Kluwer Health, Inc. All rights reserved.
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(Sigma, Buchs, Switzerland) and 100 mL ATP releasing reagent
(FLSAR; Sigma). The supernatant was analyzed in a luminometer
(Labsystems Luminoscan 1.2–0; Labsystems, Helsinki, Finland)
after addition of 50 mL ATP monitoring reagent (Luciferase; Prom-
ega, Dübendorf, Switzerland). ATP concentrations were calculated
from a calibration curve using pure ATP (disodium salt hydrate;
Sigma) for each experiment.

ADP/ATP ratios were determined using a ratio assay kit
(Abcam, Lucerne, Switzerland, #ab65313) via bioluminescent
detection.

Statistical Analysis
Variables are consistently presented as mean�SD from 5

animals/group. Differences between the respective experimental
groups were assessed by Mann-Whitney U testing. Area under the
curve (AUC) comparisons were performed using 2-way ANOVA. P
< 0.05 were considered significant and marked with stars (�P< 0.05,
��P< 0.01, ���P< 0.001). Statistical analyzes were performed using
GraphPad Prism 6.0 (GraphPad Software, Inc., La Jolla, CA).

RESULTS

Exercising Benefits in A Mouse Model Of Simple
Steatosis

Six weeks of feeding a HFD designed to mimic Western diet
induced obesity and NAFLD without inflammation/fibrosis in mice.9

Mean body- and liver weight increased by 11.9 g (�2.4) and 0.8 g
(�0.2), respectively (Fig. 1B), accompanied by a marked elevation in
hepatic lipid content (Fig. 1C). Mice with HFD-induced NAFLD were
subjected to 4 weeks of 1-hour-treadmill-running (5�/week) at
approximately 70% of maximum aerobic capacity.11 HFD was main-
tained during the exercising period. After the exercising program, mice
displayed significant reductions in body and liver weight relative to
sedentary controls (–10.3 g (�4.5); P¼ 0.008 and –0.6 g (�0.4); P¼
0.016; Fig. 1B). Given that steatosis increases with age, HFD animals
were compared with age-matched mice on a CD that does not promote
NAFLD (Fig. 1C/D). On MRI, exercise reduced lipid-associated signal
intensities to those of CD mice (Fig. 1D), demonstrating it effectively
negates the effects of the HFD. A similar fat reduction was evident on
histology (Fig. 1E). In keeping with its antisteatotic effects, exercise
also normalized hyperinsulinemia (Fig. 1F) and glucose tolerance
(IPGTT, Fig. 1G) of HFD mice. The defattening properties of exercise
were associated with the suppression of lipogenesis and the promotion
of b-oxidation (Fig. 2A/B), consistent with a shift from fat storage to
expenditure. A shift to lipid oxidation was noted already after two
weeks of exercising (Supplementary Fig. 1, http://links.lww.com/
SLA/B448). A similar trend was noted in exercising CD mice (Sup-
plementary Fig. 2, http://links.lww.com/SLA/B448), reflecting basic
energy needs induced by exercise.

To confirm a promotion of energy production through exer-
cise, we determined ATP content. Hepatic ATP levels were higher in
HFD-EXE relative to HFD mice; on the other hand, the ADP/ATP
ratio was increased through EXE (Fig. 2C), consistent with a higher
energy usage. These findings imply exercise promotes in fatty liver
the capacity for energy transfer and hence for recovery.

The AMPK Activator AICAR Mimics the Beneficial
Effects of Exercise on Hepatic Metabolism

The energy sensor AMPK is activated by a relative paucity of
ATP (ie, high AMP/ADP levels) and hence is induced through
exercise.3 Accordingly, AMPKa gene expression (Prkaa1,
Fig. 3A) and active protein (phosphorylated at Thr172) were upre-
gulated in liver of HFD-EXE relative to HFD mice (Fig. 3B,

Supplementary Fig. 3, http://links.lww.com/SLA/B448). In support
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FIGURE 2. Exercise-induced energetic changes at 10 weeks of high fat diet (HFD). Hepatic expression of genes related to (A)
lipogenesis and (B) beta-oxidation. C, Hepatic ATP content and ADP/ATP ratio. N ¼ 5/group, Mann-Whitney, �P < 0.05.

