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1 Introduction

Dimensionally reduced (“3d”) thermal effective theories, originally conceived for studying
thermodynamics and phase transitions in non-Abelian gauge theories [1-3], and still used
for that purpose in the context of weak interactions (cf. e.g. refs. [4, 5] for recent work
and references), have been reinvigorated in another context some time ago. Indeed, quite
remarkably, they also turn out to determine soft contributions to real-time lightcone ob-
servables [6]. As examples, they can be used for estimating the so-called transverse collision
kernel related to jet quenching in a hot QCD plasma [7, 8]; soft parts of the photon and
dilepton production rates from a QCD plasma [9, 10]; and the interaction rate experienced
by neutrinos in an electroweak plasma [11]. Following standard terminology, we refer to



the “soft” effective theory as EQCD, whereas the “ultrasoft” theory containing only the
magnetostatic modes is called MQCD (cf. e.g. refs. [12-15]). The latter has been argued
to give e.g. the leading non-perturbative contribution to jet quenching [16].

In the QCD context it is known, however, that EQCD fails to describe the full theory
close to the phase transition or crossover temperature (7,). This is obvious when light
quarks are present: EQCD contains only gluonic degrees of freedom, and displays no
remnant of the flavour symmetries that underlie the chiral transition. For pure-glue theory,
the reason for the breakdown is more subtle. Even though the center symmetry that drives
the transition in the imaginary-time formulation [17] is not explicit in EQCD, remnants of
it are generated dynamically [18]. However the dynamical re-generation is incomplete, and
a 3d lattice study in which soft EQCD dynamics was treated non-perturbatively did not
achieve satisfactory agreement with thermodynamic functions obtained from full 4d lattice
simulations [19].

One purpose of this paper is to demonstrate analytically that power-suppressed
dimension-six operators, truncated from the super-renormalizable EQCD description, play
an essential role in soft and ultrasoft observables, and are therefore a likely culprit for
EQCD'’s failure close to T,. More concretely, we determine the MQCD gauge coupling
in terms of the EQCD gauge coupling and mass parameter up to 3-loop level, including
the 1- and 2-loop contributions of all dimension-six operators; the result is contained in
egs. (3.13), (3.14) and (4.4).

Our presentation is organized as follows. After reviewing the form of EQCD and re-
deriving the coefficients of its dimension-six operators in section 2, we determine overlap-
ping soft /hard and ultrasoft /hard contributions to the ultrasoft gauge coupling in section 3.
In terms of four-dimensional Yang-Mills we go up to 3-loop level; this implies 2-loop level in
effects originating from dimension-six operators, which are themselves generated by 1-loop
diagrams. A 3-loop computation of soft effects, as well as of overlapping ultrasoft/soft
contributions, is presented in section 4, whereas conclusions are collected in section 5.
Spacetime and colour tensors, tensor-like 1-loop sum-integrals, Feynman rules related to
dimension-six operators, d-dimensional vacuum integrals, and some lengthier results, are
collected in five appendices, respectively.

2 Form of EQCD

2.1 Super-renormalizable part

The super-renormalizable truncation of the dimensionally reduced “electrostatic” QCD,
called EQCD, is defined by the action

1 1 2
Suacold] = [ {GFSFS + 5DRA DA + T A3 AG

A
+TEX T ATALASAG + ZEAgAgAgAg} . (2.1)

Here [, = % [, P =0,A9 - 0,A7 +gEfabcAi-’A;?, Db = §99; — g, f*CAS, A is an adjoint
Xabcd

scalar, is defined in eq. (A.6), Latin indices take values i,5 € {1,...,d}, we have



in mind d = 3 — 2¢, and repeated indices are summed over. We employ a convention in
which the fields A and Af have the same dimensionality as in four-dimensional Yang-Mills
theory. Then explicit factors of 1/T" and T' appear in configuration and momentum space
integration measures, respectively, where 7' is the temperature.

Focussing on pure SU(N,) gauge theory,' i.e. suppressing contributions proportional
to the number of fermion flavours (NV;), the parameters appearing in eq. (2.1) have the

expressions
my = gal, i P2 +0(ga) (2.2)
g = 95 [1 + g5V, i 6P4 +0 gg)} : (2.3)
Ay = ga(d—1)*(3 - diw+0 8, ks = O(galNy) , (2.4)

where g2 = ¢%u%¢(1+0(g?)) is the bare coupling of the original four-dimensional theory, j is
the scale parameter introduced in the context of dimensional regularization, and ¢ = 4oy
is the renormalized coupling. By j’P we denote a sum-integral over P, with the prime
indicating that the Matsubara zero mode is omitted. A 1-loop re-derivation of eqs. (2.2)—
(2.4) can be found as a side product of section 2.3; 2-loop expressions were obtained in
ref. [20]; the 3-loop level has been reached for m? [21] and g2 [22, 23].

For our higher-loop computations in section 3, it is helpful to express the dependence
on A, and sy through the dimensionless combinations

5\ N, Kg(N241)

METug YT agN, (25)
oy = )\%(Nf + 36) N 10 kg . 2k2(N2 +1) ' @7
4g4 gz g NE

We note in passing that fundamental representation couplings often used in the literature,
viz. AP (Tr [42))% + AP Tr [A4), are given by AL = 3A,/2 + ki, and AL = A N, /2.
The theory can be renormalized through

g]?j = g]?DR,/’L26 + 591?: ’ m]?j = m%R + (5777% ) (28)

and similarly for the scalar couplings. Within the super-renormalizable truncation, the
counterterms take the forms [24, 25|

(2.9)

N.T —4A
62 =0, om? = <gEle7r > PP

"We omit fermions for simplicity because they carry non-zero Matsubara freqencies and thus generate
no direct IR divergences. In other words they have no bearing on our conceptual discussion. If they were to
be included, the expressions in egs. (2.2)-(2.4), (2.18)—(2.20) and, most importantly, (2.11)-(2.12), would
contain additional terms involving N;. Unfortunately the determination of the last of these effects entails
an enormous practical effort, which we defer to future work.



The starting point for our analysis is the 3-loop determination of g2 from four-
dimensional Yang-Mills theory [22, 23]. It is helpful to display the result in the form
of a background field effective action [26]. After gauge coupling and wave function renor-
malization through vacuum counterterms, refs. [22, 23] found an expression containing a
logarithmic (1/€) divergence,

1
Diaen[Bl = 5 Bf(a) BY(r) 3 6(g+7) (¢°6,; — 4;0;) (2, +62,) (2.10)
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6 73 Ve [e’e
NG [M81n2<ue >+<6608_10982C3>1n<u6 >+(ﬁnite)}+0(98)a
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g NS 615 ]
0Z, = o . 2.12
B (4m)6 be +0(g") (2.12)

Here ¢, = ((n) and > = 4wp?e 7=, The renormalized gauge coupling is given by g2, =
g%/ Z,, and the corresponding counterterm by §g2 = —g?u%6Z, + O(g'%). We stress that
egs. (2.11) and (2.12) are gauge independent [27].

An essential technical goal of our investigation is to demonstrate how the divergence
in eq. (2.12) is cancelled by overlapping soft/hard and ultrasoft /hard contributions, origi-
nating from dimension-six operators within EQCD and MQCD, respectively.

At this point we would like to clarify why such logarithmic divergences (which are
“universal”, i.e. present in any regularization scheme) originate first at 3-loop level. In
three dimensions, 1-loop graphs may contain power divergences but no logarithmic di-
vergences. Logarithmic divergences first originate at 2-loop level. However, within the
super-renormalizable truncation of EQCD, they lead to the counterterms in eq. (2.9), i.e.
the gauge coupling is finite. Divergences affecting the gauge coupling can only emerge when
dimension-six operators are added to EQCD. Given that dimension-six operators are them-
selves generated by 1-loop diagrams, the divergences correspond to the 3-loop level in terms
of the fundamental theory. In section 3, where effects originating from integrating out the
hard scale are considered, 3-loop level corresponds to the relative accuracy O(g®), whereas
in section 4, where effects originating from integrating out the soft scale are at focus, the
expansion parameter is ~ g, and the 3-loop effects are of relative magnitude O(g?).

