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We analyze the restoration pattern of the members of the scalar and pseudoscalar meson nonets under
chiral Oð4Þ and Uð1ÞA symmetries. For that purpose, we exploit QCD Ward identities (WI), which allow
one to relate susceptibilities with quark condensates, as well as susceptibility differences with meson
vertices. In addition, we consider the low-energy realization of QCD provided by Uð3Þ chiral perturbation
theory (ChPT) at finite temperature to perform a full analysis of the different correlators involved. Our
analysis suggests Uð1ÞA partner restoration if chiral symmetry partners are also degenerated. This is also
confirmed by the ChPT analysis when the light chiral limit is reached. Partner degeneration for the I ¼ 1=2
sector, the behavior of I ¼ 0mixing and the temperature scaling of meson masses predicted by WI are also
studied. Special attention is paid to the connection of our results with recent lattice analyses.
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I. INTRODUCTION

The nature of chiral symmetry restoration is an essential
ingredient of the phase diagram of QCD. Chiral restoration
is realized in lattice simulations and presumably in matter
formed after a Heavy Ion Collision. Most of its main
properties are well understood. Namely, a crossover-like
transition takes place in the physical case, i.e., for massive
quarks and Nf ¼ 2þ 1 flavors of masses mu ¼ md ¼
m̂ ≪ ms, at a transition temperature of about Tc ∼
155 MeV for vanishing baryon density [1–5]. The main
transition signals are the inflection of the light quark
condensate and the maximum of the scalar susceptibility.
As the system approaches the light chiral limit m̂=ms →
0þ, Tc decreases, the light quark condensate reduces and
the scalar susceptibility peak increases at Tc [6], hence
approaching the phase transition regime characteristic of
two massless flavors [7,8].
In addition, the anomalous Uð1ÞA symmetry can be

asymptotically restored, driven by the vanishing of the
instanton density [9]. A crucial issue with important theo-
retical and phenomenological consequences but which
remains to be fully understood is whether the Uð1ÞA
symmetry can be restored close to the chiral transition.

If the answer is affirmative, the restoration pattern would be
Oð4Þ ×Uð1ÞA instead of SULð2Þ × SURð2Þ ≈Oð4Þ for
Nf ¼ 2. Moreover,Uð1ÞA restoration at the chiral transition
not only changes the chiral pattern universality class but it
also affects the order of the transition. It was already pointed
out in [7] that for Nf ¼ 2 the chiral transition would be of
first order ifUð1ÞA is effectively restored atTc and of second
order if it is not. This has been also confirmed by recent
effective model analysis [10]. The restoration of Uð1ÞA
would also affect the transition order forNf ¼ 3 [11] as well
as the behavior near the critical end point at finite temper-
ature and baryon chemical potential [12]. Analyses ofUð1ÞA
restoration using effective theories for Nf ¼ 3 have also
been carried out recently [13] reaching similar conclusions.
The particle spectrum would also be directly affected. In

particular, the physical states becoming chiral partners, i.e.,
those that degenerate at the transition, would be different
depending on the chiral pattern. This would also have a
direct consequence is the behavior of the associated
susceptibilities and screening masses. On the one hand,
within the scalar 0þþ and pseudoscalar 0−þ meson nonets,
if the chiral group SULð2Þ × SURð2Þ is restored, the pion
and the σ=f0ð500Þ are expected to degenerate [14–16]. On
the other hand, the restoration of the Uð1ÞA symmetry
would allow the pion to be degenerated with the a0ð980Þ;
i.e., the member of the scalar nonet with the same pion
quantum numbers but an opposite parity. In this context, it
is also natural to investigate the fate of the rest of the
members of the scalar and pseudoscalar nonet at chiral
restoration, i.e., the Kð800Þ (or κ) versus the kaon for
I ¼ 1=2, and the f0ð980Þ − f0ð500Þ pair versus the η − η0
for the I ¼ 0 octet and singlet members.
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Regarding an effective low-energy description, if chiral
and Uð1ÞA restoration happen to be close, a proper
description of this regime will require the η0 (singlet) state
to be included formally as the ninth Goldstone boson
[17–19], which atT ¼ 0 relies on the largeNc limit [17–20].
In fact, there is experimental evidence of the reduction of the
η0 mass in the hot medium [21], which also points out to
Uð1ÞA restoration and confirms the early proposal in [22],
where phenomenological effects of the η0 mass reduction on
the dilepton and diphoton spectra are analyzed.
However, Uð1ÞA restoration is meant to be reached only

asymptotically. Thus, it is important to clarify that byUð1ÞA
restoration we will mean the approximate degeneration of
Uð1ÞA partners in comparison with Oð4Þ partner degener-
ation. The idea thatUð1ÞA partners can degenerate in an ideal
chiral restoring scenario was first suggested in [23] and
confirmed in [24] through an analysis of spectral properties
of theQCDquark propagator. Nevertheless, in the realworld
with massive quarks, nontrivial gauge configurations make
in general a nonzeroUð1ÞA breaking to be present [25] even
though Uð1ÞA partners could still be approximately degen-
erate. The particle spectrum at finite temperature including
the Uð1ÞA anomaly has been studied within a linear sigma
model description in [26] and using renormalization-group
methods in [27]. Mesonic fluctuation effects on the strength
of theUð1ÞA symmetry breaking has been recently studied in
[28] using functional renormalization group methods. In
addition, screening and pole masses at Uð1ÞA restoration
within the NJL model are studied in [29,30]. A recent work
intimately connectedwith our present analysis is [31], where
the Oð4Þ and Uð1ÞA transitions are studied in terms of the
topological susceptibility.
The restoration of the Uð1ÞA symmetry also affects the

temperature dependence of the η − η0 mixing. Since the
vanishing of the anomalous contribution to the η0 mass
implies ideal mixing [32–34], i.e., the η and η0 states being
of pure light and strange quark content, respectively, one
would naturally expect that at temperatures where Uð1ÞA is
restored, the mixing angle should reach the ideal limit. This
is indeed a nontrivial statement since the T ¼ 0 physical
mixing angle is far from the ideal one. The ideal limit at
asymptotically high temperatures has been confirmed by
recent analysis within the linear sigma model [35] and the
NJL model [30]. Similar results have been obtained in [36]
by studying the influence of quantum and thermal fluctua-
tions on the η − η0 mixing angle.
The above aspects regarding chiral partners and patterns

are also of fundamental relevance to clarify the nature of the
scalar nonet, which has been a matter of debate over the
recent past [37–39]. Thus, the restoration pattern could help
to shed light on the nature of those states when compared to
the predictions based upon their q̄q assignment. Note that
the full restoration of the chiral SULð3Þ × SURð3Þ ×Uð1ÞA
symmetry would imply a complete degeneration of all
members of the two nonets. Hence, it is expected that it

would take place at a much higher temperature, since it
requires the vanishing of the hs̄si condensate, which has a
much softer temperature dependence [4].
Many of the issues described above regarding chiral and

Uð1ÞA restoration have been recently analyzed also by
lattice collaborations. Nonetheless, the nature of the chiral
pattern is still subject to debate. On the one hand, for Nf ¼
2þ 1 flavors and nonzero quark masses, it has been found
in [4,5] that the Uð1ÞA symmetry in terms of π − a0 partner
degeneration is restored well above Tc, i.e., the chiral
transition temperature where π − σ states degenerate. These
results are consistent with previous analysis of screening
masses by the same group [40]. Another lattice analysis
based on meson screening masses pointing towards Uð1ÞA
restoration taking place above Tc is [41], for two flavors
and two colors. On the other hand, the lattice results in
[42–44] are consistentwithUð1ÞA restoration taking place at
the chiral transition or very close above it. These simulations
are performed in the chiral limit for two flavors. In addition,
in the recent analysis [45], results compatible with Uð1ÞA
being restored at the chiral transition are also reported for
two flavors and massive quarks. The influence of Uð1ÞA
restoration on the phase diagram, the tricritical point and the
transition order has also been investigated in the lattice in
[46,47], while degeneration of parity partners for nucleons
in the lattice have been analyzed recently in [48].
Aiming to provide as much theoretical information as

possible, we will carry out here a detailed analysis of chiral
and Uð1ÞA symmetry restoration for the scalar and pseu-
doscalar nonets based on the fruitful combination of Ward
identities (WI) andUð3Þ chiral perturbation theory (ChPT).
Our present analysis extends in a nontrivial way the SUð2Þ
study performed in [49], where WI played a crucial role to
describe the degeneration of σ − π states, and in [50], where
Uð3Þ WI relating quark condensates and pseudoscalar
susceptibilities were derived and checked within Uð3Þ
ChPT. In a recent work [51], we have exploited WI to reach
useful conclusions about Uð1ÞA and chiral restoration and
derived new WI connecting two and three point functions.
For the sake of completeness, we will also include here

the detailed derivation of all the relevant WI analyzed in
[51] and we will discuss their main consequences for chiral
and Uð1ÞA restoration. The main novelties of the present
manuscript with respect to [51] are the following: we will
show that new scalar WI provide a good description of the
scaling of lattice screening masses in the scalar I ¼ 1=2
sector, thus extending the analysis in [49,50], and we will
perform a full analysis within the framework of Uð3Þ
ChPT. On the one hand, ChPT is needed to provide a
specific realization of WI for hadronic states, since WI are
formally derived from QCD, and therefore they may be
subject to renormalization ambiguities. On the other hand,
our ChPT analysis will provide support for our results in
[51] regarding partner degeneration. It will also allow us to
analyze carefully the behavior near the chiral limit within a
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model-independent approach. Such model independency is
the main advantage of the ChPT framework.
The paper is organized as follows: in Sec. II, we will

provide the general derivation of the WI considered. The
consequences of one-point WI for the different isospin
sectors of the two nonets will be discussed in Sec. III,
which includes new analyses of isospin-breaking, the role
of connected and disconnected susceptibilities and screen-
ing masses. Section IV will be devoted to the analysis of
two-point WI. The effective field theory analysis based on
Uð3Þ ChPT will be presented in Sec. V, where we will
provide a model-independent and renormalizable hadron
realization of the WI analyzed in previous sections. In
addition, we will also analyze the ChPT predictions for the
temperature behavior of the relevant observables for chiral
andUð1ÞA restoration. Actually, the explicit expressions for
the scalar susceptibilities in this formalism are derived here
for the first time and collected in the Appendix. Our ChPT
results, albeit limited at temperatures well below the
transition, will essentially capture and confirm the main
results obtained formally from the analysis of WI. They
will be particularly useful in the chiral limit and will
provide new insights on this problem for future lattice and
theoretical analysis. Finally, in Sec. VI, we will present our
main conclusions.

II. GENERAL WARD IDENTITIES

In order to clarify partner degeneration in terms of
different symmetry restoration patterns, we consider the
pseudoscalar Pa ¼ iψ̄γ5λaψ and scalar Sa ¼ ψ̄λaψ quark
bilinears, with ψ a three-flavor fermion field with compo-
nents ψu;d;s, λa¼1;…8 the SUð3Þ Gell-Mann matrices and
λ0 ¼ ffiffiffiffiffiffiffiffi

2=3
p

1. The starting point for our analysis is the
expected value of a local operator Oðx1;…; xnÞ from the
QCD generating functional

hOðx1;…; xnÞi ¼ Z−1
Z

½dG�½dψ̄ �½dψ �Oðx1;…; xnÞeSQCD ;

ð1Þ
whereGa

μ is the gluon field, Z ¼ R ½dG�½dψ̄ �½dψ �eSQCD is the
partition function and SQCD ¼ i

R
d4xLQCD in Minkowski

spacetime, where the fermion QCD Lagrangian in the light
quark sector is:

LQCD ¼ −
1

4
Ga

μνG
μν
a þ ψ̄ðiγμDμ −MÞψ ; ð2Þ

with Dμ ¼ ∂μ þ igGμ, Gμ ¼ Ga
μðλa=2Þ, g the QCD cou-

pling constant, Ga
μν ¼ ∂μGa

ν − ∂νGa
μ − gfabcGb

μGc
ν and

M ¼ diagðmu;md;msÞ the quark mass matrix.
The relevant transformations to study the restoration of

the chiral and Uð1ÞA symmetries are those of the parity-
changing UAð3Þ group, i.e., the infinitesimal transforma-
tions δψ ¼ iαaA

λa
2
γ5ψ and δψ̄ ¼ iαaAψ̄

λa
2
γ5. Note that a

SUVð3Þ transformation would always allow one to rotate
between members of the same octet, i.e., without change of
parity. Under such axial transformations, the expectation
value of an operator OP in (1) in terms of the transformed
fields leads to the following generic WI [50,51]
�
δOPðx1;…; xnÞ

