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aAEC, Institute for Theoretical Physics, University of Bern,

Sidlerstrasse 5, 3012 Bern, Switzerland
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1 Introduction

Dimensionally reduced (“3d”) thermal effective theories, originally conceived for studying

thermodynamics and phase transitions in non-Abelian gauge theories [1–3], and still used

for that purpose in the context of weak interactions (cf. e.g. refs. [4, 5] for recent work

and references), have been reinvigorated in another context some time ago. Indeed, quite

remarkably, they also turn out to determine soft contributions to real-time lightcone ob-

servables [6]. As examples, they can be used for estimating the so-called transverse collision

kernel related to jet quenching in a hot QCD plasma [7, 8]; soft parts of the photon and

dilepton production rates from a QCD plasma [9, 10]; and the interaction rate experienced

by neutrinos in an electroweak plasma [11]. Following standard terminology, we refer to
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the “soft” effective theory as EQCD, whereas the “ultrasoft” theory containing only the

magnetostatic modes is called MQCD (cf. e.g. refs. [12–15]). The latter has been argued

to give e.g. the leading non-perturbative contribution to jet quenching [16].

In the QCD context it is known, however, that EQCD fails to describe the full theory

close to the phase transition or crossover temperature (Tc). This is obvious when light

quarks are present: EQCD contains only gluonic degrees of freedom, and displays no

remnant of the flavour symmetries that underlie the chiral transition. For pure-glue theory,

the reason for the breakdown is more subtle. Even though the center symmetry that drives

the transition in the imaginary-time formulation [17] is not explicit in EQCD, remnants of

it are generated dynamically [18]. However the dynamical re-generation is incomplete, and

a 3d lattice study in which soft EQCD dynamics was treated non-perturbatively did not

achieve satisfactory agreement with thermodynamic functions obtained from full 4d lattice

simulations [19].

One purpose of this paper is to demonstrate analytically that power-suppressed

dimension-six operators, truncated from the super-renormalizable EQCD description, play

an essential role in soft and ultrasoft observables, and are therefore a likely culprit for

EQCD’s failure close to Tc. More concretely, we determine the MQCD gauge coupling

in terms of the EQCD gauge coupling and mass parameter up to 3-loop level, including

the 1- and 2-loop contributions of all dimension-six operators; the result is contained in

eqs. (3.13), (3.14) and (4.4).

Our presentation is organized as follows. After reviewing the form of EQCD and re-

deriving the coefficients of its dimension-six operators in section 2, we determine overlap-

ping soft/hard and ultrasoft/hard contributions to the ultrasoft gauge coupling in section 3.

In terms of four-dimensional Yang-Mills we go up to 3-loop level; this implies 2-loop level in

effects originating from dimension-six operators, which are themselves generated by 1-loop

diagrams. A 3-loop computation of soft effects, as well as of overlapping ultrasoft/soft

contributions, is presented in section 4, whereas conclusions are collected in section 5.

Spacetime and colour tensors, tensor-like 1-loop sum-integrals, Feynman rules related to

dimension-six operators, d-dimensional vacuum integrals, and some lengthier results, are

collected in five appendices, respectively.

2 Form of EQCD

2.1 Super-renormalizable part

The super-renormalizable truncation of the dimensionally reduced “electrostatic” QCD,

called EQCD, is defined by the action

SEQCD[A] ≡

∫

X

{
1

4
F a
ijF

a
ij +

1

2
Dab

i A
b
0D

ac
i A

c
0 +

m2
E

2
Aa

0A
a
0

+
λE

4
XabcdAa

0A
b
0A

c
0A

d
0 +

κE

4
Aa

0A
a
0A

b
0A

b
0

}
. (2.1)

Here
∫
X ≡ 1

T

∫
x
, F a

ij ≡ ∂iA
a
j −∂jA

a
i + gEf

abcAb
iA

c
j , D

ab
i ≡ δab∂i− gEf

abcAc
i , A

a
0 is an adjoint

scalar, Xabcd is defined in eq. (A.6), Latin indices take values i, j ∈ {1, . . . , d}, we have
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in mind d ≡ 3 − 2ǫ, and repeated indices are summed over. We employ a convention in

which the fields Aa
i and Aa

0 have the same dimensionality as in four-dimensional Yang-Mills

theory. Then explicit factors of 1/T and T appear in configuration and momentum space

integration measures, respectively, where T is the temperature.

Focussing on pure SU(Nc) gauge theory,1 i.e. suppressing contributions proportional

to the number of fermion flavours (Nf), the parameters appearing in eq. (2.1) have the

expressions

m2
E = g2BNc

∑∫ ′

P

(d− 1)2

P 2
+O

(
g4B
)
, (2.2)

g2E = g2B

[
1 + g2BNc

∑∫ ′

P

25− d

6P 4
+O

(
g4B
)]

, (2.3)

λE = g4B(d− 1)2(3− d)
∑∫ ′

P

1

3P 4
+O

(
g6B
)
, κE = O

(
g4BNf

)
, (2.4)

where g2B = g2µ2ǫ(1+O(g2)) is the bare coupling of the original four-dimensional theory, µ is

the scale parameter introduced in the context of dimensional regularization, and g2 ≡ 4παs

is the renormalized coupling. By Σ′
∫

P we denote a sum-integral over P , with the prime

indicating that the Matsubara zero mode is omitted. A 1-loop re-derivation of eqs. (2.2)–

(2.4) can be found as a side product of section 2.3; 2-loop expressions were obtained in

ref. [20]; the 3-loop level has been reached for m2
E [21] and g2E [22, 23].

For our higher-loop computations in section 3, it is helpful to express the dependence

on λE and κE through the dimensionless combinations

λ ≡
5λENc

4g2E
+

κE(N
2
c + 1)

2g2ENc

, (2.5)

κ1 ≡
λE(N

2
c + 36)

2g2ENc

+
10κE

g2ENc

, (2.6)

κ2 ≡
λ2

E(N
2
c + 36)

4g4E
+

10λEκE

g4E
+

2κ2E(N
2
c + 1)

g4EN
2
c

. (2.7)

We note in passing that fundamental representation couplings often used in the literature,

viz. λ
(1)
E (Tr [A2

0])
2 + λ

(2)
E Tr [A4

0], are given by λ
(1)
E = 3λE/2 + κE and λ

(2)
E = λENc/2.

The theory can be renormalized through

g2E = g2ERµ
2ǫ + δg2E , m2

E = m2
ER + δm2

E , (2.8)

and similarly for the scalar couplings. Within the super-renormalizable truncation, the

counterterms take the forms [24, 25]

δg2E = 0 , δm2
E =

(
g2ERNcT

4π

)2κ2 − 4λ

4ǫ
. (2.9)

1We omit fermions for simplicity because they carry non-zero Matsubara freqencies and thus generate

no direct IR divergences. In other words they have no bearing on our conceptual discussion. If they were to

be included, the expressions in eqs. (2.2)–(2.4), (2.18)–(2.20) and, most importantly, (2.11)–(2.12), would

contain additional terms involving Nf . Unfortunately the determination of the last of these effects entails

an enormous practical effort, which we defer to future work.
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The starting point for our analysis is the 3-loop determination of g2E from four-

dimensional Yang-Mills theory [22, 23]. It is helpful to display the result in the form

of a background field effective action [26]. After gauge coupling and wave function renor-

malization through vacuum counterterms, refs. [22, 23] found an expression containing a

logarithmic (1/ǫ) divergence,

Γ
(2)
EQCD[B] =

1

2
Ba

i (q)B
b
j(r)δ

ab δ(q+r)
(
q2δij−qiqj

)(
ZB+δZB

)
, (2.10)

ZB = 1−
g2Nc

(4π)2

[
22

3
ln

(
µ̄eγE

4πT

)
+
1

3

]
−

g4N2
c

(4π)4

[
68

3
ln

(
µ̄eγE

4πT

)
+
341

18
−
10ζ3
9

]
(2.11)

−
g6N3

c

(4π)6

[
748

9
ln2

(
µ̄eγE

4πT

)
+

(
6608

27
−
10982ζ3
135

)
ln

(
µ̄eγE

4πT

)
+(finite)

]
+O(g8) ,

δZB =
g6N3

c

(4π)6
61ζ3
5ǫ

+O(g8) . (2.12)

Here ζn ≡ ζ(n) and µ̄2 ≡ 4πµ2e−γE . The renormalized gauge coupling is given by g2ER =

g2/ZB, and the corresponding counterterm by δg2E = −g2µ2ǫδZB +O(g10). We stress that

eqs. (2.11) and (2.12) are gauge independent [27].

An essential technical goal of our investigation is to demonstrate how the divergence

in eq. (2.12) is cancelled by overlapping soft/hard and ultrasoft/hard contributions, origi-

nating from dimension-six operators within EQCD and MQCD, respectively.

At this point we would like to clarify why such logarithmic divergences (which are

“universal”, i.e. present in any regularization scheme) originate first at 3-loop level. In

three dimensions, 1-loop graphs may contain power divergences but no logarithmic di-

vergences. Logarithmic divergences first originate at 2-loop level. However, within the

super-renormalizable truncation of EQCD, they lead to the counterterms in eq. (2.9), i.e.

the gauge coupling is finite. Divergences affecting the gauge coupling can only emerge when

dimension-six operators are added to EQCD. Given that dimension-six operators are them-

selves generated by 1-loop diagrams, the divergences correspond to the 3-loop level in terms

of the fundamental theory. In section 3, where effects originating from integrating out the

hard scale are considered, 3-loop level corresponds to the relative accuracy O(g6), whereas

in section 4, where effects originating from integrating out the soft scale are at focus, the

expansion parameter is ∼ g, and the 3-loop effects are of relative magnitude O(g3).

