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Summary 

Thrombotic microangiopathies are rare disorders characterized by the concomitant 

occurrence of severe thrombocytopenia, microangiopathic hemolytic anemia, and a variable 

degree of ischemic end organ damage. The latter particularly affects the brain, the heart and 

the kidneys.  

The primary forms, thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic 

syndrome (HUS), although in their clinical presentation often overlapping, have distinctive 

pathophysiologies. TTP is the consequence of a severe ADAMTS13 deficiency, immune-

mediated due to circulating autoantibodies (iTTP), or caused by mutations in the ADAMTS13 

gene (cTTP). HUS develops following an infection with Shiga-toxin producing bacteria 

(STEC-HUS), or as the result of excessive activation of the alternative pathway of the 

complement system because of mutations in genes of complement system proteins in 

atypical HUS (aHUS).  
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Introduction 

Thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS) are 

acute thrombotic microangiopathies (TMA), characterized by acute episodes of intravascular 

hemolysis, thrombocytopenia and microvascular thrombosis leading to end organ damage 

becoming apparent as acute kidney injury, cerebrovascular accidents or seizures, and 

myocardial infarction [1, 2]. The presence of fragmented erythrocytes (schistocytes) on the 

peripheral blood smear document the microangiopathic nature of hemolysis.  

During the past two decades the knowledge on the pathophysiology of the primary TMAs, 

Shiga-toxin in typical or STEC-HUS, which follows a gastrointestinal infection with Shiga-

toxin producing Escherichia coli (STEC), dysregulated and excessive complement activation 

in atypical HUS (aHUS), and lacking Von Willebrand factor (VWF) size regulation in the 

absence of ADAMTS13 in TTP have greatly advanced our understanding of these rare and 

often life-threatening diseases [1-5]. The most prevalent TMAs are STEC-HUS and TTP with 

an annual incidence of  2.17 x 10-6 (95% CI 2.00 - 2.34) of the latter [6].  

The concomitant presence of thrombocytopenia and microangiopathic hemolytic anemia is 

non-specific and can also be observed in a number of other diseases and conditions such as 

preeclampsia / HELLP (hemolysis, elevated liver enzymes, low platelets) syndrome in 

pregnancy, after stem cell transplantation, in disseminated cancer, or disseminated 

intravascular coagulation, associated with malignant hypertension, HIV infection, the 

catastrophic antiphospholipid syndrome and other autoimmune disorders, or may be induced 

by certain drugs [1, 2]. TMAs associated with underlying or coexisting conditions are 

considered secondary TMAs. It should be noted however, that a number of these conditions 

have been documented as triggers of a presenting episode of TTP or aHUS [1, 7-11]. 

Appropriate laboratory work-up, including ADAMTS13 testing, is consequently warranted 

even in apparently clear secondary TMAs.  

Here we review the current understanding of the pathophysiology of the primary TMAs with 

an outlook on how this knowledge impacts patient management and treatment.  
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Thrombotic thrombocytopenic purpura 

Key components in the pathophysiology of TTP are Von Willebrand factor (VWF) and its 

primary size regulator, ADAMTS13 [1, 3]. The ADAMTS13 gene covers ~37 kilobases on 

chromosome 9q34 [12] and encodes a multidomain protein of 1427 amino acid residues 

(Figure). Although low ADAMTS13 mRNA levels have been detected in many tissues such 

as brain, heart, kidney, placenta, muscle, testis, ovary, and platelets, only hepatic stellate 

cells, podocytes and renal tubular epithelial cells, platelets, and endothelial cells (EC) have 

been shown to produce biologically active ADAMTS13 protein (reviewed in [1]). 

VWF is synthesized by megakaryocytes and ECs and stored in the form of ultra-large 

multimers in α-granules of platelets, and in Weibel-Palade bodies of ECs [13]. Upon vascular 

injury or EC activation ultra-large VWF multimers are released or secreted into the circulation 

but remain anchored on the vessel wall, where they promote platelet adhesion and 

aggregation. Shear forces of the flowing blood unfold coiled VWF, exposing cryptic platelet 

binding sites as well as the ADAMTS13 cleavage site in the VWF A2 domain. Reciprocally 

induced conformational changes in both VWF and ADAMTS13 result in regulated proteolysis 

of the ultra-large VWF multimers into smaller, less sticky forms [14-16]. During this process, 

the interaction between the ADAMTS13 CUB and spacer domains is loosened and functional 

exosites in the ADAMTS13 spacer domain become exposed (Figure, panel B) [14-16]. 

