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Abstract The electromagnetic excitation of the Δ(1232)-resonance plays an appreciable role in the Lamb
shift and hyperfine structure of muonic and electronic hydrogen. Its effect appears at the subleading order
O(α5), together with other proton-polarizability contributions from forward two-photon exchange. We use the
large-Nc relations for the nucleon-to-delta transition form factors to compute the effect of the Δ(1232) in the
hydrogen spectrum. We pay particular attention to a subtile difference between predictions based on a direct
calculation of the two-photon exchange (or Compton scattering amplitudes) (Faustov et al. in Phys At Nucl
62:2099, 1999) and predictions based on the Δ(1232)-production photoabsorption cross sections (Buchmann
in Can J Phys 87:773–783, 2009). The mismatch is explained by studying the dispersion relations for tree-level
Compton scattering off the proton in more details.

1 Introduction

Spectroscopy of muonic hydrogen (μH) has great potential for precise extractions of proton structure infor-
mations, such as the proton charge radius. The μH Lamb shift experiment, performed by the CREMA col-
laboration [1,2], provided the currently most precise determination of the proton charge radius. Their value
is about 10 times more accurate than the CODATA average of experiments with electronic probes [3], but
5.6 σ smaller—hence, posing the proton radius puzzle. Evidently, the extraction of the charge radius from the
experimental Lamb shift or the Zemach radius from the measured hyperfine splitting (HFS), strongly depends
on the quality of the theoretical input (summarized f.i. in Ref. [4]). The biggest theoretical uncertainty comes
from the forward two-photon exchange (TPE) between muon and proton, or rather, the proton-polarizability
effect given by the non-Born contributions to the TPE, see Fig. 1. These effects are of the order O(α5), and
therefore subleading with respect to the proton charge radius contribution which is of order O(α4).1

At present, the experimental information on the HFS in μH, used to extract the Zemach radius of the
proton [2,4], only comes from the 2S level. In the future, the planned measurements of the ground-state 1S
HFS in μH (CREMA [6], FAMU [7] and J-PARC/Riken-RAL [8]) will improve the experimental HFS accuracy
considerably, and thereby call for at least a factor of 10 improvement in precision of the theory predictions of
proton-polarizability effects [6].

In this conference proceedings, we discuss the polarizability effect on the hydrogen spectrum generated
by the Δ(1232)-resonance through the diagram in Fig. 2 (Lamb shift in Sect. 4, HFS in Sect. 5).2 Thereby,

1 See Ref. [5] for a recent review on polarizabilities in Compton scattering and hydrogen.
2 The results have been previously presented in Ref. [9].

This article belongs to the Topical Collection “NSTAR 2017—The International Workshop on the Physics of Excited Nucleons”.

F. Hagelstein (B)
Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, 3012 Bern,
Switzerland
E-mail: hagelstein@itp.unibe.ch

http://orcid.org/0000-0002-2017-7132
http://crossmark.crossref.org/dialog/?doi=10.1007/s00601-018-1403-x&domain=pdf


93 Page 2 of 15 F. Hagelstein

Fig. 1 Two-photon-exchange diagram in forward kinematics: the horizontal lines correspond to the lepton and the proton (bold).
The “blob” represents all possible excitations in the non-Born diagrams

Fig. 2 Two-photon-exchange diagram with intermediate Δ(1232)-excitation. The crossed diagram is not drawn

our main aim is rather pedagogical, as we want to remind the reader of an interesting issue appearing in the
tree-level Compton scattering (CS)—namely, the mismatch of Compton scattering amplitudes and dispersion
relations with input from single-particle-production photoabsorption cross sections.

The theoretical framework is briefly presented in Sect. 2. In Sect. 3, we give a clarifying presentation of
the tree-level CS process, with the Born diagrams discussed in Sect. 3.1, and CS with intermediate Δ(1232)
exchange calculated in Sect. 3.2 and analyzed in Sect. 3.3. A detailed study of the leading-order (LO) plus
Δ prediction of the α5-proton-polarizability contribution to the HFS in electronic and muonic hydrogen (H
and μH) from baryon chiral perturbation theory (BχPT), discussing also the LO pion-cloud contribution, is
postponed to Ref. [10]. BχPT studies of the Lamb shift at LO and LO plus Δ can be found in Refs. [11]
and [12], respectively. Further model-independent studies of the Lamb shift and the hyperfine splitting in H
and μH can be found in Refs. [39–42], which use the frameworks of heavy-baryon chiral perturbation theory
(HBχPT) and non-relativistic QED.

2 Theoretical Framework

The forward TPE, shown in Fig. 1, can be split into a leptonic and a hadronic tensor. The leptonic side can be
calculated from QED, while the hadronic side is given by the amplitudes of forward doubly-virtual Compton
scattering (VVCS) off the proton. The VVCS tensor splits into symmetric and antisymmetric parts:

Tμν(q, p) = [
Tμν
S + Tμν

A

]
(q, p), (1)

which read:3

Tμν
S (q, p) = −gμν T1(ν, Q2) + pμ pν

M2 T2(ν, Q2), (2a)

Tμν
A (q, p) = − 1

M
γ μναqα S1(ν, Q2) + Q2

M2 γ μνS2(ν, Q2). (2b)

The spin-independent VVCS amplitudes, T1 and T2, contribute to the classic (2P − 2S) Lamb shift [13]:

