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Plant and animal functional diversity drive
mutualistic network assembly across an elevational
gradient
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Species’ functional traits set the blueprint for pair-wise interactions in ecological networks.

Yet, it is unknown to what extent the functional diversity of plant and animal communities

controls network assembly along environmental gradients in real-world ecosystems. Here we

address this question with a unique dataset of mutualistic bird–fruit, bird–flower and

insect–flower interaction networks and associated functional traits of 200 plant and 282

animal species sampled along broad climate and land-use gradients on Mt. Kilimanjaro. We

show that plant functional diversity is mainly limited by precipitation, while animal functional

diversity is primarily limited by temperature. Furthermore, shifts in plant and animal func-

tional diversity along the elevational gradient control the niche breadth and partitioning of the

respective other trophic level. These findings reveal that climatic constraints on the functional

diversity of either plants or animals determine the relative importance of bottom-up and top-

down control in plant–animal interaction networks.
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A ll species are involved in mutualistic and antagonistic
interactions with other species1. Collectively these inter-
actions between pairs of species form complex networks

that structure ecological communities2 and maintain essential
ecosystem functions, such as pollination, seed dispersal or bio-
logical control3. Within these networks the matching of species’
traits determines whether pairs of species are able to interact and
how effective their interactions are4. Therefore, phenotypic traits
related to species’ interactions are thought to determine the
realised set of interactions within species-rich interaction net-
works4. In a broader sense, the functional traits that regulate
species interactions can be viewed as coexistence traits that
govern niche breadth (the diversity of a species’ interaction
partners) and niche partitioning (the complementary specialisa-
tion of several species on exclusive interaction partners) in
complex ecological networks and determine the ecosystem
functions derived from ecological communities4–6.

In theory, we would expect that species’ niche breadth and the
degree of niche partitioning among species, increases with func-
tional diversity7,8. If trait matching structures plant–animal
interaction networks, the functional trait spaces of plants and
animals should reciprocally control the niche breadth and parti-
tioning of species in the respective other trophic level (Fig. 1a–c).
Hence, a reduction of functional diversity in the lower trophic
level is expected to cause a reduction in niche breadth and par-
titioning (niche contraction and convergence) in the higher
trophic level and vice versa (bottom-up and top-down control,
respectively; Fig. 1d). The convergence of interaction niches also
implies that a reduction of functional diversity in one trophic

level may cause increased competition for mutualistic partners in
the other trophic level. The functional diversity in one trophic
level may thus not only constrain the interaction niches but also
the functional diversity in the other trophic level through biotic
filtering and competitive exclusion9.

Our framework implies that bottom-up and top-down effects
may simultaneously control the assembly of plant–animal inter-
action networks and that abiotic constraints on either plant or
animal functional diversity may determine the relative impor-
tance of bottom-up or top-down control10. This prediction goes
beyond those from biodiversity experiments, as the latter have
mainly focussed on either bottom-up or top-down effects, but
have not yet assessed the relative importance and context
dependence of both mechanisms simultaneously10–12. Despite a
general consensus on the relevance of functional diversity for
species interactions and associated ecosystem functions in real-
world ecosystems13–15, it is unknown to what extent shifts in
plant and animal functional diversity along environmental gra-
dients alter the structure of species interaction networks and
whether network assembly is primarily bottom-up-controlled or
top-down-controlled.

Here, we ask whether trait matching is a general phenomenon
across mutualistic networks and whether bottom-up and top-
down forces simultaneously control the assembly of these net-
works in real-world ecosystems. To address these two questions,
we recorded a unique dataset of mutualistic bird–fruit,
bird–flower and insect–flower interaction networks and asso-
ciated functional traits along a 3.5 km elevational gradient
(872–4396 m above sea level [a.s.l.]) of near-natural and
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Fig. 1 Potential bottom-up and top-down effects of plant and animal functional diversity on the assembly of mutualistic networks. a Example of a
mutualistic bird–fruit network, in which plants and animals are ordered along two corresponding size-matching trait axes according to bill and fruit size,
respectively. The grey lines represent bird–fruit interactions, which are constrained by trait matching so that the small-billed bird can only consume small
fruits, whereas the large-billed bird can also consume large fruits. Trait matching determines the realised interaction niches of plants and animals
(represented on the trait axis of the other trophic level). b Removal of plant species P3 causes a loss of plant functional diversity and a contraction and
convergence of the birds’ interaction niches corresponding to a reduction in niche breadth (diversity of a species’ interaction partners) and niche
partitioning (complementary specialisation of several species on exclusive interaction partners; red histograms A1 and A2 at the top). c Likewise, removal of
bird species A2 causes a loss of animal functional diversity and a contraction and convergence of plants’ interaction niches (blue histograms P1 and P2 at
the bottom). d Consequently, a loss of functional diversity in one trophic level should cause a reciprocal reduction in niche breadth and partitioning in the
other trophic level. Note that the convergence of interaction niches also implies that a reduction of functional diversity in one trophic level may cause
increased competition for mutualistic partners in the other trophic level (e.g., between A1 and A2 in b or between P1 and P2 in c)
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anthropogenic habitat on the southern slopes of Mt. Kilimanjaro.
The dataset comprises a total of 14,728 interactions between 200
plant and 282 animal species (99 bird and 183 insect species)
sampled across the three types of mutualisms. First, we tested
whether trait matching generally structured the assembly of these
networks by analysing multivariate associations between plant
and animal functional traits. Second, we tested with a Bayesian
hierarchical structural equation model to what extent changes in
plant and animal functional diversity along the elevational gra-
dient control network assembly.