Linecker et al Annals of Surgery � Volume XX, Number XX, Month 2018
of increased activity, PPARa – a downstream target of AMPK and a
transcription factor promoting lipid catabolism – was likewise
elevated in HFD-EXE liver both at the mRNA and protein level
(Fig. 3, Supplementary Fig. 4, http://links.lww.com/SLA/B448). To
establish the reported antisteatotic effects of AMPK activation3 in
our model, each exercising session was replaced by one bolus with
the AMP analog AICAR, leading to comparable AMPKa-PPARa
activation in liver (Fig. 4A, Supplementary Fig. 4, http://link-
s.lww.com/SLA/B448). Saline i.p. injections for four weeks (ie,
AICAR controls) did not affect body/liver weight of HFD mice
(Fig. 4B). In contrast, a 4-week AICAR treatment reduced body/liver
weight to that of HFD-EXE mice (Fig. 4C), along with congruent
changes in histological steatosis (Fig. 4D), serum insulin, and
glucose tolerance (Fig. 4E). Together, these findings confirm the

antisteatotic/antidiabetic properties of AICAR and reveal that

FIGURE 3. Exercise-associated AMPK activation at 10 weeks of hig
subunit a1 of AMPK and its downstream target PPARa. B, Repre
PPARa in HFD liver with or without exercise. Note the signal eleva
Right graphs show computationally assessed staining scores. N ¼

4 | www.annalsofsurgery.com
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AICAR has a potency to confer metabolic benefits on fatty liver
akin to exercise. Therefore, we next tested the impact of exercise and
AICAR on the capacity of HFD liver to sustain inflammatory stress
or to recover from tissue loss.

Exercise and AICAR Improve the Resistance of HFD
Liver Towards Ischemic Insults

Exposure of HFD mice to 1 hour of partial (70%) hepatic
ischemia induced major parenchymal injury as assessed by serum
ALT, AST, and HMGB1 levels at 6 hours after reperfusion. The 4-
week-exercise program reduced injury after reperfusion on all
parameters (Fig. 5A). AICAR treatment likewise had a protective
effect, one that appeared pronounced compared with exercise
(Fig. 5A). The protective effects of exercise/AICAR were mirrored

in the extent of sinusoidal clotting (Fig. 5B), an important cause of

h fat diet (HFD). A, Hepatic expression of genes encoding the
sentative immunochemistry for activated pThr172-AMPK and
tions for cytoplasmic pAMPK and nuclear PPARa after exercise.
5/group, Mann Whitney, �P < 0.05.
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FIGURE 4. Metabolic changes at 10 weeks of high fat diet (HFD) after AICAR treatment relative to exercise. A, AMPK activation
through AICAR as evinced by pAMPK and PPARa immunochemistry. Representative images are shown. Graphs below show
computationally assessed staining scores. B, Body/liver weight after 10 weeks of HFD alone or with a final 4-week i.p. saline (HFD-
saline) treatment. C, Body and liver weight in HFD mice treated or not with exercise/AICAR. D, Representative images showing
histological steatosis. E, Serum insulin levels and glucose tolerance. N¼ 5/group; for panels B/C/E: Mann-Whitney, �P< 0.05, ��P<
0.01.

Annals of Surgery � Volume XX, Number XX, Month 2018 Exercise or AICAR for Fatty Liver Surgery
impaired hepatic microcirculation after reperfusion. Therefore,
exposure to exercise or AICAR markedly increases the tolerance
of HFD liver towards ischemic insults.