ΔETPE(nS) = 8παm φ2
n

1

i

∞∫

−∞

dν

2π

∫
dq

(2π)3

(
Q2 − 2ν2

)
T1(ν, Q2) − (Q2 + ν2) T2(ν, Q2)

Q4(Q4 − 4m2ν2)
, (3)

3 Here and in the following, we use: γμν = 1/2
[
γμ, γν

]
, γμνα = 1/2(γμγνγα − γαγνγμ) and γμναβ = 1/2

[
γμνα, γβ

]
.
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whereas the spin-dependent VVCS amplitudes, S1 and S2, contribute to the HFS [14]:

ETPE
HFS(nS)

EF(nS)
= 4m

1 + κ

1

i

∞∫

−∞

dν

2π

∫
dq

(2π)3 (4)

× 1

Q4 − 4m2ν2

{(
2Q2 − ν2

)

Q2 S1(ν, Q2) + 3ν

M
S2(ν, Q2)

}

.

Here, m is the muon mass, M is the proton mass, κ is the anomalous magnetic moment of the proton, ν is the
photon energy in the lab frame, q2 = −Q2 is the virtuality of the photon, φ2

n = m3
rα

3/(πn3) is the hydrogen
wave function of the nth S-level at the origin, and mr is the reduced mass of the muon-proton system.

BχPT studies of the nucleon VVCS process can be found in Refs. [43,44] and Ref. [45]. These papers use
the ε- [46] and δ-expansion [47] power-counting schemes, respectively.4

To calculate the VVCS amplitudes of interest to this paper, we need the γ ∗N → Δ transition vertex5:

Γαμ
γN→Δ(p′, q) =

√
3
2

e

MN (MN + MΔ)

{
gMγαμκλp′

κqλ

+ gE(p′ · q gαμ − qαp′μ) +
gC
MΔ

q2gαμ
/p

′

−q2p′μγα + p′ · q qμγα − qαqμ
/p

′)}γ5,

and the spin- 3
2 propagator for the Δ(1232) [18]:

p’
Sαβ

Δ (p′) =
/p

′ + MΔ

p′ 2 − M2
Δ + i0+

[
−gαβ +

1
3
γαγβ

+
1

3MΔ
γαp′ β − γβp′ α

)
+

2
3M2

Δ

p′ αp′ β

]
.

Here, MN = 938.27 MeV and MΔ = 1232 MeV are the nucleon and Delta masses, and gM = 2.97, gE = −1.0
and gC = −2.6 are the magnetic, electric and Coulomb couplings [16].

2.1 Jones–Scadron Form Factors and the Large-Nc Limit

As the VVCS amplitudes need to be integrated over the full range of Q2 in Eqs. (3) and (4), it is useful to
relate our predictions derived from the above Feynman rules to empirical observables by means of large-Nc
relations [19,20], thereby improving the convergence in Q2. The magnetic (gM ), electric (gE ) and Coulomb
(gC) couplings are per definition related to the magnetic (G∗

M ), electric (G∗
E ) and Coulomb (G∗

C) nucleon-to-
delta transition form factors (FFs) of Jones and Scadron [21]:

gM = G∗
M (Q2) − G∗

E (Q2), (6a)

4 Note that in the large-Nc limit, applied in Section 2.1, the excitation energy of the Δ is vanishing [48]: Δ = MΔ − MN =
O(N−1

c ). Therefore, in that limit the ε counting, which treats nucleon- and Δ-propagators in the same way, is more appropriate.
However, this difference is not affecting our calculation of the Δ-exchange contribution. I thank Dr. H. Krebs for this remark.

5 The chiral Lagrangian for the γ ∗N → Δ interaction reads [15]:

L(2) nm
γ NΔ = 3e

2MN (MN + MΔ)

[
N̄ T3

{
igM (∂μΔν)F̃

μν − gEγ5(∂μΔν)F
μν (5)

+i
gC

MΔ

γ5γ
α(∂αΔν − ∂νΔα)∂μF

μν
}

+
{
gE (∂μΔ̄ν)γ5F

μν

−igM (∂μΔ̄ν)F̃
μν + i

gC

MΔ

(∂αΔ̄ν − ∂νΔ̄α)γ αγ5∂μF
μν

}
T †

3 N

]
,

where N (x) and Δμ(x) are the nucleon and Delta fields, and T3 is an isospin 1/2–3/2 transition matrix [16,17].
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gE = − Q2+
ω2− + Q2

[
ω−
MΔ

G∗
E (Q2) + Q2

2M2
Δ

G∗
C(Q2)

]

, (6b)

gC = Q2+
ω2− + Q2

[
G∗

E (Q2) − ω−
2MΔ

G∗
C(Q2)

]
, (6c)

with

Q+ =
√

(MΔ + M)2 + Q2, (7a)

ω− = (M2
Δ − M2 − Q2)/2MΔ. (7b)

These transition FFs are associated with the multipoles of pion electroproduction at the Δ(1232)-resonance
position, M (3/2)

1+ , E (3/2)
1+ and S(3/2)

1+ , and enter the measured multipole ratios in the following way [22]:

REM(Q2) = − G∗
E (Q2)

G∗
M (Q2)

, (8a)

RSM(Q2) = −Q+Q−
4M2

Δ

G∗
C(Q2)

G∗
M (Q2)

. (8b)

They can be conveniently connected to the electromagnetic nucleon properties via large-Nc relations:

G∗
M (0) = κV√

2
[23], (9a)