We find consistent evidence that trait matching determines
pair-wise interactions across mutualisms. Plant functional diver-
sity is primarily limited by precipitation, while animal functional
diversity is mainly constrained by temperature. We further dis-
cover that shifts in plant functional diversity along the elevational
gradient control the niche breadth and partitioning of animals in
the interaction networks, while animal functional diversity
determines interaction niches of plants. Therefore, our findings
reveal that environmental constraints on either plant or animal
functional diversity determine the relative importance of bottom-
up and top-down control in plant–animal interaction networks.

Results
Trait-associations in plant–animal mutualistic networks. To
characterise the functional trait spaces of plants and animals in
each of the three types of mutualistic networks, we selected traits
related to size matching (matching traits), to energy provisioning
and requirements (energy traits), as well as to foraging stratum
and mobility (foraging traits; Fig. 2 and Methods section)16–24.
We projected plants and animals in each mutualism into their
multidimensional trait spaces and assessed functional relation-
ships between plant and animal trait spaces using a combination
of RLQ and fourth-corner analyses, taking into account which
combinations of species pairs were observed to interact24–26 (see
Fig. 2 and Methods section).

A null model, in which we randomised species’ identities27,
indicated that the global associations between plant and animal
trait spaces were larger than expected by chance in the bird–fruit
(sum of RLQ-eigenvalues: ∑λi= 0.18, P < 0.01), and in the
insect–flower mutualism (∑λi= 0.083, P < 0.05), and tended to
be larger than expected in the bird–flower mutualism (∑λi= 0.16,
P= 0.074). The marginal trend in the bird–flower mutualism is
likely due to a lack of statistical power owing to the relatively
small number of species (26 plant and 24 bird species,
respectively)27. The first ordination axis explained most of the
cross-covariance between plant and animal trait spaces (range
across the three mutualisms: 90–99%), whereas the second axis
explained only a minor proportion (range: 0.75–9.3%). In
separate analyses of the two ordination axes, associations between
the first axes of plant and animal trait spaces were stronger than
expected by chance in all three mutualisms (bird–fruit: Pearson’s
r= 0.26, P < 0.001; bird–flower: r= 0.33, P < 0.01; insect–flower:
r= 0.23, P < 0.01). Associations between the second axes were
generally weaker and significant only in the bird–fruit mutualism
(bird–fruit: r= 0.13, P < 0.05; bird–flower: r= 0.040, P= 0.67;
insect–flower: r= 0.063, P= 0.40). Across the three mutualisms,
the first axes of plant and animal trait spaces were most strongly
correlated with matching traits (absolute Pearson’s |r|= 0.21 ±
0.016 [mean ± s.e.m.], Moran’s test28: P < 0.001, see Methods) and
energy traits (|r|= 0.19 ± 0.024, P < 0.001), whereas correlations
with foraging traits were weaker and more variable in magnitude
(|r|= 0.11 ± 0.034, P= 0.031; Supplementary Table 1; Supple-
mentary Fig. 1). The second axes of plant and animal trait spaces
were not correlated with any of the trait types (matching traits: |r|
= 0.035 ± 0.0074, Moran’s test: P= 0.74; energy traits: |r|=

0.031 ± 0.013, P= 0.74; foraging traits: |r|= 0.055 ± 0.014, P=
0.23; Supplementary Table 1; Supplementary Fig. 1).

Bottom-up and top-down effects of functional diversity. We
assessed whether shifts in plant and animal functional diversity
along gradients of climate and land use drive network assembly in
the three mutualisms using Bayesian hierarchical structural
equation models with a stochastic variable selection procedure
(Fig. 3; Supplementary Fig. 2; see Methods). The structural
equation models tested for consistent direct and indirect ‘func-
tional diversity’-mediated effects of mean annual temperature,
mean annual precipitation and land use on niche breadth and
partitioning of plants and animals across the three mutualisms.
We quantified niche breadth as the mean effective number of
partners based on the exponent of the Shannon diversity of links
(eH), and niche partitioning as the mean standardised
Kullback–Leibler distance (d′) across the plants and animals in
each network, respectively29.

Plant functional diversity was positively related to mean annual
precipitation, whereas animal functional diversity increased with
mean annual temperature. In line with our prediction (Fig. 1), we
found that plant functional diversity was positively associated
with niche breadth and partitioning of animals, while animal
functional diversity was positively related to niche breadth and
partitioning of plants (Fig. 3b, c; Supplementary Table 2;
Supplementary Fig. 3). Mean annual temperature was also
directly positively associated with the niche breadth of animals,
as well as with the niche partitioning of plants and animals
(Fig. 3b, c). We found no consistent direct or indirect effects of
land use on functional diversity, niche breadth or partitioning of
plants and animals across the three mutualisms (Fig. 3b, c).