δαaAðxÞ
�

¼ −
�
OPðx1;…; xnÞψ̄ðxÞ

�
λa

2
;M

�
γ5ψðxÞ

�

þ i
δa0ffiffiffi
6

p hOPðx1;…; xnÞAðxÞi; ð3Þ

where

AðxÞ ¼ 3g2

16π2
TrcGμνG̃

μν; ð4Þ

is the anomalous divergence of the Uð1ÞA current [52–54],

∂μJ
μ
5 ¼ 2iψ̄Mγ5ψ þ AðxÞ; ð5Þ

with Jμ5 ¼ ψ̄γ5γ
μψ . Generally speaking, applying (3) to an

n-point operatorOP gives an identity relating correlators of
n and nþ 1 points.
In the same way, considering now an isovector trans-

formation δψ ¼ iαaV
λa
2
ψ , δψ̄ ¼ −iαaV ψ̄

λa
2
, the expectation

value of a scalar operator OS in (1) in terms of the
transformed fields leads to the WI:

�
δOSðx1;…;xnÞ

δαaVðxÞ
�
¼
�
OSðx1;…;xnÞψ̄ðxÞ

�
λa

2
;M

�
ψðxÞ

�
:

ð6Þ

The analysis to follow in the next sections exploits the
above two classes of WI for particular choices of the
operatorsOP andOS. In particular, the choicesOP ¼ Pa in
(3) and OS ¼ Sa in (6) will lead to identities between
different combinations of quark condensates and suscep-
tibilities, whereas choosing OP ¼ PaSb in (3) will allow
one to relate differences of correlators of degenerated
partners with three-point functions related to physical
interaction processes.
Those identities will involve P and S correlators and

their corresponding susceptibilities, defined as

χabP ðTÞ ¼
Z
T
dxhT PaðxÞPbð0Þi; ð7Þ

χ̃abS ðTÞ ¼
Z
T
dx½hT SaðxÞSbð0Þi − hSaihSbi�; ð8Þ

where
R
T dx≡

R β
0 dτ

R
d3x⃗ at finite temperature T ¼ 1=β

and hT � � �i denotes the time-ordered vacuum expectation
value in Minkowski spacetime, which corresponds to a
thermal average in Euclidean spacetime. Note that in the
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scalar case, the subtraction of the quark-bilinear expect-
ation values hSaihSbi, which are nonzero for a, b ¼ 0, 8,
allows one to express the susceptibilities χ̃abS ðTÞ as mass
derivatives of the corresponding quark condensate, as used
customarily within the ChPT framework [55–57] and also
to analyze the critical behavior [8]. However, the study of
partner degeneration in the lattice is formally investigated
through the analysis of unsubtracted scalar susceptibilities
[4]. In the following, we will denote by χ̃S the subtracted
susceptibilities and by χS the unsubtracted ones.

III. IDENTITIES INVOLVING SUSCEPTIBILITIES
AND QUARK CONDENSATES

A. I = 0, 1 sector: Partners and chiral pattern

Let us first consider quark bilinears with I ¼ 0, 1 in the
pseudoscalar and scalar sectors. Following the notation
considered in the lattice [4,43,45], for the I ¼ 1 channel,
we define

πa ¼ iψ̄ lγ5τ
aψ l ¼ Paða ¼ 1; 2; 3Þ;

δa ¼ ψ̄ lτ
aψ l ¼ Saða ¼ 1; 2; 3Þ; ð9Þ

with ψ l the light quark doublet with components ψu;d. The
above light states correspond physically, as long as their
quark model assignment is concerned, to the pion and to the
a0ð980Þ resonance.
For I ¼ 0, we consider the pseudoscalar η0;8 ¼ P0;8 and

the scalars σ0;8 ¼ S0;8, as well as their combinations ηl;s and
σl;s, which form the basis of states:

ηl ¼ iψ̄ lγ5ψ l ¼
1ffiffiffi
3

p ð
ffiffiffi
2

p
P0 þ P8Þ;

σl ¼ ψ̄ lψ l ¼
1ffiffiffi
3

p ð
ffiffiffi
2

p
S0 þ S8Þ;

ηs ¼ is̄γ5s ¼
ffiffiffi
3

p

3

	
1ffiffiffi
2

p P0 − P8



;

σs ¼ s̄s ¼ 1ffiffiffi
3

p
	

1ffiffiffi
2

p S0 − S8


: ð10Þ

Note that the ηl and ηs (or η0;8) mix to give the physical η
and η0. In the same way, the mixing of the σl and σs (or σ0;8)
generates the f0ð500Þ and f0ð980Þ resonances. We remark
that ηl coincides with the physical η state in the so-called
η − η0 ideal mixing angle θid ¼ − arcsinð ffiffiffiffiffiffiffiffi

2=3
p Þ, which is

achieved when the anomalous contribution from the oper-
ator AðxÞ in (5) vanishes. This limit is reached for Nc → ∞
or when the Uð1ÞA symmetry is restored and it will play an
important role in our discussion below.
The correlators of the above bilinears, which enter in the

susceptibilities in (8), are defined as

hT πaðxÞπbð0Þi¼δabPππðxÞ; hT δaðxÞδbð0Þi¼δabSδδðxÞ;
hT ηlðxÞηlð0Þi¼PllðxÞ; hT σlðxÞσlð0Þi¼SllðxÞ;
hT ηlðxÞηsð0Þi¼PlsðxÞ; hT σlðxÞσsð0Þi¼SlsðxÞ;
hT ηsðxÞηsð0Þi¼PssðxÞ; hT σsðxÞσsð0Þi¼SssðxÞ:
They form a basis of eight correlators involved in this
sector, where from (10) the light Xll, strange Xss and
crossed correlators Xls can be expressed in terms of
X00 ¼ hT X0ðxÞX0ð0Þi, X88 ¼ hT X8ðxÞX8ð0Þi and X08 ¼
hT X0ðxÞX8ð0Þi, with X ¼ S, P:

Xss ¼
1

3

	
X88 þ

1

2
X00 −

ffiffiffi
2

p
X08



; ð11Þ

Xll ¼
1

3
ðX88 þ 2X00 þ 2

ffiffiffi
2

p
X08Þ; ð12Þ

Xls ¼
1

3

	
−X88 þ X00 −

1ffiffiffi
2

p X08



: ð13Þ

Recall that the crossed X08 and Xls correlators are, in
general, nonzero due to mixing. Let us give also here, for
completeness, the variation of the X0;8 bilinears under pure
SUAð2Þ transformations, which will be of use later:

δP8ðyÞ=δαaAðxÞ ¼ −
ffiffiffiffiffiffiffiffi
1=3

p
δðx − yÞδaðxÞ;

δP0ðyÞ=δαaAðxÞ ¼ −
ffiffiffiffiffiffiffiffi
2=3

p
δðx − yÞδaðxÞ;

δS8ðyÞ=δαaAðxÞ ¼
ffiffiffiffiffiffiffiffi
1=3

p
δðx − yÞπaðxÞ;

δS0ðyÞ=δαaAðxÞ ¼
ffiffiffiffiffiffiffiffi
2=3

p
δðx − yÞπaðxÞ; ð14Þ

with a ¼ 1, 2, 3.
In particular, chiral axial transformations mix π − σl and

δ − ηl states, namely,

δπaðyÞ=δαbAðxÞ ¼ −δabδðx − yÞσlðxÞ;
δσlðyÞ=δαbAðxÞ ¼ δðx − yÞπbðxÞ;
δδaðyÞ=δαbAðxÞ ¼ δabδðx − yÞηlðxÞ;
δηlðyÞ=δαbAðxÞ ¼ −δðx − yÞδbðxÞ

with a; b ¼ 1; 2; 3: ð15Þ
The above transformations imply then a formal degen-

eration of the bilinears π=σ and ηl=δ if the chiral symmetry
SUð2ÞV × SUð2ÞA ∼Oð4Þ was completely restored. In
other words, these bilinears would become chiral partners.
In addition, ηs and σs fields are invariant under SUAð2Þ, as
one can see from their definition (10) and the trans-
formations of the octet and singlet fields (14). In this
way, Pls and Sls transform into hδηsi and hπσsi, respec-
tively, which should vanish by parity conservation. More
details about particular choices of chiral rotations that
implement these transformations are given in [51].

We will use the symbol ∼Oð4Þ
to denote the above chiral

partner equivalence. As commented in the introduction, this
would actually be an exact equivalence only for twomassless
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flavors at the phase transition. For Nf ¼ 2þ 1 flavors and
physical masses, it would become approximate near the
crossover transition, although the equivalence is expected
to be more accurate as the light chiral limit m̂ → 0þ is
approached. Summarizing, at exact chiral restoration, one has

Pππ ∼Oð4Þ
Sll; Pll ∼

Oð4Þ
Sδδ; Pls ∼Oð4Þ

0; Sls ∼Oð4Þ
0;

ð16Þ

and so on for their corresponding susceptibilities. Therefore,
the fullOð4Þ nonet partner-degeneration picture given by the
four conditions in (16), leave four independent not degen-
erated correlators (or susceptibilities) in this pattern, namely
Pππ , Pll, Pss and Sss.
On the other hand, under octet and singlet axial rotations,

i.e., α0;8A ≠ 0, I ¼ 0 states transform as

δP8ðyÞ=δα0AðxÞ ¼ −
ffiffiffiffiffiffiffiffi
2=3

p
δðx − yÞS8ðxÞ; δP8ðyÞ=δα8AðxÞ ¼ −

ffiffiffiffiffiffiffiffi
1=3

p
δðx − yÞð

ffiffiffi
2

p
S0 − S8ðxÞÞ;

δP0ðyÞ=δα0AðxÞ ¼ −
ffiffiffiffiffiffiffiffi
2=3

p
δðx − yÞS0ðxÞ; δP0ðyÞ=δα8AðxÞ ¼ −

ffiffiffiffiffiffiffiffi
2=3

p
δðx − yÞS8ðxÞ;

δS8ðyÞ=δα0AðxÞ ¼
ffiffiffiffiffiffiffiffi
2=3

p
δðx − yÞP8ðxÞ; δS8ðyÞ=δα8AðxÞ ¼

ffiffiffiffiffiffiffiffi
1=3

p
δðx − yÞð

ffiffiffi
2

p
P0 − P8ðxÞÞ;

δS0ðyÞ=δα0AðxÞ ¼
ffiffiffiffiffiffiffiffi
2=3

p
δðx − yÞP0ðxÞ; δS0ðyÞ=δα8AðxÞ ¼

ffiffiffiffiffiffiffiffi
2=3

p
δðx − yÞP8ðxÞ; ð17Þ

which allow one to mix π − δ and σ − η states:

δπaðyÞ=δαAðxÞ ¼ −δðx − yÞδaðxÞ;
δδaðyÞ=δαAðxÞ ¼ δðx − yÞπaðxÞ;
δσlðyÞ=δαAðxÞ ¼ δðx − yÞηlðxÞ;
δηlðyÞ=δαAðxÞ ¼ −δðx − yÞσlðxÞ;

with αA ¼
ffiffiffiffiffiffiffiffi
1=3

p
α8A þ

ffiffiffiffiffiffiffiffi
2=3

p
α0A: ð18Þ

Therefore, π − δ and σ − η would become degenerate
partners if theUð1ÞA symmetry was restored. Similarly, in a
fully restored Uð1ÞA scenario, the Uð1ÞA rotations in (17)
and (18) allow one to degenerate all pseudoscalar corre-
lators into their scalar partners [51]. As explained in the
introduction, such restoration is only asymptotic and in
general is not fully achieved in a physical Nf ¼ 2þ 1

scenario. Nevertheless, here we are concerned with Uð1ÞA
restoration understood as approximate partner degeneration

and in that sense, we will use the symbol ∼Uð1ÞA.
Thus, under Uð1ÞA restoration the following relations

hold,

Pππ ∼Uð1ÞASδδ; Pll ∼Uð1ÞASll; Pss ∼Uð1ÞASss; Pls ∼Uð1ÞASls;

ð19Þ

which leaves again four independent correlators, for in-
stance Pππ , Pll, Pss, Pls or their corresponding scalar
partners.
Therefore, if Uð1ÞA restoration is effective at the chiral

transition, i.e., if Oð4Þ × Uð1ÞA is the restoration pattern,
the four states π − δ − σl − ηl would degenerate at the
transition. Thus, the Oð4Þ and Uð1ÞA partner equivalences
in (16) and (19) combine to Pππ ∼ Sδδ ∼ Sll ∼ Pll, which
are the correlators usually analyzed in lattice works.