2.2 Dimension-six operators

The dimension-six operators that can be added to eq. (2.1) were determined in ref. [28]. We
represent the operators as matrices in the adjoint representation. Letting Greek indices take
values p € {0,...,d}, computing the coefficients at 1-loop level, and choosing to rephrase
the gauge coupling as the same g;, as appears inside Fyj and be, the dimension-six action



can be written as

/292
5SEQCD[A] - i ?g /Xtr{cl (D,uF;w) + Ca (DuFu0)2
+igs[cs F F, Fy, + ¢y Fo F Fyg + c5 Ag(D,F,) Fy, |

+92 [cs AGF o, + c7 AgF,, AgF,, + cg AFFG, + cg AgFy, AgFy,

+gt[e1048] } - (2.13)
The colour trace refers to the adjoint representation: tr{AB} = A B, , tr{ABC} =
A By C.p, where (Ag), = —ifabe Ac (F,u(])ab = —z’f“chﬁO, and (DuF;w) =
—1 fabchLngl, The value of the sum-integral over P evaluates to
"1 (3 g)((ﬁ —d)T 3_9¢ s M_QE e C
- = = 1+ 2¢|1 1- 2 +0
%PG (47)% (27T)6—d 128W4T2{ " E[H(MT) et Cg] +Ol )}
(2.14)

The values of ¢; were given for d = 3 in ref. [28]. We need to generalize the expressions
to d dimensions, because some of the operators lead to divergent loop integrals at the second
stage of our analysis (cf. section 3). Beyond leading order, the coefficients are also functions
of g%, but these contributions are of higher order than the effects that we are interested in.
As mentioned in section 2.1, we are also suppressing effects proportional to IV;.

As a first step, it may be realized that the operator basis in eq. (2.13) is redundant: it
can be verified that

2
/Xtr{igE[FOHF JFy0+ Ao(D,, W)FOV} +%E[—A§F3V+AOF } . (2.15)

Therefore a simultaneous change of the coefficients (¢}*V = ¢; + d¢;, i = 4,...,7) has no

physical effect, provided that
504 = 565 = _2506 = 2507 . (216)

In particular, we could tune c¢; to zero as was done in ref. [28],2 by choosing 0cy = —c.
Then eq. (2.16) implies that the other coefficients should appear in the combinations

cflnew) =cy — 2¢y, cénew) =c5 — 2¢y cénew) =cg+Cyp. (2.17)

In the following we keep both c5 # 0 and c¢; # 0 for generality; this offers for a good
crosscheck in that only the combinations of eq. (2.17) appear in any physical expressions.
In order to determine the values of the coefficients c;, we have computed 1-loop contri-
butions to the 2-point, 3-point, 5-point and 6-point functions of the Matsubara zero modes
in the background field Feynman gauge [26].> Salient details from this computation are

2Tuning ¢5 to zero would yield eq. (2.13) more elegant and simplify a number of subsequent computations.
3In a general gauge, several of the coefficients depend on the gauge fixing parameter, but we have checked
that the logarithmic divergences that we are ultimately interested in do not.



presented in section 2.3. Matching the 2 and 3-point vertices yields

_ 41-d _ (d—=1)(d—-5) _1-d _ (d—1)(d—5)
T T 0 27 120 0BT o T 60 '
(2.18)
Adding the 5-point vertex permits for us to fix the combinations in eq. (2.17) as
(41 —d)(5—d) (21 —d)(5 — d) (d—25)(5b—d)
C4—207:T, 65_207:T7 06—'_07:—‘
(2.19)

In addition the 5-point vertex shows the presence of so-called evanescent operators whose
coefficients vanish for d = 3,
b-d)(3—-d)(d—1) b-d)(3—d)(d—1)

The coefficient ¢, is also evanescent and can be determined from the 6-point vertex; we
find ¢;p = (5 —d)(3 — d)(d — 1)?/180 but this does not contribute to any of our results.
For d = 3 eqgs. (2.18)—(2.20) agree with ref. [28]. (Expressions for a general d were derived
in ref. [29], but unfortunately a rather different notation was employed.)

2.3 Details on the determination of dimension-six coefficients

In this section we provide some details on the determination of the coefficients listed in
egs. (2.18)—(2.20). The derivation of eq. (2.13) is most conveniently formulated with the
background field method [26], and as a reminder the gauge potentials are denoted by
Byj. The object computed is the background field effective action, I'yqp[B], whereby the
vertices are automatically symmetrized in the appropriate way. After a field redefinition,
viz. A? = B (14 O(g3)) and A§ = B§(1+ O(g2)), the result is identified with Syqcp[A].

We choose to work directly in momentum space, with the background fields denoted
by Bji(¢g). The momenta g have spatial components only:

Q9 =0, 4; - (2.21)

Specific tensors are defined for showing the dependence of the vertices on spacetime and
colour indices; these are summarized in appendix A. The structure naturally emerging
from the computation is one in which there are Lorentz-invariant structures (d,, etc.)
and additional terms that only appear for the zero components of the gauge potentials;
the latter are identified through the tensors T, = 4,40, etc. Results for various 1-loop
sum-integrals in this basis are given in appendix B.

Computing the 2-point and 3-point vertices in the background field gauge, we obtain

the 1-loop correction

2
NC a a
Liacn(B] = 227 Bilq) BL(r) 8 o(q + )12 (@)
198N o) BL(r) Bs) £ 8q+ 1+ 5) (a9 (2:22)
3! y, q 14 p q ’yﬂl’p q’ Y ) .



where summations and integrations are implied, and T fq §(q¢) = 1. Expanding in 1/P? ~
1/(7T)?, the 2-point vertex reads

/ d— 2(5 o _ 2 - . 9
2(q) = i {( 25)(q6p,iu Q) ‘T, [(d P21) N 1255;14 3)q ]
s

dey * (426, — 4,9,) + 46,4 T, 1
+ 6 + O<Ps> } , (2.23)

where ¢; and ¢, have the values in eq. (2.18). The term proportional to ’Pﬁ yields the

parameter m?2 in eq. (2.2), whereas the terms proportional to St P% yield wave function cor-

. . T,,4° . ;. .
rections. The existence of a term ZL‘"P ;‘;f indicates that temporal and spatial components

of the gauge potentials need to be normalized differently.

For the 3-point vertex a similar computation leads to

(3) (g, 8) = il{ (25 — d)qpfs;w +(d—1)(d-3) qu;w

Tuvp pi
P
24Cl Qqurl/ + 1263 qy (Tqu - Qll,rp)
— 5
6(4cqy — 303)52qp O — 6q2[3c3 s, + 8¢, rp] 0,00
— 55
6(cy — c5)s 4L, — 6q° [eg(q, —1,) + (e5 — ¢4)8,T),, 1
. 2 ol A)). e
where ¢y and ¢, — c; have the values shown in eq. (2.18). The terms proportional to ’P%

can be partly accounted for by wave function corrections; the remainder yields the effective
gauge coupling of eq. (2.3). The same result for g2 is obtained both from a purely spatial
vertex (~ ¢,0,,,6,;) and from a vertex mixing two Af’s and one A7 (~¢,1},,).

The 4-point vertex can similarly be written as

4
[iaen[B] = %2 Bi(q) BL(r) BG(s) BY®) S(a+7+ 5+ )i (@, t) . (225)

where

' 2(d—1)2(3 - d)T,

abed ab} e .

fi)aﬂ (q,7,8,t) = i {X{ b}{cd} - Lwop
P

425 — d)8,,8, 5 + 8(d — 1)(d — 3)T,. 6 1
ab[cd pov 3 ualvp

TheT notations X {eHed}t and xlablled gre defined in appendix A. The term proportional to
'p 522 yields Ay in eq. (2.4), whereas the other terms proportional to ’P% correspond
to wave function corrections and g2. The dimension-six part of the 4-point vertex is rather

complicated (it is shown in appendix C) and we have not used it for determining ¢,’s.