Structural equation models including univariate functional
diversity metrics based on matching, energy or foraging traits
showed that the increase in plant functional diversity with mean
annual precipitation was primarily driven by an increase in the
variability of foraging strata (i.e., plant height), while the increase
in animal functional diversity with mean annual temperature was
primarily driven by an increase in the variability of matching
traits (i.e., bill width, bill length and proboscis length, respectively;
Supplementary Fig. 4). Niche breadth and partitioning of plants,
as well as niche breadth of animals were related to the functional
diversity of all trait types (matching, energy and foraging traits),
whereas niche partitioning of animals was mainly related to
functional diversity of foraging strata in plant communities. In
addition to the multivariate analysis, univariate models indicated
an increase in the variability of size-related energy traits in
response to land use (i.e., body mass in the bird mutualisms and
head width in the insect mutualism; Supplementary Fig. 4).

Discussion
Our study provides a general assessment of the importance of
trait matching and functional diversity for the assembly of
mutualistic networks. We show that matching of species’ func-
tional traits is a general mechanism regulating interactions in
mutualistic networks. Importantly, we discover that plant and
animal functional diversity are related to distinct climatic factors
and constrain the realised niche breadth and partitioning of the
respective other trophic level. Hence, our study reveals that
environmental constraints on either plant or animal functional
diversity drive the relative importance of bottom-up and top-
down effects on mutualistic network assembly.

We found that functional traits related to size matching were
strongly associated with network structure across mutualisms,
because size matching imposes critical barriers that either directly
prevent interactions between plants and animals or strongly
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constrain their effectiveness17,30. Traits related to energy provi-
sioning and requirements were also closely associated with net-
work structure, which can be explained by optimal foraging
theory31, because larger animals with higher energetic require-
ments should prefer spatially clustered resources (i.e., plants with
a high resource density) to reduce the energetic costs of fora-
ging32. Yet, the direction of the relationships between traits
related to energy requirements of animals and resource

provisioning by plants differed between bird and insect mutual-
isms (Fig. 2a, c, e): while larger birds tended to forage on plants
with higher resource density, larger insects foraged on plants with
lower resource density. In the insect–flower mutualism matching
and energy traits were positively correlated in animals, but
negatively correlated in plants (Fig. 2e). These contrasting trait
associations in plants and animals suggest that trade-offs with
matching traits might alter associations between energy traits in

Bill width

Body mass

Kipps index

Fruit diameter

Crop mass

Plant height

a
Bird−fruit

Trait type

Matching
Energy
Foraging

b

Plants
Animals
Interactions

Eigenvalues

0

1

Bill length

Body mass Kipps index Corolla depth

Number of flowers

Plant height

c
Bird−flower

d

Eigenvalues

0

1

Proboscis length

Head width

Forewing index

Corolla depth

Flowers per infl.

Plant height

e
Insect−flower

f

Eigenvalues

0

1

Fig. 2 Associations of plant and animal functional traits in different types of plant–animal mutualistic networks. Results of a combination of RLQ and fourth-
corner analyses for a, b bird–fruit, c, d bird–flower, and e, f insect–flower mutualisms. We use RLQ analysis (a, c, e) to map the multivariate trait space of
animals on the multivariate trait space of plants based on plant–animal interaction networks. The eigenvalues of the RLQ analysis in a, c, e indicate the
proportion of the cross-covariance between plant and animal trait spaces explained by each RLQ axis25. Vectors in a, c, e depict the coefficients of plant
(blue) and animal (red) traits on the first two axes of the plant and animal trait spaces from RLQ analysis. If two vectors are long and point into the same or
opposite directions the absolute correlation coefficient between the corresponding traits is large. Different line types in a, c, e indicate different types of
functional traits, related to size matching (continuous line), energy provisioning of plants and energy requirements of animals (long-dashed line), as well as
foraging stratum and mobility (dash-dotted line). b, d, f Representation of the mutualistic networks in the multivariate trait spaces of plants and animals.
Dots in b, d, f represent species scores of plants (blue) and animals (red) in their multivariate trait spaces and grey lines depict interactions between plants
and animals. The size of the dots is proportional to the number of links that a species has (i.e., species degree)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05610-w

4 NATURE COMMUNICATIONS |  (2018) 9:3177 | DOI: 10.1038/s41467-018-05610-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


plant–animal mutualisms. In addition, associations between traits
related to energy requirements and provisioning could be more
strongly affected by the environmental context, if high competi-
tion at low resource availability forces animals to forage less
selectively33,34. The more variable associations of traits related to
foraging stratum and animal mobility with network structure,
may be due to the fact that animals frequently cross habitat
boundaries to obtain resources35, even though certain bird16,24

and insect18–23 species preferentially forage in specific habitats or
vegetation layers for flowers and fruits. These results suggest that
traits related to size matching between plants and animals, as well
as traits related to resource provisioning and energy require-
ments, have the strongest effect on the assembly of pair-wise
interactions and that a few trait dimensions may be sufficient to
characterise the functional structure of mutualistic networks36.