Although, this likely optimizes VWF size regulation under shear conditions, it might also 

render ADAMTS13 susceptible to immune recognition. In the absence of ADAMTS13 ultra-

large VWF multimers persist and spontaneously bind platelets leading to VWF-rich thrombi 

occluding the microcirculation, the pathological-anatomical hallmark of TTP.  

Apart from ADAMTS13, a number of leukocyte proteases, such as elastase, proteinase 3, 

cathepsin G and matrix metalloprotease 9 (MMP9) as well as the coagulation factors 

thrombin and plasmin are able to cleave VWF at sites near or at Tyr1605 – Met1606, the 

ADAMTS13 cleavage site in the VWF A2 domain [17-19]. 

Today, two forms of TTP are distinguished. In acquired or immune-mediated TTP (iTTP), 

severe ADAMTS13 deficiency is the result of circulating antibodies inhibiting ADAMTS13 
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activity or increasing ADAMTS13 clearance. In congenital TTP (cTTP, also known as 

Upshaw-Schulman syndrome [20, 21]), severe ADAMTS13 deficiency is caused by 

homozygous or double heterozygous ADAMTS13 mutations. 

 

Immune-mediated TTP 

Twenty years ago, in 1997 the link between TTP and a severe ADAMTS13 deficiency was 

established in four patients [22], and soon thereafter confirmed in additional patients [23, 24], 

where already the acquired nature of the ADAMTS13 deficiency as a consequence of anti-

ADAMTS13 IgG in the majority of patients was demonstrated [23, 24].  

Initial ADAMTS13 assays were cumbersome and had detection limits around 5-6.25% of the 

normal [25]. Nowadays, assays using a VWF-peptide substrate, instead of full-length VWF 

are widely available, robust and easy to perform. The sensitivity of many assays has been 

increased and detection limits as low as 0.5 to 1% are achieved [26-28]. Nevertheless, the 

clinically relevant threshold in iTTP is usually set at 10% of the normal, as an ADAMTS13 

activity <10% at presentation with the acute episode seemed best to distinguish survivors of 

a first acute TMA episode at risk of relapse [29], and was used to define TTP [30]. Recently, 

two groups reported that patients having an ADAMTS13 activity of 10-20% in the presence 

of anti-ADAMTS13 antibodies had a similar outcome as iTTP patients with a severe 

ADAMTS13 deficiency [31, 32]. 

 

Antibodies to ADAMTS13  

Antibodies to ADAMTS13 are classified into inhibitory, assessed with Bethesda-like assays,  

and non-inhibitory, substantiated usually by enzyme-linked immunosorbent assays (ELISA). 

Virtually all patients presenting with an acute iTTP episode have circulating anti-ADAMTS13 

antibodies. While in most patients’ plasma strong functional inhibitors are present, 10-15% of 

iTTP patients have only non-inhibitory ADAMTS13 antibodies, which . are also detected in 

plasma of ~10% of healthy controls, as well as in immunoglobulin preparations [33]. Both 

types of antibodies increase ADAMTS13 clearance [34-36].  
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Anti-ADAMTS13 antibodies are mainly of IgG isotype [34, 35, 37-40], but in up to 20% 

patients also IgA and IgM anti-ADAMTS13 antibodies have been observed [37, 39, 40]. The 

most abundant IgG subclasses are IgG4 and IgG1 [38-40]. Distinction between isotypes and 

IgG subclasses may have some prognostic value, as the presence of IgA and/or IgG1 at 

presentation with an acute iTTP episode was associated with a higher death rate [37, 38, 40], 

while high levels of IgG4 were found to be linked with an increased risk of relapse, and in 

relapsed cases often the only isotype present [38]. 

The primary epitope recognized by anti-ADAMTS13 antibodies is located in the spacer 

domain [41-43] (Figure, panel C upper part). Two thirds of patients have antibodies reacting 

with epitopes in other ADAMTS13 domains in addition, underlining the polyclonal nature of 

the autoimmune response in iTTP [36, 41-43]. 

Epitope fine mapping in the ADAMTS13 spacer domain revealed that five amino acid 

residues, the positively charged Arg568 and Arg660, as well as Phe592, Tyr661, and Tyr665 

constituted the principal antigenic surface of the majority of inhibitory ADAMTS13 antibodies 

[39, 44-47]. When ADAMTS13 adopts a folded conformation these amino acid residues are 

shielded by the two CUB domains, but likely protrude in the open conformation, a hypothesis 

supported by the crystal structure of the N-terminal ADAMTS13 domains [48]. Introduction of 

mutations replacing the amino acids in the primary antigenic surface resulted in an 

ADAMTS13 resistant to inhibition by autoantibodies [49]. 