2.2 Dimension-six operators

The dimension-six operators that can be added to eq. (2.1) were determined in ref. [28]. We

represent the operators as matrices in the adjoint representation. Letting Greek indices take

values µ ∈ {0, . . . , d}, computing the coefficients at 1-loop level, and choosing to rephrase

the gauge coupling as the same gE as appears inside F a
ij and Dab

i , the dimension-six action

– 4 –



J
H
E
P
0
5
(
2
0
1
8
)
0
3
7

can be written as

δSEQCD[A] =
∑∫ ′

P

2g2E
P 6

∫

X
tr
{
c1 (DµFµν)

2 + c2 (DµFµ0)
2

+igE

[
c3 FµνFνρFρµ + c4 F0µFµνFν0 + c5A0(DµFµν)F0ν

]

+g2E
[
c6A

2
0F

2
µν + c7A0FµνA0Fµν + c8A

2
0F

2
0µ + c9A0F0µA0F0µ

]

+g4E
[
c10A

6
0

]}
. (2.13)

The colour trace refers to the adjoint representation: tr{AB} ≡ AabBba, tr{ABC} ≡

AabBbcCca, where (A0)ab ≡ −ifabcAc
0, (Fµ0)ab ≡ −ifabcF c

µ0, and (DµFµν)ab ≡

−ifabcDcd
µ F d

µν . The value of the sum-integral over P evaluates to

∑∫ ′

P

1

P 6
=

Γ(3− d
2)ζ(6− d)T

(4π)
d
2 (2πT )6−d

3−2ǫ
=

ζ3 µ
−2ǫ

128π4T 2

{
1+2ǫ

[
ln

(
µ̄eγE

4πT

)
+1− γE +

ζ ′3
ζ3

]
+O(ǫ2)

}
.

(2.14)

The values of ci were given for d = 3 in ref. [28]. We need to generalize the expressions

to d dimensions, because some of the operators lead to divergent loop integrals at the second

stage of our analysis (cf. section 3). Beyond leading order, the coefficients are also functions

of g2, but these contributions are of higher order than the effects that we are interested in.

As mentioned in section 2.1, we are also suppressing effects proportional to Nf .

As a first step, it may be realized that the operator basis in eq. (2.13) is redundant: it

can be verified that

∫

X
tr

{
igE

[
F0µFµνFν0 +A0(DµFµν)F0ν

]
+

g2E
2

[
−A2

0F
2
µν +A0FµνA0Fµν

]}
= 0 . (2.15)

Therefore a simultaneous change of the coefficients (cnewi ≡ ci + δci, i = 4, . . . , 7) has no

physical effect, provided that

δc4 = δc5 = −2δc6 = 2δc7 . (2.16)

In particular, we could tune c7 to zero as was done in ref. [28],2 by choosing δc7 = −c7.

Then eq. (2.16) implies that the other coefficients should appear in the combinations

c
(new)
4 = c4 − 2c7 , c

(new)
5 = c5 − 2c7 , c

(new)
6 = c6 + c7 . (2.17)

In the following we keep both c5 6= 0 and c7 6= 0 for generality; this offers for a good

crosscheck in that only the combinations of eq. (2.17) appear in any physical expressions.

In order to determine the values of the coefficients ci, we have computed 1-loop contri-

butions to the 2-point, 3-point, 5-point and 6-point functions of the Matsubara zero modes

in the background field Feynman gauge [26].3 Salient details from this computation are

2Tuning c5 to zero would yield eq. (2.13) more elegant and simplify a number of subsequent computations.
3In a general gauge, several of the coefficients depend on the gauge fixing parameter, but we have checked

that the logarithmic divergences that we are ultimately interested in do not.
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presented in section 2.3. Matching the 2 and 3-point vertices yields

c1 =
41− d

120
, c2 =

(d− 1)(d− 5)

120
, c3 =

1− d

180
, c5 − c4 =

(d− 1)(d− 5)

60
.

(2.18)

Adding the 5-point vertex permits for us to fix the combinations in eq. (2.17) as

c4 − 2c7 =
(41− d)(5− d)

60
, c5 − 2c7 =

(21− d)(5− d)

30
, c6 + c7 =

(d− 25)(5− d)

24
.

(2.19)

In addition the 5-point vertex shows the presence of so-called evanescent operators whose

coefficients vanish for d = 3,

c8 =
(5− d)(3− d)(d− 1)

20
, c9 =

(5− d)(3− d)(d− 1)

30
. (2.20)

The coefficient c10 is also evanescent and can be determined from the 6-point vertex; we

find c10 = (5− d)(3− d)(d− 1)2/180 but this does not contribute to any of our results.

For d = 3 eqs. (2.18)–(2.20) agree with ref. [28]. (Expressions for a general d were derived

in ref. [29], but unfortunately a rather different notation was employed.)

2.3 Details on the determination of dimension-six coefficients

In this section we provide some details on the determination of the coefficients listed in

eqs. (2.18)–(2.20). The derivation of eq. (2.13) is most conveniently formulated with the

background field method [26], and as a reminder the gauge potentials are denoted by

Ba
µ. The object computed is the background field effective action, ΓEQCD[B], whereby the

vertices are automatically symmetrized in the appropriate way. After a field redefinition,

viz. Aa
i = Ba

i (1 +O(g2B)) and Aa
0 = Ba

0 (1 +O(g2B)), the result is identified with SEQCD[A].

We choose to work directly in momentum space, with the background fields denoted

by Ba
µ(q). The momenta q have spatial components only:

qµ ≡ δµi qi . (2.21)

Specific tensors are defined for showing the dependence of the vertices on spacetime and

colour indices; these are summarized in appendix A. The structure naturally emerging

from the computation is one in which there are Lorentz-invariant structures (δµν etc.)

and additional terms that only appear for the zero components of the gauge potentials;

the latter are identified through the tensors Tµν ≡ δµ0δν0 etc. Results for various 1-loop

sum-integrals in this basis are given in appendix B.

Computing the 2-point and 3-point vertices in the background field gauge, we obtain

the 1-loop correction

Γ
(2+3)
EQCD [B] =

g2BNc

2!
Ba

µ(q)B
b
ν(r) δ

ab δ(q + r) γ(2)µν (q)

+
ig3BNc

3!
Ba

µ(q)B
b
ν(r)B

c
ρ(s) f

abc δ(q + r + s) γ(3)µνρ(q, r, s) , (2.22)
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where summations and integrations are implied, and T
∫
q δ(q) ≡ 1. Expanding in 1/P 2 ∼

1/(πT )2, the 2-point vertex reads

γ(2)µν (q) =
∑∫ ′

P

{
(d− 25)

(
q2δµν − qµqµ

)

6P 4
+ Tµν

[
(d− 1)2

P 2
−

(d− 1)(d− 3)q2

6P 4

]

+
4c1 q

2
(
q2δµν − qµqµ

)
+ 4c2 q

4 Tµν

P 6
+ O

(
1

P 8

)}
, (2.23)

where c1 and c2 have the values in eq. (2.18). The term proportional to Σ′
∫

P
1
P 2 yields the

parameterm2
E in eq. (2.2), whereas the terms proportional to Σ′

∫
P

1
P 4 yield wave function cor-

rections. The existence of a term Σ′
∫

P

Tµνq
2

P 4 indicates that temporal and spatial components

of the gauge potentials need to be normalized differently.

For the 3-point vertex a similar computation leads to

γ(3)µνρ(q, r, s) =
∑∫ ′

P

{
(25− d)qρδµν + (d− 1)(d− 3) qρTµν

P 4

−
24c1 qµqρrν + 12c3 qν(rµqρ − qµrρ)

P 6

−
6(4c1 − 3c3)s

2qρ δµν − 6q2[3c3 sρ + 8c1 rρ] δµν
P 6

+
6(c4 − c5)s

2 qρTµν − 6q2[4c2(qρ − rρ) + (c5 − c4)sρ]Tµν

P 6
+ O

(
1

P 8

)}
, (2.24)

where c3 and c4−c5 have the values shown in eq. (2.18).4 The terms proportional to Σ′
∫

P
1
P 4

can be partly accounted for by wave function corrections; the remainder yields the effective

gauge coupling of eq. (2.3). The same result for g2E is obtained both from a purely spatial

vertex (∼ qρδµiδνi) and from a vertex mixing two Aa
0’s and one Aa

i (∼ qρTµν).

The 4-point vertex can similarly be written as

Γ
(4)
EQCD[B] =

g4B
4!

Ba
µ(q)B

b
ν(r)B

c
α(s)B

d
β(t) δ(q + r + s+ t) γ

(4)abcd
µναβ (q, r, s, t) , (2.25)

where

γ
(4)abcd
µναβ (q, r, s, t) =

∑∫ ′

P

{
X{ab}{cd}

2(d− 1)2(3− d)Tµναβ

P 4

+X [ab][cd]
4(25− d)δµαδνβ + 8(d− 1)(d− 3)Tµαδνβ

P 4
+O

(
1

P 6

)}
. (2.26)

The notations X{ab}{cd} and X [ab][cd] are defined in appendix A. The term proportional to

Σ′
∫

P

Tµναβ

P 4 yields λE in eq. (2.4), whereas the other terms proportional to Σ′
∫

P
1
P 4 correspond

to wave function corrections and g2E. The dimension-six part of the 4-point vertex is rather

complicated (it is shown in appendix C) and we have not used it for determining ci’s.

4This representation is not unique, cf. the comments below eq. (C.3).
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Figure 1. 1-loop contributions to the 5-point function in the background field gauge. Wiggly lines

denote gluons and dotted lines ghosts. The diagrams have been drawn with Axodraw [30].