G∗
E (0) = M2 − M2

Δ

12
√

2

(
M

MΔ

)3/2

〈r2〉En [24], (9b)

G∗
C(0) = 4M2

Δ

M2
Δ − M2

G∗
E (0) [22], (9c)

where we introduced the isovector anomalous magnetic moment of the nucleon: κV = κp − κn � 3.7 [25].
An extension of these relations to finite momentum transfer is modeled and compared with available data for
REM and RSM in Ref. [22, Fig. 1]:

G∗
M (Q2) = 1√

2

[
F2p(Q

2) − F2n(Q
2)

]
, (10a)

G∗
E (Q2) =

(
M

MΔ

)3/2
ΔM+

2
√

2 Q2
GEn(Q

2), (10b)

G∗
C(Q2) = 4M2

Δ

ΔM+
G∗

E (Q2). (10c)

Here, F2p and F2n are the Pauli FFs of the proton and neutron, respectively, while GEn is the electric Sachs
FF of the neutron.

Using the fact that F2p(Q2)/κp ≈ [
F2p(Q2) − F2n(Q2)

]
/κV , as illustrated in Fig. 3, one can further

simplify Eq. (10a):
G∗

M (Q2) = √
2C∗

MF2p(Q
2), (11)

with C∗
M = 3.02√

2 κp
chosen such that the empirical value of G∗

M (0) � 3.02 [26] is reproduced. In the follow-

ing evaluation, we make the same choice as Ref. [22] and apply the parametrizations of Ref. [27] for the
electromagnetic nucleon FFs.

3 Compton Scattering off the Proton

In this section, we want to compare two different approaches to the tree-level CS. On one hand, we show a direct
calculation of the VVCS amplitudes. On the other hand, we use CS sum rules with single-particle-production
photoabsorption cross sections as input. This is a rather pedagogical discussion to remind the reader of a subtile
difference between the two approaches.
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Fig. 3 Comparison of Pauli form factors normalized to the anomalous magnetic moment: blue solid line F2p(Q2)/κp , black
dashed line

[
F2p(Q2) − F2n(Q2)

]
/κV

Fig. 4 Tree-level Compton scattering off the proton

3.1 Born Diagrams

Let us first take a look at the leading diagrams in the process of CS off the proton, i.e., the tree-level Born
diagrams shown in Fig. 4. The Born amplitudes are very well known [28]6:

TBorn
1 (ν, Q2) = 4πα

M

[

−F2
1p(Q

2) + ν2
el G

2
Mp(Q

2)

ν2
el − ν2 − i0+

]

, (12a)

TBorn
2 (ν, Q2) = 8πα νel

ν2
el − ν2 − i0+

G2
Ep(Q

2) + τG2
Mp(Q

2)

1 + τ
, (12b)

SBorn
1 (ν, Q2) = 2πα

M

[

−F2
2p(Q

2) + 2M νel

ν2
el − ν2 − i0+ F1p(Q

2)GMp(Q
2)

]

, (12c)

νSBorn
2 (ν, Q2) = 2πα F2p(Q

2)GMp(Q
2)

[

1 + ν2
el

ν2
el − ν2 − i0+

]

, (12d)

with the Dirac FF of the proton F1p, and the electromagnetic Sachs FFs of the proton GEp and GMp. As one
can see, the terms containing [ν2

el − ν2 − i0+]−1 are complex valued (0+ is an infinitesimally small positive
number), they have a pole at the elastic threshold, νel = Q2/2M, and fulfil a dispersion relation by themselves.
The elastic proton structure functions associated with these nucleon-pole terms (T pole

i and Spole
i ) read as:

f el
1 (x, Q2) = 1

2
G2

M (Q2) δ(1 − x), (13a)

f el
2 (x, Q2) = 1

1 + τ

[
G2

E (Q2) + τG2
M (Q2)

]
δ(1 − x), (13b)

gel
1 (x, Q2) = 1

2
F1(Q

2)GM (Q2) δ(1 − x), (13c)

gel
2 (x, Q2) = −τ

2
F2(Q

2)GM (Q2) δ(1 − x), (13d)

6 Since SBorn
2 (ν, Q2) has a pole in the subsequent limits of Q2 → 0 and ν → 0, we rather consider νSBorn

2 (ν, Q2).
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Fig. 5 Δ(1232)-exchange contribution to tree-level Compton scattering off the proton

with x = Q2/2Mν the Bjorken variable and x = 1 the elastic point. What is interesting here, some Born
amplitudes have additional contributions from the Dirac and Pauli FFs of the proton, which are not of pole
type7:

TBorn
1 (ν, Q2) = −4πα

M
F2

1p(Q
2) + T pole

1 (ν, Q2), (14a)

SBorn
1 (ν, Q2) = −2πα

M
F2

2p(Q
2) + Spole

1 (ν, Q2), (14b)

νSBorn
2 (ν, Q2) = 2πα F2p(Q

2)GMp(Q
2) + [νS2]pole (ν, Q2). (14c)

If one would want to describe these additional pieces through (unsubtracted) dispersion relations, structure
functions proportional to δ(x) would be needed. In the following, we will see that this separation of the tree-
level amplitudes into pole and non-pole pieces is not unique for the Born diagrams, but also appears for the
Δ(1232) as one-particle intermediate state.