New data of ADAMTS13 conformation on autoantibody binding was presented at the ISTH 

2017 congress in Berlin. Underwood et al. showed that the majority of iTTP patients had 

ADAMTS13 antibodies recognizing both the closed and open ADAMTS13 conformation, the 

latter however, was the only conformation recognized in 3/17 (16.7%) patients [50]. Despite 

a severe ADAMTS13 deficiency, a considerable number of iTTP patients have detectable 

ADAMTS13 antigen, primarily present in form of circulating immune complexes [11, 31, 51, 

52]. Making use of a mouse monoclonal antibody recognizing ADAMTS13 exclusively in its 

open conformation, Roose et al. [53] demonstrated that in healthy individuals, in patients 

suffering from HUS or sepsis (where ADAMTS13 activity is usually only mildly or moderately 
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reduced) ADAMTS13 was present in a closed conformation, while in virtually all iTTP patients 

investigated, irrespective of the level of ADAMTS13 antigen, ADAMTS13 displayed an open 

conformation. The reason for the observed open conformation in iTTP needs to be further 

explored.  

Cloning of anti-ADAMTS13 antibodies of iTTP patients shed light on their autoreactive B cell 

repertoire [47, 54-56]. VH1-69 and VH1-3 heavy chain gene usage is commonly observed 

and documented somatic mutation rates are compatible with affinity maturation of the 

ADAMTS13 autoantibodies [47, 54, 55]. An excess of negatively charged amino acids in the 

complementarity-determining region 3 (CDR3), the primary antigen binding site of an 

antibody, mirrors the positive charge of the ADAMTS13 antigenic surface [47]. Longitudinal 

investigations in relapsing iTTP patients demonstrated functional maturation, from non-

inhibitory to inhibitory anti-ADAMTS13 antibodies, and/or changes in epitope recognition over 

time, suggesting a continuous development and shaping of the autoimmune response to 

ADAMTS13 in iTTP [11, 36]. 

 

Role of T-cells 

As yet, little is known on the contribution of T cells to the pathophysiology of iTTP. The T-cell 

compartment can be divided into two main cell entities, cytotoxic CD8+T-cells and CD4+T-

cells, which regulate antibody production by interacting with B-cells. The IgG isotype of 

ADAMTS13 antibodies, as well as the documented somatic hypermutation in characterized 

human ADAMTS13 antibodies [47, 54-56], supports the involvement of autoreactive CD4+T-

cells in the pathogenesis of iTTP. The HLA-DRB1*11 allele, identified as a risk factor for the 

development of iTTP [57-59], encodes an MHC class II molecule particularly suitable to 

present specific ADAMTS13 peptides to CD4+T-cells [60-62]. The  highest presentation 

efficiency was observed for CUB2 domain-derived peptides [60]. In silico prediction of 

candidate T-cell epitopes of ADAMTS13 and subsequent wet lab experiments identified a 

slightly different CUB1 peptide, ADAMTS131239-1253 as the single immune-dominant HLA-

DR1-restricted CD4+T-cell epitope [62]. For all these ADAMTS13 CUB peptides, autoreactive 
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CD4+T-cells were demonstrated in iTTP patients [61, 62].  

 

Possible triggers and risk factors of autoimmunity to ADAMTS13  

The causes of loss of self-tolerance and the initiation of an autoimmune response to 

ADAMTS13 are still poorly understood.  

Infections. Many patients report a mild infection (upper respiratory tract or urogenital) in the 

week(s) preceding the acute event. The occurrence of iTTP with severe immune-mediated 

ADAMTS13 deficiency following an infection with influenza viruses has been documented 

(reviewed in [1]). Of note, the immune system frequently uses the IGHV1-69 heavy chain to 

develop antibodies to influenza, particularly for neutralizing antibodies to the influenza 

hemagglutinins [63, 64]. In four different patient cohorts with established STEC-HUS, a few 

patients were found to have bona fide iTTP with severe immune-mediated ADAMTS13 

deficiency at the same time [1]. A certain role for lipopolysaccharides (LPS), components of 

the outer-membrane of Gram-negative bacteria such as E. coli, is at least implied by the 

observation of a strong linkage with the gene for acyloxyacyl hydrolase (AOAH) in iTTP 

patients, an enzyme involved in LPS inactivation [65]. Whether infections with Stx producing 

E. coli elicited an autoimmune response to ADAMTS13, or whether the STEC infection 

represented the missing trigger or second hit to set off an overt acute TTP episode in patients 

with a preexisting autoimmune response to ADAMTS13 is unknown.  