4This representation is not unique, cf. the comments below eq. (C.3).
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Figure 1. 1-loop contributions to the 5-point function in the background field gauge. Wiggly lines
denote gluons and dotted lines ghosts. The diagrams have been drawn with Axodraw [30].

1

p1- The contri-

Proceeding finally to the 5-point vertex, we find no contribution ~ ZE’P
bution of the dimension-six operators from eq. (2.13) can be written as

(5) a b c d e /8iggsﬂ
Tugen[B] = Bi(q) By(r) By(s) Bo(t) Bg(u) 0(q + 7+ s+t +u) 76
P
x { XUPHEET [ 6,,8,55 + 461 8p50,0 — €1 00
—Co Tpats,/ﬁ + 462 Tpﬁél/a — Coy pr(saﬁ
—C 5paTVB + (CS - 267) 6p/BTua — G 5pyTaﬁ - CQTpuaﬁ}
+X[ab]{cde} |:<561 - 303) 5po¢5116 + (303 - 401) 5p,851/a + 3Cl 6p1/5a5
+(CQ —Cyt C5) Tpaéuﬁ + (04 - 05) Tpﬁéua + 362 Tpuécxﬁ
+(C2 —Cy + C5) 5paTuﬁ + (04 — 4C2 — 267) 5p,3TVOc

"1
+(e5 = 2+ 266) 8, T + (c5 = €9) Ty }+(9($ PB) . (2.27)
P

We have computed the corresponding Feynman diagrams, shown in figure 1. Making
use of momentum conservation and appropriate symmetrizations, and identifying g2 =
g2(1+ 0O(g2)), we obtain precisely the same structure from Feynman diagrams. There are
20 independent terms that permit for a crosscheck of eq. (2.18) and, most importantly, for
a unique determination of the combinations appearing in egs. (2.19) and (2.20).

3 Overlapping soft /hard and ultrasoft/hard contributions

In EQCD, the gauge field components A have turned into massive adjoint scalar fields
when the non-zero Matsubara modes were integrated out (cf. eq. (2.1)). Our goal now
is to integrate out the massive A%, and thereby construct the MQCD action. Its super-
renormalizable part has the form of the spatial part of eq. (2.1). We denote it by

1
SuoenlA] = / CFAFS 3.1
wacolA] = | GFGFS (3.1)

even though Fj% now contains a different gauge coupling than eq. (2.1): Fi = 8iA? —
0;AY + gy f“bcAng. The main goal of this section is to determine the contributions to g
that originate from the dimension-six operators in eq. (2.13). These are termed soft/hard
(sections 3.1 and 3.2) and ultrasoft /hard (section 3.3) contributions.

We note that in analogy with eq. (2.13), Sy,ocp also has a dimension-six part, 4.5y;4cp-
It is given in eq. (3.16) and discussed in more detail in section 3.3.
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Figure 2. 1-loop contributions to the 2-point function, containing some of the “Chapman vertices”
from eq. (2.13), denoted by a filled blob. The adjoint scalar fields are denoted by solid lines.

In order to determine g2, we once again make use of the background field effective
action, FMQCD[B]. In particular, we consider its quadratic part,

1
I oenlB] = 5B (@) BH (=) (q°0;; — a;95) (Z1 + 6255 (3.2)

where 07, collects any possible divergences.

In the background field gauge, I is gauge invariant in terms of B [26]. Consequently
the 3-point and 4-point vertices are fully determined by eq. (3.2). After a subsequent field
redefinition, this implies that Z, determines the gauge coupling of MQCD:

gf/l = 93:11 ,u26 Z;l — géR ,u2€ 07, + 5g33 + O(glo) . (3.3)

Here §g2 is from eq. (2.8). The following discussion is carried out in terms of Z, and 6Z,,.
When the field Af is integrated out and one vertex from eq. (2.13) is included, we
expect to find terms of the types

r 2 2 2 2
B 9N\ [MerdzrNeI 5 (9arN.T) (6)
ZB+5ZB—1+($P P6>[ o # +7(47T)2 #9 4+ , (3.4)

where #(%) may contain logarithms. The corresponding effects are of O(g°) and O(¢%) in
terms of the original QCD coupling. The latter effect is comparable to eq. (2.12).

Before proceeding let us explain why we consider “2-loop soft x 1-loop hard” contri-
butions, i.e. 2-loop graphs with one insertion of dimension-six operators, but not “l-loop
soft x 2-loop hard” ones. In terms of Z, defined in eq. (3.2), “l1-loop hard” gives a factor
~ g?/T?, “I-loop soft” gives a factor ~ ¢>Tm, ~ ¢g>T?, and “2-loop soft” gives a factor
~ (g*T)? ~ g*T?. The overall effects of these orders are ~ ¢°, g%, cf. eq. (3.4). In contrast
“2-loop hard” would give dimension-six operators proportional to ~ g*/T2. The overall
effect from “I-loop soft x 2-loop hard” would therefore be ~ g7, i.e. of higher order than
our computation. The same applies to dimension-eight operators, whose coefficients are
~ ¢?/T* and who get a further suppression factor < g>T'm3, ~ ¢°T* from soft effects.

3.1 1-loop results with dimension-six operators

The 1-loop contribution to Z, from dimension-six operators originates from the graphs
shown in figure 2. The vertices related to dimension-six operators have been indicated with
a filled blob; we refer to them as “Chapman vertices”. In appendix C the vertices are written
in a form convenient for computing these graphs. The 2-point vertex is parametrized
through n,,1,, cf. eq. (C.1); the 3-point vertex through &;,...,&, cf. eq. (C.3); and the
4-point vertex through v,,...,1,, and wy,...,wss, cf. eq. (C.5).



Computing the graphs in figure 2 in dimensional regularization and expanding in
q?/m?2, all of them can be related to a single 1-loop tadpole integral, denoted by

- T miT =T 500 m T i )
(3.5)
We get
I AnT2
T RhenlB] = B2 B 5 8(q + 1) (3 5 ) 1m,)
P
d
X {m% 0y [—52 (=2ny — &5 + &) — <¢4 + 1/};6)
1 1
— Y13+ 5 + g(?/)ssy P34) + <W4 + w;(j)]
44+d)(2—d d 2
+(q%6;, i~ 44 ])[( - ;z(l )772 (59 &) + €10
3¢5

1 + g — 1 — w5]

+4¢,4; [7)2 +&+ &0+ (% + Yag) + th1g — Y1g

4

+Vyg — g — Yay — 1(w5 +W29)] + O( : )} : (3.6)

m2

Inserting the values of the coefficients in terms of the ¢;’s from appendix C, the terms
proportional to mE5 and 44; drop out as required by gauge invariance, and we are left with

! 4 nT2
ST B0 B] = BE(q) BYr) 6% 5(q + 1) (035 — 410;) (;f gelVe ) I(my)

P
X{M_C?éd_z) (c1 +c9) +3cg + (cy — 2¢7) +4(ce + C?)} - (37

Inserting the coefficients ¢, ..., ¢; from egs. (2.18) and (2.19) and setting d — 3, the curly
brackets evaluate to
d* —13d% + 312 d* — 6404 d + 25424 875

1 T _ o .
lim{...} =~ lim 1440 144 (3.8)

The corresponding contribution to Z, is shown on the first row of eq. (3.13).

3.2 2-loop results with dimension-six operators

At 2-loop level, the contributions of the 2-point, 3-point and 4-point Chapman vertices
to Z, can be extracted from Feynman diagrams shown in figures 3-5. In addition the
5-point and 6-point Chapman vertex also contribute. The general expressions for these,
parametrized through the coefficients x1,..., K10, A1,..., A0 and x1,..., X4, are given in
egs. (C.19) and (C.21), respectively, and the corresponding diagrams are shown in figure 6.

,10,



Figure 3. 2-loop contributions to the 2-point function, originating from 2-point Chapman vertices,
denoted by filled blobs. Adjoint scalars are denoted by solid lines. Graphs involving closed massless
loops, which do not contribute to the matching, have been omitted.

Figure 4. 2-loop contributions to the 2-point function, originating from 3-point Chapman vertices

(the notation is as in figure 3).