3.2 Tree-Level Compton Scattering with Δ(1232) Exchange

The Δ(1232)-exchange diagrams, shown in Fig. 5, contribute to the nucleon polarizabilities at NLO in BχPT.
Here, we present our results for the VVCS amplitudes and the Δ(1232)-production photoabsorption cross
sections, shown in Fig. 6, in terms of the couplings gM , gE and gC . For brevity, we won’t show analytic results
after the substitution of the Jones–Scadron transition FFs, described in Sect. 2.1.

The amplitudes for tree-level VVCS with Δ(1232) exchange can be decomposed in the following way:

T1(ν, Q2) = T1(0, Q2) + TΔ−pole
1 (ν, Q2) + T̃1(ν, Q2) + i 4π2α

M
f1(ν, Q2), (15a)

T2(ν, Q2) = TΔ−pole
2 (ν, Q2) + T̃2(ν, Q2) + i 4π2α

ν
f2(ν, Q2), (15b)

S1(ν, Q2) = SΔ−pole
1 (ν, Q2) + S̃1(ν, Q2) + i 4π2α

ν
g1(ν, Q2), (15c)

νS2(ν, Q2) = νSΔ−pole
2 (ν, Q2) + ν̃S2(ν, Q2) + i 4π2αM

ν
g2(ν, Q2), (15d)

with the individual terms explained in what follows. The imaginary parts of the amplitudes are related to the
unpolarized structure functions ( f1 and f2) and the spin structure functions (g1 and g2) by the optical theorem:

Im T1(ν, Q2) = 4π2α

M
f1(x, Q

2) = K σT (ν, Q2), (16a)

Im T2(ν, Q2) = 4π2α

ν
f2(x, Q

2) = Q2K

ν2 + Q2 [σT + σL ] (ν, Q2), (16b)

Im S1(ν, Q2) = 4π2α

ν
g1(x, Q

2) = MKν

ν2 + Q2

[
Q

ν
σLT + σT T

]
(ν, Q2), (16c)

Im S2(ν, Q2) = 4π2αM

ν2 g2(x, Q
2) = M2K

ν2 + Q2

[
ν

Q
σLT − σT T

]
(ν, Q2), (16d)

7 Note that the polarizabilities are defined through the non-Born amplitudes. Therefore, distinguishing between Born and pole
pieces is crucial in the evaluation of the polarizability contribution to the hydrogen spectrum.
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Fig. 6 Tree-level Δ(1232)-production photoabsorption diagram

with the photon flux factor K . The analytic expressions for the Δ(1232)-production structure functions are
given in Appendix 7.2. The right-hand side of Eq. (16) shows how the proton structure functions are in
turn related to the Δ(1232)-production photoabsorption cross sections.8 The threshold for production of the
Δ(1232)-resonance is at lab-frame photon energies of:

νΔ = M2
Δ − M2 + Q2

2M
. (17)

Hence, the response functions are expected to be proportional to δ(ν − νΔ).9

For the real parts of the amplitudes, given in Appendix 7.1, we distinguish two kinds of structures. Terms
which are proportional to:

1

[s − M2
Δ][u − M2

Δ] = 1

4M2

1

ν2
Δ − ν2

, (19)

are denoted as Δ-pole terms: TΔ−pole
i and SΔ-pole

i , see Eq. (37), where s and u are the usual Mandelstam
variables. They have a pole at the Δ(1232)-production threshold, i.e. at ν = νΔ. In addition, we find the
(Δ-)non-pole terms, T̃i and S̃i , which are free of poles in ν, see Eq. (38). They emerge as:

νn+2

[s − M2
Δ][u − M2

Δ] = 1

4M2

(
ν2
Δνn

ν2
Δ − ν2

− νn

)

, (20)

where in the second term the Δ-pole has canceled out.
As we can see, the pole terms, when derived from a local Lagrangian, can be accompanied by non-pole

terms. This means that the pole terms by themselves do not necessarily satisfy all the general constraints, as
we see happening, f.i., for the Δ-pole term which by itself violates the BC sum rule, cf. discussion before
Eq. (33).

3.3 Dispersive Description of Δ(1232)-Pole and Non-pole Contributions

It is important to emphasize that the response functions in Eq. (41), which are proportional to δ(ν − νΔ),
describe the production of a real Δ(1232) in the final state of the cross section. Therefore, as has been
observed before, they can not reproduce the non-pole contributions to the VVCS amplitudes stated in Eq. (38).
However, the structure functions (41) reproduce the Δ-pole parts of the VVCS amplitudes, given in Eq. (37),
as we verified exploiting the dispersion relations (DRs):

T1(ν, Q2) = T1(0, Q2) + 32παMν2

Q4

1∫

0

dx
x f1(x, Q2)

1 − x2(ν/νel)2 − i0+ , (21a)

8 The cross sections are the usual combinations of helicity cross sections: σT = 1/2 (σ1/2 + σ3/2) and σT T = 1/2 (σ1/2 − σ3/2)
for transversely polarized photons, and σL = 1/2 (σ1/2 + σ−1/2) for longitudinal photons. The cross section σLT describes a
simultaneous helicity change of the photon (from longitudinal to transverse) and the nucleon (spin-flip) such that the total helicity
is conserved.