Proceeding finally to the 5-point vertex, we find no contribution ∼ Σ′
∫

P
1
P 4 . The contri-

bution of the dimension-six operators from eq. (2.13) can be written as

Γ
(5)
EQCD[B] = Ba

µ(q)B
b
ν(r)B

c
ρ(s)B

d
α(t)B

e
β(u) δ(q + r + s+ t+ u)

(∑∫ ′

P

8ig5Esµ
P 6

)

×
{
X{ab}[cde]

[
−c1 δραδνβ + 4c1 δρβδνα − c1 δρνδαβ

−c2 Tραδνβ + 4c2 Tρβδνα − c2 Tρνδαβ

−c2 δραTνβ + (c5 − 2c7) δρβTνα − c2 δρνTαβ − c9Tρναβ

]

+X [ab]{cde}
[
(5c1 − 3c3) δραδνβ + (3c3 − 4c1) δρβδνα + 3c1 δρνδαβ

+(c2 − c4 + c5)Tραδνβ + (c4 − c5)Tρβδνα + 3c2 Tρνδαβ

+(c2 − c4 + c5) δραTνβ + (c4 − 4c2 − 2c7) δρβTνα

+(c5 − c2 + 2c6) δρνTαβ + (c8 − c9)Tρναβ

]}
+O

(∑∫ ′

P

1

P 8

)
. (2.27)

We have computed the corresponding Feynman diagrams, shown in figure 1. Making

use of momentum conservation and appropriate symmetrizations, and identifying g2E =

g2B(1 +O(g2B)), we obtain precisely the same structure from Feynman diagrams. There are

20 independent terms that permit for a crosscheck of eq. (2.18) and, most importantly, for

a unique determination of the combinations appearing in eqs. (2.19) and (2.20).

3 Overlapping soft/hard and ultrasoft/hard contributions

In EQCD, the gauge field components Aa
0 have turned into massive adjoint scalar fields

when the non-zero Matsubara modes were integrated out (cf. eq. (2.1)). Our goal now

is to integrate out the massive Aa
0, and thereby construct the MQCD action. Its super-

renormalizable part has the form of the spatial part of eq. (2.1). We denote it by

SMQCD[A] ≡

∫

X

1

4
F a
ijF

a
ij , (3.1)

even though F a
ij now contains a different gauge coupling than eq. (2.1): F a

ij = ∂iA
a
j −

∂jA
a
i + gMf

abcAb
iA

c
j . The main goal of this section is to determine the contributions to g2M

that originate from the dimension-six operators in eq. (2.13). These are termed soft/hard

(sections 3.1 and 3.2) and ultrasoft/hard (section 3.3) contributions.

We note that in analogy with eq. (2.13), SMQCD also has a dimension-six part, δSMQCD.

It is given in eq. (3.16) and discussed in more detail in section 3.3.
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Figure 2. 1-loop contributions to the 2-point function, containing some of the “Chapman vertices”

from eq. (2.13), denoted by a filled blob. The adjoint scalar fields are denoted by solid lines.

In order to determine g2M, we once again make use of the background field effective

action, ΓMQCD[B]. In particular, we consider its quadratic part,

Γ
(2)
MQCD[B] =

1

2
Ba

i (q)B
a
j (−q)(q2δij − qiqj)

(
ZB + δZB

)
, (3.2)

where δZB collects any possible divergences.

In the background field gauge, Γ is gauge invariant in terms of B [26]. Consequently

the 3-point and 4-point vertices are fully determined by eq. (3.2). After a subsequent field

redefinition, this implies that ZB determines the gauge coupling of MQCD:

g2M = g2ER µ2ǫ Z−1
B − g2ER µ2ǫ δZB + δg2E +O(g10) . (3.3)

Here δg2E is from eq. (2.8). The following discussion is carried out in terms of ZB and δZB.

When the field Aa
0 is integrated out and one vertex from eq. (2.13) is included, we

expect to find terms of the types

ZB + δZB = 1 +

(∑∫ ′

P

g2ENc

P 6

)[
mERg

2
ERNcT

4π
#(5) +

(g2ERNcT )
2

(4π)2
#(6) + . . .

]
, (3.4)

where #(6) may contain logarithms. The corresponding effects are of O(g5) and O(g6) in

terms of the original QCD coupling. The latter effect is comparable to eq. (2.12).

Before proceeding let us explain why we consider “2-loop soft × 1-loop hard” contri-

butions, i.e. 2-loop graphs with one insertion of dimension-six operators, but not “1-loop

soft × 2-loop hard” ones. In terms of ZB defined in eq. (3.2), “1-loop hard” gives a factor

∼ g2/T 2, “1-loop soft” gives a factor ∼ g2TmER ∼ g3T 2, and “2-loop soft” gives a factor

∼ (g2T )2 ∼ g4T 2. The overall effects of these orders are ∼ g5, g6, cf. eq. (3.4). In contrast

“2-loop hard” would give dimension-six operators proportional to ∼ g4/T 2. The overall

effect from “1-loop soft × 2-loop hard” would therefore be ∼ g7, i.e. of higher order than

our computation. The same applies to dimension-eight operators, whose coefficients are

∼ g2/T 4 and who get a further suppression factor . g2Tm3
ER ∼ g5T 4 from soft effects.

3.1 1-loop results with dimension-six operators

The 1-loop contribution to ZB from dimension-six operators originates from the graphs

shown in figure 2. The vertices related to dimension-six operators have been indicated with

a filled blob; we refer to them as “Chapman vertices”. In appendix C the vertices are written

in a form convenient for computing these graphs. The 2-point vertex is parametrized

through η1, η2, cf. eq. (C.1); the 3-point vertex through ξ1, . . . , ξ10, cf. eq. (C.3); and the

4-point vertex through ψ1, . . . , ψ44 and ω1, . . . , ω35, cf. eq. (C.5).
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Computing the graphs in figure 2 in dimensional regularization and expanding in

q2/m2
E, all of them can be related to a single 1-loop tadpole integral, denoted by

I(mE) ≡

∫

p

T

p2 +m2
E

=
md−2

E Γ(1− d
2)T

(4π)
d
2

3−2ǫ
= −

mETµ
−2ǫ

4π

[
1+2ǫ

(
1+ln

µ̄

2mE

)
+O(ǫ2)

]
.

(3.5)

We get

δΓ
(2)
MQCD[B] = Ba

i (q)B
b
j (r) δ

ab δ(q + r)

(∑∫ ′

P

g4EN
2
c

P 6

)
I(mE)

×

{
m2

E δij

[
d+ 2

d

(
−2η2 − ξ8 + ξ9

)
−

3

4

(
ψ4 +

ψ26

d

)

−ψ13 + ψ15 +
1

d

(
ψ35 − ψ34

)
+

1

4

(
ω4 +

ω26

d

)]

+
(
q2δij − qiqj

)[(4 + d)(2− d)

24
η2 +

d− 2

12

(
ξ9 − ξ8

)
+ ξ10

+
3ψ5

4
+ ψ16 − ψ18 −

ω5

4

]

+qiqj

[
η2 + ξ8 + ξ10 +

3

4

(
ψ5 + ψ29

)
+ ψ16 − ψ18

+ψ42 − ψ43 − ψ44 −
1

4
(ω5 + ω29)

]
+ O

(
q4

m2
E

)}
. (3.6)

Inserting the values of the coefficients in terms of the ci’s from appendix C, the terms

proportional tom2
Eδij and qiqj drop out as required by gauge invariance, and we are left with

δΓ
(2)
MQCD[B] = Ba

i (q)B
b
j (r) δ

ab δ(q + r) (q2δij − qiqj)

(∑∫ ′

P

g4EN
2
c

P 6

)
I(mE)

×

{
(4− d)(d− 2)

12
(c1 + c2) + 3c3 + (c4 − 2c7) + 4(c6 + c7)

}
. (3.7)

Inserting the coefficients c1, . . . , c7 from eqs. (2.18) and (2.19) and setting d → 3, the curly

brackets evaluate to

lim
d→3

{
. . .

}
= − lim

d→3

d4 − 13 d3 + 312 d2 − 6404 d+ 25424

1440
= −

875

144
. (3.8)

The corresponding contribution to ZB is shown on the first row of eq. (3.13).

3.2 2-loop results with dimension-six operators

At 2-loop level, the contributions of the 2-point, 3-point and 4-point Chapman vertices

to ZB can be extracted from Feynman diagrams shown in figures 3–5. In addition the

5-point and 6-point Chapman vertex also contribute. The general expressions for these,

parametrized through the coefficients κ1, . . . , κ10, λ1, . . . , λ10 and χ1, . . . , χ16, are given in

eqs. (C.19) and (C.21), respectively, and the corresponding diagrams are shown in figure 6.
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+2 +
1

2
+2 +2 +1 +1 +1
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1

2
+
1

2

+1 +
1

2
+
1

2
+
1

2
+1 .

Figure 3. 2-loop contributions to the 2-point function, originating from 2-point Chapman vertices,

denoted by filled blobs. Adjoint scalars are denoted by solid lines. Graphs involving closed massless

loops, which do not contribute to the matching, have been omitted.

+1 +1 +1 +2 +2 +2 +1

+1 +1 +1 +2 +2 +1 +
1

2

Figure 4. 2-loop contributions to the 2-point function, originating from 3-point Chapman vertices

(the notation is as in figure 3).

+1 +2 +
1

2
+
1

4
+1 +

1

2
+
1

4
+
1

4

Figure 5. 2-loop contributions to the 2-point function, originating from 4-point Chapman vertices

(the notation is as in figure 3).

+
1

2
+

1

2
+

1

8

Figure 6. 2-loop contributions to the 2-point function, originating from 5-point or 6-point Chap-

man vertices (the notation is as in figure 3).