In line with our prediction, changes in the functional diversity
of plant and animal communities were the principal drivers of
changes in network structure along the studied elevational gra-
dient. More specifically, we discovered that biotic interactions are

simultaneously bottom-up and top-down controlled, as the
functional diversity of plants and animals limited the niche
breadth and partitioning of the respective other trophic level. The
fact that the niche breadth and partitioning of plants, as well as
niche breadth of animals were related to the functional diversity
of matching, energy and foraging traits, suggests that multiple
assembly processes determine these niche properties37. In con-
trast, the niche partitioning of animals was mainly related to the
functional diversity of foraging strata in plant communities (i.e.,
variability in plant height). This finding supports the idea that
vertical stratification in tropical forest ecosystems fosters niche
partitioning among different functional guilds in mutualistic
networks16. Overall, these results question the general prevalence
of bottom-up effects of producer diversity on consumers, as
suggested by biodiversity experiments12. Our results rather sug-
gest that the prevalence of bottom-up and top-down control
depends on the abiotic context10. Thus, our study demonstrates
the value of trait-based network approaches for gaining
mechanistic insights into how abiotic constraints on community
assembly affect biotic interactions in real-world ecosystems15.

We found that the functional diversity of plant communities
increased with precipitation, while the functional diversity of
animal communities increased with temperature. Both the
dependence of plant diversity on water availability and the
dependence of animal diversity on ambient temperature are well
documented patterns in the literature38–44. In our study, changes
in plant functional diversity were mainly related to an increase in
the variability of plant height with precipitation, which may
indicate that abiotic filtering in arid ecosystems constrains the
range of plant growth forms, whereas in wet ecosystems increased
competition (e.g., for light) leads to vertical stratification in plant
communities37,45. On the other hand, changes in animal func-
tional diversity were primarily related to an increase in the
variability of matching traits with temperature, which may indi-
cate that energetic constraints in cold ecosystems favour less
selective foraging strategies and less specialised morphologies of
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[mm yr−1], blue), as well as land use (LU; filled circles, near-natural
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gradient of Mount Kilimanjaro, Tanzania. The Bayesian hierarchical
structural equation models in b, c tested for direct and indirect ‘functional
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precipitation and land use on (b) niche breadth (partner diversity, eH) and
(c) niche partitioning (complementary specialisation, d′) of plants and
animals via functional diversity of plant and animal communities (functional
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b, c only paths that were supported by the Bayesian variable selection
(2loge(Bayes factor) > 2) are shown (see Supplementary Table 2). Path
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random factors combined (see Methods for details)70. Sample sizes are
nobs= 126 observations, nsite= 53 study sites and nmutualism= 3 mutualisms
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traits that are related to resource use46. In general, the relation-
ships between plant and animal functional diversity and climatic
factors suggest that the niche space of these communities expands
and the abundance of functionally distinct species increases under
favourable climatic conditions that allow for a wider range of
functional strategies37,45–47, which is consistent with the ‘phy-
siological tolerance hypothesis’ in plants39 and the ‘energy con-
straints hypothesis’ in animals46.

The fact that plant and animal functional diversity were related
to distinct environmental factors indicates that the responses of
both trophic levels to changes in abiotic conditions could be
decoupled. Despite these potentially decoupled responses of
plants and animals to abiotic changes, the functional diversity of
each trophic level reciprocally constrained interactions with the
other trophic level via bottom-up and top-down control.
According to our findings, the extent to which biotic interactions
are bottom-up- or top-down-controlled depends on whether
abiotic factors primarily limit plant or animal functional diversity.
In particular, our results suggest that top-down effects are more
limiting in cold and wet ecosystems (at mid and high elevations),
whereas bottom-up effects limit network assembly in hot and arid
ecosystems (at the mountain base). Interestingly, this pattern
resembles the latitudinal shift in the relative importance of pre-
cipitation and temperature constraints on plant and animal
diversity38: While water availability is the principal factor limiting
plant and animal diversity in warm tropical and subtropical
ecosystems, temperature is more limiting in cold temperate and
boreal ecosystems. This suggests that the latitudinal shift in the
importance of these abiotic factors for plant and animal diversity
might be partly mediated by the relative importance of bottom-up
and top-down control in different environments. This context-
dependence of the prevailing mechanism is also likely to be an
important driver of the observed variation in the effects of global
change on biotic interactions and associated ecosystem
functions48.

In addition to the indirect effect of temperature through animal
functional diversity, temperature was also directly negatively
associated with niche breadth and overlap in the networks. This
direct temperature effect may be explained by changes in resource
availability and/or foraging behaviour along the temperature
gradient33,34,40,49. Lower resource availability and increased
competition, as well as higher energetic costs of foraging in cold
environments, may force animals to forage less selectively on
plants and might cause an increase in niche breadth33,49 and
overlap34 at low temperatures.

We found no consistent effects of land use on multivariate
functional diversity of plants or animals across the three mutu-
alisms. However, we detected an increase in functional diversity
of traits related to energy requirements of animals in anthro-
pogenic compared with near-natural habitats. Previous studies
reported a higher availability of plant resources (flowers and
fruits) in anthropogenic compared with near-natural habitats on
Mount Kilimanjaro45,50. Increased resource availability in
anthropogenic habitats may release animal communities from
energetic constraints and might allow for a wider range of
metabolic niches51 and an increased variability in animal body
sizes46,50. Plant functional diversity may be less related to effects
of land use, because many of the anthropogenic habitats on
Mount Kilimanjaro host a high plant diversity (e.g. the traditional
homegarden agroforestry systems in the lower montane forest
belt)52,53.