2 QA0 O O oo

Figure 5. 2-loop contributions to the 2-point function, originating from 4-point Chapman vertices

(the notation is as in figure 3).

2 2 8

Figure 6. 2-loop contributions to the 2-point function, originating from 5-point or 6-point Chap-
man vertices (the notation is as in figure 3).

In order to display the result, we introduce a 2-loop “sunset” integral,

Homg) = [ r

g (P +m)(¢® +md)(p+q)?

m2d (1 — Hr(2 — HT? 5 5 T2 1 fi 1
- = 33(4@6[ 2 = [46 + 1n(2mE> +5+ O(e)] . (3.9)
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Then

1 "GN
T heolB] = 3B BY() %o +) (3 S5 ) #(my)
P

2 2 _ 4
mg 0;; q0;; — 4,45 4;4; q
X C ——C C ol —= 3.10
{4d L 4d 2T g T m2) [’ (3:.10)
where C}, C,, Cy are given in appendix E in terms of the coefficients 7y, . .., x14.>
Inserting the values of the coefficients from appendix C, we find that C| and C5 and

terms proportional to a in C, cancel. The remaining contribution reads

/ 6N3

STNiaonlB] = —Bf(q) BY(r) 6° 6(q + 1) (¢°0;; — ai0;) (g/f i ) H (my)
P
y { (d—3)(d —4)%(d® — 10d? + 23d — 44)(c; + cy)
6d(d —5)(d—17)
N (d* — 18d> + 95d? — 210d + 192)c, N (d® —13d* + 36d — 36)(c, — 2¢;)
2d(d — 5) 6d
2(d® —13d* + 21d — 6)(cg + c7) (d —3)(d — 4)(2cg + o)

N 3d * 6 }

(3.11)

= B BY0) 080 + 1) (0~ aay) (3 P ) ()
P

X (17d8 —494d" + 6522d° — 53766d° + 3010494+ — 1075772d >

1
720d(d —5)(d—7) ’

+2085956d % — 1575176d + 102864) (3.12)

where in the last step we made use of egs. (2.18)—(2.20). We note that the evanescent
operators parametrized by cg and cq do not play a role for d ~ 3, because the coefficients
with which they contribute in eq. (3.11) themselves vanish for d — 3.

Setting d = 3 —2¢, inserting egs. (2.14), (3.7) and (3.9), and going over to renormalized
parameters, we obtain

2 2
GirVe |~ Mg ((875C;
Z, =1 1
v * < 1672 > 27rT< 72 (3:13)
2 3 _ _ ,
g2 N\ 2 1097¢, 61 fie e i ¢ 103771
- —!1 21 >3
(167r2> ( 519 )5 "\ anr ) T ™ 2 ) T, T T 52656 S
sz — (9N’ (1097¢,) 61 (3.14)
B 1672 1098 ) 5¢ '

Remarkably, setting g2, = g% (1 + O(g?)), the divergence in eq. (3.14) cancels 1097/1098
of the coefficient of 1/¢ in eq. (2.12). The remaining 1/1098 can be expressed as

6 AT372
gNET G 1 8
(87)2 (1287r4T2 15 TOW) (3:15)

where in the round brackets we have isolated the master integral in eq. (2.14).

0Z,+0Z, =

°A general gauge parameter, denoted by «, has been employed: (A%(p)AL(q)) = %(51@1 - "";gpl )
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3.3 Contribution from dimension-six operators in MQCD

As already alluded to below eq. (3.1), there are dimension-six operators also in MQCD.
These originate from the purely spatial part of eq. (2.13), and also from 1-loop effects within

EQCD, as will be discussed in section 4. The corresponding action can be written as®
5SMQCD[A] = 291%/1/ tr{cl (D i z]) +igyCs F, ij ]k:Fki} ) (3.16)
where (recalling g% = g2 (1 + O(g))) the hard contribution is 6C, = ¥.c,/PS.

The dimension-six operators in eq. (3.16) give a contribution to physical observables
determined by MQCD, such as the spatial string tension or “magnetostatic” screening
masses. Given that MQCD is a confining theory, these effects cannot be computed an-
alytically. We would like to know, however, whether the MQCD dynamics can give an
ultraviolet (UV) divergent contribution, compensating against the term in eq. (3.15).

In order to determine the UV divergence, we employ a trick similar to that in ref. [31].
All infrared (IR) contributions are “shielded” by employing the propagators

ab a ab o
(oAl = PP (5, SBI) ety = PP )

b are ghost fields, « is a gauge parameter, and my = g4T/7 is a fictitious

where c%, ¢
mass. Once again, we compute a background field effective action, now denoted by I'\;[B]
given that the most IR fluctuations have been accounted for. We extract from it a 2-point
function like in eq. (3.2). The technical implementation follows that in sections 3.1 and 3.2.

Most contributions that we find are a-dependent and void of physical significance. For

instance, the 1-loop result has a structure similar to eq. (3.6) but with m, — m:
1
= SBI(@) B % 5(q + 1) g N2 T(om)

x{(q%ij—qiqj) [—H;l+1863+0(e)} + 0( ¢ )} (3.18)

m2

TP (B]

a=0

This result is finite and proportional to m, and vanishes when we send m, — 0.
However, at 2-loop order a non-trivial and gauge-independent result emerges. Writing
the contribution from Chapman vertices in a form reminiscent of eq. (3.10), we get

1
ST [B] = 5B (a) BY(r) 6" (g + r) g4, NE Hy(mo)

2 2
mg 623 q 5 qzqg iqj q4
D —Y D D o —= . 3.19
X{ d ' T4 R e A ) (3:.19)

The function Hy is the three-mass variant of eq. (3.9), cf. eq. (D.10), and has the same UV
divergence, viz. T?u~=4¢/[(47)%4e]. The coefficients D, contain a part oc H/Hy = 1+ O(e).

6There are many alternative representatlons for instance tr{FZ F F.} = e e RPN =
(l C N abc a (& a C a
2<d 2)f ”kF F Fg = : =< f b F FbF = 2(d 2)f Z]kF F Fy, where we denoted the dual field

Strength by Fa = ”k Fj ik and defined €ijk€lmn = 511(5jm5kn 5]n5km) +5zm(6]n5kl 5]l5kn) + 5171 (5315km -
6Jm6kl)'
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For e = 0, D, 3 are of O(e) and yield no divergence, whereas D, has a finite a-independent
part:

Dy = 24C, + O(e) . (3.20)

Substituting C; — ¥'.c5/ PO, inserting ¢, from eq. (2.18), and setting g2 = ¢?u (1 +
O(g)), yields a gauge-independent UV divergence and logarithmic part:

1
OIS [B] = 5B(a) BY(r) 6* (g + ) (°0;5 — 4,9;) (3.21)

6 \7372 _ _
ONITE( G N (_AN[1 (e i
" (8m)2 (1287r4T2 5) 1 T2 ey ) G, ) TOW

Comparing with eq. (3.15), the divergence exactly cancels. Therefore we have now estab-

lished our main technical goal, demonstrating that the IR-divergence in eq. (2.12) is fully
cancelled by soft/hard and ultrasoft /hard contributions from dimension-six operators.

4 Soft and overlapping ultrasoft/soft contributions

In section 3 we considered the soft/hard contributions to the MQCD effective action, cf.
eq. (3.4). However, there are other contributions to Z,, namely those associated with
the purely “soft” contributions from the scale my. In order to distinguish these from the
effects considered in section 3, we denote them by Z . For this section, we can take the
super-renormalizable truncation in eq. (2.1) as a starting point, and m, as the only scale
being integrated out.

4.1 Direct soft terms up to 3-loop level

Up to 2-loop level, the value of Z » was determined in ref. [32] (the dependence on scalar
couplings was added in ref. [20]):”

~ 2 NT 2 NT\2/19 4\ 2 NT\?
Z, =1+ IeriVe + JeriVe i) 4o IrriVe ' (4.1)
487y, 16mmy, ) \18 3 167my,

We now turn to the 3-loop contribution.