In order to display the result, we introduce a 2-loop “sunset” integral,

H(mE) ≡

∫

p,q

T 2

(p2 +m2
E)(q

2 +m2
E)(p+ q)2

=
m2d−6

E Γ(1− d
2)Γ(2−

d
2)T

2

(d− 3)(4π)d
3−2ǫ
=

T 2µ−4ǫ

(4π)2

[
1

4ǫ
+ ln

(
µ̄

2mE

)
+

1

2
+O(ǫ)

]
. (3.9)
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Then

δΓ
(2)
MQCD[B] =

1

2
Ba

i (q)B
b
j(r) δ

ab δ(q + r)

(∑∫ ′

P

g6EN
3
c

P 6

)
H(mE)

×

{
m2

E δij
4d

C1 +
q2δij − qiqj

4d
C2 +

qiqj
4d

C3 + O

(
q4

m2
E

)}
, (3.10)

where C1, C2, C3 are given in appendix E in terms of the coefficients η1, . . . , χ16.
5

Inserting the values of the coefficients from appendix C, we find that C1 and C3 and

terms proportional to α in C2 cancel. The remaining contribution reads

δΓ
(2)
MQCD[B] = −Ba

i (q)B
b
j (r) δ

ab δ(q + r)
(
q2δij − qiqj

)(∑∫ ′

P

g6EN
3
c

P 6

)
H(mE)

×

{
(d− 3)(d− 4)2(d3 − 10d2 + 23d− 44)(c1 + c2)

6d(d− 5)(d− 7)

+
(d4 − 18d3 + 95d2 − 210d+ 192)c3

2d(d− 5)
+

(d3 − 13d2 + 36d− 36)(c4 − 2c7)

6d

+
2(d3 − 13d2 + 21d− 6)(c6 + c7)

3d
+

(d− 3)(d− 4)(2c8 + c9)

6

}
(3.11)

= −Ba
i (q)B

b
j (r) δ

ab δ(q + r)
(
q2δij − qiqj

)(∑∫ ′

P

g6EN
3
c

P 6

)
H(mE)

×
(
17d 8 − 494d 7 + 6522d 6 − 53766d 5 + 301049d 4 − 1075772d 3

+2085956d 2 − 1575176d+ 102864
) 1

720d(d− 5)(d− 7)
, (3.12)

where in the last step we made use of eqs. (2.18)–(2.20). We note that the evanescent

operators parametrized by c8 and c9 do not play a role for d ≈ 3, because the coefficients

with which they contribute in eq. (3.11) themselves vanish for d → 3.

Setting d = 3−2ǫ, inserting eqs. (2.14), (3.7) and (3.9), and going over to renormalized

parameters, we obtain

ZB = 1 +

(
g2ERNc

16π2

)2mER

2πT

(
875ζ3
72

)
(3.13)

−

(
g2ERNc

16π2

)3(1097ζ3
549

)
61

5

{
ln

(
µ̄eγE

4πT

)
+ 2 ln

(
µ̄

2mER

)
+

ζ ′3
ζ3

− γE +
103771

52656

}
,

δZB = −

(
g2ERNc

16π2

)3(1097ζ3
1098

)
61

5ǫ
. (3.14)

Remarkably, setting g2ER = g2 (1 + O(g2)), the divergence in eq. (3.14) cancels 1097/1098

of the coefficient of 1/ǫ in eq. (2.12). The remaining 1/1098 can be expressed as

δZB + δZB =
g6N3

c T
2

(8π)2

(
ζ3

128π4T 2

)
1

45ǫ
+O(g8) , (3.15)

where in the round brackets we have isolated the master integral in eq. (2.14).

5A general gauge parameter, denoted by α, has been employed: 〈Aa
k(p)A

b
l (q)〉 ≡

δabδ(p+q)

p2

(
δkl −

αpkpl
p2

)
.
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3.3 Contribution from dimension-six operators in MQCD

As already alluded to below eq. (3.1), there are dimension-six operators also in MQCD.

These originate from the purely spatial part of eq. (2.13), and also from 1-loop effects within

EQCD, as will be discussed in section 4. The corresponding action can be written as6

δSMQCD[A] = 2g2M

∫

X
tr
{
C1 (DiFij)

2 + igMC3 FijFjkFki

}
, (3.16)

where (recalling g2M = g2E (1 +O(g))) the hard contribution is δCi = Σ′
∫

P ci/P
6.

The dimension-six operators in eq. (3.16) give a contribution to physical observables

determined by MQCD, such as the spatial string tension or “magnetostatic” screening

masses. Given that MQCD is a confining theory, these effects cannot be computed an-

alytically. We would like to know, however, whether the MQCD dynamics can give an

ultraviolet (UV) divergent contribution, compensating against the term in eq. (3.15).

In order to determine the UV divergence, we employ a trick similar to that in ref. [31].

All infrared (IR) contributions are “shielded” by employing the propagators

〈Aa
k(p)A

b
l (q)〉 ≡

δabδ(p+ q)

p2 +m2
G

(
δkl −

αpkpl
p2 +m2

G

)
, 〈ca(p)c̄ b(q)〉 ≡

δabδ(p− q)

p2 +m2
G

, (3.17)

where ca, c̄ b are ghost fields, α is a gauge parameter, and mG ≡ g2MT/π is a fictitious

mass. Once again, we compute a background field effective action, now denoted by ΓIR[B]

given that the most IR fluctuations have been accounted for. We extract from it a 2-point

function like in eq. (3.2). The technical implementation follows that in sections 3.1 and 3.2.

Most contributions that we find are α-dependent and void of physical significance. For

instance, the 1-loop result has a structure similar to eq. (3.6) but with mE → mG:

δΓ
(2)
IR [B]

∣∣∣
α=0

=
1

2
Ba

i (q)B
b
j (r) δ

ab δ(q + r) g4MN
2
c I(mG)

×

{(
q2δij − qiqj

) [
−
11C1
3

+ 18 C3 +O(ǫ)

]
+ O

(
q4

m2
G

)}
. (3.18)

This result is finite and proportional to mG and vanishes when we send mG → 0.

However, at 2-loop order a non-trivial and gauge-independent result emerges. Writing

the contribution from Chapman vertices in a form reminiscent of eq. (3.10), we get

δΓ
(2)
IR [B] =

1

2
Ba

i (q)B
b
j (r) δ

ab δ(q + r) g6MN
3
c H3(mG)

×

{
m2

G δij
4d

D1 +
q2δij − qiqj

4d
D2 +

qiqj
4d

D3 + O

(
q4

m2
G

)}
. (3.19)

The function H3 is the three-mass variant of eq. (3.9), cf. eq. (D.10), and has the same UV

divergence, viz. T 2µ−4ǫ/[(4π)24ǫ]. The coefficients Di contain a part ∝ H/H3 = 1 +O(ǫ).

6There are many alternative representations, for instance tr
{
FijFjkFki

}
=

iN
c

2
fabcF a

ijF
b
jkF

c
ki =

iN
c

2(d−2)
fabcǫijkF̃

a
i F

b
jlF

c
kl =

iN
c

2
fabcF̃ a

i F̃
b
j F

c
ij =

iN
c

2(d−2)
fabcǫijkF̃

a
i F̃

b
j F̃

c
k , where we denoted the dual field

strength by F̃ a
i ≡

ǫijk
2

F a
jk and defined ǫijkǫlmn ≡ δil(δjmδkn − δjnδkm)+ δim(δjnδkl − δjlδkn)+ δin(δjlδkm −

δjmδkl).
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For ǫ → 0, D1,3 are of O(ǫ) and yield no divergence, whereas D2 has a finite α-independent

part:

D2 = 24C3 +O(ǫ) . (3.20)

Substituting C3 → Σ′
∫

P c3/P
6, inserting c3 from eq. (2.18), and setting g2M = g2µ2ǫ (1 +

O(g)), yields a gauge-independent UV divergence and logarithmic part:

δΓ
(2)
IR [B] =

1

2
Ba

i (q)B
b
j (r) δ

ab δ(q + r)
(
q2δij − qiqj

)
(3.21)

×
g6N3

c T
2

(8π)2

(
ζ3

128π4T 2

)(
−

1

45

){
1

ǫ
+ 2 ln

(
µ̄eγE

4πT

)
+ 4 ln

(
µ̄

3mG

)
+O(1)

}
.

Comparing with eq. (3.15), the divergence exactly cancels. Therefore we have now estab-

lished our main technical goal, demonstrating that the IR-divergence in eq. (2.12) is fully

cancelled by soft/hard and ultrasoft/hard contributions from dimension-six operators.

4 Soft and overlapping ultrasoft/soft contributions

In section 3 we considered the soft/hard contributions to the MQCD effective action, cf.

eq. (3.4). However, there are other contributions to ZB, namely those associated with

the purely “soft” contributions from the scale mE. In order to distinguish these from the

effects considered in section 3, we denote them by Z̃B. For this section, we can take the

super-renormalizable truncation in eq. (2.1) as a starting point, and mE as the only scale

being integrated out.

4.1 Direct soft terms up to 3-loop level

Up to 2-loop level, the value of Z̃B was determined in ref. [32] (the dependence on scalar

couplings was added in ref. [20]):7

Z̃B = 1 +
g2ERNcT

48πmER

+

(
g2ERNcT

16πmER

)2(19

18
+

4λ

3

)
+ O

(
g2ERNcT

16πmER

)3

. (4.1)

We now turn to the 3-loop contribution.

The determination of Z̃B is a rather straightforward exercise in computer-algebraic

methods for loop integrals. The Feynman diagrams were generated with QGRAF [33].