9 Equivalently, we can write the δ-function as:

δ(ν − νΔ) = Q2

2Mν2
Δ

δ
(
x − Q2/2MνΔ

)
. (18)
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T2(ν, Q2) = 16παM

Q2

1∫

0

dx
f2(x, Q2)

1 − x2(ν/νel)2 − i0+ , (21b)

S1(ν, Q2) = 16παM

Q2

1∫

0

dx
g1(x, Q2)

1 − x2(ν/νel)2 − i0+ , (21c)

νS2(ν, Q2) = 16παM2

Q2

1∫

0

dx
g2(x, Q2)

1 − x2(ν/νel)2 − i0+ . (21d)

Note that the high-energy asymptotics of f1 require a once-subtracted dispersion relation for the T1 amplitude,
with the subtraction function T1(0, Q2) written in Eq. (40).

To describe the non-pole contributions in a dispersive framework, we introduce the following structure
functions:

f̃1(x, Q
2) = Mx

8πα
T̃1(x, Q

2) δ(x), (22a)

f̃2(x, Q
2) = Q2

16παM
T̃2(x, Q

2) δ(x), (22b)

g̃1(x, Q
2) = Q2

16παM
S̃1(x, Q

2) δ(x), (22c)

which reproduce Eqs. (38a)–(38c) as plugged into the DRs in Eqs. (21a)–(21c), respectively. The non-pole
part of νS2 is a bit more complicated to reconstruct, because it has terms constant in ν and terms proportional
to ν2. The ν-independent part of Eq. (38d) can be described by:

g̃2,a(x, Q
2) = Q2

16παM2

[
ν̃S2

∣∣
∣
ν→0

]
δ(x), (23)

as plugged into Eq. (21d). The part of Eq. (38d) proportional to ν2 can be described based on:

g̃2,b(x, Q
2) = Q6

64παM4

1

x2

[
S̃2(Q2)

ν

]
δ(x), (24)

with the once-subtracted dispersion relation:

ν̃S2(ν, Q2) − ν̃S2(0, Q2) = 64παM4ν2

Q6

x0∫

0

dx
x2 g̃2,b(x, Q2)

1 − x2(ν/νel)2 . (25)

In this section, we have shown that the amplitudes for tree-level CS with intermediate Δ(1232) can be
split into a Δ-pole and a (Δ-)non-pole part. While DRs with Δ(1232)-production cross sections are able to
reproduce the Δ-poles terms. They are obviously unable to give us the non-pole terms. To reconstruct these
from DRs, we had to define some auxiliary response functions, cf. Eqs. (22)–(24). It is very crucial to keep this
observation in mind, as one should not omit the non-pole terms. We will show this explicitly when studying
the TPE in Fig. 2. Therefore, it is favourable to calculate the effect of the Δ(1232)-resonance in the hydrogen
spectrum based on the VVCS amplitudes, and not based on the Δ(1232)-production cross sections. We will
do so in the following Sects. 4 and 5 for the Lamb shift and the HFS.

4 Δ(1232) in the Lamb Shift

The magnetic dipole polarizability is suppressed in the Lamb shift, as one can see from the low-energy
expansion of the spin-independent VVCS amplitudes entering Eq. (3), see discussion in Ref. [11, Eq. (12)].
Since the nucleon-to-delta transition is dominantly of magnetic dipole type, we expect the Δ(1232)-resonance
to have a numerically small influence on the Lamb shift.
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As outlined in Sect. 2, we calculate the TPE in Fig. 2 based on the large-Nc limit of the Jones-Scadron FFs
extended to finite momentum transfers, i.e., Eqs. (10b), (10c) and (11) with C∗

M = 3.02√
2 κp

. For the empirical

input, we rely on parametrizations of the elastic nucleon FFs [27].
Our results are summarized in Table 1, where we present the contributions to the 2S-level shift in μH from

the subtraction function T1(0, Q2), the Δ-pole amplitudes TΔ−pole
i and the non-pole amplitudes T̃i separately.

The size of these individual contributions is comparable to the leading effect of chiral dynamics [11]:

E 〈LO〉 pol.
LS (μH) = 8+3

−1 µeV. (26)

If we, however, combine all contributions, the Δ-pole parts of the VVCS amplitudes largely cancel the sub-
traction function and the non-pole parts, cf. last column in Table 1. The resulting total effect of the Δ(1232)
on the 2P1/2 − 2S1/2 Lamb shift in μH then amounts to:

E 〈Δ〉 pol.
LS (μH) = −0.95 ± 0.95µeV. (27)

As was expected from the suppression of the magnetic dipole polarizability in the Lamb shift, the NLO
α5-proton-polarizability contribution of the Δ, Eq. (27), is substantially smaller than the leading α5-proton-
polarizability effect, Eq. (26). This result agrees with the model-independent calculation of Ref. [40, Eq. (4.23)]
within errors.

To estimate the quality of our prediction, we confirmed that the contribution from large momentum transfers
(Q > mρ) is less than 1 %. Furthermore, we checked that using a dipole FF for GEp and GMp, as well as the
Galster parametrization for GEn [29], or the Ramalho [30] parametrization, which includes γ ∗N → Δ(1232)
quadrupole FF data, for GEn and the Bradford parametrization for F2p changes Eq. (27) by less than 6 %.
Nevertheless, due to the discussed strong cancelations in the final result, shrinking it by one order of magnitude
compared to f.i. the pure Δ-pole effect, we assigned a conservative error of 100 % on our prediction in Eq. (27).