The determination of Z 5 is a rather straightforward exercise in computer-algebraic
methods for loop integrals. The Feynman diagrams were generated with QGRAF [33].
After expanding in the external momentum and projecting onto the transverse and longi-
tudinal polarizations, we have to deal with vacuum-like master integrals. The subsequent
simplifications, making use of renamings of integration variables and integration-by-parts
(IBP) identities [34, 35|, have been programmed in FORM [36]. The values of the 3-loop
master integrals can be found in refs. [31, 37] and are given in eqs. (D.12) and (D.13). As
a crosscheck, we have carried out two independent computations, whose results coincide

"In d dimensions, Z5 = 1 + g,%chp 57 + géNf[w — 22
E

T T T
ST Im)Z sadn e~ 5 Jp ez o e
O(giN2), where the integrals are given in eq. (D.1).
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perfectly. Our final “bare” expression reads®

(2 1 a a 92]\]’CTM726 ° Iz oc
T henlB] = 3520 BY) 0 (a + 1) (20— i) “e— ) (5
L LHdlsy —43) | 2(23510 — 12600¢, — 1101 1n2)
6e 945
2 _ _ _
LA 207~y (5 sgn 2) +rp(31 —241n2) 0(6)} | “2)

The 1/e-divergences in eq. (4.2) could a priori have an IR or UV origin. To find out, we
have carried out the same computation by shielding all masses like in eq. (3.17), but with
me — my. Then only the divergence proportional to 4(k, — 4\) remains. This indicates
that the divergence not containing scalar self-couplings is purely of IR origin.

We can envisage two possible sources for the IR divergence. One is related to ultrasoft
contributions of the same type as in section 3.3; these are analyzed in section 4.2. The
other is related to the mass parameter m?. It is well known that the physical Debye mass,
defined as a screening mass related to a “heavy-light” state, is non-perturbative starting at
next-to-leading order [38, 39]. Our m? is not such a physical mass but rather a Lagrangian
parameter. Nevertheless, m2 can still be considered IR sensitive at O(gg,7?). Indeed, if
we compute the 2-point function of Af at zero momentum, and shield all masses like in
eq. (3.17), we find the UV divergence cancelled by the mass counterterm in eq. (2.9). In
contrast, if we compute the 2-point function without IR-shielding, we find an additional
1/e-divergence proportional to gi.T?, which depends on the gauge parameter . This is
an IR divergence, i.e. ~ gp.T? /€.

If we naively insert an ambiguity of this type into the 1-loop term in eq. (4.1) and
re-expand up to 3-loop order, the result is

16mmggr

(4.3)

3
gl%RNCT gl%RNCT N ﬁ <gl%RNCT>
2 N.T - :
sslmi+ 2 (BEL)E Bra G
On the non-perturbative level, 1/€,; would turn into a multiple of In(cmg/myy), where ¢
is a non-perturbative constant and the scale m, was defined around eq. (3.17).
Keeping in mind this expectation, we renormalize eq. (4.2) by employing the proper
mass counterterm from eq. (2.9). The UV divergences proportional to ko — 4\ duly cancel,
and we find the 3-loop result

~ ~ 2 s — [
Zg>+5zg>:<w> {1+[1+8<“23 4A>]1n( p )

16mmgy 6e 2Mmgy
+2(23510 — 12600¢, — 1101In2)
945
+52>\ +24)2% — Ky (5 — 891n 2) + ky(19 — 241n2) } ()

8The full d-dimensional form is given in appendix E, cf. egs. (E.4)-(E.12).
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o L b o B o O

Figure 7. 1-loop contributions to the MQCD 2-point, 3-point and 5-point functions in the back-
ground field gauge. Wiggly lines denote ultrasoft gluons and solid lines adjoint scalars.
4.2 Contribution from dimension-six operators in MQCD

Parallelling section 3.3, let us finally consider contributions from ultrasoft effects to the
gauge coupling, in the presence of dimension-six operators in MQCD. The action has the
form in eq. (3.16), with the coefficients now completed to include the soft contribution:

"e. ¢.
.= SG4r | G i=13. 45
i PP6 + A(p2+m%)3 ; 1 s ( )

The spatial integral appearing is related to that in eq. (3.5) as shown by eq. (D.1),

T mi T3 — DT 590 Tu 2 [
/ s = — BT sz Tu ; {1+2e <1+1n“> +0(3)} . (4.6)
P (p + mE) 2(471’)5 32mwmg, 2my

Including the overall prefactor from eq. (3.16) and the integral from eq. (4.6), the new
contributions to the coefficients of the dimension-six operators are ~ ¢gZT/m3 at 1-loop
level. Including a fictitious IR-regulator like in eq. (3.17), the 1-loop contribution from these
operators to Z , comes with a factor ~ g2 T'm,, and vanishes for m¢ — 0, whereas the 2-loop
contribution comes with a factor ~ g T2 and can yield a contribution ~ g8 T3 /m3 ~ O(g?)
to ZB. 2-loop contributions to the coefficients of dimension-six operators would be ~
geT?/m} and therefore lead to effects suppressed by ~ O(g*). Dimension-eight operators,
whose coefficients are ~ g%T/m3, lead to effects suppressed by ~ gl9T®/m3 ~ O(g°).

According to eq. (2.24), the value of ¢ can be inferred from the 2-point and that of
¢4 from the 3-point vertex of the background field effective action. To be sure that no
operators got overlooked, we have also determined them from the 5-point vertex, cf. the
spatial part of eq. (2.27), which leads to several independent crosschecks (the diagrams are
shown in figure 7). We find that the results are related in a curious way to the d-dependence

of ¢; and ¢y in eq. (2.18):9:10

1 1
C = —— C = —— . 47
“ 1207 180 (4.7)

°To our knowledge these values were first obtained for d = 3 by P. Ciovannangeli (unpublished, 2005),
along lines that have recently been documented in ref. [40].

1We note in passing that even though the ¢ contribution in eq. (4.5) is parametrically larger by O(1/g°)
than the ¢; contribution, the large value of ¢; in eq. (2.18) implies that numerically ¢, and ¢ give similar
contributions if g% ~ 2. If g> > 1, C; becomes positive.
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Inserting these values into eq. (3.20), and substituting g2 = g2, 1% (1+ O(g)), we find
a gauge-independent UV divergence and logarithmic part:

~ 1
0T [B] = 5B1(a) BY(r) 6% 6(a + ) (0 — 4;0;)

2 3 _ _

JerN T 1 1 H K

ELTEACL I (R B ) 41 Db«
X<167rmER> < 45>{e+ 8 g ) T 5, ) TOMp - (48)

This implies that the counterterm needed in MQCD reads 5223) = (g%"‘N‘:T)3 L

16mmy 45¢*

Obviously, eq. (4.8) does not match the divergence in eq. (4.4). In other words, if we

subtract the part needed to serve as § ZS) from eq. (4.4), an IR divergence remains. In terms

of the coefficient § introduced in eq. (4.3), it amounts to § = —%. Let us stress that we have

verified the gauge independence of this result. Therefore we are left to speculate that a non-
perturbative mass ambiguity of the type discussed around eq. (4.3) prohibits a purely per-

turbative determination of Z, and thus of g% in terms of g2, and my,, at O(gS.T3/m3.,).

5 Conclusions

The main technical ingredient of this investigation was the analysis carried out in section 3.
We considered dimension-six operators induced by integrating out the “hard” momenta
~ 7T from thermal QCD [28]. Specifically, we computed at 1-loop and 2-loop levels the
influence of these operators on the gauge coupling felt by ultrasoft (magnetostatic) modes.
Remarkably, including UV divergences originating both from “soft” loops at the Debye
scale my ~ gT and “ultrasoft” loops at the non-perturbative scale ~ g7’ /7, we observed
an exact cancellation of the IR divergence found in a 3-loop determination of the EQCD
gauge coupling (cf. eq. (2.12)) [22, 23]. This represents a nice crosscheck of the effective
theory setup as a whole.