After expanding in the external momentum and projecting onto the transverse and longi-

tudinal polarizations, we have to deal with vacuum-like master integrals. The subsequent

simplifications, making use of renamings of integration variables and integration-by-parts

(IBP) identities [34, 35], have been programmed in FORM [36]. The values of the 3-loop

master integrals can be found in refs. [31, 37] and are given in eqs. (D.12) and (D.13). As

a crosscheck, we have carried out two independent computations, whose results coincide

7In d dimensions, Z̃B = 1 + g2ENc

∫
p

T

6(p2+m2

E
)2

+ g4EN
2
c

[
d3−10d2+23d−44

3d(d−5)(d−7)
− 2λ

3

] ∫
p

T

p2+m2

E

∫
q

T

(q2+m2

E
)3

+

O(g6EN
3
c ), where the integrals are given in eq. (D.1).

– 14 –



J
H
E
P
0
5
(
2
0
1
8
)
0
3
7

perfectly. Our final “bare” expression reads8

δΓ̃
(2)
MQCD[B] =

1

2
Ba

i (q)B
b
j(r) δ

ab δ(q + r)
(
q2δij − qiqj

)(g2ENcTµ
−2ǫ

16πmE

)3( µ̄

2mE

)6ǫ

×

{
1 + 4(κ2 − 4λ)

6ǫ
+

2(23510− 12600ζ2 − 1101 ln 2)

945

+
4λ+ 24λ2 − κ1(5− 8 ln 2) + κ2(31− 24 ln 2)

9
+O(ǫ)

}
. (4.2)

The 1/ǫ-divergences in eq. (4.2) could a priori have an IR or UV origin. To find out, we

have carried out the same computation by shielding all masses like in eq. (3.17), but with

mG → mE. Then only the divergence proportional to 4(κ2 − 4λ) remains. This indicates

that the divergence not containing scalar self-couplings is purely of IR origin.

We can envisage two possible sources for the IR divergence. One is related to ultrasoft

contributions of the same type as in section 3.3; these are analyzed in section 4.2. The

other is related to the mass parameter m2
E. It is well known that the physical Debye mass,

defined as a screening mass related to a “heavy-light” state, is non-perturbative starting at

next-to-leading order [38, 39]. Our m2
E is not such a physical mass but rather a Lagrangian

parameter. Nevertheless, m2
E can still be considered IR sensitive at O(g4ERT

2). Indeed, if

we compute the 2-point function of Aa
0 at zero momentum, and shield all masses like in

eq. (3.17), we find the UV divergence cancelled by the mass counterterm in eq. (2.9). In

contrast, if we compute the 2-point function without IR-shielding, we find an additional

1/ǫ-divergence proportional to g4ERT
2, which depends on the gauge parameter α. This is

an IR divergence, i.e. ∼ g4ERT
2/ǫIR.

If we naively insert an ambiguity of this type into the 1-loop term in eq. (4.1) and

re-expand up to 3-loop order, the result is

g2ERNcT

48π
[
m2

ER + β
ǫ
IR

(g2ERNcT
16π

)2]1/2 −
g2ERNcT

48πmER

≃ −
β

6ǫ
IR

(
g2ERNcT

16πmER

)3

. (4.3)

On the non-perturbative level, 1/ǫIR would turn into a multiple of ln(cmG/mER), where c

is a non-perturbative constant and the scale mG was defined around eq. (3.17).

Keeping in mind this expectation, we renormalize eq. (4.2) by employing the proper

mass counterterm from eq. (2.9). The UV divergences proportional to κ2− 4λ duly cancel,

and we find the 3-loop result

Z̃
(3)
B + δZ̃

(3)
B =

(
g2ERNcT

16πmER

)3{ 1

6ǫ
+

[
1 +

8(κ2 − 4λ)

3

]
ln

(
µ̄

2mER

)

+
2(23510− 12600ζ2 − 1101 ln 2)

945

+
52λ+ 24λ2 − κ1(5− 8 ln 2) + κ2(19− 24 ln 2)

9

}
. (4.4)

8The full d-dimensional form is given in appendix E, cf. eqs. (E.4)–(E.12).
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Figure 7. 1-loop contributions to the MQCD 2-point, 3-point and 5-point functions in the back-

ground field gauge. Wiggly lines denote ultrasoft gluons and solid lines adjoint scalars.

4.2 Contribution from dimension-six operators in MQCD

Parallelling section 3.3, let us finally consider contributions from ultrasoft effects to the

gauge coupling, in the presence of dimension-six operators in MQCD. The action has the

form in eq. (3.16), with the coefficients now completed to include the soft contribution:

Ci =
∑∫ ′

P

ci
P 6

+ T

∫

p

c̃i
(p2 +m2

E)
3
, i = 1, 3 . (4.5)

The spatial integral appearing is related to that in eq. (3.5) as shown by eq. (D.1),

∫

p

T

(p2 +m2
E)

3
=

md−6
E Γ(3− d

2)T

2(4π)
d
2

3−2ǫ
=

Tµ−2ǫ

32πm3
E

[
1 + 2ǫ

(
1 + ln

µ̄

2mE

)
+O(ǫ2)

]
. (4.6)

Including the overall prefactor from eq. (3.16) and the integral from eq. (4.6), the new

contributions to the coefficients of the dimension-six operators are ∼ g2MT/m
3
E at 1-loop

level. Including a fictitious IR-regulator like in eq. (3.17), the 1-loop contribution from these

operators to Z̃B comes with a factor ∼ g2MTmG and vanishes formG → 0, whereas the 2-loop

contribution comes with a factor ∼ g4MT
2 and can yield a contribution ∼ g6MT

3/m3
E ∼ O(g3)

to Z̃B. 2-loop contributions to the coefficients of dimension-six operators would be ∼

g4MT
2/m4

E and therefore lead to effects suppressed by ∼ O(g4). Dimension-eight operators,

whose coefficients are ∼ g2MT/m
5
E, lead to effects suppressed by ∼ g10M T 5/m5

E ∼ O(g5).

According to eq. (2.24), the value of c̃1 can be inferred from the 2-point and that of

c̃3 from the 3-point vertex of the background field effective action. To be sure that no

operators got overlooked, we have also determined them from the 5-point vertex, cf. the

spatial part of eq. (2.27), which leads to several independent crosschecks (the diagrams are

shown in figure 7). We find that the results are related in a curious way to the d-dependence

of c1 and c3 in eq. (2.18):9,10

c̃1 = −
1

120
, c̃3 = −

1

180
. (4.7)

9To our knowledge these values were first obtained for d = 3 by P. Giovannangeli (unpublished, 2005),

along lines that have recently been documented in ref. [40].
10We note in passing that even though the c̃i contribution in eq. (4.5) is parametrically larger by O(1/g3)

than the ci contribution, the large value of c1 in eq. (2.18) implies that numerically c1 and c̃1 give similar

contributions if g2 ∼ 2. If g2 ≫ 1, C1 becomes positive.
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Inserting these values into eq. (3.20), and substituting g2M = g2ERµ
2ǫ (1+O(g)), we find

a gauge-independent UV divergence and logarithmic part:

δΓ̃
(2)
IR [B] =

1

2
Ba

i (q)B
b
j (r) δ

ab δ(q + r)
(
q2δij − qiqj

)

×

(
g2ERNcT

16πmER

)3(
−

1

45

){
1

ǫ
+ 2 ln

(
µ̄

2mER

)
+ 4 ln

(
µ̄

3mG

)
+O(1)

}
. (4.8)

This implies that the counterterm needed in MQCD reads δZ̃
(3)
B =

( g2ERNcT
16πmER

)3 1
45ǫ .

Obviously, eq. (4.8) does not match the divergence in eq. (4.4). In other words, if we

subtract the part needed to serve as δZ̃
(3)
B from eq. (4.4), an IR divergence remains. In terms

of the coefficient β introduced in eq. (4.3), it amounts to β = −13
15 . Let us stress that we have

verified the gauge independence of this result. Therefore we are left to speculate that a non-

perturbative mass ambiguity of the type discussed around eq. (4.3) prohibits a purely per-

turbative determination of Z̃
(3)
B , and thus of g2M in terms of g2ER and mER at O(g6ERT

3/m3
ER).

5 Conclusions

The main technical ingredient of this investigation was the analysis carried out in section 3.

We considered dimension-six operators induced by integrating out the “hard” momenta

∼ πT from thermal QCD [28]. Specifically, we computed at 1-loop and 2-loop levels the

influence of these operators on the gauge coupling felt by ultrasoft (magnetostatic) modes.

Remarkably, including UV divergences originating both from “soft” loops at the Debye

scale mE ∼ gT and “ultrasoft” loops at the non-perturbative scale ∼ g2T/π, we observed

an exact cancellation of the IR divergence found in a 3-loop determination of the EQCD

gauge coupling (cf. eq. (2.12)) [22, 23]. This represents a nice crosscheck of the effective

theory setup as a whole.

As a second technical ingredient, discussed in section 4, we considered the “soft”

contributions to the ultrasoft gauge coupling. We determined direct 3-loop effects (cf.

eq. (4.4)) and compared them with overlapping ultrasoft/soft contributions originating

from dimension-six operators induced by integrating out the soft momenta ∼ mE (cf.

eq. (4.8)). This time only a partial cancellation of soft IR divergences against ultrasoft/soft

UV divergences was observed. As a culprit, we speculate that a non-perturbative ambiguity

of the soft scale within EQCD sets an upper bound on the accuracy with which effects

depending on mE can be determined within perturbation theory. This may be surprising

insofar as no such problem was met in 3-loop or 4-loop studies of the EQCD vacuum energy

density [15, 31]. However, the present quantity is different, being not directly a physical

observable but rather an effective Lagrangian parameter (the MQCD gauge coupling g2M).