Moreover, the relation Pss ∼ Sss becomes an additional
signal to be analyzed. Hence, since the crossed ls corre-
lators vanish (16), there are only two independent corre-
lators in the Oð4Þ ×Uð1ÞA pattern.
The parameter customarily used in lattice works to

parameterize the Oð4Þ ×Uð1ÞA degeneracy is

χ5;discðTÞ ¼
1

4
½χπPðTÞ − χllPðTÞ�; ð20Þ

which vanishes at Oð4Þ × Uð1ÞA restoration and is directly
related to the topological susceptibility [4], i.e., the corre-
lator of the anomaly operator (4) encoding the Uð1ÞA
breaking

χtopðTÞ≡ −
1

36
χAAP ðTÞ ¼ −

1

36

Z
T
dxhT AðxÞAð0Þi: ð21Þ

Actually, as we are about to see, the connection between
χ5;disc and χtop is a consequence of the WI analyzed here.1

Furthermore, in a fully SUð3Þ restored scenario, not only
α0A but also α8A transformations would allow one to
degenerate π and δ bilinears, hence leading to the degen-
eration of all other members of the scalar and pseudosca-
lar octet.
More precise conclusions can be drawn from the WI in

(3). The simplest choice is OP ¼ Pa. Taking OP ¼ πb, ηl,
ηs one arrives to the following WI relating pseudoscalar
susceptibilities and quark condensates analyzed in [50,51],

1The normalization factor in (21) is chosen so that χtop
coincides with [4]. It comes from our normalization of AðxÞ in
(4) and our definition of Euclidean gauge fields [50]. Note also
that the definition of susceptibilities in [4] carries a 1=2
normalization factor with respect to our definitions (7)–(8).
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χπPðTÞ ¼ −
hq̄qilðTÞ

m̂
; ð22Þ

χllPðTÞ ¼ −
hq̄qilðTÞ

m̂
þ msffiffiffi

3
p

m̂ðm̂ −msÞ
χ8AP ðTÞ; ð23Þ

χssP ðTÞ ¼ −
hs̄siðTÞ
ms

þ m̂

4
ffiffiffi
3

p
msðm̂ −msÞ

χ8AP ðTÞ; ð24Þ

where hq̄qil ¼ hψ̄ lψ li and we denote χabP ¼ δabχπP. The
identities (22) and (24) have been recently checked in the
lattice [4]. In the case of (24), the term proportional to χ8AP
can be ignored since it is suppressed by a m̂=ms correction.
Nevertheless, it would be interesting to have a lattice check
of the other WI found in [50,51] as well as those from the
present work that we will discuss below. In particular, WI
involving crossed ls correlators, I ¼ 1=2 states and three-
point functions. For the WI (23), although the crossed χ8AP
correlator is not measured in the lattice either, we will show
below that this identity can be indirectly examined in the
lattice with currently measured observables.
In particular, the above identities imply that χ5;disc in (20)

can be written as

χ5;discðTÞ ¼ −
ms

4
ffiffiffi
3

p
m̂ðm̂ −msÞ

χ8AP ðTÞ ¼ 1

m̂2
χtopðTÞ; ð25Þ

where we have used the relation between χ8AP and χAAP
derived in [50], i.e., from the WI in (3) taking OP ¼ A, the
anomaly operator in (4). The relation (25) between χ5;disc
and χtop, also mentioned in [4], allows one to express χ5;disc
as a pure anomalous contribution, confirmed by the
cancellation of the quark condensate contributions in the
χπP − χllP difference in (22)–(23).
Actually, since both χ5;disc and χtop are measured in the

lattice, although with great difficulty in the case of the
topological susceptibility [4,58,59], checking the relation
between them in (25) is an indirect way to check the WI
(23), or, more precisely, the combination of that identity
with (22) (also checked in the lattice) and the identity
connecting χ8AP and χAAP in [50], namely,

χAAP ¼ −3
ffiffiffi
3

p m̂ms

ms − m̂
χ8AP : ð26Þ

Such verification of (25) is actually performed in [4] and
it holds reasonably well taking into account the difficulty to
measure χtop.
Now, let us turn to a very interesting relation regarding

the chiral pattern, already discussed in [51], which can be
obtained by analyzing the mixed ls correlators in the
pseudoscalar sector. Using (13) and the relations obtained
in [50] for the susceptibilities χ88P , χ00P and χ08P , we get

χlsP ðTÞ ¼
1

2
ffiffiffi
3

p 1

m̂ −ms
χ8AP ðTÞ; ð27Þ

which combined with (25), implies

χlsP ðTÞ ¼ −2
m̂
ms

χ5;discðTÞ ¼ −
2

m̂ms
χtopðTÞ: ð28Þ

The importance of the above relation is that it connects a
quantity vanishing at Oð4Þ degeneration, χls according to
(16), with χ5;disc and χtop, signaling Oð4Þ ×Uð1ÞA degen-
eration. Therefore, (16) and (28) imply that ifOð4Þ partners
are degenerated, so there must be the Oð4Þ ×Uð1ÞA ones.
In other words, the chiral pattern should be Oð4Þ ×Uð1ÞA
if exact chiral symmetry holds. Recall that χls ∼Oð4Þ

0 in (16) is
a consequence of the δ − ηl Oð4Þ degeneration [51]. Thus,
more precisely,

χllP ∼Oð4Þ
χδS ⇒ χ5;disc ∼Oð4Þ

0; χtop ∼Oð4Þ
0: ð29Þ

Several additional comments are in order here: first, the
previous conclusion (29) is valid in the ideal chiral
restoration regime, since it relies on the Oð4Þ partner
degeneration on the lhs. Nevertheless, it can be understood
also in a weaker sense, as a consequence only of δ − ηl
degeneration, which might take place approximately in a
crossover scenario.
Second, although the light chiral limit m̂ → 0þ would

certainly favor exact Oð4Þ degeneration at Tc and hence the
realization of (29), one must not be misled by the apparent
vanishing of the χ5;disc term in (28) when m̂ → 0þ for any T.
This is an incorrect statement, consequence of the singular
behavior of χ5;disc with m̂. Namely, atT ¼ 0 the results in [50]
show that χ8AP has a finite limit for m̂ → 0þ, which together
with (25) imply χ5;disc ∼ 1=m̂ and χtop ∼ m̂ away from Tc.
The latter behavior for χtop is actually supported in the recent
work [31], where it is argued that χtop ∼ m̂hq̄qil in the chiral
limit. More discussion about the chiral limit of the different
susceptibilities will be carried out within ChPT in Sec. V.
Therefore, the vanishing of χ5;disc and χtop in (29) are true

consequences of chiral restoration. Similar conclusion can
be drawn considering other bilinear rotations. Namely,
since A is invariant under a SUAð2Þ transformation, the
rotation χ8AP → χδA suggests χ8AP to vanish at exact chiral
restoration by parity. Consequently, through (25), χ5;disc
and χtop should also vanish in this limit.
The same conclusion about the vanishing of χtop for any

temperature above chiral restoration has been reached in
[31]. The main argument in [31] relies on the identity

χllPðTÞ ¼ −
hq̄qilðTÞ

m̂
−

4

m̂2
χtopðTÞ; ð30Þ

which is nothing but the combination of (23), (26), and
(21). In turn, note that (24) gives for the pure strange
contribution
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χssP ðTÞ ¼ −
hq̄qilðTÞ

ms
−

1

m2
s
χtopðTÞ; ð31Þ

which corresponds the one-flavor version of the same
identity [31].
Let us now comment in detail how the previous ideas are

realized in present lattice simulations. As explained in the
introduction, there is still some controversy regarding the
chiral pattern and its nature. In Fig. 1(a), we show
the behavior of the four susceptibilities corresponding to
the π − σ − δ − ηl correlators discussed above for the lattice
data in [4]. In that work, the Oð4Þ partner degeneration
corresponding to the first two equations in (16) is approx-
imately realized at Tc ≃ 160 MeV (corresponding to chiral
restoration signaled by the peak in χllS ) while the degener-
ation of the four correlators which would favor the Oð4Þ ×
Uð1ÞA pattern according to (19) takes place asymptotically
at higher temperatures. At this point it is worth mentioning
that in a previous work [49], π − σ chiral partner degener-
ation in the light sector was also identified exploiting theWI
(22) by analyzing available lattice data for the (subtracted)
quark condensate and for the scalar susceptibility.
In addition, regardingUð1ÞA partner degeneration, the ss

correlators given by the third equation in (19) are also
compared with the lattice data of [4] in Fig. 1(b). We see
that the degeneration of those Uð1ÞA partners is reached
also asymptotically, consistently with (19) and Fig. 1(a). As
for the ls correlators, there are no direct available data at the
moment, as far as we are concerned.
Nevertheless, as already mentioned in the Introduction,

there is currently no full agreement in the lattice regarding
partner degeneration and the corresponding chiral pattern.
In [45], the difference between π and δ screening masses
are found to be compatible with zero at the chiral transition,
hence pointing out to a Oð4Þ ×Uð1ÞA pattern even for
massive light quarks. Since the screening masses are
extracted from the two-point correlators, their degeneracy
is a consequence of partner degeneration. In the chiral limit,

the Oð4Þ ×Uð1ÞA pattern is also supported in the analysis
of [43], which suggests π − δ − σ − ηl degeneration close
to the chiral transition through the analysis of the corre-
lators for those states in the overlap fermion lattice
formulation. A recent analysis by the same group [44]
confirms this result, showingUð1ÞA restoration in the chiral
limit just above the transition.
At this point one may wonder about the compatibility of

our result (29) with these lattice results. Naively, one would
conclude that we are consistent with the results in [43–45]
but not with [4]. However, some considerations should be
taken into account. The analysis in [4] includesNf ¼ 2þ 1

flavors and nearly physical light quark masses, which may
enhanceUð1ÞA breaking effects and distort the ideal partner
degeneration given in (29). Moreover, our result (29) relies
explicitly on δ − ηl degeneration at chiral restoration.
However, examining in detail the numerical results in
[4], one actually observes that the difference χllP − χδS is
much less reduced near Tc than χπP − χllS , as it can be seen in
Fig. 1(a). In particular, from the data in Table IV in [4]

½χπPðTcÞ − χllS ðTcÞ�=½χπPðT0Þ − χllS ðT0Þ� ∼ 0.2;

½χllPðTcÞ − χδSðTcÞ�=½χllPðT0Þ − χδSðT0Þ� ∼ 8.1;

with T0 ¼ 139 MeV, the lowest temperature available in
[4]. The error bars for the latter difference are also quite
large, making this quantity compatible with zero for the
whole temperature range considered. Nevertheless, the
central values of χllP − χδS remain sizable up to the region
where the Uð1ÞA is approximately restored, i.e., where χπP
and χδS almost degenerate. In this sense, the numerical
results in [4] are at odds with the expected chiral partner
degeneration picture.
On the one hand, the reasons above could explain

numerically the apparent discrepancy between (29) and
the results in [4]. On the other hand, the absence of the
strange quark corrections in the Nf ¼ 2 lattice analysis

FIG. 1. Different susceptibilities combinations from the lattice data in [4] for 323 × 8 lattice size. (a) The four light susceptibilities.
(b) Scalar and pseudoscalar pure strange susceptibilities.
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[43–45] may explain why the Oð4Þ ×Uð1ÞA pattern is
more clearly seen in those works, even for a finite pion
mass as in [45]. A quantitative measure of the departure of
the results in [4] from the prediction (29) can be achieved
by comparing the temperature scaling of χ5;disc with a
typical chiral-restoring order parameter. Actually, as we
have commented above, the analysis in [31] supports χ5;dis
to scale with T as the (subtracted) quark condensate. Thus,
in Fig. 2, we plot χ5;disc normalized to its lowest value,
versus the subtracted condensate

ΔlsðT;T0Þ ¼
hq̄qilðTÞ − 2 m̂

ms
hs̄siðTÞ

hq̄qilðT0Þ − 2 m̂
ms
hs̄siðT0Þ

; ð32Þ

which is free of lattice finite-size divergences hq̄iqii∼
mi=a2, with a the lattice spacing, and it is one of the
typical order parameters used in lattice simulations. We can
see in the plot a clear correlation between the scaling of
both quantities, especially near the critical region. For
comparison, we have also represented the scaling

ffiffiffiffiffiffiffi
Δls

p
,

which is motivated as follows: the WI (22) is compatible
with the formal scaling π ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−hq̄qilG−1

π ðp ¼ 0Þ=m̂
p

[51],
which together with (56), to be derived in Sec. IV, and (28),
would lead to such square root scaling if the pion self-
energy dependence with temperature is considered smooth
compared to that of the quark condensate.