As a second technical ingredient, discussed in section 4, we considered the “soft”
contributions to the ultrasoft gauge coupling. We determined direct 3-loop effects (cf.
eq. (4.4)) and compared them with overlapping ultrasoft/soft contributions originating
from dimension-six operators induced by integrating out the soft momenta ~ my (cf.
eq. (4.8)). This time only a partial cancellation of soft IR divergences against ultrasoft /soft
UV divergences was observed. As a culprit, we speculate that a non-perturbative ambiguity
of the soft scale within EQCD sets an upper bound on the accuracy with which effects
depending on my can be determined within perturbation theory. This may be surprising
insofar as no such problem was met in 3-loop or 4-loop studies of the EQCD vacuum energy
density [15, 31]. However, the present quantity is different, being not directly a physical
observable but rather an effective Lagrangian parameter (the MQCD gauge coupling ¢2,).

On a more general level, the main conclusions that we draw are as follows:

(i) Even if the colour-electric scale m, ~ g7 is formally larger than the colour-magnetic
scale ~ g?T' /7, it does play an essential role in the IR dynamics. Concretely, in terms
of the IR divergence found by integrating out the hard scale ~ wT", the colour-electric
scale is 1097 times more important than the colour-magnetic scale (cf. eq. (3.14)).
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(ii) Dimension-six operators need to be included in EQCD if good precision is required.
Indeed, as we have demonstrated analytically (cf. point (i)), they do influence the IR
dynamics of the system. This is a possible reason for why the super-renormalizable
truncation of EQCD fails close to T, even in pure Yang-Mills theory [19].

(iii) Apart from the indications in point (i) that the scale m, is important, we also find
trouble if we try to integrate it out. The reason could be that EQCD is a con-
fining theory, and that physics at the scale m?2 should in general be affected by
non-perturbative ambiguities of O(g*T?/7?). Once m,, is integrated out, some rem-
nant of these ambiguities may remain, if the parameters of MQCD are determined
up to the corresponding relative precision. It would be interesting to find a way
to determine the leading non-perturbative contribution to g% through lattice meth-
ods, even if this requires the simultaneous inclusion of the 1/m3-suppressed MQCD
dimension-six operators in eq. (3.16).
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A Spacetime and colour tensors

Because the presence of a heat bath breaks Lorentz invariance, we need to introduce sepa-
rate notation for spatial and zero spacetime indices. The full Kronecker symbol is denoted
by

0, =T, +85 Ty = 0,000, S =90

v nv pv nv

5, - (A1)

ni

We also introduce the totally symmetric tensors

Thpe = 6,100,00,0050 5 (A.2)
Tpoas = 9,0000950950060050 » (A.3)
0 ps = 0,0, + 2 permutations , (A.4)
OvpoaB = 0,0p00a5 + 14 permutations . (A.5)

For the colour indices, it is helpful to denote

X ®02-an  — fmnalmlfm1a2m2 . fmn_lanmn , (AG)
as well as the symmetrized versions
X{al...ag}... = %(Xal‘..ag.., +Xa2...a1...) , X[a1...a2}... = %(Xay‘.ag... _Xag...al...) ) (A?)

These objects satisfy X@n0n—1-0201 — ()P X 0102:-0n-10n X 0102.-0n—10n — X 02.-Gn—10nd1,
It follows that

X{a1a2}[a3a4] _ X{alaQ}{a3a4a5} _ X[alag}[a3a4a5] _ X{a1a2a3}[(l4a5a6] =0. (A8)
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Therefore we can write

X aiaz203a4 X{a1a2}{03¢14} + X[a1a2][03a4] , (A.g)
xaazasasas _ y{araz}lazasas] | ylaraz]{azasas} , (A.10)
X 10203040506 _ X{a1a2a3}{a4a5a6} + X[a1‘12“3][a4a5a6] X (A.ll)

It may furthermore be noted that

N, N,

arazaz _ _ ~'c rarazag l[araz][azas] _ _ “Yc pmaraz pmazag
X N e prases - (4.12)
la1az]aslasas] _% maias £Mmasn £Fnasas
X = g rates pmaan prosas, (A.13)
fa1a2ana3a4... _ 2X[a1ag]a3a4..‘ — X01020304... _ Y 02010304... (A.14)

B Basic sum-integrals

Employing the notation defined in eqs. (A.1)—(A.5), the following relations can be estab-
lished:

/ /
PMPI/ (l_d)Tuu+5uu
gﬁ i gﬁ AL (B.1)
P P
/! /!
P,P, (3—4d) Ty + 0,
i PS5 i 4Pt ’ (B-2)
P P
/ (5 _
P}LPI/ _ (5 d) T/u/ + 5/“/ (BS)
P8 6.P6 '
P P
/PMP,,PPPU _ i/ B—-d)(1- d)TleU
P8 24P
P
3-d)(T,,9,, +5 permutations) +9,,
+ SE—Y=T e } (B.4)
i’PuPprPU _ il (5 d)3—d)Typpo
P10 483 P6
P
(5—-d)(T,,9,, +5 permutations) + 0,
+ 5 B8 (B.5)
' PuPyPyPyPaPy il G-d)B-d)(1 =d) T, 508
P12 480 P
P P
(5—d)(3 —d) (T,ps04p + 14 permutations)
+ 480 P
5—-d)(T,,0 + 14 permutations) + ¢
nv”poaf

_l’_

480 P6 Wpoaﬁ} - (B6)

These are needed for the computations in section 2.3.
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C Dimension-six vertices in the S/T basis

In section 2.3 we displayed (parts of) the vertices originating from eq. (2.13) in a basis in
which spacetime indices appear in the form similar to appendix B. For the considerations
of section 3, it is advantageous to employ a basis in which the spatial and temporal indices
are strictly separated from each other. This can be implemented with the tensors S .. and
T},,..., defined in eq. (A.1). In this section we display all the Chapman vertices originating
from eq. (2.13) with such a notation.

The 2-point Chapman vertex reads

! 2NC
3Stmen = A%(q) AL(—q) (i gEP6> {m (S, — 4,0,) + q4THV} : (C.1)
P
where
m=2c;, ny=2(c;+cy). (C.2)

The 3-point Chapman vertex becomes

’ig%Nc>

35 fen = A3a) AL A(9) 0l + o+ 5) (3 g

P

X {51 Q/,LqUQp + 52 q,uQZ/rp + 53 q,urqu + 64 r,uqqu
+5 2 + 2 + 2 +T 2 + 2 + 2 (C 3)
w8574, T &6 a7, + &7 57, |88 474, & a7, + 810574, | ¢, (C.

where ¢,,9,9, and ¢,9,9,+49,9,7,— 4,79, = —qu(ql,sp—i-rl,qp) actually vanish as can be seen
by the relabelling (r <+ s,v <> p,b <> ¢). Therefore any change d§; or any simultaneous
change 6§, = —d&; has no effect. It can be checked that eqgs. (3.6) and (E.1)—(E.3) are
invariant in these transformations. A representation of the coefficients can be chosen as

§& =0, 52:203a 53:—4017 §4 = —2c3,
§ = —3c3, & =8¢y — 3y, §r =3cg —4dcy, &= —4dcy—3c3—c¢ytoy,
fg = 861 + 462 — 303 — C4 —+ C5 s 610 = 303 — 461 —+ C4 — C5 . (04)

The 4-point vertex amounts to

/4
35 L8en = A3(a) AL A5(6) 43030+ 7+ 540 (3 )
P

X {X{ab}{Cd} [S,uaSV,B (d)l q2 + 1113 q- 7ﬁ)

+ 7,05, (¥4 P+ s +ahgq- r)

+ 5,503 (Y10 @’ + g r) + T, Sap (Y13 @ +i5q- r)
+ 5, T (V16 ¢ +1gq- r) + Tvap (Y19 @+ q- r)
+ S, (129 0,95 + Y23 @ + VYou T3 + Pas 7’1/7’5)

+ 1, (%6 4095 + Vo7 Qg + Yag T4 + Pag Turﬁ)
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+ 5, (V30 00 + ¥314ars) + Ty (V34405 + V35 0aTs)
+ Saﬁ (1/}38 ququ + ¢39 q,uru + ¢40 T,uqu)
+ T (Va2 4,00 + Va3 470 + Vas 700,

xladled [y, wi]} , (C.5)

where some coefficients have been dropped because they can be converted to the remaining
ones through trivial renamings of indices and integration variables. The values are