Genetic factors. There is evidence for a certain heritable predisposition for the development 

of ADAMTS13 antibodies and iTTP. First to mention is the disproportionate representation of 

certain ethnicities within iTTP cohorts compared to the respective resident populations, with 

African-Americans or African-Caribbean more frequently suffering from iTTP than 

Caucasians [1, 6].  

Likewise the familial occurrence of acute episodes of iTTP with documented severe immune-

mediated ADAMTS13 deficiency underscores a genetic predisposition for iTTP. We know of 

four as yet unpublished families with more than one iTTP patient. Furthermore, identical twin 

sisters suffering from iTTP episode more than one year apart [66] as well as a second family 



9 
 

with two affected sisters [67] have been reported. Of note, none of these four women from 

two separate iTTP families carried the HLA-DRB1*11 allele identified as risk factor to develop 

iTTP [57-59, 65]). Documentation of ADAMTS13 mutations, causative for cTTP, in 

heterozygous state in a number of iTTP patients (accounting for 11% and 9.6% of patients in 

the respective iTTP cohorts) completes the picture [68, 69]. 

Other factors. Children (before puberty) rarely develop iTTP, while women and blacks are 

more frequently affected than men or non-blacks [1, 2, 6]. The population affected by iTTP 

shares thus several characteristics with other autoimmune disorders, especially systemic 

lupus erythematosus (SLE), which may clinically present as TMA [1, 2, 6, 29] and differential 

diagnosis of thrombocytopenia in SLE includes iTTP. Anti-nuclear antibodies (ANA), typical 

though not specific for SLE, have been reported to be present in the majority of iTTP patients 

at presentation with the first acute episode [1, 2]. SLE can precede iTTP or develop in 

survivors [1, 2, 6, 29, 35, 70], where increased prevalence has been demonstrated [70]. 

 

Lessons learned from clinical presentation and follow-up of survivors of a first iTTP 

episode.   

The introduction of plasma exchange with replacement of fresh frozen plasma – removing 

antibodies to ADAMTS13, VWF and cytokines, and replenishing ADAMTS13 at the same 

time - lead to large numbers of TTP survivors with new problems emerging. The major 

problem is the risk of relapse, which is almost exclusively conferred to patients having a 

severe ADAMTS13 deficiency at presentation with the acute episode [29], and is highest in 

patients with persistence or reappearance of a severe ADAMTS13 deficiency in remission 

[71, 72]. ADAMTS13 activity is now more and more used as a biomarker in follow-up of 

patients as well as to initiate preemptive treatment when ADAMTS13 activity is decreasing 

below 10-15% [2]. Recently, Page et al reported on the follow-up of 57 iTTP patients for up 

to 9 years [72]. In seven of 17  patients (41%) who had at least one ADAMTS13 activity <10% 

during follow-up a spontaneous recovery of ADAMTS13 activity to normal levels was 

observed, most patients however, had fluctuating ADAMTS13 activity levels over time. 
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Although spontaneous ADAMTS13 recovery is possible, roughly 60% of patients with a 

severe ADAMTS13 deficiency in remission experienced at least one iTTP relapse [72] and 

regular follow-up of iTTP survivors in remission including ADAMTS13 monitoring may be 

useful to predict relapses.  

Despite the risk of relapse, until recently, we tended to refer to survivors as status post iTTP. 

The observed long-term morbidities in this patient group (arterial hypertension, major 

depression, neurocognitive deficits and, particularly the unexplained, reduced life-

expectancy) [70] hint at a much higher chronicity of iTTP than had been anticipated. The 

presence of circulating ADAMTS13 immune complexes even years after an acute iTTP 

episode [52, 73] also suggests a chronic ongoing disease and challenges the concept of 

remission in iTTP.  

The introduction of rituximab, a humanized anti-CD20 monoclonal antibody originally 

developed to treat CD20+B-cell neoplasia, into iTTP therapy has greatly reduced the risk of 

relapse (for a review see [1, 2]). Investigation of the splenic B-cell repertoire of relapsing iTTP 

patients treated with or without rituximab, in whom splenectomy was finally performed as 

another measure to reduce the risk of relapse, revealed that the spleen is a reservoir of a 

considerable number of ADAMTS13 specific B-cells, including CD20-negative plasmablasts 

and plasma cells [47].    