B. Chiral partners and mixing angles

We will explore here two interesting limits related to the
mixing of the P0=P8 and S0=S8 states, namely the vanish-
ing-mixing and ideal-mixing angles. As we will see, these
two limits are also intimately connected to the discussion of
chiral partners. The mixing angle is formally defined at
leading order as:

η ¼ η8 cos θP − η0 sin θP;

η0 ¼ η8 sin θP þ η0 cos θP; ð33Þ

and so on in the scalar sector with the replacements
θP → θS, η → f0ð500Þ, η0 → f0ð980Þ. The mixing angle
is defined to cancel the crossed ηη0 terms in the Lagrangian,
so that the correlator

Pηη0 ¼
1

2
ðP88 − P00Þ sin 2θP þ P08 cos 2θP ¼ 0; ð34Þ

where both, the correlators and the mixing angle, are
temperature dependent. Let us remark that higher-order
corrections introduce further mixing terms, which require
additional mixing angles to be canceled. For instance
at NLO in Uð3Þ ChPT two mixing angles are required
[32–34]. Nevertheless, the simplified picture above is
enough for our present purposes.
Consider first a vanishing-mixing scenario, i.e.,

θP;S ¼ 0. In the pseudoscalar sector, this occurs in the
pure SUð3Þ limit, i.e., when mK ¼ mπ , but keeping fixed
M0, the anomalous contribution to the η0 mass [32–34].
In that limit, m2

η → m2
π and m2

η0 → m2
π þM2

0. From (34),
θP → 0 asymptotically would imply then P08 → 0, and so
on for the scalar sector. It is important to remark that the
reverse is not necessarily true. If P08 → 0 in a certain
regime, we can only conclude that it implies θP → 0 if P00

and P88 remain not degenerate. According to (13), that
means Pls ≠ 0. Translating these conditions to the lattice
basis we conclude that in a regime of vanishing mixing
angle the following conditions must hold:

Pls ∼θP¼0
Pll − 2Pss =∼

θP¼0

0; Sls ∼θS¼0
Sll − 2Sss =∼

θS¼0

0: ð35Þ
In the pseudoscalar sector, we can translate this result to the
susceptibilities. Using (23), (24), (25), and (28) we have

2χssP ðTÞ − χllPðTÞ þ χlsP ðTÞ

¼ 1

m̂
hq̄qilðTÞ −

2

ms
hs̄siðTÞ

− 2
ðm̂ −msÞðm̂þ 2msÞ

m2
s

χ5;discðTÞ

¼ m̂þms

2m2
s

hq̄qilðTÞ −
2

ms
hs̄siðTÞ

þ 1

2

ðm̂ −msÞðm̂þ 2msÞ
m2

s
χllPðTÞ; ð36Þ

where in the second line the WI (22) has been used. This
equation vanishes in the SUð3Þ degenerate limit, i.e., when
ms → m̂ and hs̄si → hq̄qil=2. This is consistent with our
previous comment since in that limit θP → 0 and P08 → 0.
In addition, taking only the leading order in the m̂ ≪ ms
expansion, the rhs of (36) becomes

140 150 160 170 180 190
0.0

0.2

0.4

0.6

0.8

1.0

T (MeV)

FIG. 2. Comparison between the scaling of χ5;disc and the
subtracted condensate ΔlsðT;T0Þ in (32), with respect to the
reference temperature T0 ¼ 139 MeV. Data are taken from [4]
for 323 × 8 lattice size and m̂=ms ¼ 0.088. We include also the
comparison with

ffiffiffiffiffiffiffiffi
Δl;s

p
for the reasons explained in the main text.
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lim
m̂≪ms

½2χssP ðTÞ − χllPðTÞ þ χlsP ðTÞ�

¼ 1

2ms
hq̄qilðTÞ −

2

ms
hs̄siðTÞ − χllPðTÞ: ð37Þ

Since hq̄qil is small around the chiral transition, −hs̄si is
positive and smoothly decreasing with T and χllP is positive
and increasing, it is plausible to expect that (36) might be
small or even vanish near the chiral transition, although it is
unclear that it should remain asymptotically small for higher
temperatures. In addition, as we have commented above, the
vanishing-mixing scenario requires Pls ≠ 0 as well, which
from (28) can be directly linked to Oð4Þ ×Uð1ÞA restora-
tion. In a scenario where the chiral Oð4Þ pattern is well
separated from Uð1ÞA restoration, for instance in [4], it
would be then possible to find an intermediate region,
roughly between chiral restoration and the Uð1ÞA one,
where the pseudoscalar mixing-angle vanishes.
In Fig. 3(a), we plot the susceptibility combination in the

lhs of (36), signaling a vanishing of θP, from the lattice
analysis [4], where we have used the WI in (28) for χlsP. In
addition, we plot in the same figure −χls ¼ m̃

ms
χ5;disc, which

according to (35) should remain nonzero to guarantee that
this is a region where θP ∼ 0. Unfortunately, there is no way
to check an analogous behavior for the scalar sector as long
as χlsS data are not provided by lattice collaborations.
Consistently with our previous arguments, we see a clear
signal of the vanishing of the mixing angle, which happens
to be very close to chiral restoration for those lattice data.
Qualitatively, from the simplified m̂ ≪ ms expression (37),
the positive −2hs̄si=ms term dominates for low temper-
atures. As T increases, χllP grows, as shown in Fig. 1(a),
until it compensates the strange condensate contribution.
The decreasing/increasing rate of hs̄si and χηlP changes for
higher temperatures, so that this susceptibility combination

starts to grow again from around T ∼ 165 MeV, where it
develops a minimum. Presumably, after that point the
mixing angle changes from zero to the ideal one, which
should be reached asymptotically at Oð4Þ ×Uð1ÞA resto-
ration, consistently with the vanishing of 2 m̂

ms
χ5;discðTÞ, as

explained below.
Consider now the ideal mixing limit θ ¼ θid ¼

− arcsinð ffiffiffiffiffiffiffiffi
2=3

p Þ, which implies that η ∼ ηl, η0 ∼
ffiffiffi
2

p
ηs

and so on for the scalar f0ð500Þ=f0ð980Þ sector. In a
recent model analysis [30], it has been suggested that this
limit can be reached from the transition temperature
onwards, with a more dramatic effect for the η − η0 sector
than for the scalar one. In that work, the scalar mixing
remains close to ideal one for almost the entire tempera-
ture range. In the pseudoscalar sector, ideal mixing is
reached when M0, the anomalous contribution to the η0
mass, vanishes [32–34]. In that limit, mη → mπ and
m2

η0 → 2m2
K −m2

π . Thus, this limit is linked to Oð4Þ ×
Uð1ÞA restoration, where the π degenerates with the ηl ∼ η,
e.g., through the vanishing of χ5;disc. The strong reduction
of the η0 mass observed experimentally at finite temperature
[21] supports that this limit is reached.
From (34) and (13), we can see that θP → θidP implies

Pls → 0 and Sls → 0. However, as before, Pls ∼ 0 and
Sls ∼ 0 are necessary but not sufficient conditions to
have ideal mixing. Inserting Pls ¼ 0 in (34) leads to
ðsin 2θP − 2

ffiffiffi
2

p
cos 2θPÞP08 ¼ 0, so one recovers θP ¼

θid for sin θP < 0 and cos θP > 0 only if P08 ≠ 0.
Therefore, in a ideal mixing regime, the following con-
ditions must hold:

Pll − 2Pss =∼
θP¼θidP

Pls ∼
θP¼θidP0; Sll − 2Sss =∼

θS¼θidS
Sls ∼

θS¼θidS
0:

ð38Þ

(a) (b)

FIG. 3. Different susceptibility combinations from the lattice data in [4] for 323 × 8 lattice size, related to the analysis of the η − η0
mixing angle. (a): Susceptibility combination related to the vanishing of the η − η0 mixing angle with m̂=ms ¼ 0.088 [4], where we also
plot −χlsP according to (28). (b): Partner degeneration in the scenario of small Xls and X08 with X ¼ P, S discussed in the text, according
to (39).
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In the pseudoscalar case, Pls ∼ 0 is expected at Oð4Þ ×
Uð1ÞA restoration from (28), provided that chiral partners
are ideally degenerated (formally in the chiral limit). Unlike
the vanishing mixing scenario discussed above, which can
be reached locally around some given temperature, ideal
mixing would be reached at Oð4Þ ×Uð1ÞA restoration and
will remain like that asymptotically. Thus, ideal mixing is
another signal of the Oð4Þ ×Uð1ÞA pattern. In addition,
(19) implies that both the scalar and pseudoscalar mixings
become ideal asymptotically. Note that as long as Uð1ÞA is
not fully restored, θP and θS can take different values.
Considering now the lattice results in [4], according to

our previous argument the vanishing of χ5;disc in Fig. 2
signals the ideal mixing regime. In this regard, although
one would expect to find a θP ∼ 0 region around Oð4Þ
restoration, the mixing angle should turn into the ideal one
as T increases towards the Oð4Þ ×Uð1ÞA regime.
However, it is worth mentioning that in that work the

combination (36) [blue squares in Fig. 3(a)] still remains
numerically small for the temperature range explored,
compared with the typical values reached by χllP and χssP
in that combination (see Figs. 1(a) and 1(b), respectively).
Thus, as ðm̂=msÞχ5;disc becomes negligible, the relation
Pll ∼ 2Pss still holds approximately. Moreover, this con-
dition can be combined with Pll ∼ Sδδ, holding at Oð4Þ
restoration. Note however that, as we discussed in
Sec. III A, the latter equivalence is not so accurately
satisfied in [4]. In conclusion, the following two additional
partner degeneration conditions would be satisfied approx-
imately in the intermediate region betweenOð4Þ andUð1ÞA
restoration:

Pll ∼ 2Pss ∼ Sδδ; Sll ∼ 2Sss ∼ Pππ: ð39Þ
NearUð1ÞA restoration, the four correlators 2Pss ∼ Sδδ ∼

2Sss ∼ Pππ would becomedegenerate. In Fig. 3(b), we check
the degeneration (39),which holds reasonablywell given the
approximations considered and the lattice uncertainties. In
fact, if the susceptibility combination in Fig. 3(a) would
keep on growing for higher T, the degeneration in Fig. 1(d)
would not be maintained.
The scenario depicted in Fig. 3 is clearly a consequence

of the Oð4Þ and Uð1ÞA neat separation in that particular
lattice analysis. However, for a Oð4Þ ×Uð1ÞA chiral
pattern, as that observed in [43–45], there would be no
room for a vanishing mixing region sinceUð1ÞA restoration
is already activated around the Oð4Þ transition, where the
ideal mixing would be operating.

C. Including isospin breaking: Connected
and disconnected scalar susceptibilities

In this section, we derive additional results in the form of
WI, which become useful for the discussion of the role of
the connected and disconnected parts of the scalar suscep-
tibilities regarding chiral partners and patterns. For that

purpose, let us consider the general isovector WI in (6) with
a scalar operator Ob ¼ Sb satisfying

δObðyÞ=δαaVðxÞ ¼ δðx − yÞϵabcSc; for a; b; c ¼ 1; 2; 3:

If we also take into account isospin breaking effects
mu ≠ md in the quark mass matrix, i.e.,

M ¼ 1

2
ffiffiffi
3

p ðmu þmd − 2msÞλ8 þ
1ffiffiffi
6

p ðmu þmd þmsÞλ0

þ 1

2
ðmu −mdÞλ3;

the WI in (6) becomes after integration in the Euclidean
spacetime

hūu − d̄diðTÞ ¼ md −mu

2
χδ;chS ðTÞ; ð40Þ

where the charged χδ;chS ¼ χ11S ¼ χ22S differs in general from
the neutral χ33S if mu ≠ md. Nevertheless, even though
χδ;chS ¼ χ33S ¼ χδS in the isospin limit, the identity in (40) is

nontrivial when md → mu, since limmd→mu

hūu−d̄di
md−mu

≠ 0 [56].
In fact, it allows one to relate the present analysis with the
standard decomposition of the subtracted scalar suscep-
tibility into its quark-diagram connected and disconnected
contributions, which are relevant for lattice studies [4,6].
Assuming mu ≠ md one has [56]

χ̃llS ¼ 2χ̃conS þ 4χ̃disS ;

χ̃disS ¼ χ̃udS ;

χ̃conS ¼ 1

2
ðχ̃uuS þ χ̃ddS Þ − χ̃udS ¼ ∂hūu − d̄di

∂ðmd −muÞ
; ð41Þ

where

χ̃ijS ðTÞ ¼
Z
T
dx½hT ψ̄ iψ iðxÞψ̄ jψ jð0Þi − hψ̄ iψ iihψ̄ jψ ji�;

i; j ¼ u; d:

In this way, comparing with (40), one gets

χδSðTÞ ¼ 2χ̃conS ðTÞ þOðmd −muÞ; ð42Þ

consistently with recent lattice studies [4]. The relation (42)
is also consistent with the SUð3Þ ChPT isospin-breaking
analysis in [56]. Our current WI derivation is completely
general and then it is also valid for theUð3Þ scenario, which
will be analyzed in Sec. V. Actually, combining (42) with
(41) allows one to obtain the connected and disconnected
parts from χ̃llS and χδS, quantities which can be directly
derived from the ChPT Lagrangian formulation.
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In principle, the connected part of the scalar suscep-
tibility is expected to have a softer T-dependence than the
disconnected one in the relevant temperature range studied
here. This is observed for instance in the lattice analysis in
[4] and is confirmed in SUð3Þ ChPT, where one finds χ̃disS ∼
T=mπ and χ̃conS ∼ T2=m2

η [56]. That is, the infrared (IR)
mπ → 0þ part of χ̃llS is carried only by its disconnected part,
which is the perturbative counterpart of the chiral transition
peak observed in the lattice for this quantity. Conversely,
the growth of the connected piece is controlled by the
heavier scale m2

η coming from π0η mixing and K̄K loops.
However, it is important to remark that the above picture

may change if the Uð1ÞA symmetry is restored close to the
Oð4Þ transition. First, since χδS grows with T and χπP
decreases like hq̄qil from (22), their degeneration would
give rise to a maximum for χδS at Uð1ÞA restoration. Such
possible maximum is not really seen from Fig. 1(a), since
higher T data points in [4] would be needed to appreciate
correctly that region. However, going back to earlier papers
of the same collaboration, the observed maximum of χ̃conS ¼
χδS=2 at around 190 MeV [3] can be understood in this way.
Another signal of this behavior would be a minimum of

the screening mass in the δ channel (see our discussion
about screening masses in Sec. III D). Such minimum is
clearly observed for instance in [45] and it takes place at
chiral restoration. Note that the Oð4Þ and Uð1ÞA transition
almost coexist in [45]. A minimum for the screening mass
in the δ-channel is also seen in an earlier work [40]. In this
work, which we will refer to in Sec. III D, the full SUð3Þ
degeneration is also visible at higher temperatures, where
all the screening masses for different octet channels become
degenerate.
From the ChPT point of view, the connected suscep-

tibility peak, linked to Uð1ÞA restoration, can be naively
understood by taking the mη → mπ limit. This case is
reached only when the anomalous part of the η0 mass
vanishes, corresponding parametrically to Uð1ÞA restora-
tion [32–34]. This mη → mπ limit generates an IR behavior
for mπ → 0þ, which will discussed in more detail in Sec. V
within the Uð3Þ ChPT framework.