Let us now take a closer look at the effect of the subtraction function T1(0, Q2). It is of special interest,
since it is not known from experiment, and thus, has to be modeled in any “data-driven” dispersive approach
to the TPE, cf. Refs. [13,31–34]. Surprisingly, the Δ-exchange contribution to the subtraction term:

E 〈Δ〉 subtr.
LS (μH) = −7.58 ± 2.27µeV, (28)

is much larger than the LO BχPT contribution from the πN loops [11]:

E 〈LO〉 subtr.
LS (μH) = 3+0.9

−0.5 µeV. (29)

Note that for the Δ-exchange contribution in Eq. (28), we assigned a 30 % error due to higher orders in the
chiral expansion. Therefore, it has a substantial effect on our prediction for the subtraction term [12]:

E 〈LO+Δ〉 subtr.
LS (μH) = −4.6+2.4

−2.3 µeV, (30)

which is in good agreement with the dispersive predictions from Refs. [13,33]. A HBχPT prediction of the
subtraction term, including leading and subleading π- and πΔ-loops, respectively, can be found in Ref. [40].
However, the LO BχPT and HBχPT predictions of the Lamb shift and the subtraction term deviate, as is
discussed in Ref. [11].

Table 1 Δ(1232)-exchange contribution to the 2S-level shift in muonic hydrogen

Input ΔE(T1) ΔE(T2) ΔE

T1(0, Q2) (40) 7.58 − 7.58

TΔ−pole
i (37) − 2.22 − 6.01 − 8.23

T̃i (38) 0.40 1.19 1.59
Ti (15) 5.76 − 4.82 0.95

All values in µeV
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Table 2 Δ(1232)-exchange contribution to the 2S hyperfine splitting in muonic hydrogen

Input EHFS(S1) EHFS(S2) EHFS

SΔ−pole
i (37) − 38.27 − 2.43 − 40.69

S̃i (38) 39.53 0.02 39.54
Si (15) 1.26 − 2.41 − 1.15

All values in µeV

5 Δ(1232) in the Hyperfine Splitting

In the following, we study the effect of the Δ(1232)-resonance on the HFS. The calculation proceeds analo-
gously to the Lamb shift case, and as we will see in the subsequent discussion, a similar calculations can be
found in the literature [35].10

Our results are summarized in Table 2, where we show contributions to the 2S HFS in μH from the Δ-pole
amplitudes SΔ−pole

i , the non-pole amplitudes S̃i , and their combination. Just as in the Lamb shift calculation,
the Δ-pole and non-pole contributions largely cancel each other, hence, we assign a conservative 100 % error
on their sum. However, contrary to the Lamb shift situation, we find that the effect of the Δ(1232) on the μH
HFS:

E 〈Δ〉 pol.
HFS (2S, μH) = −1.15 ± 1.15µeV, (31)

is certainly relevant in comparison to the leading chiral loops:

E 〈LO〉 pol.
HFS (2S, μH) = 0.85 +0.85

−1.08 µeV. (32)

Again, we verified that the contribution from Q < mρ is small (5 %) and that the result is not sensitive to
the choice of a nucleon FF parametrization, i.e, using different parametrizations for the elastic nucleon FFs
(dipole and Galster FFs [29], or the Ramalho and Bradford parametrizations [27,30]) leads to a change of less
than 7 % in Eq. (31).

Apart from the obvious “quantitative” argument that the non-pole terms should not be neglected, because
they have a sizeable numerical effect on the HFS, we can give another, more “qualitative” explanation. Even
though, [νS2]Δ−pole|ν=0 and ν̃S2|ν=0 both give contributions to the HFS, they cancel each other exactly. This
is an important observation, because it means that only the combination of Δ-pole and (Δ-)non-pole pieces
fulfils the Burkhardt-Cottingham (BC) sum rule [36]:

lim
ν→0

νS2(ν, Q2)

8πα
= 2M2

Q2

1∫

0

dx g2(x, Q
2) = 0. (33)

In other words, neglecting the non-pole terms would violate the BC sum rule and is therefore not a good
approximation. I should note in passing that in Table 2 we used Eq. (4) with the BC sum rule removed.
Including the BC sum rule [i.e., the νS2|ν=0 amplitudes, or equivalently, the 0th moments of the structure
functions in Eqs. (23) and (41d)], the SΔ−pole

2 (S̃2) contribution to the 2S HFS in μH increases (decreases) by
52.75µeV.

To compare with the literature, let us now switch from muonic to normal, electronic hydrogen (H), where
we find:

E 〈Δ〉 pol.
HFS (2S, H) = −0.212 ± 0.212 peV. (34)

We define auxiliary quantities (Δpol., δ1 and δ2) reflecting the size of the hyperfine structure independent of
the hydrogen level under consideration:

Epol
HFS(nS) = EF (nS) Δpol, with Δpol = δ1 + δ2, (35)

where EF is the Fermi energy and δi corresponds to the contribution of Si or gi , respectively.