 

Congenital TTP 

Although the true prevalence of Upshaw-Schulman syndrome (OMIM #274150) is unknown, 

often a number of 1 in one million is put forward. Estimates based on identified cases in 

defined regions suggest that the point-prevalence might lie in the range of 0.4 to 16.7 per 

million [10, 28]. The high estimate for Central Norway is matched by a considerable allelic 

frequency of the two most prevalent ADAMTS13 mutations in this population, 

c.4143_4144dupA and p.R1060W of 0.04 – 0.33%, and 0.3-1%, respectively [28]. The lower 

point-prevalence estimates might be too conservative, as increasing numbers of cTTP 

patients with adult disease-onset are identified [8, 9].  
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Congenital ADAMTS13 deficiency is an autosomal recessive feature and thus the result of 

bi-allelic mutations. So far more than 150 different causative ADAMTS13 mutations 

spreading over all ADAMTS13 protein domains have been identified (reviewed in [74]). The 

majority of mutations are missense mutations (~62%), followed by deletions and insertions 

(~19%), nonsense (~10.5%) and splice site (~8.5%) mutations (Figure, panel C lower part). 

Although a monogenic disorder, the clinical presentation of cTTP is often variable, even 

among patients carrying the same mutations, as well as among affected siblings. Overall, 

age at onset and diagnosis shows a seemingly dichotomous distribution with about half of 

patients presenting within their first 2-5 years of life and a second peak in early adulthood, 

specifically during pregnancy. Among women with a first TTP episode during their first 

pregnancy the frequency of cTTP was 24% (10/42 women) and 66% (23/35 women), 

respectively [8, 9]. Remarkable is the prevalence of the ADAMTS13 mutation p.R1060W in 

this special group of cTTP patients, 8/10 (80%, French cohort) and 17/23 (74%, UK cohort) 

of patients, respectively, were either compound heterozygous or homozygous carriers of this 

mutation [8, 9]. This ADAMTS13 mutation is associated with residual ADAMTS13 activity, 3-

6% in cTTP patients with a single p.R1060W allele, and 5-12% in homozygous carriers [27]. 

The case histories of adult-onset cTTP demonstrated that many patients had exchange 

transfusions in their first days of life [10, 28], questioning their genuine adult-onset.  

In search of factors influencing the variable clinical course in cTTP, residual ADAMTS13 

activity <3% was found to be associated with an early disease onset (<18 years of age), an 

annual event rate >1, and a necessity for prophylactic plasma therapy [27]. The observed 

clinical variability, however, cannot be explained by differences in residual ADAMTS13 

activity alone, as very variable disease courses have been documented in a large number of 

cTTP patients homozygous for the c.4143_4144dupA mutation, having typically an 

ADAMTS13 activity <1% of the normal [28, 75].  

While in iTTP ADAMTS13 seems to be a partner in the dysregulated immune response 

leading to the development of autoantibodies to ADAMTS13, allo-antibodies to ADAMTS13 

have only occasionally been observed in cTTP patients on regular prophylactic plasma 
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infusions [1, 10]. Except for two cases in whom low titer (<5 BU/ml), functional ADAMTS13 

inhibitors were observed, the allo-antibodies in the other cases were most often non-inhibitory 

IgG fluctuating in titer levels, and didn’t seem to interfere with ADAMTS13 recovery or plasma 

half-life [1, 10].  

The ADAMTS13 gene contains a number of non-synonymous sequence variants. Of 

particular interest are p.P618A and p.A732V which in combination strongly reduce 

ADAMTS13 antigen and activity levels when expressed in HEK293 cells (each ~10% of that 

of wild-type ADAMTS13) [76]. Introduction of the p.R7W and p.Q448E variants on the same 

allele acted positively on ADAMTS13 secretion (raised to ~65% of wild-type) but were unable 

to fully rescue the severely reduced activity conferred by p.P618A (ADAMTS13 activity of 

p.WEAV ~40% of wild-type ADAMTS13). In a number of studies, patients with an ADAMTS13 

activity <10% of the normal in the absence of ADAMTS13 antibodies and only one 

documented ADAMTS13 mutation but carrying the p.WEAV allele in addition were 

considered to have cTTP [8, 9]. 

 

Shiga-toxin associated HUS (STEC-HUS) 

STEC-HUS is the most common cause of acute kidney injury in children <5 years of age, and 

rare in adults. Most cases are sporadic, and larger outbreaks, such as the West of Scotland 

or the 2011 German outbreak attracted much publicity [5, 77-79].  