Finally, as pointed out in [4], from (20), (41), and (42)
one finds

χ5;discðTÞ ¼ χ̃disS ðTÞ þ 1

4
½χπPðTÞ − χ̃llS ðTÞ�

þ 1

4
½χδSðTÞ − χllPðTÞ�: ð43Þ

Since the second and third terms in the rhs of (43) should
vanish at exact Oð4Þ restoration, then, if Uð1ÞA is also
restored χ5;disc ¼ 0 ⇒ χ̃disS ¼ 0, which is an apparent con-
tradiction with the peak for χ̃disS observed in the lattice.
However, there are two possible complementary ways to
address this argument: first, from the theoretical point of
view, in an ideal restoration regime only the total subtracted
scalar susceptibility χ̃llS should be divergent at the Oð4Þ
transition [8]. Thus, it may happen that the peak of the
connected contribution at the Oð4Þ ×Uð1ÞA transition
discussed above could compensate an absent peak in the
disconnected part. Second, in an approximate scenario
where Oð4Þ and Uð1ÞA restoration are close but still
separated by a finite gap, the third term in (43) may remain
small while both χ5;disc and χ̃disS keep a peaking behavior
scaling as ðT − TcÞ−γ=mπ in the light chiral limit, with γ
some critical exponent [6]. However, at Uð1ÞA restoration
the divergent parts of χ̃disS and −χ̃llS=4 [second term in the
rhs of (43)] may cancel, which is compatible with a
vanishing χ5;disc. We will actually obtain a explicit reali-
zation of this second scenario in Sec. V in the IR limit
mπ → 0þ, where the gap between Oð4Þ and Uð1ÞA is also
vanishing with mπ.

D. I = 1=2: WI, partner degeneration
and lattice screening masses

Consider now transformations of the I ¼ 1=2 compo-
nents of the octets, i.e., Pa ≡ Ka and Sa ≡ κa with
a ¼ 4;…; 7, which correspond to the kaon (pseudoscalar)
and the κ (scalar), respectively. Following similar steps as
before, under SUAð2Þ and Uð1ÞA transformations we have:

δPaðyÞ=δαbAðxÞ ¼ −δðx − yÞdabcScðxÞ; δSaðyÞ=δαbAðxÞ ¼ δðx − yÞdabcPcðxÞ;
δPaðyÞ=δα0AðxÞ ¼ −

ffiffiffiffiffiffiffiffi
2=3

p
δðx − yÞSaðxÞ; δSaðyÞ=δα0AðxÞ ¼

ffiffiffiffiffiffiffiffi
2=3

p
δðx − yÞPaðxÞ;

with a; c ¼ 4;…; 7 and b ¼ 1, 2, 3. Since there are
nonvanishing dabc coefficients for those a, b values and
c ¼ 4;…; 7, both SUð2Þ and Uð1ÞA transformations would
make the I ¼ 1=2 S=P octet partners degenerate.
We will now obtain more quantitative statements

studying the WI of this sector. On the one hand, starting
with a one-point pseudoscalar operator, i.e., Ob ¼ Pb with

b ¼ 4;…; 7, both sides of (3) vanish but for a ¼ 4;…; 7,
for which one gets [50]

−ðm̂þmsÞχKPðTÞ ¼ hq̄qilðTÞ þ 2hs̄siðTÞ; ð44Þ
already obtained in [50]. On the other hand, considering the
isovector WI in (6) withOb¼Sb (b¼4;…;7) and taking into
account that δObðyÞ=δαaVðxÞ¼δðx−yÞfabcSc, we obtain:
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χκSðTÞ ¼
hq̄qilðTÞ − 2hs̄siðTÞ

ms − m̂
; ð45Þ

where we have considered the isospin limit, i.e.,mu ¼ md ¼
m̂ and hS3i ¼ hūui − hd̄di ¼ 0, and χabS ¼ χκSδ

ab.
This new identity (45) has interesting consequences and

provides a first hint towards the fate of I ¼ 1=2 partners at
chiral restoration, which has not been explored yet in lattice
analysis. Actually, the combination of (44) and (45) gives
rise to [51]:

χκSðTÞ − χKPðTÞ ¼
2

m2
s − m̂2

½mshq̄qilðTÞ − 2m̂hs̄siðTÞ�;

ð46Þ

which states that in the strict light chiral limit, i.e., for a
second-order chiral phase transition with m̂ ¼ 0 and
hq̄qil ¼ 0 but ms ≠ 0 and hs̄si ≠ 0, K and κ become
degenerate partners. Moreover, in the real crossover sce-
nario where the light quark mass and condensate are not
zero, (46) provides a measure of the I ¼ 1=2 partner
degeneracy since

χκSðTÞ−χKPðTÞ
χκSð0Þ−χKPð0Þ

¼hq̄qilðTÞ−2ðm̂=msÞhs̄siðTÞ
hq̄qilð0Þ−2ðm̂=msÞhs̄sið0Þ

≡Δl;sðT;0Þ;

ð47Þ

with Δls defined in (32) and, as explained above, very well
determined in the lattice. Roughly speaking, lattice predicts
ΔlsðT; 0Þ ∼ 0.5 at the chiral transition [3]. Hence, accord-
ing to (47), in the physical case K and κ would only be
degenerate around 50% of their T ¼ 0 value at the Oð4Þ
transition. This result provides then a way to extract
information on K − κ degeneration from lattice data with-
out measuring directly the corresponding correlators. It is
important to remark that K − κ correlators also degenerate
at Uð1ÞA restoration [51] and then, according to the results
above, they do so at Oð4Þ ×Uð1ÞA restoration. A con-
firmation of the previous results will be obtained also in our
ChPT analysis in Sec. V.
The other important consequence of the identity (45) is

that it allows one to explain the behavior of lattice screening
masses in the κ channel, in a similar way as it was done in
[50] for the π, K and s̄s ones. Actually, the only available
lattice data of correlators in this sector are the results for K
and κ screening masses in [40]. This result shows that both
screening masses degenerate beyond the chiral transition,
consistently with our previous result based on (46). The

observed asymptotic degeneration would be a consequence
of the Uð1ÞA asymptotic restoration.
Following the analysis in [50], the lattice result for the κ

screening mass in [40] can also be used to check the WI in
(45). If we assume a smooth temperature dependence for
the residue of the κ correlator as well as for the ratio
between pole and screening masses, we can use the WI in
(45) to obtain a prediction for the T scaling of the (spatial
screening) mass ratio,

Msc
κ ðTÞ

Msc
κ ð0Þ

∼
�
χκSð0Þ
χκSðTÞ

�
1=2

¼
� hq̄qilð0Þ − 2hs̄sið0Þ
hq̄qilðTÞ − 2hs̄siðTÞ

�
1=2

; ð48Þ

since the susceptibilities correspond to zero momentum
correlators and hence to inverse square masses [50].
To test the scaling law in (48), together with those for the

π, K, and s̄s channels analyzed in [50], we take lattice data
for screening masses and quark condensates from the same
lattice group. As mentioned above and to the best of our
knowledge, the more recent available results for screening
masses in the I ¼ 1=2 sector are those in [40]. The
corresponding condensate data of the same group with
the same lattice conditions (p4 action, Nτ ¼ 6, ms ¼ 10m̂)
are given in [60]. Nevertheless, as pointed out in [50] and in
Sec. III A, lattice results for quark condensates are affected
by finite size divergences of the type hq̄iqii ∼mi=a2. Thus,
in order to check (48), we have to consider subtracted
condensates free of lattice divergences. Following [3,50],
we replace hq̄qilðTÞ → hq̄qilðTÞ − hq̄qilð0Þ þ hq̄qirefl and
hs̄siðTÞ → hs̄siðTÞ − hs̄sið0Þ þ hs̄siref=2, where hq̄qirefl
and hs̄siref are reference values, corresponding typically
to the lattice values at T ¼ 0 in the chiral limit [3]. We
proceed as in [50] and consider hq̄qirefl and hs̄siref as fit
parameters, used to minimize the squared difference
between the relative screening masses and subtracted
condensates. We remark that we cannot just take the
reference value provided in [3] since we are taking older
lattice results with very different lattice conditions. Thus,
with only two free parameters, we can test the validity of
our scaling laws based on WIs using lattice data in the four
channels. In addition, we use for the condensates the
dimensionless quantity r31hq̄qi, where r1 ≃ 0.31 fm is
defined in lattice analysis to set the physical scale
[3,60]. An important difference when including the κ
channel is that in [60] the data are not given relative to
their T ¼ 0 value. Therefore, we have taken the lowest
temperature point T0 as the reference value for the screen-
ing masses in that channel, so that, according to (48), we
define

ΔκðT;T0Þ ¼
hq̄qilðTÞ − hq̄qilð0Þ − 2½hs̄siðTÞ − hs̄sið0Þ� þ hq̄qirefl − hs̄siref
hq̄qilðT0Þ − hq̄qilð0Þ − 2½hs̄siðT0Þ − hs̄sið0Þ� þ hq̄qirefl − hs̄siref ; ð49Þ
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and then we should compare Msc
κ ðTÞ=Msc

κ ðT0Þ with
ΔκðT;T0Þ−1=2.
In Fig. 4, we show our results for the four channels. The

definitions of Δl, ΔK , and Δs are given in [50] and
correspond to the subtracted condensate combinations
predicted by the WI with respect to the T ¼ 0 values. It
is important to point out that we have not included in the fit
the points above Tc in the κ channel. We do not expect that
the smoothness assumptions we are using to justify the
scaling law can be maintained above Tc. In particular, the
deviations between pole and screening masses can be
sizable, as commented in [50] and confirmed by recent
model analysis [30]. Nevertheless, we include those points
in the plot to emphasize the minimum around Tc exhibited
by the κ screening mass. The results below Tc show an
excellent agreement with the predicted WI scaling, the
maximum deviation being of 5.2% (second point in the κ
channel). Moreover, the reference values hq̄qirefl , hs̄siref are
very similar to those obtained in [50] for a three-channel fit.
In addition, we remark that the scaling law in (48) explains
qualitatively the observed minimum of Msc

κ near the
transition, which arises from the relative behavior of
(subtracted) light and strange condensates. Near the chiral
transition the inflection point of hq̄qil signals an abrupt
decreasing with respect to hs̄si, which remains smoothly
decreasing.