On a more general level, the main conclusions that we draw are as follows:

(i) Even if the colour-electric scale mE ∼ gT is formally larger than the colour-magnetic

scale ∼ g2T/π, it does play an essential role in the IR dynamics. Concretely, in terms

of the IR divergence found by integrating out the hard scale ∼ πT , the colour-electric

scale is 1097 times more important than the colour-magnetic scale (cf. eq. (3.14)).
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(ii) Dimension-six operators need to be included in EQCD if good precision is required.

Indeed, as we have demonstrated analytically (cf. point (i)), they do influence the IR

dynamics of the system. This is a possible reason for why the super-renormalizable

truncation of EQCD fails close to Tc even in pure Yang-Mills theory [19].

(iii) Apart from the indications in point (i) that the scale mE is important, we also find

trouble if we try to integrate it out. The reason could be that EQCD is a con-

fining theory, and that physics at the scale m2
E should in general be affected by

non-perturbative ambiguities of O(g4T 2/π2). Once mE is integrated out, some rem-

nant of these ambiguities may remain, if the parameters of MQCD are determined

up to the corresponding relative precision. It would be interesting to find a way

to determine the leading non-perturbative contribution to g2M through lattice meth-

ods, even if this requires the simultaneous inclusion of the 1/m3
E-suppressed MQCD

dimension-six operators in eq. (3.16).
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A Spacetime and colour tensors

Because the presence of a heat bath breaks Lorentz invariance, we need to introduce sepa-

rate notation for spatial and zero spacetime indices. The full Kronecker symbol is denoted

by

δµν ≡ Tµν + Sµν , Tµν ≡ δµ0δν0 , Sµν ≡ δµiδνi . (A.1)

We also introduce the totally symmetric tensors

Tµνρσ ≡ δµ0δν0δρ0δσ0 , (A.2)

Tµνρσαβ ≡ δµ0δν0δρ0δσ0δα0δβ0 , (A.3)

δµνρσ ≡ δµνδρσ + 2 permutations , (A.4)

δµνρσαβ ≡ δµνδρσδαβ + 14 permutations . (A.5)

For the colour indices, it is helpful to denote

Xa1a2...an ≡ fmna1m1fm1a2m2 · · · fmn−1anmn , (A.6)

as well as the symmetrized versions

X{a1...a2}... ≡
1

2

(
Xa1...a2... +Xa2...a1...

)
, X [a1...a2]... ≡

1

2

(
Xa1...a2... −Xa2...a1...

)
. (A.7)

These objects satisfy Xanan−1...a2 a1 = (−1)nXa1a2...an−1an , Xa1a2...an−1an = Xa2...an−1ana1 .

It follows that

X{a1a2}[a3a4] = X{a1a2}{a3a4a5} = X [a1a2][a3a4a5] = X{a1a2a3}[a4a5a6] = 0 . (A.8)
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Therefore we can write

Xa1a2a3a4 = X{a1a2}{a3a4} +X [a1a2][a3a4] , (A.9)

Xa1a2a3a4a5 = X{a1a2}[a3a4a5] +X [a1a2]{a3a4a5} , (A.10)

Xa1a2a3a4a5a6 = X{a1a2a3}{a4a5a6} +X [a1a2a3][a4a5a6] . (A.11)

It may furthermore be noted that

Xa1a2a3 = −
Nc

2
fa1a2a3 , X [a1a2][a3a4] = −

Nc

4
fma1a2fma3a4 , (A.12)

X [a1a2]a3[a4a5] = −
Nc

8
fma1a2fma3nfna4a5 , (A.13)

fa1a2nXna3a4... = 2X [a1a2]a3a4... = Xa1a2a3a4... −Xa2a1a3a4... . (A.14)

B Basic sum-integrals

Employing the notation defined in eqs. (A.1)–(A.5), the following relations can be estab-

lished:

∑∫ ′

P

PµPν

P 4
=

∑∫ ′

P

(1− d)Tµν + δµν
2P 2

, (B.1)

∑∫ ′

P

PµPν

P 6
=

∑∫ ′

P

(3− d)Tµν + δµν
4P 4

, (B.2)

∑∫ ′

P

PµPν

P 8
=

∑∫ ′

P

(5− d)Tµν + δµν
6P 6

, (B.3)

∑∫ ′

P

PµPνPρPσ

P 8
=

∑∫ ′

P

{
(3− d)(1− d)Tµνρσ

24P 4

+
(3− d) (Tµνδρσ + 5 permutations) + δµνρσ

24P 4

}
, (B.4)

∑∫ ′

P

PµPνPρPσ

P 10
=

∑∫ ′

P

{
(5− d)(3− d)Tµνρσ

48P 6

+
(5− d) (Tµνδρσ + 5 permutations) + δµνρσ

48P 6

}
, (B.5)

∑∫ ′

P

PµPνPρPσPαPβ

P 12
=

∑∫ ′

P

{
(5− d)(3− d)(1− d)Tµνρσαβ

480P 6

+
(5− d)(3− d) (Tµνρσδαβ + 14 permutations)

480P 6

+
(5− d) (Tµνδρσαβ + 14 permutations) + δµνρσαβ

480P 6

}
. (B.6)

These are needed for the computations in section 2.3.
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C Dimension-six vertices in the S/T basis

In section 2.3 we displayed (parts of) the vertices originating from eq. (2.13) in a basis in

which spacetime indices appear in the form similar to appendix B. For the considerations

of section 3, it is advantageous to employ a basis in which the spatial and temporal indices

are strictly separated from each other. This can be implemented with the tensors Sµν··· and

Tµν···, defined in eq. (A.1). In this section we display all the Chapman vertices originating

from eq. (2.13) with such a notation.

The 2-point Chapman vertex reads

δS
(2)
EQCD = Aa

µ(q)A
a
ν(−q)

(∑∫ ′

P

g2ENc

P 6

){
η1 q

2
(
q2Sµν − qµqν

)
+ η2 q

4Tµν

}
, (C.1)

where

η1 = 2c1 , η2 = 2(c1 + c2) . (C.2)

The 3-point Chapman vertex becomes

δS
(3)
EQCD = Aa

µ(q)A
b
ν(r)A

c
ρ(s) f

abc δ(q + r + s)

(∑∫ ′

P

ig3ENc

P 6

)

×

{
ξ1 qµqνqρ + ξ2 qµqνrρ + ξ3 qµrνqρ + ξ4 rµqνqρ

+Sµν

[
ξ5 q

2qρ + ξ6 q
2rρ + ξ7 s

2qρ

]
+ Tµν

[
ξ8 q

2qρ + ξ9 q
2rρ + ξ10 s

2qρ

]}
, (C.3)

where qµqνqρ and qµqνqρ+qµqνrρ−qµrνqρ = −qµ(qνsρ+rνqρ) actually vanish as can be seen

by the relabelling (r ↔ s, ν ↔ ρ, b ↔ c). Therefore any change δξ1 or any simultaneous

change δξ2 = −δξ3 has no effect. It can be checked that eqs. (3.6) and (E.1)–(E.3) are

invariant in these transformations. A representation of the coefficients can be chosen as

ξ1 = 0 , ξ2 = 2c3 , ξ3 = −4c1 , ξ4 = −2c3 ,

ξ5 = −3c3 , ξ6 = 8c1 − 3c3 , ξ7 = 3c3 − 4c1 , ξ8 = −4c2 − 3c3 − c4 + c5 ,

ξ9 = 8c1 + 4c2 − 3c3 − c4 + c5 , ξ10 = 3c3 − 4c1 + c4 − c5 . (C.4)

The 4-point vertex amounts to

δS
(4)
EQCD = Aa

µ(q)A
b
ν(r)A

c
α(s)A

d
β(t) δ(q + r + s+ t)

(∑∫ ′

P

g4E
P 6

)

×

{
X{ab}{cd}

[
SµαSνβ

(
ψ1 q

2 + ψ3 q · r
)

+TµαSνβ

(
ψ4 q

2 + ψ5 r
2 + ψ6 q · r

)

+SµνSαβ

(
ψ10 q

2 + ψ12 q · r
)
+ TµνSαβ

(
ψ13 q

2 + ψ15 q · r
)

+SµνTαβ

(
ψ16 q

2 + ψ18 q · r
)
+ Tµναβ

(
ψ19 q

2 + ψ21 q · r
)

+Sµα

(
ψ22 qνqβ + ψ23 qνrβ + ψ24 rνqβ + ψ25 rνrβ

)

+Tµα

(
ψ26 qνqβ + ψ27 qνrβ + ψ28 rνqβ + ψ29 rνrβ

)

– 20 –



J
H
E
P
0
5
(
2
0
1
8
)
0
3
7

+Sµν

(
ψ30 qαqβ + ψ31 qαrβ

)
+ Tµν

(
ψ34 qαqβ + ψ35 qαrβ

)

+Sαβ

(
ψ38 qµqν + ψ39 qµrν + ψ40 rµqν

)

+Tαβ

(
ψ42 qµqν + ψ43 qµrν + ψ44 rµqν

)]

+X [ab][cd]
[
ψi → ωi

]}
, (C.5)

where some coefficients have been dropped because they can be converted to the remaining

ones through trivial renamings of indices and integration variables. The values are