Most commonly implicated are E. coli subtypes that have acquired a bacteriophage enabling 

the production of Stx (E. coli serotype O157:H7 accounts for ~ 70% of cases in the Western 

world, but other strains, i.e. O118:H2, O111:H or O104:H4 are also involved [5, 77, 80]). An 

aggressive, at the time unknown STEC variant, E. coli O104:H4, which combined 

characteristics of typical enteroaggregative E. coli with the ability to produce Stx, was 

responsible for the German 2011 outbreak with roughly 4000 affected patients of whom 22% 

developed HUS [78, 79]. The majority of these STEC-HUS patients were adults (88%), many 

presented with neurological involvement and 50 died [78, 79]. These numbers are clearly 
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higher than seen in prior outbreaks, where infections usually were mild and self-limiting, and 

only 10-15% of affected patients subsequently developed STEC-HUS [77]. 

The systemic illness is caused by Stx-mediated injury to the vascular endothelium and a 

generalized inflammatory response. Stx consists of five glycolipid-binding B subunits and one 

enzymatically active A subunit, that inhibits protein synthesis by cleaving 28S ribosomal RNA 

eventually leading to apoptotic cell death [80]. After colonic infection with enterohemorrhagic 

bacteria, Stx is absorbed across the intestinal epithelium into the blood stream, where it binds 

to and is internalized by globotriaosylceramide, also known as Gb3, CD77 or Pk blood group 

antigen [80]. Gb3 is a ganglioside and a non-protein receptor on ECs, predominately of small 

vessels of the gut, the kidneys, where it is strongly expressed on glomerular ECs, and the 

brain, leading to bloody diarrhea, renal insufficiency and neurological complications [80, 81]. 

In addition, there is evidence that Stx can activate the complement system possibly 

explaining lower C3 and elevated soluble terminal complement complex (sC5b-9) levels seen 

in some STEC-HUS patients [82]. In addition, Stx can reduce the expression of the GPI-

anchored complement regulator CD59 on human tubular epithelial and glomerular ECs, 

inhibit factor H, the most important fluid phase complement regulator, and induce a 

procoagulant state by increasing the expression of tissue factor on ECs and/or by the 

activation of platelets [80]. 

 

Atypical HUS 

Complement-mediated or aHUS is the consequence of excessive activation of the alternative 

pathway (AP) of complement because of mutations in complement regulators or complement 

factors (heritable, though incomplete penetrance), or autoantibodies against factor H 

(acquired aHUS with strong genetic linkage) [4, 5]. Although the clinical features may 

resemble those of STEC-HUS, prognosis is more reserved and recurrence is frequent. The 

prevalence of aHUS is unknown but is thought to account for <5% of all HUS cases [4, 5].  

Complement is part of the innate immune system and enhances (or complements) the ability 

of antibodies and phagocytes (granulocytes, monocytes and macrophages) to clear 
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pathogens, and damaged or dead cells. Complement is activated via three pathways which 

all lead to target elimination by phagocytosis and/or direct lysis. The three pathways are: i) 

the classical pathway, initiated by binding of C1q to IgG or IgM bound on targets. ii)  the lectin 

pathway initiated by the binding of mannose-binding lectin or ficolin to certain sugar moieties 

on targets; and finally iii) the alternative pathway (AP), which is distinct from the two other 

pathways as it rests on constant and spontaneous low-level activation leading to deposition 

of C3b on virtually all cell surfaces in contact with plasma [5]. If these C3b deposits are not 

cleared or inactivated on the cell surface, they form together with complement factor B the 

C3 convertase (C3bBb) resulting in the amplification of the complement system activation.  

The complement system is tightly regulated by a number of cell-membrane bound regulators, 

CD35 (complement receptor 1, CR1; not expressed on platelets), CD46 (membrane-cofactor 

protein; MCP, not expressed on red blood cells), CD55 (decay accelerating factor, DAF) and 

CD59, as well as by in plasma circulating complement regulators, factors I and H. Under 

steady state conditions regulation exceeds activation. 