IV. IDENTITIES RELATING CORRELATOR
DIFFERENCES WITH THREE-POINT

VERTICES

A. I = 0, 1

Further relations can be obtained from the axial WI in (3)
when two-point field operators are chosen. In particular, the

evaluation of (3) with ObðyÞ ¼ σlðyÞπbð0Þ and Ob ¼
δbðyÞηlð0Þ gives rise to the identities

PππðyÞ − SllðyÞ ¼ m̂
Z
T
dxhT σlðyÞπðxÞπð0Þi; ð50Þ

PllðyÞ − SδδðyÞ ¼ m̂
Z
T
dxhT δðyÞπðxÞηlð0Þi: ð51Þ

These are particular combinations of the operators
OðyÞ ¼ S8;0ðyÞπð0Þ and OðyÞ ¼ P8;0ðyÞδð0Þ, which using
(14) yield

PππðyÞ − S88ðyÞ −
ffiffiffi
2

p
S80ðyÞ

¼
ffiffiffi
3

p
m̂
Z
T
dxhT S8ðyÞπðxÞπð0Þi; ð52Þ

PππðyÞ − S00ðyÞ −
ffiffiffi
1

2

r
S08ðyÞ

¼
ffiffiffi
3

2

r
m̂
Z
T
dxhT S0ðyÞπðxÞπð0Þi; ð53Þ

P88ðyÞ − SδδðyÞ þ
ffiffiffi
2

p
P80ðyÞ

¼
ffiffiffi
3

p
m̂
Z
T
dxhT P8ðyÞπðxÞδð0Þi; ð54Þ

P00ðyÞ − SδδðyÞ þ
ffiffiffi
1

2

r
P80ðyÞ

¼
ffiffiffi
3

2

r
m̂
Z
T
dxhT P0ðyÞπðxÞδð0Þi: ð55Þ

Note that, due to the η − η0 mixing, the above WIs
contain the nonzero 08 correlator, albeit it disappears in the
light sector WI in (51). Moreover, eliminating in (52)–(55),
the δδ and ππ correlators, we get two new WIs,

PlsðyÞ ¼
1

3
m̂
Z
T
dxhT ηsðyÞπðxÞδð0Þi; ð56Þ

SlsðyÞ ¼ −
1

3
m̂
Z
T
dxhT σsðyÞπðxÞπð0Þi; ð57Þ

which as we have seen in Secs. III A and III B, play a
crucial role for the discussion of the chiral pattern, partner
degeneration and mixing angles.
These identities can be translated to WIs for suscep-

tibilities, once the integration in the y variable is performed
(p ¼ 0 in Fourier space):

χπP − χllS ¼ m̂
Z
T
dxdyhT σlðyÞπðxÞπð0Þi; ð58Þ

χllP − χδS ¼ m̂
Z
T
dxdy

Z
T
dxhT δðyÞπðxÞηlð0Þi; ð59Þ

FIG. 4. Comparison of pseudoscalar screening mass ratios and
subtracted condensates for the four channels π, K, s̄s and κ with
reference values r31hq̄qirefl ¼ 0.750, r31hs̄siref ¼ 1.061. The lattice
data are taken from [40] (masses) and [60] (condensates) with the
same lattice action and resolution, T0 ¼ 145 MeV, Tc ≃
196 MeV and r1 ≃ 0.31 fm used in [60].
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χlsP ¼ 1

3
m̂
Z
T
dxdyhT ηsðyÞπðxÞδð0Þi; ð60Þ

χlsS ¼ −
1

3
m̂
Z
T
dxdyhT σsðyÞπðxÞπð0Þi; ð61Þ

which can be also checked in the lattice or using different
model analysis in terms of the p ¼ 0 three-point functions.
Note that in the π − σl case, (58) can be obtained also from
hq̄qil ¼ −m̂χπ using that

Z
T
dydxhT σlðyÞπðxÞπð0Þi ¼ −m̂

d
dm̂

χπ þ
Z
T
dxhq̄qilχπ:

The WIs in (50)–(51) and (56)–(57) parametrize the
degeneration of chiral partners in terms of three-point
functions. If SUAð2Þ is exactly restored, i.e., in the light
chiral limit and for a vanishing light-quark condensate, the
rhs of these equations should vanish and, hence, the
analysis of those three-point correlators provide alternative
ways to study chiral symmetry restoration. More precisely,
according to (28) and (56),

χ5;disc ¼ −
1

6
ms

Z
T
dxdyhT ηsðyÞπðxÞδð0Þi: ð62Þ

The importance of the WIs (50)–(51) and (56)–(57) is
that they provide precise and direct information about the
relevant interaction vertices and physical processes respon-
sible for the breaking of the degeneracy in (16) in the finite
mass case and T < Tc. In this way, the analysis of the mass
and temperature dependence of the three-point functions in
the rhs would be very relevant to analyze the evolution
towards degeneration. In particular, (50) and (51) imply
that π=σl and ηl=δ partner degeneration are driven by the
σππ and a0πηl vertices, respectively, whereas a0πηs and
σsππ vertices enter in the crossed correlators (56)–(57).
We could also construct WI relating three point functions

in the rhs of (50)–(51) and (56)–(57) with four-point
pseudoscalar operators. This would be a much manageable
scenario within an effective theory description (like ChPT),
and it would not require to introduce explicitly the
f0ð500Þ=ðσÞ degree of freedom in the Lagrangian.
Looking in more detail at the isoscalar case, the σl and
σs bilinears in (50) couple to the scalar source sðxÞ in the
QCD Lagrangian [61], which on the meson Lagrangian
translates into a contribution from the ππ, K̄K and ηη
channels at leading order. Therefore, the rhs of the identity
(50) is directly related to ππ → ππ scattering in the I ¼
J ¼ 0 (σ) channel, as well as to K̄K → ππ and ηη → ππ,
where the σ=f0ð500Þ resonance can also be generated.
Thus, this identity states that the σ=f0ð500Þ resonance
produced in ππ scattering plays a fundamental role for the
Oð4Þ degeneration of partners. This is fully consistent with
the recent analysis in [49], where it is shown that the critical

crossover behavior of χ̃llS can be achieved including the
thermal pole of the σ=f0ð500Þ, as generated in unitarized
ππ scattering [62]. Similarly, the δ bilinear translates into a
contribution from the πη and K̄K channels. In this way, the
rhs of (51) connects with the a0ð980Þ resonance, which is
produced in πη → πη and K̄K → πη scattering and moti-
vates a future finite temperature analysis of this resonance.
Furthermore, at first glance, the identities (50)–(51) and

(56)–(57) suggest the degeneration conditions in (16) once
the light chiral limit m̂ → 0 is taken, albeit this could be
only possible at temperatures close to Tc. In fact, at T ¼ 0,
hq̄qil is Oð1Þ in the light chiral limit and the scalar and
pseudoscalar susceptibilities satisfy χπP ¼ Oðm̂−1Þ ≫ χ̃llS ¼
Oðlog m̂Þ [8,57], hence in contradiction with partner
degenerations. Similarly, for the δ − ηl identity (59), χδS ¼
Oð1Þ at T ¼ 0 [56] while χηlP diverges at least as Oðm̂−1Þ
(23). Thus, the three-point functions in the rhs of (50)–(51)
and (56)–(57) should scale as 1=m̂ at T ¼ 0 in the light
chiral limit. As T increases, χπP drops proportionally to
hq̄qil as given by (22) while χ̃llS increases. Hence, they will
eventually match consistently with partner degeneration
around Tc. According to (50) such degeneration, expressed
in term of two-point correlators, is driven by the σππ vertex,
which becomes the physically relevant interaction. The
same happens in the δ channel, where χllP drops, hence
tending to match with χδS, driven by a0πη interaction
through (51).
Further identities can be derived considering diagonal

rotations α0A. On the one hand, considering ObcðyÞ ¼
πbðyÞδcð0Þ and OðyÞ ¼ σðyÞηlð0Þ in (3), one gets for
a ¼ 0,

PππðyÞ − SδδðyÞ ¼
Z
T
dxhT πðyÞδð0Þη̃ðxÞi; ð63Þ

PllðyÞ − SllðyÞ ¼
Z
T
dxhT ηlðyÞσlð0Þη̃ðxÞi; ð64Þ

where

η̃ðxÞ ¼ m̂ηlðxÞ þmsηsðxÞ þ
1

2
AðxÞ: ð65Þ

On the other hand, from the transformation in (14),
taking the combinations O ¼ P8;0S8;0, one obtains

hT P8;0ðyÞP8;0ð0Þi − hT S8;0ðyÞS8;0ð0Þi

¼
Z
T
dxhT P8;0ðyÞS8;0ð0Þη̃ðxÞi: ð66Þ

The identities (66) can also be combined to give for the
ls and ss correlators:
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PlsðyÞ − SlsðyÞ ¼
Z
T
dxhT ηlðyÞσsð0Þη̃ðxÞi; ð67Þ

PssðyÞ − SssðyÞ ¼
Z
T
dxhT ηsðyÞσsð0Þη̃ðxÞi: ð68Þ

Like in the previous discussion, the above identities
show the different vertices responsible for the symmetry
breaking of the expected Uð1ÞA degenerated patterns, i.e.,
π − δ and ηl;s − σl;s degeneration, which are now related
with additional three-point vertices. Compared to the
previous identities (50)–(57), there are two new terms.
Namely, one proportional to ms and an anomalous term
proportional to AðxÞ in (65). The latter corresponds to the
Uð1ÞA breaking contributions in (5).
Recall that the AðxÞ operator couples to the Uð1ÞA

anomalous-source θðxÞ, which in the meson sector and
at leading order is given byM2

0η0, with η0 the pseudoscalar
singlet field andM2

0 a constant giving the anomalous part of
the η0 mass. All this will be discussed in detail within the
Uð3Þ ChPT formalism in Sec. V. Moreover, as discussed
above, the octet η8 and singlet η0 fields mix to give the
physical η − η0 states. In this way, the identity (63) can be
expressed in terms of πηðη0Þ → πηðη0Þ and K̄K → πηðη0Þ
processes in the a0ð980Þ channel, whereas (64), (67), and
(68) refer to ηðη0Þηðη0Þ → ππ, ηðη0Þηðη0Þ → K̄K and
ηðη0Þηðη0Þ → ηðη0Þηðη0Þ in the σ channel.

B. I = 1=2

Further relations for the K and κ correlators can be
obtained taking the two-point operator Obc ¼ PbðyÞScð0Þ.
Considering a SUAð2Þ transformations in (3), i.e., taking
a ¼ 1, 2, 3, one obtains for the KK and κκ correlators:

dabc½PKKðyÞ − SκκðyÞ�

¼ m̂
Z
T
dxhT KbðyÞκcðxÞπað0Þi;

ða ¼ 1; 2; 3; b; c ¼ 4;…; 7Þ; ð69Þ

where we denote hPaPbi ¼ δabPKK and hSaSbi ¼ δabPκκ

for a; b ¼ 4;…; 7.
The above identity provides information of the physical

processes responsible for such degeneration. The possible
values for dabc ¼ �1=2 account for the different combi-
nations of allowed κ → Kπ processes, which, within a pure
light or NGB theory, are Kπ → Kπ and Kη → Kπ. Hence,
(69) highlights the relevant role of the controversial κ
resonance at finite T for the chiral symmetry restoration in
the I ¼ 1=2 channel.
Finally, we will also consider the effect of Uð1ÞA

transformations in this sector. Taking Obc as before but
now with a ¼ 0, (3) gives

PKKðyÞ − SκκðyÞ ¼
Z
T
dxhT KðyÞκð0Þη̃ðxÞi; ð70Þ

which corresponds to κ → Kη and κ → Kη0 decays includ-
ing the anomalous contribution, or Kηðη0Þ → Kπ and
Kηðη0Þ → Kηðη0Þ meson scattering processes in the κ
channel. Note that the lhs of (69) and (70) are the same
except for the dabc ¼ �1=2 factor, which allows one to
connect the different scattering processes involved.
Thus, the vanishing of the rhs of Eqs. (69) and (70)

would be consistent with the K − κ degeneration at chiral
and Uð1ÞA transitions described in Sec. III D.

V. EFFECTIVE THEORY ANALYSIS WITHIN
Uð3Þ CHIRAL PERTURBATION THEORY

TheWI studied in this work have been derived within the
QCD generating functional. Thus, in principle, they are
subject to renormalization ambiguities related to the fields
and vertices involved [63,64]. It is therefore important to
provide a specific low-energy realization of WI and the
observables entering them, such as the scalar and pseudo-
scalar susceptibilities that we have been analyzing in
previous sections. We will carry out such analysis in this
section, where we provide a thorough ChPT Uð3Þ analysis,
hence extending the work in [50] to include the relevant
chiral andUð1ÞA partners. As we are about to see, this study
will confirm our previous findings based on WI and
symmetry arguments.
The Uð3Þ ChPT formalism provides a consistent frame-

work for calculating low-energy physical processes related
to the pseudoscalar nonet. With respect to standard SUð3Þ
ChPT, where pions, kaons and the octet η8 state are the
pseudo-Goldstone bosons, it incorporates also the singlet η0
as a ninth pseudo-Goldstone boson. However, due to the
UAð1Þ anomaly, the mass of the η0 is too heavy to be
included in the standard chiral power counting in terms of
meson masses, energies and temperatures. Nevertheless,
the axial anomaly vanishes in the Nc → ∞ limit, in which
the singlet field η0 would become the ninth Goldstone
boson in the chiral limit. For that sake, the large Nc limit
framework must be considered [17–19], so that the chiral
counting is extended to include the 1=Nc counting. In this
way, the expansion is performed in terms of a parameter δ
such that M2, E2, T2, m̂, ms ¼ OðδÞ and 1=Nc ¼ OðδÞ,
where M, E are typical meson masses and energies. In this
counting, the tree-level pion decay constant F2 ¼ OðNcÞ ¼
Oð1=δÞ, which hence suppresses loop diagrams. The
counting of the different low-energy constants (LECs),
according to theirOðNcÞ trace structure, is given in detail in
[18,32–34].
In [50], one-point WI involving pseudoscalar suscep-

tibilities and quark condensates were verified within Uð3Þ
ChPT and the explicit expressions for those susceptibilities
and condensates were given up to NNLO in the δ counting.
Here, we will extend that work to the scalar sector, which
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will allow us to check our previous results based on WI for
the nonet partners under Oð4Þ and Uð1ÞA restoration. For
that purpose, we consider the Lagrangian up to NNLO,
namely L ¼ Lδ0 þ Lδ þ Lδ2 in the notation of [32–34].
Besides, the η − η0 mixing angle has to be properly
incorporated. The explicit expressions for Lagrangians,
self-energies, and the mixing angle up to the relevant order
we are considering here can be found in [33].
Within thisUð3Þ framework and including scalar sources

in the effective Lagrangian as dictated by chiral symmetry
[18,19,32–34], we have calculated all the scalar suscep-
tibilities involved in our present analysis, namely χ̃llS ðTÞ,
χ̃ssS ðTÞ, χlsS ðTÞ, χδSðTÞ and χκSðTÞ up to the NNLO Oðδ0Þ.
Their explicit expressions are collected in the Appendix.
With those expressions, we have checked that the WI (45)
holds to the order considered. Therefore, together with the
analysis in [50] of the identities (22)–(24) and (44), we
complete the check of all the one-point WI. Recall that the
LO Oðδ−2Þ vanishes for the scalar susceptibilities (it
contributes to the pseudoscalar ones). Note also that, since
we work within the Dimensional Regularization scheme,
the differences χ̃llS − χllS and χ̃ssS − χssS formally vanish as
δðDÞð0Þ in the ChPT calculation.
As in the SUð3Þ calculation of scalar susceptibilities

[55,57], our present calculation involves tree level terms, as
well as one-loop corrections. Temperature effects show up
on three type of topologies:
(1) Tadpole contributions coming from the Euclidean

tree-level propagator Giðx ¼ 0Þ, whose finite part
reads

μiðTÞ ¼
m2

0i

32π2F2
log

m2
0i

μ2
þ g1ðm0i; TÞ

2F2
; ð71Þ

g1ðM;TÞ ¼ T2

2π2

Z
∞

M=T
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − ðM=TÞ2

p
ex − 1

; ð72Þ

where i ¼ π, K, η, η0, m0i are the tree level masses
and μ is the renormalization scale.