Here, we integrated multiple types of mutualistic interaction
networks with functional traits to assess the effects of trait
matching and functional diversity on the assembly of species-rich
plant–animal networks. Our study demonstrates that trait
matching is a key determinant of network assembly and that the

relative importance of bottom-up and top-down control in
mutualistic networks is determined by whether environmental
conditions limit the functional diversity of resources or con-
sumers. This has important implications for the response of
interaction networks and associated ecosystem functions to
environmental change. As species have to adapt to their envir-
onment, but also depend on interactions with other species, trait
matching and the functional diversity of interaction partners
constrain species’ responses to environmental change. Trade-offs
between functional adaptations to environmental conditions and
biotic interactions may cause non-equilibrium dynamics, in
which species are far from their optimum in terms of environ-
mental conditions or interaction partners54. This trade-off
between abiotic and biotic constraints might limit the adaptive
capacity of species to environmental change. Therefore, projec-
tions of biodiversity and ecosystem functions in response to
abiotic changes are inaccurate if they do not account for the
manifold interactions among species in ecological communities.

Methods
Study area. The study was conducted on the southern and south-eastern slopes of
Mt. Kilimanjaro (Tanzania, East Africa; 2°45′–3°25′S, 37°00′–37°43′E). Mt. Kili-
manjaro rises from the savannah plains at an elevation of 700 m a.s.l. to a snow-
capped summit at an elevation of 5895 m a.s.l. Precipitation is bimodal with the
main rainy season occurring from March through May and more variable short
rains around November. The mean annual temperature decreases almost linearly
with elevation, whereas mean annual precipitation peaks at an elevation of ~2200
m a.s.l. (Fig. 3a)52,53. Due to a long history of human settlement, natural habitats in
the lowlands have been subject to various forms of human disturbance including
fire, logging, and agroforestry practices52,53. Habitats above 2700 m a.s.l. are pro-
tected as a national park since 1973 (Mt. Kilimanjaro National Park); since 2006
also the forests above 1800 m a.s.l. are included in the National Park.

Study design. We collected data on a total of 53 study sites along five transects on
the southern slopes of the mountain (minimum pair-wise distance of 300 m). The
study sites cover six near-natural and six anthropogenic habitat types: savanna (n
= 5) and maize fields (n= 4; 870–1150 m a.s.l.); lower montane forest (n= 5),
traditional homegarden agroforestry systems (n= 5), coffee plantations (n= 5)
and grassland (n= 7; 1150–2050 m a.s.l.); natural (n= 5) and disturbed Ocotea
forest (n= 4; 2150–2750 m a.s.l.); natural (n= 5) and disturbed Podocarpus forest
(n= 3; 2750–3000 m a.s.l.); Erica forest (n= 2; 3950–4000 m a.s.l.), as well as
alpine Helichrysum vegetation (n= 3; 3850–4400 m a.s.l.). A detailed description of
vegetation and land-use types on Mount Kilimanjaro is given by Hemp52,53. No
statistical methods were used to predetermine sample size.

Temperature and precipitation data. All study sites were equipped with tem-
perature sensors that were installed ~2 m above the ground. Temperature sensors
measured temperatures in 5 min intervals for a time period of ~2 years. We cal-
culated the mean annual temperature (MAT, °C) as the average of all measure-
ments per study site. Mean annual precipitation (MAP, mm yr−1) was interpolated
across the study area using a co-kriging approach based on a 15-year data set from
a network of about 70 rain gauges on Mt. Kilimanjaro53. As we did not have data of
MAT and MAP for one study site, we predicted these data using a linear model
with the observed MAT and MAP data as the response variables and elevation
(third-order polynomial) and habitat type as additive explanatory variables (MAT:
R2= 0.99, n= 52, P < 0.0001; MAP: R2= 0.98, n= 52, P < 0.0001; Fig. 3a).

Plant–animal interactions. We studied bird–fruit and bird–flower interactions on
52 of the 53 study sites between November 2013 and October 2015. To do so, we
established one plot of 30 × 100 m2 size on each site, covering a representative
amount of the flowering and fruiting plant community typical for each habitat
type. Each site was sampled once, but replicate sites in each habitat type were
sampled both in the cold and in the warm dry season to account for seasonal
variability55. We observed birds using binoculars to record interactions with
fruiting and flowering plants. We identified birds using Zimmerman et al.56. On
each site, birds were observed for 25 h in total, distributed over 4 consecutive
days55. Observations were conducted for 7 h (1–5 h after sunrise, 2 h before sunset)
on the first 3 days and for 4 h on the last day (1–4 h after sunrise). We recorded the
number of visits of each bird species on each fruiting or flowering plant species,
respectively, and recorded their behaviour. In the analysis we considered only visits
that were classified as legitimate seed dispersal or pollination events, i.e., swal-
lowing or carrying away of fruits from mother plants, as well as pollen uptake. In
total, we conducted 1300 h of bird observations during the study period, during
which we recorded 9194 bird–fruit interactions between 68 plant and 86 bird
species, as well as 3124 bird–flower interactions between 30 plant and 28 bird
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species, respectively. We had to restrict our analysis to a subset of 8085 interactions
between 63 plant and 85 bird species on 39 study sites in the bird–fruit mutualism
and to a subset of 2583 interactions between 26 plant and 24 bird species on
20 study sites in the bird–flower mutualism for which we were able to obtain trait
data.