Pr =0, t3=-8¢c,

vy =0, Y5=0, 5= —16¢c; —4c5+ 8¢y,

Yo = —4c, Y= —dey,

P13 =0, P15=0, Pi5=—8c; —2c5+4cr, P15 = —8c; —2c5 —4cg
P19 = —4cy — 2¢5 +4cp +2¢g, Py = —12¢) — b6c5 — 4eg + 8cp — 2cg + 4cg
Yoy = =8¢y, o3 =12¢;, thyy = —dey, g5 = ey,

Pog = —8c1 — 8¢y, Yoy = 12¢; — 20cy + 8c5 — 16¢5

oy = —4cy +12¢9 —4des + 8¢y, g9 = 4y + 4cy

Y30 = 4cy, g = —dey s Yy =de Hey, by = —dep — 4oy,

P3g = 4dc1,  hyg =0, by =8¢y,

Vg = dcy — ey + 2¢5 —4dcy , Py3 = 8¢y — 2¢5 + 4y

Y4y = 8¢y — 8¢y + 4ey + 4cg — 4cy

w; = —16¢; , w3 =8¢y —12¢5,

wy = —16¢; — 16cy , wy = —16¢; — 4c5 + 8y,

wg = 16¢; — 24c3 — 8¢y + 4es + 8y

Woy = —24c; , Wz = —44dcy +24c3, woy = —12¢;, wyy = 4cy,

Wog = —24c; — 24cy ,  woy = —44cy — 12¢9 + 24c¢5 + 8¢y — 8cs

wog = —12¢; — 28cy +4cy — 8¢y, weg = 4c; — 12¢9 + 4es — 8¢y

wyg = 0, wg; =20c; —12¢5, wyy =0,

was = 20c¢; + 20cy — 12¢3 — 4cy + 8¢y . (C.6)

In the case of w;, all coefficients associated with operators containing S ap OF Top vanish,
because of antisymmetry.

The coefficients of the 4-point vertex listed above are not independent. Indeed momen-
tum conservation leads to relations between the different structures defined in eq. (C.5),
which implies that certain linear combinations of the coefficients couple to null operators.
In the spirit of eq. (2.16), these ambiguities can be listed as transformations (01 ...012)
whereby a simultaneous modification of the coefficients as indicated below has no physical
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meaning;:

O1:  Jdw
O2:  dwy
O3:  dwy
Os:  dwgy
O5:  Jdwyg
O 1 Owogs
O7:  Jdwyg
Og:  Jdwyy
Og 1 dwagg
O10: 03

O12: 5¢34 = 577/)35 = —5¢42 = —25w43 =

This list may not be complete.

= _5¢1 = 5¢10 s
= _51/14 = 51/)13 )
- —5¢5 = 5w16 5

= —0Ugy = 039 ,
= —0wyy = dwg) = —0Ug3 = 0oy = 201h39 = —201)yg ,
= —0thys = 0ty ,
= —0Ugg = 03y ,

= —50.)28 = (5&)35 =

= _5¢29 = 5¢42 )
= 5%5 = —5%6 = —5%8 )
O11:  dPgp = Othgy = —Pgg = —2075

—57/)27 = 5%8 = 25#’43 = —251/144 )

= _25¢40 )

and (E.1)-(E.3) are invariant in these transformations.

The 5-point Chapman vertex reads

1ig2s
3Siden = Ajla) AL(r) Aj(s) AG(0) Af(w) (g + 7+ 5+ £+ ) (55 7 >

P6
P

% {X{ab}[cdd [ml SoaSus + 128,500 + K3 5,95

+ Ky TpocSI/,B + Rs

Tpﬁsya + Rg prsaﬁ

+I€7 SpCVTl/B +I€8 SﬂBT +Ii9 Spl/TOcﬂ +K/10TVOJ,6:|

pxleblede} g5 2] } :

where
Iil == _801 B
Ky = —8¢;
I€7 = _801 -

/€2 - 3261 5 /{3 — _801 5

—862,

802 )

H5 = 3261 =+ 3202 s

kg = —8¢y — 8¢y ,

K/S = 3261 =+ 805 — 1667 5 /i',g = —801 — 862 s

’L{':]_D = 1661 =+ 865 — 1607 — 809 N

)\1 = 40C1 — 2403 s
)\4 = 4001 + 8C2 — 2403 — 8C4 + 805 s
)\6 = 24C1 + 2402 5

)\2 — —3201 + 2403 5

A5:

)\3 == 24C1 s
—32¢q + 24c¢5 + 8¢y — 8cy

)\7 = 40(31 + 8C2 — 2403 — 8C4 + 805 N
)\8 = —32C1 — 3262 -+ 2463 -+ SC4 — 1667 s
/\10 = 3261 —+ 1605 + 16@6 — 1667 —+ 8C8 — 809 .

— 922 —

)\9 = 2461 — 802 + 805 + ]‘666 N

Q Q Q
© o =

(C.
(C.
(C.
(C.10
(C.11
(C.12
(C.13
(C.14
(C.15
(C.16
(
(

C.17

)
)
)
)
)
)
)
)
)
)
)
C.18)

It can be checked that the expressions in egs. (3.6)

(C.19)

(C.20)



Finally the 6-point vertex can be expressed as

6SEQCD = / Aa Ab AC Ad Ae Af Xabcdef <$ ]g;%)

% { (X1 SprSas + X SpaSrs + Xa 35S0 Sy
[ SVCVSPﬂ + X5 SV/BSPCJ SHU
+[X6 80508 + X7 SpaSes T Xs Sp850a) T
+ [Xg SueSas T X10 SVaSUB] 1p
+[x11 SupSap T X12 SvaSps T X13 Sl/ﬁspa] Lo
X145 T hoap + X15 SupTvoas T X16 Suo Lypas + X17 T,ul/pcrozﬂ} , (C.21)

where

X1 = —4c +2c3, Xg=16c; —6cz, x3=—4cy, xq= 23, Xp5= 8¢ +06cy,
Xe = —12¢) —4cy + 6cg + 2¢4 — 2¢5, X7 = 16c; — 6cg — 2¢4 + 4eg + 4eg

Xg = —8¢; — 2¢5 — 4cq

Xg = 32¢; + 16cy — 12¢3 — 4y +4es, X190 = —16¢; + 12¢3 + 4¢y — 4c5

X11 = —4cy —4cy,  Xp9 = —6c3 —2¢y +4c;, X153 = 8¢ — 8¢y + b6c3 + 2¢4 — 4y
X14 = —4cy —2¢5 —4ecg — 2¢5,  X15 = 16¢ + 8cs + 8¢y — 8¢y + 4cg — 4eg

X16 = —12¢) — 65 — 4deg + 8¢y — 2cg +4cyg, X7 = —2¢qg - (C.22)

D Basic vacuum integrals

For the computations of section 3 various d-dimensional vacuum integrals are needed. At
2-loop level their results can be expressed in terms of H defined in eq. (3.9), multiplied by
rational functions of d. For notational simplicity we denote the mass by m, let A, = p?+m?,
and omit the trivial factor 7" included in eq. (3.9).