ψ1 = 0 , ψ3 = −8c1 ,

ψ4 = 0 , ψ5 = 0 , ψ6 = −16c1 − 4c5 + 8c7 ,

ψ10 = −4c1 , ψ12 = −4c1 ,

ψ13 = 0 , ψ15 = 0 , ψ16 = −8c1 − 2c5 + 4c7 , ψ18 = −8c1 − 2c5 − 4c6 ,

ψ19 = −4c1 − 2c5 + 4c7 + 2c9 , ψ21 = −12c1 − 6c5 − 4c6 + 8c7 − 2c8 + 4c9 ,

ψ22 = −8c1 , ψ23 = 12c1 , ψ24 = −4c1 , ψ25 = 4c1 ,

ψ26 = −8c1 − 8c2 , ψ27 = 12c1 − 20c2 + 8c5 − 16c7 ,

ψ28 = −4c1 + 12c2 − 4c5 + 8c7 , ψ29 = 4c1 + 4c2 ,

ψ30 = 4c1 , ψ31 = −4c1 , ψ34 = 4c1 + 4c2 , ψ35 = −4c1 − 4c2 ,

ψ38 = 4c1 , ψ39 = 0 , ψ40 = 8c1 ,

ψ42 = 4c1 − 4c2 + 2c5 − 4c7 , ψ43 = 8c2 − 2c5 + 4c7 ,

ψ44 = 8c1 − 8c2 + 4c5 + 4c6 − 4c7 ,

ω1 = −16c1 , ω3 = 8c1 − 12c3 ,

ω4 = −16c1 − 16c2 , ω5 = −16c1 − 4c5 + 8c7 ,

ω6 = 16c1 − 24c3 − 8c4 + 4c5 + 8c7 ,

ω22 = −24c1 , ω23 = −44c1 + 24c3 , ω24 = −12c1 , ω25 = 4c1 ,

ω26 = −24c1 − 24c2 , ω27 = −44c1 − 12c2 + 24c3 + 8c4 − 8c5 ,

ω28 = −12c1 − 28c2 + 4c5 − 8c7 , ω29 = 4c1 − 12c2 + 4c5 − 8c7 ,

ω30 = 0 , ω31 = 20c1 − 12c3 , ω34 = 0 ,

ω35 = 20c1 + 20c2 − 12c3 − 4c4 + 8c7 . (C.6)

In the case of ωi, all coefficients associated with operators containing Sαβ or Tαβ vanish,

because of antisymmetry.

The coefficients of the 4-point vertex listed above are not independent. Indeed momen-

tum conservation leads to relations between the different structures defined in eq. (C.5),

which implies that certain linear combinations of the coefficients couple to null operators.

In the spirit of eq. (2.16), these ambiguities can be listed as transformations (Θ1 . . .Θ12)

whereby a simultaneous modification of the coefficients as indicated below has no physical
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meaning:

Θ1 : δω1 = −δψ1 = δψ10 , (C.7)

Θ2 : δω4 = −δψ4 = δψ13 , (C.8)

Θ3 : δω5 = −δψ5 = δψ16 , (C.9)

Θ4 : δω22 = −δψ22 = δψ30 , (C.10)

Θ5 : δω23 = −δω24 = δω31 = −δψ23 = δψ24 = 2δψ39 = −2δψ40 , (C.11)

Θ6 : δω25 = −δψ25 = δψ38 , (C.12)

Θ7 : δω26 = −δψ26 = δψ34 , (C.13)

Θ8 : δω27 = −δω28 = δω35 = −δψ27 = δψ28 = 2δψ43 = −2δψ44 , (C.14)

Θ9 : δω29 = −δψ29 = δψ42 , (C.15)

Θ10 : δψ13 = δψ15 = −δψ16 = −δψ18 , (C.16)

Θ11 : δψ30 = δψ31 = −δψ38 = −2δψ39 = −2δψ40 , (C.17)

Θ12 : δψ34 = δψ35 = −δψ42 = −2δψ43 = −2δψ44 . (C.18)

This list may not be complete. It can be checked that the expressions in eqs. (3.6)

and (E.1)–(E.3) are invariant in these transformations.

The 5-point Chapman vertex reads

δS
(5)
EQCD = Aa

µ(q)A
b
ν(r)A

c
ρ(s)A

d
α(t)A

e
β(u) δ(q + r + s+ t+ u)

(∑∫ ′

P

ig5Esµ
P 6

)

×

{
X{ab}[cde]

[
κ1 SραSνβ + κ2 SρβSνα + κ3 SρνSαβ

+κ4 TραSνβ + κ5 TρβSνα + κ6 TρνSαβ

+κ7 SραTνβ + κ8 SρβTνα + κ9 SρνTαβ + κ10 Tρναβ

]

+X [ab]{cde}
[
κi → λi

]}
, (C.19)

where

κ1 = −8c1 , κ2 = 32c1 , κ3 = −8c1 ,

κ4 = −8c1 − 8c2 , κ5 = 32c1 + 32c2 , κ6 = −8c1 − 8c2 ,

κ7 = −8c1 − 8c2 , κ8 = 32c1 + 8c5 − 16c7 , κ9 = −8c1 − 8c2 ,

κ10 = 16c1 + 8c5 − 16c7 − 8c9 ,

λ1 = 40c1 − 24c3 , λ2 = −32c1 + 24c3 , λ3 = 24c1 ,

λ4 = 40c1 + 8c2 − 24c3 − 8c4 + 8c5 , λ5 = −32c1 + 24c3 + 8c4 − 8c5 ,

λ6 = 24c1 + 24c2 , λ7 = 40c1 + 8c2 − 24c3 − 8c4 + 8c5 ,

λ8 = −32c1 − 32c2 + 24c3 + 8c4 − 16c7 , λ9 = 24c1 − 8c2 + 8c5 + 16c6 ,

λ10 = 32c1 + 16c5 + 16c6 − 16c7 + 8c8 − 8c9 . (C.20)
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Finally the 6-point vertex can be expressed as

δS
(6)
EQCD =

∫

X
Aa

µA
b
ν A

c
ρA

d
σ A

e
αA

f
β X

abcdef

(∑∫ ′

P

g6E
P 6

)

×
{[

χ1 SρσSαβ + χ2 SραSσβ + χ3 SρβSσα

]
Sµν

+
[
χ4 SναSρβ + χ5 SνβSρα

]
Sµσ

+
[
χ6 SρσSαβ + χ7 SραSσβ + χ8 SρβSσα

]
Tµν

+
[
χ9 SνσSαβ + χ10 SναSσβ

]
Tµρ

+
[
χ11 SνρSαβ + χ12 SναSρβ + χ13 SνβSρα

]
Tµσ

+χ14 SµνTρσαβ + χ15 SµρTνσαβ + χ16 SµσTνραβ + χ17 Tµνρσαβ

}
, (C.21)

where

χ1 = −4c1 + 2c3 , χ2 = 16c1 − 6c3 , χ3 = −4c1 , χ4 = −2c3 , χ5 = −8c1 + 6c3 ,

χ6 = −12c1 − 4c2 + 6c3 + 2c4 − 2c5 , χ7 = 16c1 − 6c3 − 2c4 + 4c5 + 4c6 ,

χ8 = −8c1 − 2c5 − 4c6 ,

χ9 = 32c1 + 16c2 − 12c3 − 4c4 + 4c5 , χ10 = −16c1 + 12c3 + 4c4 − 4c5 ,

χ11 = −4c1 − 4c2 , χ12 = −6c3 − 2c4 + 4c7 , χ13 = −8c1 − 8c2 + 6c3 + 2c4 − 4c7 ,

χ14 = −4c1 − 2c5 − 4c6 − 2c8 , χ15 = 16c1 + 8c5 + 8c6 − 8c7 + 4c8 − 4c9 ,

χ16 = −12c1 − 6c5 − 4c6 + 8c7 − 2c8 + 4c9 , χ17 = −2c10 . (C.22)

D Basic vacuum integrals

For the computations of section 3 various d-dimensional vacuum integrals are needed. At

2-loop level their results can be expressed in terms of H defined in eq. (3.9), multiplied by

rational functions of d. For notational simplicity we denote the mass bym, let ∆p ≡ p2+m2,

and omit the trivial factor T included in eq. (3.9).

Making use of the integral

∫

p

1

∆n
p

=
md−2nΓ(n− d

2)

(4π)
d
2Γ(n)

, (D.1)

factorized integrals can be expressed as
∫

p,q

m−2

∆p∆q
= −

2(d− 3)H

d− 2
,

∫

p,q

1

∆2
p∆q

= (d− 3)H . (D.2)

A sunset integral with a power of the massless propagator reads

∫

p,q

1

∆p∆q(p+ q)2n
=

m2d−2n−4Γ(d2 − n)Γ(n+ 2− d)Γ2(n+ 1− d
2)

(4π)dΓ(d2)Γ(2n+ 2− d)
. (D.3)

In particular,
∫

p,q

1

∆p∆q(p+ q)2
= H ,

∫

p,q

m2

∆p∆q(p+ q)4
= −

(d− 3)H

2(d− 5)
. (D.4)
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A sunset integral with a power of a massive propagator reads

∫

p,q

1

∆n
p∆q(p+ q)2

=
m2d−2n−4Γ(1− d

2)Γ(n+ 1− d
2)

(d− n− 2)(4π)dΓ(n)
. (D.5)

In particular,

∫

p,q

m2

∆2
p∆q(p+ q)2

= −
(d− 3)H

2
,

∫

p,q

m4

∆3
p∆q(p+ q)2

=
(d− 3)(d− 4)(d− 6)H

8(d− 5)
.

(D.6)

Tensor integrals can be reduced to scalar integrals through

〈pµpνpαpβ〉 =
(SµνSαβ + SµαSνβ + SµβSνα)〈p

4〉

d(d+ 2)
, (D.7)

〈pµpνpαqβ〉 =
(SµνSαβ + SµαSνβ + SµβSνα)〈p

2p · q〉

d(d+ 2)
, (D.8)

〈pµpνqαqβ〉 =
(SµαSνβ + SµβSνα)〈d(p · q)

2 − p2q2〉

d(d− 1)(d+ 2)
+

SµνSαβ〈(d+ 1)p2q2 − 2(p · q)2〉

d(d− 1)(d+ 2)
,

(D.9)

where 〈. . .〉 represents a generic rotationally invariant expectation value, and Sµν ≡ δµiδνi.