Exercise and AICAR Improve the Regenerative
Capacity of HFD Liver

To assess the effects of exercise/AICAR on liver regenera-
tion, regenerative parameters were gathered at different time
points after hepatectomy in HFD mice exposed to treatment or
not. Given the different starting weight of the liver remnant at
partial hepatectomy (ie, reduced steatosis after exercise/AICAR),
liver weight gain was expressed as the percent increase over time.
Compared with HFD mice, HFD-EXE mice displayed an accentu-
ated weight regain, with the greatest increase (HFD-EXE 63%� 7
vs HFD 51%� 4) at 96 hours post resection (Fig. 6A). Ki67 nuclear
counts were consistently increased in the HFD-EXE group, indi-
cating more hepatocytes are in cycle (Fig. 6B). Likewise, total
phosphohistone 3 (pH3) counts, marking hepatocytes in the G2 and
M phases, were elevated from 48 hours (the usual peak of hepato-
cyte mitosis after hepatectomy13,17) onwards (Fig. 6C). To better
appreciate the speed of cell cycle progression, we separately

13
assessed bold pH3 positivity (marking M phase cells only and

� 2018 Wolters Kluwer Health, Inc. All rights reserved.
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calculated the M/(G2þM) fraction as a measure of progression to
mitosis. Exercise markedly elevated the M/(G2þM) fraction at
72 hours and 96 hours (Fig. 6D), indicating a prolonged and
accelerated cell cycle progression, as reflected in the increased
liver weight at 96 hours.

To determine whether AICAR has effects on regeneration
similar to exercise, HFD-AICAR mice were analyzed at 96 hours
after hepatectomy, when exercising effects were most obvious.
AICAR treatment improved liver regeneration on all parameters
assessed. Of note, the increases in percent liver weight, Ki67 counts,
total pH3 counts and in the M/(G2þM) fraction were akin to those
achieved through exercising (Fig. 6E). Apoptosis (cleaved caspase 3
stain, data not shown) was hardly detectable across samples, whereas
hepatocyte death as assessed through serum ALT was reduced
through exercise/AICAR (Fig. 6G).

To assess whether the proregenerative effects of exercise/
AICAR also translate into a regain of liver function after hepatec-
tomy, we performed an 86%-extended hepatectomy,13,17 which
induces liver failure associated with a high mortality in steatotic
mice. Both exercise and AICAR raised 10-day-survival after 86%
hepatectomy (Fig. 6G), demonstrating their capacity to improve the

functional recovery of HFD liver after extended tissue loss.

www.annalsofsurgery.com | 5
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FIGURE 5. Impact of exercise/AICAR on ischemic tolerance of high fat diet (HFD) liver. A, Serum AST, ALT, and HMGB1 levels
6 hours after hepatic reperfusion in HFD, HFD-exercise (HFD-EXE), and HFD-5-aminoimidazole-4-carboxamide ribonucleotide
(HFD-AICAR) mice. N¼ 5/group, Mann-Whitney, �P< 0.05. B, Representative images showing histological necrosis at 6 hours post
reperfusion. Note the accentuated intrasinusoidal blood clot formation in livers of HFD mice. N ¼ 5/group.

Linecker et al Annals of Surgery � Volume XX, Number XX, Month 2018
Together, the observations indicate that physical activity
improves the capacity of HFD liver to regenerate, an effect that

can likewise be achieved through AICAR.
DISCUSSION

Exercise and AICAR are known for their beneficial effects on
fatty liver, in particular their antisteatotic properties and the associ-
ated improvements in insulin sensitivity and glucose handling. Here,
we extend these benefits to two additional key aspects defining liver
integrity that is the sensitivity to injury and the capacity to regenerate.
Specifically, we show that exercise increases the tolerance of liver
with diet-induced steatosis towards ischemic insults and enhances its
regenerative response after tissue loss. More so, these benefits can be
achieved by substituting training sessions with AICAR, suggesting
pharmacological compounds may obviate the need for exercise to
improve the function of fatty liver.