Making use of the integral

L B md_Q”I’(n — %)
/p Ap - (4m)iT(n) Y

factorized integrals can be expressed as

m~2 2(d — 3)H / 1
= — : = (d—3)H . (D.2)
/p,q ApAq d—2 p.q A%Aq

A sunset integral with a power of the massless propagator reads

1 m2=A7(4 — ) M(n+2 —d)I%(n+1-9)
/ _ _ _ (D.3)
ApAy(p+ q)* (4m)T(3)L(2n + 2 — d)
In particular,
1 / m? (d—3)H
1 g - _ ) (D4
g Dplq(p+ q)? P.q Aplg(p+a)! 2(d = 5) )
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A sunset integral with a power of a massive propagator reads

1 _ m2d—2n—4F( %) ( %) (D 5)
pa DpBq(p + q)? (d—n—2)(4m)? (n)
In particular,
/ m? _ (d-3)H / m _ (d-3)(d—4)(d—6)H
p,q A%AQ(p + q)2 2 ’ D,q AgAQ(p + Q)2 8(d - 5)
(D.6)
Tensor integrals can be reduced to scalar integrals through
(S;wsaﬁ + S;wcsyﬂ Spﬁsl/a><p4>
_ D.7
(PupuPaPs) i +2) ; (D.7)
( = (Suusaﬁ - Suasu,@ Suﬁsuoz><p2p -q) (D.8)
py,pz/paqﬁ - d(d+ 2) 5 .
( - (SuaS,5 +S,55)(dp - 9)* = p°¢?) N Sy Sas((d+1)p*¢* = 2(p - 9)?)
Pubviads) = d(d—1)(d + 2) d(d—1)(d+2) ’
(D.9)
where (...) represents a generic rotationally invariant expectation value, and S, = §,,,6,,.
In the considerations of section 3.3, another variant of the sunset integral was encoun-
tered,
1
H, = / _ (D.10)
’ Dyq APAQAP-HJ
It can be written in terms of the hypergeometric function o F [41, 42],
3(d —2) 4—d _5—d 3 d=5 27rF
H,=— F; 1; =] —3 (D.11
3 4((1—3)[2 1< 2 ) ’4> = }/AA )

At 3-loop level we need the values of two “basketball” integrals (cf. e.g. refs. [31, 37]):

1
B, = (D.12)
’ par DpQg(p+ 7)%(q +r)?

—6e 7 \% (1 25¢,
B (B e[ 5] o)
B 1
B, = AAA A (D.13)

P qT ptrT/qtr

m,u_GE 2 \%(1
:(471_)3<27n> { +8 41n2+6|:52+

1 391n9 4 41n2 2] +O(62)} :

E Details concerning 2-loop and 3-loop results

For completeness we report here technical results related to sections 3 and 4 that were too
lengthy to fit the presentation in the main text.
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Consider first the coefficients C},Cy and Cj, defined in eq. (3.10). Because of the
general way in which we have parametrized the Chapman vertices (cf. appendix C), the

expressions for these contain substantial “redundancies”, which we reproduce here in full.

This permits for very strong crosschecks, as discussed e.g. in the context of eqs. (C.7)—

(C.18) for the quartic Chapman vertex. The expressions read

8(d —1)[(2d + 3)my + 2d(d + 2)1y + (d + 1)&5 — (d + 2)& — & + d &y

Gr=- d—2
8(d = 1) [(d+1)(d +2)& — (d* + 3d + 1)&]
d—2
+2(d — 1)[4(¢3 — Y30 + ¥31) — 2(2d + 3)hy + 4diy — 3t)ag + wyy]
d—2
(d=D)[2(3d? — 1)thy + 4(2d% + 1) (13 — ¥y5) + (5d — 1)tbyg + d(tby7 — war)]
d—2
(d—-1) [1h6 — wg + g — wag +2(5d +1)(bgy — 35) — 2(d® + 3)wy — (5d + 3)wyg]
d—2
(d=1)[(3d + T)(ky + 2¢y) + (d = 1) (265 — Ay — 2w; + 2w35) — 5kg — (4d +1)Ag]
d—2
10d(d — 3) [k19 — Mg — 4X14 = 2X15 — 2Xa6 + 419 — 2009 E1
o _ 2[18(d— 18 + (@ + (& — 94+ 12)(§ — &) +12(d” — 3)¢;]
2 3(d —5)

2(d® — 13d° + 49d* — 83d* + 2084* — 114d — 156) 1,
B 3(d—5)(d—T7)

(4d® — 55d* + 226d® — 335d* + 484d — 336) &g
B 3(d—5)(d—7)

(4d® — 55d* + 226d® — 323d* + 388d — 252)&,

3(d—5)(d—T7)

4(d* —10d® + 25d? — 51d + 51)n,  2(2d* — 31d® + 120d? — 111d + 36)¢&,,

3(d—5) 3(d—5)

n (d—1)[(8d 4 T)1hy — 4(thy — W3 + h31) + 2(2d + 3)1o — 4dipyy + 31)gy]

d—>5

(= D[ = 2d = Doy — 2wy —wys] | d(37d = 39)¢5  d(3d — 1w

2(d — 5) 6 2

N (d—2)(d—3)(d—T7)(¢p, + 3w, — 20y3)  (d® —8d? + 51d — 84)1)g

_l’_

6(d —5) 12(d - 5)
2(d? — 8d + 9)ipy5 | d(23d —21)1pg 2
=5 + ; — 2(4d® — 5d + 2) g
d? +7d — 12 -2 3 d(d+1
(d° + )(1/1226 P34 + 3wae) " ( +6 )35 2(d — 2y,

(d® —16d* +59d = 52)wg  (d —2)[(d® = 33)1yr — (d* — 24d + 8T)wy;]

4(d - 5) 12(d - 5)
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+d(d —3)[5(\jg — #19) — 20(d — 2)¢h1g + 4(2d — 3)hy; — wys]

6
+a(d — 1) [thog — wag — 2w35 — 8(2n; + & + &)
2(d — 5)
4a(d —1)&  8a(d—1)[(d—3)n, — &
(ST b (E2)
Cy = 8d(d — 1) [ny + & + &1
A= D=1 +&) + 26+ &+ & +8) + (@ + 1]
d—>5
n (d—1)[(3d + T) () + Yo5) — 4(W3 + Vo3 + oy + 131) + 2(2d + 3) (b1 + VP35)]
d—>5
(d = 1) [4d(31p + 39 + Pag) — 10(3gy + 930) + (d — 1) (wy + wos)]
d—5

+2d(d — 1) [3(v)5 + thag) + 4(th16 — 1g + thag — Y3 — ag) — w5 — wag] - (E.3)

After substituting the coefficients from appendix C, we get eq. (3.11).
As a second ingredient, we report the full d-dimensional version of eq. (4.2). The result
can be expressed as

=(2) L b b 2 92N\’
T heolB] = 3B Br) 0%+ ) (428, — ) (%57 ()

1 { (s +71) (@) P (my) + ro(d) mE By(my) + (v + 75) (d) mE By (my,) |

where the pure gauge contributions are parametrized by

(d—2)p,(d)

d) = — E.5
r1(d) 384(d — 10)(d — 8)(d — 7)(d — 6)(d — 5)(d — 4)(d — 3)2(d — 1)d ’ (E-5)
(3d — 10)(3d — 8)py(d
d) = E.
r2(d) = s = Dd2d— DA —9)@d—7) ' (E6)
(3d —10)(3d — 8)ps(d)
d) = E.7
"3(d) = S56(d = 10)(d—8)(d = 6)(d — ) d—1)d’ (E7)
with the non-factorizable polynomials
py(d) = 12d'* — 6284 + 14447d'° — 193505d° + 1689420d° — 10234582d 7
+44883931d° — 147059385d° + 366585830d* — 6898092443
492959525642 — 791686464d + 314842752 (E.8)
po(d) = 12d7 — 30845 + 3175d° — 17441d* + 57347d>
—117419d? 4 138786d — 70872 , (E.9)
p3(d) = 3d° — 60d* 4 359d° — 670d? 4 400d + 736 , (E.10)

where I, B, and B, are the master integrals from egs. (3.5), (D.12) and (D.13), respectively.
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In terms of the couplings from egs. (2.5)—(2.7), the scalar contributions amount to

sy = 12 (d —4)(3d® — 49d* 4 283d3 — 779d? + 1238d — 1056)\
Ri(d) = =5 { 3(d—7)(d—5)(d—3)d
_ (d—=4)(3d - 10)\?
3
(d—2)%(9d? — 77d + 158)k;  (d —10)(d — 2)*k
16d—6)(d—D(d—3)d 16(d — 4)d 2}’ (B-11)
fdQZ:@d—1m@d—&@P—5d—2ﬂm+wd—6mﬂ. (E12)

256(d — 6)(d — 4)d

Setting d = 3 — 2¢, inserting the values of the master integrals, and carrying out a Taylor

expansion in ¢, eq. (E.4) goes over into eq. (4.2).
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