In the considerations of section 3.3, another variant of the sunset integral was encoun-

tered,

H3 ≡

∫

p,q

1

∆p∆q∆p+q
. (D.10)

It can be written in terms of the hypergeometric function 2F1 [41, 42],

H3 = −
3(d− 2)

4(d− 3)

[
2F1

(
4− d

2
, 1;

5− d

2
;
3

4

)
− 3

d−5
2

2πΓ(5− d)

Γ(4−d
2 )Γ(6−d

2 )

] ∫

p,q

m−2

∆p∆q
. (D.11)

At 3-loop level we need the values of two “basketball” integrals (cf. e.g. refs. [31, 37]):

B2 ≡

∫

p,q,r

1

∆p∆q(p+ r)2(q + r)2
(D.12)

= −
mµ−6ǫ

(4π)3

(
µ̄

2m

)6ǫ{ 1

2ǫ
+ 4 + ǫ

[
26 +

25ζ2
4

]
+O(ǫ2)

}
,

B4 ≡

∫

p,q,r

1

∆p∆q∆p+r∆q+r

(D.13)

= −
mµ−6ǫ

(4π)3

(
µ̄

2m

)6ǫ{1

ǫ
+ 8− 4 ln 2 + ǫ

[
52 +

17ζ2
2

− 32 ln 2 + 4 ln2 2

]
+O(ǫ2)

}
.

E Details concerning 2-loop and 3-loop results

For completeness we report here technical results related to sections 3 and 4 that were too

lengthy to fit the presentation in the main text.
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Consider first the coefficients C1, C2 and C3, defined in eq. (3.10). Because of the

general way in which we have parametrized the Chapman vertices (cf. appendix C), the

expressions for these contain substantial “redundancies”, which we reproduce here in full.

This permits for very strong crosschecks, as discussed e.g. in the context of eqs. (C.7)–

(C.18) for the quartic Chapman vertex. The expressions read

C1 = −
8(d− 1)

[
(2d+ 3)η1 + 2d(d+ 2)η2 + (d+ 1)ξ5 − (d+ 2)ξ6 − ξ7 + d ξ10

]

d− 2

−
8(d− 1)

[
(d+ 1)(d+ 2)ξ8 − (d2 + 3d+ 1)ξ9

]

d− 2

+
2(d− 1)

[
4(ψ3 − ψ30 + ψ31)− 2(2d+ 3)ψ10 + 4dψ12 − 3ψ22 + ω22

]

d− 2

−
(d− 1)

[
2(3d2 − 1)ψ4 + 4(2d2 + 1)(ψ13 − ψ15) + (5d− 1)ψ26 + d(ψ27 − ω27)

]

d− 2

−
(d− 1)

[
ψ6 − ω6 + ψ28 − ω28 + 2(5d+ 1)(ψ34 − ψ35)− 2(d2 + 3)ω4 − (5d+ 3)ω26

]

d− 2

−
(d− 1)

[
(3d+ 7)(κ4 + 2ψ1) + (d− 1)(2κ5 − λ4 − 2ω1 + 2ω35)− 5κ6 − (4d+ 1)λ6

]

d− 2

−
10d(d− 3)

[
κ10 − λ10 − 4χ14 − 2χ15 − 2χ16 + 4ψ19 − 2ψ21

]

d− 2
, (E.1)

C2 =
2
[
18(d− 1)ξ4 + (d+ 1)(d2 − 9d+ 12)(ξ6 − ξ5) + 12(d2 − 3)ξ7

]

3(d− 5)

−
2
(
d6 − 13d5 + 49d4 − 83d3 + 208d2 − 114d− 156

)
η2

3(d− 5)(d− 7)

−

(
4d5 − 55d4 + 226d3 − 335d2 + 484d− 336

)
ξ8

3(d− 5)(d− 7)

+

(
4d5 − 55d4 + 226d3 − 323d2 + 388d− 252

)
ξ9

3(d− 5)(d− 7)

−
4
(
d4 − 10d3 + 25d2 − 51d+ 51

)
η1

3(d− 5)
−

2
(
2d4 − 31d3 + 120d2 − 111d+ 36

)
ξ10

3(d− 5)

+
(d− 1)

[
(3d+ 7)ψ1 − 4(ψ3 − ψ30 + ψ31) + 2(2d+ 3)ψ10 − 4dψ12 + 3ψ22

]

d− 5

+
(d− 1)

[
ψ28 − 2(d− 1)ω1 − 2ω22 − ω28

]

2(d− 5)
+

d(37d− 39)ψ5

6
−

d(3d− 1)ω5

2

+
(d− 2)(d− 3)(d− 7)(ψ4 + 3ω4 − 2ψ13)

6(d− 5)
−

(d3 − 8d2 + 51d− 84)ψ6

12(d− 5)

+
2(d2 − 8d+ 9)ψ15

3(d− 5)
+

d(23d− 21)ψ16

3
− 2(4d2 − 5d+ 2)ψ18

+
(d2 + 7d− 12)(ψ26 − 2ψ34 + 3ω26)

12
+

d(d+ 1)ψ35

6
− 2(d− 2)ψ44

−
(d3 − 16d2 + 59d− 52)ω6

4(d− 5)
−

(d− 2)
[
(d2 − 33)ψ27 − (d2 − 24d+ 87)ω27

]

12(d− 5)
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+
d(d− 3)

[
5(λ10 − κ10)− 20(d− 2)ψ19 + 4(2d− 3)ψ21 − ω35

]

6

+
α(d− 1)

[
ψ28 − ω28 − 2ω35 − 8(2η1 + ξ5 + ξ7)

]

2(d− 5)

+
4α(d− 1)ξ8

d− 7
+

8α(d− 1)
[
(d− 3)η2 − ξ9

]

(d− 5)(d− 7)
, (E.2)

C3 = 8d(d− 1)
[
η2 + ξ8 + ξ10

]

+
4(d− 1)

[
(d− 1)(η1 + ξ5) + 2(ξ2 + ξ3 + ξ4 + ξ6) + (d+ 1)ξ7

]

d− 5

+
(d− 1)

[
(3d+ 7)(ψ1 + ψ25)− 4(ψ3 + ψ23 + ψ24 + ψ31) + 2(2d+ 3)(ψ10 + ψ38)

]

d− 5

−
(d− 1)

[
4d(ψ12 + ψ39 + ψ40)− 10(ψ22 + ψ30) + (d− 1)(ω1 + ω25)

]

d− 5

+2d(d− 1)
[
3(ψ5 + ψ29) + 4(ψ16 − ψ18 + ψ42 − ψ43 − ψ44)− ω5 − ω29

]
. (E.3)

After substituting the coefficients from appendix C, we get eq. (3.11).

As a second ingredient, we report the full d-dimensional version of eq. (4.2). The result

can be expressed as

δΓ̃
(2)
MQCD[B] =

1

2
Ba

i (q)B
b
j(r) δ

ab δ(q + r)
(
q2δij − qiqj

)(g2ENc

m2
E

)3

(E.4)

×
{(

r1 + r̃1
)
(d) I3(mE) + r2(d)m

2
EB2(mE) +

(
r3 + r̃3

)
(d)m2

EB4(mE)
}
,

where the pure gauge contributions are parametrized by

r1(d) = −
(d− 2)p1(d)

384(d− 10)(d− 8)(d− 7)(d− 6)(d− 5)(d− 4)(d− 3)2(d− 1)d
, (E.5)

r2(d) =
(3d− 10)(3d− 8)p2(d)

128(d− 3)(d− 1)d(2d− 11)(2d− 9)(2d− 7)
, (E.6)

r3(d) =
(3d− 10)(3d− 8)p3(d)

256(d− 10)(d− 8)(d− 6)(d− 4)(d− 1)d
, (E.7)

with the non-factorizable polynomials

p1(d) = 12d 12 − 628d 11 + 14447d 10 − 193505d 9 + 1689420d 8 − 10234582d 7

+44883931d 6 − 147059385d 5 + 366585830d 4 − 689809244d 3

+929595256d 2 − 791686464d+ 314842752 , (E.8)

p2(d) = 12d 7 − 308d 6 + 3175d 5 − 17441d 4 + 57347d 3

−117419d 2 + 138786d− 70872 , (E.9)

p3(d) = 3d 5 − 60d 4 + 359d 3 − 670d 2 + 400d+ 736 , (E.10)

where I, B2 and B4 are the master integrals from eqs. (3.5), (D.12) and (D.13), respectively.
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In terms of the couplings from eqs. (2.5)–(2.7), the scalar contributions amount to

r̃1(d) =
d− 2

8

{
(d− 4)(3d 5 − 49d 4 + 283d 3 − 779d 2 + 1238d− 1056)λ

3(d− 7)(d− 5)(d− 3)d

−
(d− 4)(3d− 10)λ2

3

+
(d− 2)2(9d 2 − 77d+ 158)κ1
16(d− 6)(d− 4)(d− 3)d

+
(d− 10)(d− 2)2κ2

16(d− 4)d

}
, (E.11)

r̃3(d) =
(3d− 10)(3d− 8)(d 2 − 5d− 2)

[
κ1 + (d− 6)κ2

]

256(d− 6)(d− 4)d
. (E.12)

Setting d = 3− 2ǫ, inserting the values of the master integrals, and carrying out a Taylor

expansion in ǫ, eq. (E.4) goes over into eq. (4.2).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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