We established above findings in a mouse model of obesity-
associated NAFLD,9 where exercise could replicate the known
benefits of physical activity, including the ameliorations in body
weight, steatosis, hyperinsulinemia, and glucose tolerance.2 Our
observations are hence based on a valid experimental set up and

underscore the importance of exercise for liver health. Moreover, our

6 | www.annalsofsurgery.com
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continuous model of diet-induced steatosis followed by treatment
and then surgery offered the opportunity to test exercising and
AICAR in settings relatively close to the clinic. Overall, the effects
of the AMP analog AICAR were similar to exercising across the
tested parameters, suggesting AICAR may be an effective exercise
mimetic for fatty liver. Mechanistically, exercise activates various
pathways, with AMPK clearly being a key target.2 Insofar, the action
mechanisms of exercise and the AMPK activator AICAR may
overlap, however AICAR also has AMPK-independent effects on
hepatic metabolism.18 Nonetheless, the importance of AMPK activ-
ity for hepatometabolic health is recognized, and many of the
benefits of exercising and AICAR are likely attributable to AMPK
activation.3

Conceivably, the reversal of steatosis is an important cause
underlying the improvements in ischemic tolerance and regeneration,
with exercise/AICAR simply reinstalling a normal capacity of liver
to handle stress. However, exercise upregulated Prkaa1/Ppara
expression – along with congruent changes in metabolic genes
(Supplementary Fig. 2, http://links.lww.com/SLA/B448) – and
improved ischemic tolerance and regeneration also in lean liver,
albeit not as consistent and to a lesser extent than in fatty liver.
Similarly, short-term treatment with AICAR tended to mitigate

ischemic injury and to promote regeneration in lean liver

� 2018 Wolters Kluwer Health, Inc. All rights reserved.
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FIGURE 6. Impact of exercise/AICAR on regenerative capacity of high fat diet (HFD) liver. A, Percent liver weight, (B) Ki67 counts,
(C) total pH3 counts, and (D) the M/(G2þM) fraction after partial heptatectomy on HFD and HFD-exercise (HFD-EXE) mice. E,
Percent liver weight, Ki67 counts, pH3 counts, and the M/(G2þM) fraction at 96 h post partial heptatectomy in HFD versus HFD-EXE
and HFD-5-aminoimidazole-4-carboxamide ribonucleotide (HFD-AICAR) mice. N¼ 5/group, Mann-Whitney, �P< 0.05, ��P< 0.01,
P < 0.001. F, Representative images showing Ki67 and pH3 stains. Insets show examples of bold pH3-positive hepatocytes
undergoing mitosis. G, Serum ALT at 96 hours post partial heptatectomy. H, Kaplan-Meier survival estimates for HFD, HFD-EXE,
HFD-saline, and HFD-AICAR mice after 86% hepatectomy.

Annals of Surgery � Volume XX, Number XX, Month 2018 Exercise or AICAR for Fatty Liver Surgery
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(Supplementary Figs. 5/6, http://links.lww.com/SLA/B448). There-
fore, steatosis-independent effects seem to contribute to the benefits
of exercise/AICAR for the liver.

The view that AMPK activation is key to the effects of exercise
and AICAR is supported by the notion that ’preconditioning’ – a
strategy used in the clinic to protect liver from ischemia – seems to rely
on AMPK activity irrespective of steatosis.19,20 Ischemia primarily
damages the sinusoidal endothelium, however upon reperfusion, the
burst in ROS leads to a self-perpetuating inflammatory response,
whereby overactivated Kupffer cells attract neutrophils that eventually
destroy the parenchyma.21,22 The increased sensitivity of steatotic liver
likewise appears to root in the sinusoids, because the correction of fat-
related microcirculatory deficits normalizes its ischemic tolerance.23

Notably, AMPK activity can protect from endothelial dysfunction24

and skews macrophages to an anti-inflammatory M2 phenotype,25 a
process that we have shown to shield against hepatic ischemia.22

Therefore, AMPK may counteract key events underlying the develop-
ment of ischemic injury in both fatty and lean liver.

Furthermore, recovery from ischemia-reperfusion requires the
regeneration of damaged parenchyma. Although unclarified, mecha-
nistic overlap between regeneration after ischemic insults or after
tissue loss is plausible. Therefore, exercise and AICAR may improve
ischemic tolerance also through their proregenerative action. Notably,
AMPK activity is known to contribute to regeneration. In vitro AMPK
activation has been shown to promote hepatocyte proliferation by
enhancing cyclin A and D expression.26,27 Conversely, constitutive
deletion of Prkaa1 compromised cyclin A expression and cell cycle
progression after hepatectomy.28 Besides the promotion of cyclins,
other factors such as an improved energy provision29 are likely to add
to the proregenerative effects of exercise or AICAR. Overall, the
effects of AMPK activation on the liver are consistent with a central
role of this molecule in the health effects of exercise/AICAR. In
support of this notion, a 4-week AICAR treatment akin to this study
improved endurance capacity of mice by 44% – remarkably in spite the
animals being sedentary.30 A comprehensive assessment of exercise
and AICAR in genetic loss/gain models would however be required to
define the actual contribution of AMPK to their benefits.