10 A first paper on the leading chiral logarithms in the HFS of H and μH, studying also the large-Nc limit of the polarizability
contribution, can be found in Ref. [39].
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Table 3 Comparison of different predictions for the Δ(1232)-exchange contribution to the 2S hyperfine splitting in electronic
hydrogen

Type of contribution δ1 (ppm) δ2 (ppm) Δpol (ppm)

SΔ−pole
i

All multipoles −34.82 −0.71 −35.53

G∗2
M −31.27 −0.67 −0.69 [35] −31.93

G∗2
M RSM −0.16 −0.23 [35] 0.05 0.07 [35] −0.12 −0.16 [35]

S̃i
All multipoles 35.24 0.00 35.24

G∗2
M 31.82 0.00 31.82

G∗2
M RSM 0.08 −0.03 0.05

Si
All multipoles 0.42 −0.71 −0.29

G∗2
M 0.55 −0.67 −0.12 −0.12 [37]

G∗2
M RSM −0.08 0.02 −0.06

The effect of the Δ(1232)-resonance on the HFS in H is summarized in Table 3. There, we distinguish not
only Δ-pole and non-pole contributions, but also contributions from the different Jones–Scadron transition
FFs, or equivalently, the different multipoles of pion electroproduction at the resonance position. If we look
at the individual contributions from Δ-pole and non-pole amplitudes, the HFS is unsurprisingly dominated by
the magnetic dipole transition. Due to their large cancelation into the total result, this dominance is however
weakened, and G∗

C and G∗
E gain more impact. Therefore, considering only the magnetic nucleon-to-delta

transition, represented by G∗2
M , is an unsatisfactory approximation for the HFS.

As one can see from Table 3, our results compare well with Refs. [35,37]. The approach of Ref. [35]
is very similar to the work presented in here, since it also uses large-Nc relations for the nucleon-to-delta
transition FFs, cf. Sect. 2. However, Ref. [35] makes use of DRs for the VVCS amplitudes with the theoretical
Δ(1232)-production cross sections as input. In this way, it matches the Δ-pole contribution, but misses the
non-pole contributions as explained in Sect. 3.3. On the other hand, Ref. [37] calculates the TPE directly, with
input from experimental data on nucleon-to-delta transition FFs. Hence, it in principle obtains the whole effect
of the Δ(1232), however, with G∗

E and G∗
C neglected.

6 Summary and Conclusions

The α5-proton-polarizability effect of the Δ(1232)-resonance on the hydrogen spectrum is calculated from
forward two-photon exchange, which in turn is related to the process of forward doubly-virtual Compton
scattering off the proton.

The main aim of this conference proceedings was to address a subtile difference between predictions based
on a direct calculation of the two-photon exchange (or Compton scattering amplitudes) [37] and predictions
based on the Δ(1232)-production photoabsorption cross sections [35]. As we show in Sect. 3.2, the tree-level
Compton scattering with intermediate Δ(1232) exchange features terms with a structure of Δ-pole type and
a remainder, which we referred to as the (Δ-)non-pole part. The former amplitudes can be reconstructed from
the Δ(1232)-production photoabsorption cross sections with the help of dispersion relations. These cross
sections feature a characteristic delta-function peaking at the Δ(1232)-production threshold: δ(ν − νΔ). For
the latter non-pole amplitudes, we had to construct response functions by hand, cf. Eqs. (22), (23) and (24).
They are as well able to reproduce the non-pole amplitudes from dispersion relations, but have a different ν-
or x-dependence, respectively: δ(x).

Similar to Ref. [35], we relate the Δ(1232) exchange to well-measured nucleon elastic form factors by
means of the finite-momentum extension of the large-Nc relations for the Jones–Scadron nucleon-to-delta
transition form factors. While both Δ-pole and non-pole amplitudes give substantial contributions to the Lamb
shift and hyperfine structure, they largely cancel each other in the final result. Nevertheless, a study of the
Burkhardt-Cottingham sum rule has proven that both Δ-pole and non-pole amplitudes need to be considered,
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otherwise, the sum rule would be violated. We therefore claim that Ref. [35] agrees with our result for the
Δ-pole contribution, but misses the non-pole contribution to give a complete description of the effect of the
Δ(1232)-resonance on the hyperfine splitting in hydrogen.

The mentioned strong cancelations make the error estimate difficult and forced us to assign 100 % errors
on Eqs. (27) and (31). Also, they lead to the increased importance of G∗

C and G∗
E , as compared to the naturally

dominating magnetic transition G∗
M , cf. lower block of Table 3.

To summarize, we have seen that our results for the hyperfine splitting of hydrogen agree very well with
the literature [35,37]. Furthermore, we have pointed out that it is important to consider the complete effect of
the Δ(1232), including non-pole terms of the tree-level Compton scattering amplitudes, and that the electric
and Coulomb Jones–Scadron form factors can not be neglected either.
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A Tree-Level Compton Scattering with Δ(1232) exchange

In the following, we present our results for the tree-level CS with intermediate Δ(1232) exchange, see Fig. 5.
The VVCS amplitudes are presented in the present section, whereas the associated Δ(1232)-production cross
sections, see Fig. 6, are presented in the next section. In both sections, we make use of the following shorthand
notations:

Δ = MΔ − M, (36a)

M+ = MΔ + M, (36b)

|q| =
√

ν2 + Q2, (36c)

Q± =
√

(MΔ ± M)2 + Q2, (36d)

ω± = (M2
Δ − M2 ± Q2)/2MΔ. (36e)

7.1 Compton Scattering Amplitudes

Omitting the prefactor
[
(s − M2

Δ)(u − M2
Δ)

]−1
, the Δ-pole contributions read:

TΔ−pole
1 (ν, Q2) ∝ 2παν2Q2−

MMΔM2+ω+

[
g2
MQ4+ + 4g2

EM
2
Δω2− + 4g2

CQ
4 (37a)

− 2gMgEMΔQ2+ω− + 2gMgCQ
2Q2+ − 8gEgCMΔQ2ω−

]
,

TΔ−pole
2 (ν, Q2) ∝ 8παMΔQ2ω+

MM2+

[
g2
MQ2+ + g2

E Q
2− + g2

CQ
2Q2−

M2
Δ

(37b)