(2) Contributions arising from Wick contractions of two
pairs of meson fields at different spacetime points,
proportional to

Z
T
dDx½GiðxÞ�2 ¼ −

d
dm2

0i
Giðx ¼ 0Þ; ð73Þ

whose finite part can be written in terms of

νiðTÞ ¼ F2
d

dm2
0i
μiðTÞ ¼

1

32π2

�
1þ log

m2
0i

μ2

�

−
g2ðm0i; TÞ

2
; ð74Þ

g2ðM;TÞ ¼ 1

4π2

Z
∞

M=T
dx

1

x
1

ex − 1
: ð75Þ

(3) Loop contributions coming from mixed contribu-
tions of the type:

Z
T
dDxGiðxÞGjðxÞ¼

1

m2
j−m2

i
½Giðx¼0Þ−Gjðx¼0Þ�;

ð76Þ

which reduces to (73) for m2
i → m2

j.
An important consistency check of our calculation is

that all the results are finite and scale independent. Together
with the χP susceptibilities already calculated in [50],
these results will allow us to examine how our previous
results on partner degeneration are realized within ChPT.
Although the ChPT framework is limited to a low temper-
ature description, we are going to see that the thermal
extrapolation of the ChPT curves provides useful model-
independent results confirming our previous analysis for
partner degeneration. In addition, this framework will allow
us to examine the chiral limit consistently.
Let us start by analyzing in Uð3Þ ChPT the susceptibil-

ities in Sec. III A regarding the Oð4Þ versus Oð4Þ ×Uð1ÞA
pattern and the corresponding partner degeneration in the
I ¼ 0, 1 sector. The results for the four susceptibilities
involved are plotted in Fig. 5 for the physical value of the
pion mass. The numerical values of the LECs involved are
taken from [33] and the bands in the figure cover the
uncertainties of those LEC quoted also in [33]. We consider
the values of the NNLOFit-B fit in [33], which is their
best fit to lattice predictions of η and η0 masses. All the
susceptibilities are proportional to Br2

0 ¼ m4
0π=ð4m̂2Þ,

where, due to the presence of η0 loops, Br
0 is the renor-

malized Uð3Þ version of the SUð3ÞB0 constant.
Let us define Tc as the (pseudocritical) Oð4Þ restoration

temperature for which degeneration of the chiral partner
states σ=π takes place, i.e., χπPðTcÞ ¼ χllS ðTcÞ. Note that this
temperature is more advisable than the standard definition
in terms of the vanishing quark condensate, since the latter
is meant to remain nonzero at the chiral transition for
physical masses. Recall that throughout this section, what
we really mean by degeneration of partners is the matching
of their corresponding susceptibilities, since ChPT is not
able to reproduce neither a true degeneration, nor a cross-
over or a phase transition behavior. Numerically, for the
physical pion mass and for the LECs in [33], we obtain
Tc ∼ 264 MeV and T0 ≃ 1.09 MeV (for the central values
in Fig. 5) where T0 is defined as hq̄qilðT0Þ ¼ 0. We stress
that the particular numerical value for Tc is not important;
i.e., the ChPT expansion is limited at low temperatures so it
is not supposed to provide a quantitative description of the
transition. Nevertheless, as we are about to see, the main
qualitative features in terms of partner degeneration and the
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relation between different pseudocritical temperatures
obtained from the extrapolation of the ChPT results are
consistent with lattice and with our previous WI analysis.
In addition, the results in Fig. 5 show that χπP matches χδS

above Tc. This crossing point can be considered as an
estimate of Uð1ÞA degeneration with a critical temperature
Tc2 defined as χπPðTc2Þ ¼ χδSðTc2Þ. Using physical pion
masses one finds Tc2 ≃ 1.07Tc (for the central values) i.e.,
quite close to Tc. Nevertheless, the numerical difference
lies within the ChPT uncertainty range, as seen in the
figure. The behavior of χllPðTÞ shown in Fig. 5 is not so
reliable as the other susceptibilities. In this case the Oðδ0Þ
ChPT corrections at T ¼ 0 turn out to be of the same order
as the leading Oðδ−1Þ ones. This effect is worsened as T
increases. Nevertheless, taking this caveat in mind, we can
still see that the difference between χπPðTÞ and χllPðTÞ does
vanish close to (and above) Tc2. Once more, this value can
be taken as the pseudocritical temperature characteristic of
Oð4Þ ×Uð1ÞA restoration, which according to (20) we
define as χ5;discðTc3Þ ¼ 0. In the physical case depicted in
Fig. 5, we get Tc3 ≃ 1.13Tc. As a summary, from the results
plotted in Fig. 5, we conclude that the Uð3Þ ChPT analysis
yields Oð4Þ × Uð1ÞA partner degeneration close and above
Oð4Þ. Recall that we may have different pseudocritical
temperatures in terms of partner degeneration, both for
Oð4Þ and for Uð1ÞA partners, in the physical mass case.
In Fig. 5, we also show the K and κ susceptibilities for

I ¼ 1=2. They match at χKPðTc4Þ ¼ χκSðTc4Þwith Tc4 ≃ Tc2.
This behavior is compatible with the pattern predicted in
Sec. III D; i.e., K − κ degeneration takes place at Uð1ÞA
restoration. Furthermore, as we will see below, this temper-
ature approaches Oð4Þ restoration in the chiral limit,
consistently with (46).
More revealing results are obtained from our ChPT

expressions when we approach the chiral limit. In that
regime, we would expect that the two pseudocritical
temperatures corresponding to the chiral transition, T0

and Tc, should tend to coincide. In addition, from the
analysis in Sec. III A, we would also expect the Uð1ÞA and
Oð4Þ ×Uð1ÞA pseudocritical temperatures to approach the
chiral Oð4Þ ones. This is indeed what we obtain, as it is
shown in Fig. 6, where the hierarchy Tc3 > T0 > Tc2 > Tc
is maintained as the chiral limit is approached.
As explained above, T0 > Tc is expected from chiral

restoration arguments, while we expect Tc2 > Tc and Tc3 >
Tc since Uð1ÞA partners are meant to degenerate after Oð4Þ
ones. It is also natural that Tc3 > Tc2 since the restoration of
χ5;disc requires the vanishing of both χπP − χδS and χ

δ
S − χllP. In

any case, from our present ChPT approach, given the
decreasing behavior obtained for χllP in Fig. 5, the condition
Tc3 > Tc2 clearly holds. Finally, there is no a priori reason
on how Tc3 or Tc2 should be related to T0.
As for the I ¼ 1=2 K − κ matching, we see from Fig. 6

that Tc4 remains almost identical to Tc3 for all values ofmπ ,
approaching the other restoration temperatures in the chiral
limit. This is consistent with what we expect from the
WI (46).
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FIG. 5. Susceptibilities calculated in Uð3Þ ChPT to NNLO for the physical pion mass. Left:The four susceptibilities of the I ¼ 0,
1 sector. Right: I ¼ 1=2 sector susceptibilities.

FIG. 6. Different partner degeneration temperatures as the light
chiral limit mπ → 0þ is approached.
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Moreover, the leading order in the chiral limit for the
susceptibilities is actually quite useful for our present
purposes. We obtain from the expressions in the Appendix:

χ̃llS ðTÞ ¼ aðBr
0Þ2

T
mπ

þOðlogmπÞ;

χπPðTÞ ¼ ðBr
0Þ2

2f2π
m2

π

�
b

	
1 −

T2

T2
0ch



þ a

mπT
f2π

�
þOðlogmπÞ;

χllPðTÞ ¼ ðBr
0Þ2

	
c0 − c1

T2

m2
K



þOðmπÞ;

χδSðTÞ ¼ ðBr
0Þ2

	
d0 þ d1

T2

m2
K



þOðmπÞ; ð77Þ

where a, b, c0, c1, d0 and d1 are positive dimensionless

constants independent of T and mπ . One has a ¼ 3
4π, b ¼

jhq̄qi0l j
Br
0
f2π

and T0ch ¼ 2

ffiffiffiffiffiffiffiffiffiffi
jhq̄qi0l j
Br
0

r
≃ 238 MeV the chiral limit

value for T0, with hq̄qi0l the light quark condensate in
the chiral limit at T ¼ 0. The analytic expressions of the
other constants depend on different LECs, masses and
mixing parameters and are too long to be displayed here.
Their numerical values in the chiral limit are c0 ≃ 0.0025,
c1 ≃ 0.78, d0 ≃ 0.029 and d1 ≃ 0.26. The asymptotic
expansions in (77) arise from:

g1ðM;TÞ ¼ T2

12
−
TM
4π

þOðM2 logMÞ;

g2ðM;TÞ ¼ T
8πM

þOðlogMÞ; ð78Þ

while exponentially suppressed contributions of order
expð−mK=TÞ have been neglected.
From the previous expressions and the definitions of

pseudocritical temperatures explained before, we get

T0 ¼ T0ch þ
aT2

0ch

2bf2π
mπ þOðm2

π logmπÞ;

Tc ¼ T0 −
aT2

0ch

4bf2π
mπ þOðm2

π logmπÞ;

Tc2 ¼ Tc þ
aT2

0ch

4bf2π
mπ þOðm2

π logmπÞ

¼ T0 −
d0m2

K þ d1T2
0ch

4bf2πm2
K

T0chm2
π þOðm3

πÞ;

Tc3 ¼ T0 þ
c1T2

0ch − c0m2
K

4bf2πm2
K

T0chm2
π þOðm3

πÞ; ð79Þ

which is consistent with the numerical results showed in
Fig. 6 and with the Tc3 > T0 > Tc2 > Tc hierarchy. In
addition, the gap between the Uð1ÞA pseudocritical temper-
atures Tc3 and Tc2 isOðm2

πÞ, which is also the gap between
them and T0. On the contrary, the gap between T0, Tc2 or

Tc2 and the Oð4ÞTc is OðmπÞ, i.e., larger in the chiral limit
expansion.
The chiral expansion of the Uð3Þ ChPT results is also

particularly useful to disentangle the behavior of the
connected and disconnected parts of the scalar susceptibil-
ity, which we have discussed in a general context in
Sec. III C. The ChPT expansion, by construction, is not
able to generate a peak for the scalar susceptibility as
T → Tc. However, we can learn about the critical behavior
of the different susceptibilities involved by examining their
infrared (IR) chiral limit mπ → 0þ behavior, for which
ChPT does capture the expected behavior for condensates
and susceptibilities [6,8].
Thus, consider the behavior of the different susceptibil-

ities involved in the relation (43) in the chiral limit at Oð4Þ
and Oð4Þ ×Uð1ÞA restoration, i.e., at Tc and Tc3. On the
one hand, we have at T ¼ Tc

χ̃disS ðTcÞ ¼ aðBr
0Þ2

Tc

4mπ
þOðlogmπÞ;

χ5;discðTcÞ ¼ χ̃disS ðTcÞ þ
1

4
ðBr

0Þ2
�ðc1 þ d1ÞT2

c

m2
K

þ d0 − c0

�

þOðmπÞ;

χδSðTcÞ ¼ ðBr
0Þ2

	
d0 þ d1

T2
c

m2
K



þOðmπÞ;