The endemic raises in obesity and the metabolic syndrome,
along with the associated cancer risks, call for effective treat-
ments.31–33 Fatty liver is considered a key pathology behind the
development of insulin resistance.34 Moreover, steatosis is an inde-
pendent risk factor for liver cancer,35 with obese subjects having a
close to 5-fold likelihood to die of hepatocellular carcinoma (HCC).
The only accepted treatment for NAFLD is calorie restriction and
physical activity. Exercising, however, is associated with compliance
issues and can be difficult to implement, particularly in morbidly
obese patients. Drugs mimicking the effects of exercise are hence
desirable. Metformin, an indirect AMPK activator, is being consid-
ered a possible option,36 current evidence however is insufficient to
recommend metformin against NAFLD.37 Metformin primarily acts
by decreasing mitochondrial capacity (leading to AMP accumulation
activating AMPK) and therefore may not be an ideal exercise
mimetic, as evinced through blunted exercise effects in prediabetic
patients on metformin.38 AICAR, on the other hand, has been trialed
particularly in myocardial ischemia, with some, but not all, studies
documenting ischemic protection including a reduced mortality.39–41

Studies on AICAR and NAFLD are scarce, but AICAR did reduce
hepatic glucose output along with reduced lipogenesis and increased
b-oxidation in a small cohort of type-2-diabetic patients.42 Novel,
allosteric AMPK activators are being developed and show promising
hepatic effects in animal models of diabetes.43,44 Other classes (ie,
not targeting AMPK) of ’exercise-mimetics’ are also being evaluated
in humans; at the current stage, it is unclear, which of these will

remain clinically viable and some (such as the PPARd activator
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GW1516) had to be abandoned because of unwanted effects,38,45

Importantly, single infusions of AICAR are considered as safe (based
on data from >4000 patients,39–41 and multiple dosing likewise has
been associated with an acceptable safety profile.46

Steatosis seems to particularly predispose to the development
of non-cirrhotic HCC47 and thereby directly increases the demand for
liver surgery. Surgery is the most indicated treatment for liver
tumors; however, often is associated with ischemic periods and
relies on regeneration.48 In addition to its ischemic and regenerative
deficits, fatty liver also increases the risk for surgery-related liver
failure (ie, small-for-size syndrome, SFSS). The SFSS can develop
after extended hepatectomies leaving behind marginal remnants and
represents the most frequent cause of death because of liver sur-
gery.48 In our animal model, exercise and AICAR not only mitigated
steatosis, but protected from ischemic injury, promoted regeneration,
and improved survival after extended, SFSS-like resection.13,17

Notably, neither exercise2 nor pharmacological AMPK activators
(ie, metformin49,50) seem to foster liver malignancy, suggesting their
application may bear little oncological risks. Therefore, exercising
programs or AICAR treatment may have potential to improve the
outcomes of surgery for liver tumors.

In conclusion, our study highlights novel benefits of exercise
and AICAR for liver health. Besides the mitigation of the metabolic
deficiencies of fatty liver, exercise, and AICAR confer protection
from ischemic injury and promote the recovery from tissue loss.
These benefits are associated with AMPK activation, the target
common to both exercise and AICAR. The relationship between
steatosis and noncirrhotic HCC implies fatty liver is directly increas-
ing the demand for surgery. Physical activity has the power to
improve outcomes along the axis from steatosis to surgery; however,
may fail owing to trivial reasons such as compliance. If similarly
effective in man as in mice, AMPK promoters like AICAR may offer
a simple solution to overcome some of the hazardous conveniences of
our modern lifestyle.
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