We studied insect–flower interactions on 19 of the 53 study sites between
January 2011 and November 2012. To do so, we established one plot of 100 ×
100 m2 size on each site, covering a representative amount of the flowering plant
community typical for each habitat type. If possible, we sampled each site several
times to account for seasonal variability between the cold and warm dry seasons. In
the analysis, we accounted for the repeated sampling on the study sites by including
study site as a random factor (see section Bayesian hierarchical structural equation
model). During each sampling round on a given study site, we conducted a 4-h
transect walk. In case of rain, strong wind or dense fog, transect walks were
interrupted and continued later on that day or on the next day. During each
transect walk, we moved slowly through the vegetation of each study site and
recorded each interaction in which an insect touched the reproductive part of a
plant species (herbaceous plants and bushes up to 9 m height). Thus, we assumed
that all flower-visiting insects contribute to pollination. We collected specimens of
each plant species for identification in the lab. Whenever possible, flower-visiting
insects were caught with sweep nets. Thereby, we restricted our sampling to major
groups of pollinators (including Apiformes, the paraphyletic group of non-bee
aculeates, Symphyta and Syrphidae). We excluded other Diptera from the analyses,
for which identification below family level was not feasible. We identified the
caught insect specimens to the lowest taxonomic level possible. We identified 79%
of all flower-visiting insects to species level and 97% to genus level (for simplicity,
we refer to all morphospecies as species). In total, we conducted 320 h of insect
observations during the study period, during which we recorded 4236 insect–flower
interactions between 149 plant and 188 insect species. We had to restrict our
analysis to a subset of 4060 interactions between 131 plant and 183 insect species
on 19 study sites in the insect–flower mutualism for which we were able to obtain
trait data.

Plant and animal functional traits. We quantified functional traits of plant and
animal species that are known to structure the mutualistic interactions between
these species groups via trait matching16–24. Thereby, we distinguished between
three types of traits: traits related to size matching and the effectiveness of inter-
actions (matching traits), traits related to resource provisioning by plants and
energy requirements of animals (energy traits), and traits related to foraging
stratum and animal mobility (foraging traits). Traits related to size matching were
fruit diameter and bill width in the bird–fruit mutualism, corolla depth and bill
length in the bird–flower mutualism, and corolla depth and proboscis length in the
insect–flower mutualism17,24. Traits related to resource provisioning and energy
requirements were crop mass and body mass in the bird–fruit mutualism, the
number of flowers per plant and body mass in the bird–flower mutualism, and the
number of flowers per inflorescence and head width in the insect–flower mutu-
alism. Traits related to foraging stratum and mobility were plant height and the
Kipp’s index57 (i.e., the ratio between Kipp’s distance and wing length as a measure
of the pointedness of the wing) in the bird–fruit and bird–flower mutualisms, as
well as plant height and the forewing index (i.e., the ratio of forewing length to
body length) in the insect–flower mutualism21–23. We selected head width instead
of body length as a proxy for energy requirements in the insect–flower mutualism
in order to avoid using the same morphological variable two times in the analysis.
As body length and head width were highly correlated (Pearson’s r between loge-
transformed variables: r= 0.84, n= 91 species), the decision of whether to include
body length or head width did not affect our conclusions.

For fruiting plants, we measured the maximal diameter of 15 fruits for each
plant species (five fruits each from three different individuals) using sliding
callipers (precision of 0.01 mm) and weighed the fruits using a digital scale
(precision 0.01 g). Moreover, we estimated the total number of ripe fruits per plant
individual for each species on the study sites. On plants with very large crop sizes,
we counted the number of fruits for representative branches and used these to
estimate the crop size of the whole plant. We calculated crop mass by multiplying
the mean fruit mass by the mean number of fruits per individual for each plant
species. We measured plant height for each species on the study sites using a laser
range finder (precision 1 m).

For flowering plants, we measured corolla depth using sliding callipers
(precision 0.01 mm) on herbarium specimens. For the bird–flower mutualism, we
estimated the total number of flowers per plant individual for each species on the
study sites and measured plant height using a laser range finder (precision 1 m).
For the insect–flower mutualism, we counted the number of flowers per
inflorescence and measured plant height on herbarium specimens or compiled data
about plant height from the literature if only parts of plant specimen were available
in herbarium samples58. When no trait information was available for a plant
species, we used the trait values from closely related species in the same genus
(bird–flower mutualism: n= 4 out of 31 plant species; insect–flower mutualism:
n= 7 out of 136 plant species).

For fruit-eating and flower-visiting birds, we measured bill width, bill length,
Kipp’s distance and wing length using sliding callipers (precision 0.01 mm) on
museum specimens following Eck et al.57 and extracted information about body

mass from the literature59,60. Measurements were taken on an average of four
specimens per species (range= 1–16). We measured bill length as the distance
from the commissural point of the upper and lower bill to the tip of the closed bill,
and bill width as the external distance between the two commissural points. We
calculated Kipp’s index as the ratio of Kipp’s distance (distance between tip of the
first secondary and tip of the longest primary of the folded wing) and wing length.