Today, in 50-70% of aHUS cases causative mutations in genes of the complement system 

or associated proteins are identified, both in sporadic (comprises ~80%) and in familial cases 

(Table) [4, 5]. These defects are loss-of-function mutations in CFH, CFI, MCP, or THBD (the 

gene encoding thrombomodulin, which enhances in the presence of factor H factor I-

mediated inactivation of C3b, and is a cofactor of thrombin in the generation of TAFIa, which 

inactivates the anaphylatoxins C3a and C5a) leading to a defective AP regulation. Gain-of-

function mutations have been described in complement factors C3 and factor B genes, the 

two components of the AP C3 convertase (Table). Incomplete phenotypic penetrance (close 

to 50%) is observed in many mutation carriers and families, where carriers of the same 

mutation may also show different symptoms and time points of disease onset. The 

concomitant presence of multiple different risk factors and/or complement mutations is fairly 

common [83-85] and it is thought that many of the reported aHUS-associated gene variants 

predispose rather than cause the disease [83, 85]. 
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In 5% to 10% of aHUS acquired complement dysregulation is present due to anti-factor H 

antibodies, which bind to epitopes in the C-terminal short consensus repeats (SCR) 19 and 

20 of factor H and have functional consequences similar to the prototypical mutations in this 

factor H region [4, 5, 85]. This autoimmune form of aHUS has a high risk of relapse and end 

stage renal disease, and is in the majority of cases associated with bi-allelic deletions of the 

CFH-related gene 1 (CFHR1) and/or CFHR3 [4, 5, 85]. 

Effective inhibition of the complement system can be achieved with eculizumab, a 

monoclonal antibody blocking the activation of C5 to C5a and C5b and thus the generation 

of the terminal complement complex C5b-9. Eculizumab has been proven very effective in 

reverting the clinical presentation in aHUS patients with long standing disease courses [86], 

though indefinite treatment may not be required in all aHUS patients, as except CFH mutation 

carriers, most patients don’t relapse once the trigger of the acute episode is removed or taken 

care of [87, 88]. 

There have been a few patients described in whom a documented STEC infection acted as 

trigger and unmasked thus far latent complement defects in patients subsequently noted to 

have bona-fide aHUS (reviewed in [89]). 

 

Overlap or common terminal pathway to overt TMA 

Up to here, we have presented the pathophysiology of TTP and HUS in a dichotomous way 

– VWF or ADAMTS13 on one side, infection and excessive activation of the AP of 

complement on the other side. However, evidence of functional interactions between the 

VWF-platelet axis and complement activation is steadily accumulating. 

Contribution of complement mutations to the phenotypic presentation in cTTP was first 

described by Noris et al. [90] who reported a cTTP family with three affected siblings, two 

sisters with phenotypically distinct clinical pictures with kidney failure as leading sign in one 

of them, and an asymptomatic brother. Besides the compound heterozygous ADAMTS13 

mutations (one conferring residual activity) present in all three siblings, merely the sister with 

the renal involvement carried in addition a heterozygous CFH mutation, previously found in 
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aHUS. In a small case series of 32 cTTP patients, 13 with and 19 without renal involvement, 

Fan et al. [91] observed the same prevalence of missense sequence variants known to confer 

an increased risk for aHUS in complement genes in both patient groups. However, in one of 

the cTTP patients with renal involvement a novel C3 mutation, p.K155Q located in a region 

of C3 where aHUS-associated mutations cluster, was identified.  

Vice versa, heterozygous ADAMTS13 mutations or sequence variants were identified in a 

small aHUS cohort [92], where many patients displayed moderately to mildly reduced 

ADAMTS13 activity at presentation with the acute disease episode. In another report 3/17 

patients had heterozygous ADAMTS13 mutations or sequence variants in addition to 

complement mutations [88].  

Obligatory heterozygous ADAMTS13 mutation carriers are healthy, have typically an 

ADAMTS13 activity of ~50%, and don’t experience TTP episodes. However, mild 

thrombocytopenia has been documented in some of them during pregnancy or infections [1], 

conditions known to be associated with increased VWF levels and thus possible increased 

demand on VWF size regulation by ADAMTS13. Pregnancy is also a recognized trigger of 

aHUS [7]. Together these observations support an interplay of hemostasis and the 

complement pathway with a possible dosing effect, the more markers present the higher the 

risk of overt TMA. 

In vitro, endothelial-cell anchored ultra-large VWF multimers are capable to bind C3b, the 

active form of complement factor C3, which subsequently assembles the C3 convertase 

(C3bBb) and C5 convertase (C3bBbC3b) [93]. This occurs particularly in the absence of 

ADAMTS13 [94, 95], and is halted or reverted by the addition of ADAMTS13 [95]. During 

acute TTP episodes complement is activated, however, to a lesser extent than in aHUS [96, 

97]. Although most probably a secondary phenomenon, this complement activation in iTTP 

will enhance platelet activation, cause further EC damage with release of additional ultra-

large VWF multimers and fosters the process of thrombotic microangiopathy. 