− 2gMgEMΔω− + 2gMgCQ
2
]
,

SΔ−pole
1 (ν, Q2) ∝ −4παM2

Δω2+
MM2+

[

g2
MQ2+ + g2

Eω−
(
Δ2 − Q2

)

ω+
+ 2Δg2

CQ
4

M2
Δω+

(37c)

− 2gMgE
(
MΔMQ2 + Δ2M2+ − Q4

)

MΔω+
+ 2gMgCQ

2
{

4 − Mω−
MΔω+

}

−2gEgCQ2(ω−(2MΔ − M) − ΔM)

MΔω+

]
,

[νS2]Δ−pole (ν, Q2) ∝ 2παM2
Δω+

M2+M

[
2g2

MMQ2+ + 4g2
EMΔΔω− (37d)
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− 2g2
CQ

2
(
Δ2 − Q2

)

MΔ

+ 4gMgEMΔ (MΔω+ − 4Mω−)

+ gMgC
(
16MΔMQ2 + Δ2M2+ − Q4

)

MΔ

+gEgC
(
M4

Δ − 6M2
ΔQ2 − M4 + 2MΔM3 − 2M3

ΔM + 6MΔMQ2 + Q4
)

MΔ

]

.

The (Δ−)non-pole contributions are given by:

T̃1(ν, Q2) = −4παν2

MM2+

[
g2
M + g2

E − gMgE
]
, (38a)

T̃2(ν, Q2) = −4παQ2

MM2+

[

g2
M + g2

E − gMgE + g2
CQ

2

M2
Δ

]

, (38b)

S̃1(ν, Q2) = πα

MM2+

[

g2
MQ2+ + g2

E

(
Δ2 − 3Q2) + 4g2

CQ
4

M2
Δ

− 8gMgEMΔω− (38c)

−2gMgCQ2(M − 4MΔ)

MΔ

+ 2gEgCQ2(3M − 2MΔ)

MΔ

]
,

ν̃S2(ν, Q2) = 2πα

MM2+

[
g2
E MΔΔ ω− + g2

M MQ2+
2

+ g2
C Q2(Q2 − Δ2)

2MΔ

(38d)

+gEgM MΔ(MΔω+ − 4Mω−) − gEgC Δ(2Q2 + Mω+)

+gMgC Q2(4M − ω+)

]
+ S̃2(ν, Q2)

ν

[
M2

Δ ω2+
M2 + ν2

]

,

with the non-pole contribution to S2:

S̃2(ν, Q2) = −2παMν

MΔM2+

[
gM + gE

]
gC, (39)

The T1 subtraction function equals:

T1(0, Q2) = 4παQ4

MΔM+ω+

[
g2
M

Q2 − g2
EΔ

M2M+
− g2

CΔ
(
M2 − Q2

)

M2M2
ΔM+

+ gMgE
MM+

(40)

+ gMgC

MM+
+ 2gEgC

(
MΔ + Q2

)

M2MΔM+

]

.

7.2 Δ(1232)-Production Photoabsorption Cross Sections

Here, we give our results for the proton structure functions:

f1(ν, Q2) = 1

2M2+

[

g2
M |q|2(ν + M+) + g2

E (ν − Δ)
(
Mν − Q2

)2

M2 + g2
C Q4s(ν − Δ)

M2M2
Δ

(41a)

− gMgE |q|2 (
Mν − Q2

)

M
+ gMgC |q|2Q2

M

+ 2gEgC Q2
(
Mν − Q2

)
(−MΔ(M + ν) + s)

M2MΔ

]

δ(ν − νΔ) ,
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f2(ν, Q2) = νQ2

2MM2+

[

g2
M (ν + M+) + g2

E (ν − Δ) − g2
C Q2(Δ − ν)

M2
Δ

(41b)

−gMgE
(
Mν − Q2

)

M
+ gMgC Q2

M

]

δ(ν − νΔ) ,

g1(ν, Q2) = − ν

4M2+

[

g2
Mν(ν + M+) + g2

E

(
νM − Q2

) (
M(ν − Δ) − Q2

)

M2 (41c)

− g2
C Q4(MΔM − s)

M2M2
Δ

− gMgE
(
MΔQ2 + 4ν

(
Mν − Q2

))

M

− gMgC Q2
(−4νMΔ + Mν − Q2

)

MMΔ

+gEgC Q2
(
νM2 + Δ

(
Q2 − s

))

M2MΔ

]

δ(ν − νΔ) ,

g2(ν, Q2) = ν2

4M2+

[

g2
M (ν + M+) + g2

E Δ
(
νM − Q2

)

M2 + g2
C Q2(νMΔM − Δs)

M2M2
Δ

(41d)

− gMgE
(−νMΔ + 4

(
Mν − Q2

))

M

− gEgC
(
M|q|2 (M − 2MΔ) + νM+Q2 − Q4 + Q2s + Δνs

)

M2MΔ

+gMgC
(
4MΔQ2 + ν

(
Mν − Q2

))

MMΔ

]

δ(ν − νΔ) ,

cf. Eq. (16) for their relation to the Δ(1232)-production photoabsorption cross sections. Our results are conform
with the helicity amplitudes of the Δ(1232)-production mechanism presented in Ref. [38, Section 2.1.1.].
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