For flower-visiting insects, we measured proboscis length (Hymenoptera: length
of glossa; Diptera: length of labellum)61, forewing length, body length, head width
and intertegular distance (for aculeate bees) of collected specimens using a
binocular microscope with a calibrated ocular micrometre (precision 0.01 mm).
When no trait information was available for an insect species, we used the mean
trait values from related species in the same genus (n= 11 cases), from species in
the same family (n= 12 cases), or from species in the same order (n= 2 cases).
Excluding the insect species for which we only had trait information at the genus,
family or order level from the analyses led to identical conclusions. For 75 bee
species, we estimated body length based on the relationship with intertegular
distance (loge(body length)= 1.89+ 0.518 × loge(intertegular distance), r2= 0.48,
n= 49, P < 0.0001). For 10 hymenoptera species (families: Pompilidae, n= 3;
Tiphiidae, n= 2; and Vespidae, n= 5), we estimated proboscis length based on the
relationship with head width (loge(proboscis length)=−1.32+ 1.54 × loge(head
width), r2= 0.47, n= 112, P < 0.0001). We calculated the forewing index as the
ratio of forewing length and body length.

We square-root-transformed all plant and animal traits for the bird–fruit, the
bird–flower and the insect–flower mutualisms before the analysis.

Trait associations in mutualistic networks. To test for functional relationships
between the multidimensional trait spaces of plants and animals in the
mutualistic networks, we adopted a combination of the RLQ and the fourth-corner
analyses24–26. The RLQ analysis builds on the simultaneous ordination of three
tables: a table R (m × p) describing p traits for m plant species, a table Q (n × a)
describing a traits for n animal species, and a third table L (m × n) containing
qualitative or quantitative information about the occurrence or frequency of pair-
wise interactions between the m plant and n animal species. Here we defined L as a
binary matrix based on whether an interaction between a pair of plant and animal
species had been observed at least once across all study sites in each mutualism.
Therefore, table L is analogous to a metaweb that describes the potential for pair-
wise interactions between plants and animals based on all available information
from the observations. We first applied correspondence analysis (CA) to table L
and principal components analyses (PCA) to tables R and Q25. In the PCAs of R
and Q each plant and animal species was weighted by its number of links in L (i.e.,
species degree)62. Then, we combined the three separate ordinations of R, L, and Q
using the RLQ approach to identify the main relationships between plant and
animal trait spaces as mediated by their interactions25. The RLQ analysis is based
on a p × a matrix Ω containing measures of the intensity of the links between plant
and animal traits63. The further eigendecomposition of ΩT Ω allows identifying the
main associations between plant and animal traits26,64. For the first dimension, this
analysis finds a vector u1 containing coefficients for the plant traits and a vector v1
of coefficients for the animal traits. These loadings measure the contributions of
individual traits and are used to compute scores for plant (x1= RDpu1) and animal
species (y1=QDav1) where Dp and Da are diagonal matrices of variable weights
(here species degree). RLQ chooses the coefficient vectors u1 and v1 so that the
derived species scores have maximum squared cross-covariance covP(x1, y1)2=
(x1T Py1)2= λ1, where λ1 is the first RLQ eigenvalue. In other words, RLQ finds
linear combinations of plant and animal traits (i.e., trait syndromes) so that their
squared cross-covariance is maximum. The same quantity is maximised for the k
dimensions with the additional constraints of orthogonality (uiT Dpuj= viT Davj=
0 for i ≠ j). Results are stored in matrices U= [u1 |…| uk], V= [v1 |…| vk], X=
RDpU= [x1 |…| xk] and Y=QDaV= [y1 |…| yk].

We used the eigenvalues of the RLQ analysis to select those ordination axes that
explained most of the cross-covariance between plant and animal trait spaces for our
analyses25. We selected the first two RLQ axes, because in all three mutualisms these
axes together explained more than 99% of the cross-covariance between plant and
animal trait spaces (bird–fruit: 90% and 9.3%; bird–flower: 99% and 0.75%;
insect–flower: 94.8% and 5.1%, Fig. 2a, c, e). Then, we applied the fourth-corner
permutation test (model 6 with 9999 permutations)25 to evaluate the statistical
significance of the associations between plant and animal trait spaces using three
different approaches. First, we used the sum of eigenvalues of the RLQ analysis as a
multivariate statistic to test for global associations among plant and animal trait
spaces25,26. Second, we tested for correlations between the first and second
dimensions of plant and animal trait spaces by using the RLQ scores on the first two
axes of the plant and animal trait spaces as variables in the fourth-corner analysis25.
Third, we assessed which of the different trait types (matching, energy and foraging
traits) were correlated with each of the first two RLQ axes25. Because we aimed at
generalising our results across mutualisms and because the direction of effects in
multivariate space is arbitrary, we compared the absolute magnitude of correlations
between matching, energy and foraging traits and the RLQ axes across the three
mutualisms. Moreover, instead of assessing the significance of individual correlations,
we assessed the overall support for the hypotheses that matching, energy and foraging
traits are related to the first and second RLQ axes across the three mutualisms. To do
so, we used the equation given by Moran28, based on a Bernoulli process, to calculate
the probability, P, of obtaining a given number of significant tests from a given
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number of trials just by chance. This probability is given by the equation P= [N!/(N
−K)!K!] × αK(1− α)N−K, where N is the number of tests conducted and K is the
number of tests below the significance level α (here α= 0.05). The rationale behind
this equation is that the evidence against the null hypothesis from a given number of
statistical tests increases with the number of significant tests28. For instance, four out
of six matching traits were significantly correlated with the first RLQ axes at α= 0.05
(Supplementary Table 1). According to Moran’s equation the probability of obtaining
four significant results out of six tests at α= 0.05 by chance is P= 8.5 × 10−5,
providing strong support for the hypothesis that matching traits structure pair-wise
interactions in mutualistic networks.