Microangiopathic hemolysis is common to both TTP and aHUS. Free heme triggers AP 

complement activation leading to C3b deposits in EC, which is paralleled by a decreased 



17 
 

expression of MCP and CD55. Moreover, heme is able to induce VWF secretion from Weibel-

Palade bodies and expression of P-selectin, a known C3b-binding protein, on ECs [98].  

Another shared feature are elevated nucleosome levels, which are detected at presentation 

in the majority of patients with an acute TTP or HUS episode [99]. The authors of the 

accompanying editorial suggested that nucleosomes and neutrophil extracellular traps 

(NETS) might constitute a common terminal pathway to overt TMA in patients at risk [100].  

 

Outlook 

The new pathophysiological insights into TTP and HUS have already had a tremendous 

impact on treatment helped to wear off some of the grimness of these rare diseases. Ever 

growing numbers of survivors reveal new questions. How is remission achieved in iTTP, in 

particular what keeps the dysregulated immune response in some patients in check, while 

others frequently relapse often despite immunosuppressive therapy. Understanding the role 

of ADAMTS13 and its conformational changes in this process [50, 53] may be essential. 

Similarities in the immune dysregulation observed in iTTP and SLE point to shared 

pathophysiologies that lead to the loss of tolerance to self-antigens. Given the infectious or 

inflammatory triggers often reported by patients preceding disease onset, epigenetic changes 

in gene expression and posttranslational modifications related to environmental influences 

should be further explored.  

The incomplete penetrance in aHUS as well as individual factors fostering the progression 

from infection with Stx-producing bacteria to STEC-HUS are so far poorly understood. 

Positive confirmation of aHUS diagnosis with appropriate biomarkers might help to identify 

patients who would benefit from short- or long-term of anti-complement therapy. With the 

prospect of ever growing patient cohorts, the possibility of employing human phenotype 

ontology systems, of whole exome and genome sequencing, new developments in 

proteomics and other –omics, and data sharing, deeper insights and new interactions 

between the once so distinct TMA forms are likely to emerge in the future, further linking 

hemostasis and the complement system. 
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Table 

Complement genes and proteins identified in atypical HUS.  

Prevalence and prognosis (before the introduction of complement inhibitor Eculizumab) are 

adapted from Afshar-Kharghan. and Jokiranta [4, 5].  

 

Mutated gene Localization Prevalence ESRD / death* 

Factor H plasma 24—28% 70-80% 

CFHR1/3 deletion w. 
anti-FH antibodies 

plasma 3-10% 30-70% 

Factor I plasma 4-8% 60-70% 

MCP (CD46) membrane 5-9% <20% 

Thrombomodulin 
(THBD) 

plasma & membrane 0-5% 50-60% 

Factor B plasma 0-4% 70% 

C3 plasma 2-8% 60-70% 

Diacylglycerol            
kinase ε 

plasma 0-3% 46 

None identified 
 

30-48% 50% 
 
 
* Abbreviations: ESRD End stage renal disease; CFHR Complement factor H related; MCP 

Membrane cofactor protein 
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Legend to figure 

 

Domain structure and conformation of ADAMTS13 

Panel A. The ADAMTS13 gene is located on chromosome 9q34, contains 29 exons and 

encodes a multi-domain protein of 1427 amino acid residues. The protein domain structure 

consists of a signal (SP) and a pro-peptide (P), which are cleaved of before the active protein 

is secreted, a metalloprotease domain (M), a disintegrin domain (D), a first thrombospondin 

type 1 repeat (T1), a cysteine-rich (C) and a spacer (S) domain, followed by another seven 

thrombospondin type 1 repeats (T2-T8) and two CUB domains. The same color code is used 

as in Kremer Hovinga et al [1].  

Panel B. The new concept of a closed and open ADAMTS13 conformation is shown 

according to ideas of South et al. [14], Muia et al. [15], and Roose et al. presented at the 

ISTH 2017 congress in Berlin [53]. In the closed conformation the CUB domains interact with 

the spacer domain, thereby concealing the principal epitope of anti-ADAMTS13 

autoantibodies present in plasma of the majority of iTTP patients. Upon binding to Von 

Willebrand factor a conformational change and activation of ADAMTS13 takes place resulting 

in an open conformation where the CUB domains no longer shield the spacer domain.  

Panel C. Immune-mediated TTP (upper row): Frequency of recognition of specific 

ADADMTS13 domains by anti-ADAMTS13 antibodies (Y) in different studies [36, 41-43]. 

Lower row, congenital TTP: Majority of identified causative mutations in patients with 

congenital ADAMTS13 deficiency. 
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