χllPðTcÞ ¼¼ ðBr
0Þ2

	
c0 − c1

T2
c

m2
K



þOðmπÞ; ð80Þ

which stem from (77) and (79) with χ̃disS ¼ 1
4
½χ̃llS − χδS�

according to the discussion in Sec. III C. Therefore, at
Tc the IR divergent behavior of χ5;disc in the lhs of (43) is
carried entirely by χ̃disS in the rhs. Note that the second term
in the rhs of (43) vanishes by definition at Tc and the third
term in the rhs is regular in the IR limit.
On the other hand, at T ¼ Tc3 one finds

χ̃disS ðTc3Þ ¼ aðBr
0Þ2

Tc3

4mπ
þOðlogmπÞ;

χ̃llS ðTc3Þ ¼ 4χ̃disS ðTc3Þ þ χδSðTc3Þ þOðmπÞ;

χδSðTc3Þ ¼ ðBr
0Þ2

	
d0 þ d1

T2
c3

m2
K



þOðmπÞ: ð81Þ

Note that Tc3 is defined as the temperature for which
χ5;discðTc3Þ ¼ χπPðTc3Þ − χllPðTc3Þ ¼ 0. This vanishing is
compatible with the fact that χ̃disS ðTc3Þ in the rhs of (43)
is IR divergent, as given by (81). Namely, such divergence
is exactly cancelled by that of −χ̃llS ðTc3Þ=4. The remaining
terms in (43) are IR regular and their sum vanishes exactly.
As a summary, it is perfectly compatible from a ChPT

point of view to have a divergent χ̃disS and a vanishing χ5;disc
at Tc3 while both diverge at Tc, with Tc3 − Tc ¼ OðmπÞ.
These features can be appreciated in Fig. 7, where we
plot those susceptibilities very close to the chiral limit.
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At T ¼ Tc, χπP − χ̃llS vanishes while χ5;disc and χ̃disS are both
large and of the same order, which arises from their 1=mπ

behavior (compare with the typical numerical values of
susceptibilities in the physical case in Fig. 5). At T ¼ Tc3,
χ5;disc vanishes and the large positive value of χ̃dis is
compensated by the large negative contribution of-χ̃llS=4,
as discussed above.
In the above discussion, the connected susceptibility, i.e.,

χ̃conS ¼ χδS=2, remains regular in the chiral limit.
Nevertheless, as already discussed in Sec. III C, general
arguments indicate that χ̃conS could actually peak nearUð1ÞA
restoration. A hint of that behavior can be seen also inUð3Þ
ChPT by taking simultaneously the limits mπ → 0þ and
M0 → 0þ. Note that M0 is the anomalous part of the η0
mass, which should vanish in a Uð1ÞA restoring scenario.
The contributions to χδ include mixed loop terms of the
form (76) with i ¼ π, j ¼ η. In theM0 → 0þ limit, we have
mη → mþ

π , leading to

lim
mη→mπ

g1ðmη; TÞ − g1ðmπ; TÞ
m2

η −m2
π

¼ 1

2mπ

d
dmπ

g1ðmπ; TÞ

¼ d
dm2

π
g1ðmπ; TÞ ¼ −g2ðmπ; TÞ: ð82Þ

which, according to (78), generates an additional IR
divergent term not present in the mπ → 0þ for a fixed
mη. In more detail, in the mπ → 0þ andM0 → 0þ limit, we
obtain

χ̃llS ðTÞ !M0;mπ→0þðBr
0Þ2

3þ 1ffiffiffiffiffiffiffiffiffi
1þ2α2

3

p
4π

T
mπ

þOðlogmπÞ;

χ̃conS !M0;mπ→0þðBr
0Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6α2 þ 9

p
− 3

2πα2
T
mπ

þOðlogmπÞ; ð83Þ

with α ¼ M0=mπ . We see that the connected scalar sus-
ceptibility above contains an IR divergent part in this
combined limit, whose strength is parameterized by α. On
the one hand, taking α → ∞ we recover in (83) the results
given in (77), corresponding to mπ → 0þ and M0 ≠ 0. On
the other hand, the α → 0þ limit would correspond to the
maximum UðAÞ1 restoration in this parameterization.
In Fig. 8, we plot the ratio χ̃conS =χ̃llS at leading order in
T=mπ as a function of α. We see that for α → 0þ a
maximum finite value of 1=2 is reached for that ratio.
For reference, the value of α corresponding to the physical
values of mπ and M0 is α ≃ 5.99, which corresponds in
Fig. 8 to χ̃conS =χ̃llS ≃ 0.21.
Following the discussion in Sec. III A, let us

now compare the temperature scaling of χ5;discðTÞ and the
light quark condensate hq̄qilðTÞ. In Fig. 9, we plot
χ5;discðTÞ=χ5;discð0Þ and hq̄qilðTÞ=hq̄qilð0Þ as the pionmass
is reduced. It is clear that their temperature scaling is almost
identical as the chiral limit is approached, consistently with
[31] and with our analysis in Sec. III A. The reason can be
understood again from the chiral limit expressions (77). In
the chiral limit, the ηl contribution χllP is parametrically
negligiblewith respect to χπP, so that their difference given by
χ5;disc is dominated by χπP, which vanishes exactly like hq̄qil
due to the WI (22).
Finally, we will analyze the behavior of the scalar and

pseudoscalar mixing angles. With the mixing angle defined
through (34), we solve for every T the equations

1

2
½χ88P;SðTÞ − χ00P;SðTÞ� sin½2θP;SðTÞ�
þ χ08P;S cos½2θP;SðTÞ� ¼ 0; ð84Þ

using the Uð3Þ ChPT expressions for the susceptibilities.
The result is showed in Fig. 10. First, as commented in
Sec. III B, the degeneration of the scalar and pseudoscalar
mixing angles takes place at about T ≃ 1.05Tc, i.e., around

0.999 1 Tc3
Tc

1.001

T /Tc
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FIG. 7. Behavior of susceptibilities in the decomposition (43)
close to the chiral limit in Uð3Þ ChPT.

FIG. 8. Ratio of connected to total scalar susceptibility in the
combined limits M0 → 0þ, mπ → 0þ with α ¼ M0=mπ .
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Oð4Þ ×Uð1ÞA degeneration. In addition, they coincide in a
value close to the ideal mixing θid, also consistently with
the discussion in Sec. III B. In the case of θS, the variation
with respect to its T ¼ 0 value is small and close to ideal
mixing. These findings are in fair agreement with the
results in [29] obtained within the framework of the
Polyakov-loop extended NJL model. Note that we do
not see in this Uð3Þ ChPT analysis a region of vanishing
mixing, since that would require a larger gap betweenOð4Þ
and Oð4Þ ×Uð1ÞA restoration.

VI. CONCLUSIONS

In this work, we have performed a detailed analysis
of the correlators and susceptibilities corresponding to
the scalar and pseudoscalar meson nonets, both from
general arguments in terms of Ward identities and from
the model-independent description provided byUð3Þ chiral
perturbation theory. Our main physical motivation has been
the study of partners and patterns of chiral and Uð1ÞA
restoration.
In particular, we have showed that in the limit of exact

Oð4Þ restoration, understood in terms of δ − η partner
degeneration, the WI analyzed yield also Oð4Þ ×Uð1ÞA
restoration in terms of π − η degeneration, i.e., from the
vanishing of χ5;disc. Our analysis also provides a connection
between χ5;disc and the topological susceptibility χtop, which
is defined from the correlator of the anomaly operator. The
results we obtain using ChPT are consistent with this
analysis. Namely, one finds that the pseudocritical temper-
atures for restoration of Oð4Þ and Oð4Þ ×UAð1Þ tend to
coincide in the chiral limit. In the real physical world with
massive quarks, our conclusions agree with Nf ¼ 2 lattice
results for partner degeneration. The large gap between
Oð4Þ and Oð4Þ ×Uð1ÞA partner degeneration observed in
Nf ¼ 2þ 1 simulations can be explained by the distortion
in δ − η degeneration, presumably induced by strange
quark mass effects. The large NLO corrections for the ηl
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FIG. 9. Comparison of temperature scaling of χ5;disc and hq̄qilðTÞ for different values of the pion mass.
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FIG. 10. Temperature dependence of scalar and pseudoscalar
mixing angles according to the definitions given in the main text.

A. GÓMEZ NICOLA and J. RUIZ DE ELVIRA PHYS. REV. D 98, 014020 (2018)

014020-20



susceptibility that we obtain withinUð3Þ ChPT support this
conclusion.
In addition, including isospin breaking mu ≠ md effects,

we have recovered the formal connection of the δ and σ
susceptibilities with the connected and disconnected scalar
ones, customarily measured in lattice analysis. The behav-
ior of the connected and disconnected contributions to the
scalar susceptibility have been studied within ChPT near
Oð4Þ and Oð4Þ and Oð4Þ ×Uð1ÞA restoration. In that
context, we have shown that a vanishing χ5;disc at Oð4Þ ×
Uð1ÞA restoration is compatible with a divergent χdiscS .
Moreover, the ChPT behavior for a vanishing M0 (the
anomalous part of the η0 mass) is a hint towards a possible
peaking behavior of the connected χconS .
Regarding scalar and pseudoscalar mixing angles, our

analysis shows that the WI are consistent with θP ∼ θS ∼
θid degeneration around Oð4Þ ×Uð1ÞA restoration, where
θid is the ideal mixing angle. That conclusion is supported
also by the Uð3Þ ChPT analysis, where θS remains close to
ideal mixing for all temperatures, consistently with recent
analyses. In the Nf ¼ 2þ 1 lattice data, an intermediate
range between Oð4Þ and Oð4Þ ×Uð1ÞA restoration, com-
patible with vanishing pseudoscalar mixing is present.
Our analysis shows also that in the I ¼ 1=2 sector, the K

and κ states degenerate both at exact Oð4Þ and Uð1ÞA
restoration. Moreover, the degree of degeneracy of these
two patterns is directly determined by the subtracted
condensate Δl;s measured in the lattice. These results are
confirmed also within the Uð3Þ ChPT analysis. In addition,
we have also showed in this sector that the temperature
behavior of the screening mass in the κ channel measured in
the lattice can be explained with the corresponding WI
relating χκS with the difference of light and strange quark
condensates, which we have checked in ChPT. Such
analysis extends a previous work for the π, K, η channels.
We have also showed that the four channels can be
simultaneously described with a two-parameter fit.

Our Uð3Þ ChPT analysis allows one to obtain all the
nonet scalar susceptibilities up to NNLO in the chiral power
counting for finite temperature, thus completing previous
calculations of the pseudoscalar ones. The explicit expres-
sions for those scalar susceptibilities are also provided here.
In addition, we have discussed additional WI relating

two and three-point functions, which may become useful to
relate Oð4Þ and Uð1ÞA partner degeneration quantities with
meson vertices and scattering amplitudes. A detailed
analysis of those WI is left for future investigation.
As a summary, our study provides new theoretical

insight for the understanding of the nature of the chiral
and Uð1ÞA transitions in terms of the degeneration of the
meson nonet states, which is meant to be useful for lattice,
phenomenological and experimental analyses. The picture
emerging both from a general Ward Identity framework and
from ChPT is robust and provides model-independent
conclusions that could guide future work on this subject.
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APPENDIX: ChPT RESULTS

In this appendix, we provide the explicit Uð3Þ ChPT
expressions for the scalar susceptibilities χ̃llS ðTÞ, χ̃ssS ðTÞ,
χlsS ðTÞ, χδSðTÞ and χκSðTÞ. Up to NNLO in the δ expansion,
one finds

χllS ¼ 4Br2
0

	
−3νπ − νK −

1

9
ð4 − c2θð3 − 7s2θÞ − 4

ffiffiffi
2

p
cθsθð1þ s2θÞÞνη −

1

9
ð4þ s2θð4 − 7s2θÞ − 4

ffiffiffi
2

p
cθsθð−2þ s2θÞÞνη0

þ 2F2

9

ð2c4θ − 2
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2

p
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2
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p
cθs3θ þ 2s4θÞðμη − μη0 Þ
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0η0 −m2

0η

þ 4

	
8Lr

6 þ 2Lr
8 þHr

2 þ
8

3
Cr
19ð4m2

0K −m2
0πÞ




;

χssS ¼ 4Br2
0
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1
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2
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1
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χlsS ¼ 4Br2
0
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1
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χδS ¼ 4Br2
0
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;

χκS ¼ 2Br2
0
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; ðA1Þ

where the T-dependent loop functions μi and νi are defined in (72) and (75), respectively.
In addition, m0π ¼ 2Br

0m̂ and m0K ¼ Br
0ðm̂þmsÞ stand for the LO pion and kaon masses, whereas the LO η and η0

masses are given by

m2
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with Δ2 ¼ m2
0K −m2

0π and M0 the anomalous part of the η0 mass.
Finally, cθ ≡ cos θP and sθ ≡ sin θP, θP is the η − η0 mixing angle defined in (33), which to LO reads
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