Previous work has shown that the sequential permutation approach for
statistical testing of the ‘fourth-corner problem’ (model 6) has good power (0.88)
for 100 species, reasonable power (0.60) for 50 species and some power (0.40) for
30 species27. As the number of plant and animal species in two of our datasets is
relatively small, the statistical power of the permutation test is low. For instance,
although the magnitude of the absolute correlations between matching traits and
RLQ axis 1 in the bird–flower mutualism is similar to those in the bird–fruit and
insect–flower mutualisms, the permutation test is not significant at α= 0.05
(Supplementary Table 1; Supplementary Fig. 1). Therefore, the statistical tests we
conducted can be considered highly conservative with respect to Type I errors.

Functional diversity effects on network assembly. We used functional disper-
sion to measure the functional diversity of plants and animals within the mutua-
listic networks (FDp and FDa hereafter)65. Compared to other measures of
functional diversity functional dispersion has several advantages: Functional dis-
persion is abundance-weighted and therefore less influenced by extreme values and
it is by definition unaffected by species richness65. We calculated multivariate and
univariate functional dispersion of plant and animal communities in each mutu-
alism. To do so, we first calculated distance matrices based on the Gower distance
between species based on the combination of all three functional traits (multi-
variate FD) or based on each trait type separately (univariate FD based on
matching, energy or foraging traits). The Gower distance equals the mean character
difference across traits after standardisation of the trait values by their ranges and
has been recommended for calculation of functional diversity metrics based on
multiple traits, because it is less sensitive to extreme trait values than the Euclidean
distance66. Moreover, the standardisation of the trait values by their ranges yields
an empirical maximum value of the distance function that equals one66, which
allows for a meaningful comparison among multiple species groups with different
sets of functional traits. Then we projected species into a multidimensional func-
tional trait space using a principal coordinates analysis (PCoA), and calculated
functional dispersion as the mean abundance-weighted distance of each species in a
given community to the abundance-weighted centroid of all species in this com-
munity65. To estimate the abundance of plant and animal species in the networks,
we used their marginal interaction totals in each network. Functional dispersion
was only weakly correlated with species richness of plants and animals in our data
(absolute Pearson’s |r| < 0.41 for plants and |r| < 0.33 for animals across multi-
variate and univariate FD metrics; n= 126 in all cases).

To quantify the interaction niches of plants and animals in the networks, we
used two different measures of niche breadth and niche complementarity. We
quantified niche breadth of plants and animals as the mean effective number of
partners based on the exponent of the Shannon diversity of links (eHp and eHa ), and
niche partitioning as the mean standardised Kullback–Leibler distance (d′p and d′a)
across the plants and animals in each network, respectively29.

Bayesian hierarchical structural equation model. To test for bottom-up and top-
down effects of plant and animal functional diversity on niche breadth and parti-
tioning, respectively, we used Bayesian hierarchical structural equation models. The
general structure of the models that we used here is reviewed in the literature67 and
described in more detail in the supplementary material (Supplementary Note 1).

We fitted two separate structural equation models, one including eHp and eHa

and the other including d′p and d′a as measures of the interaction niches of plant
and animal communities on each study site (Supplementary Fig. 2). In these
structural equation models, we treated mean annual temperature (MAT, °C), mean
annual precipitation (MAP, mm yr−1) and land use (LU, binary variable) as
exogenous predictor variables. We treated FDp and FDa as well as measures of
plant and animal interaction niches (eHp and eHa or d′p and d′a, respectively) as
endogenous variables. The models included all potential direct effects of MAT,
MAP and LU on FDp and FDa, as well as on eHp and eHa or d′p and d′a, respectively.
Moreover, the models included the effects of FDp and FDa on eHp and eHa or d′p
and d′a, respectively. We also included covariance terms between FDp and FDa, as
well as between eHp and eHa or d′p and d′a to account for correlated errors due to
common unmeasured sources of variance and due to reciprocal effects of
functional diversity on the other trophic level. The total number of samples
included in the analysis was n= 126. To account for the hierarchical structure of
the data we included study site (n= 53) and mutualism type (n= 3) as random
factors into the structural equations. The measures eHp and eHa were transformed
to their natural logarithm and all variables were scaled to zero mean and unit
variance before analysis.

To separate informative from non-informative paths, we used a Bayesian
indicator variable selection with global adaptation68 (Supplementary Note 1). We

used 2loge(Bayes factor) as a measure of evidence for a given effect (BF hereafter)69.
Values of BF < 2 indicate no support; values between 2 and 6 indicate positive
support; values between 6 and 10 indicate strong support; and values >10 indicate
decisive support. We report the marginal variance, rm2, that is explained by the
fixed factors, as well as the conditional variance, rc2, that is explained by the fixed
and random factors combined as measures of model fit70.

The models were implemented in JAGS71, and run in R72 through the rjags
package73. We ran eight parallel chains for the models. We used uninformative
priors for all parameters and the initial values for the chains were drawn randomly
from uniform distributions. Each chain was run for 51,000 iterations with an
adaptive burn-in phase of 1000 iterations and a thinning interval of 100 iterations,
resulting in 500 samples per chain, corresponding to 4000 samples from the
posterior distribution. The chains were checked for convergence, temporal
autocorrelation, and effective sample size using the coda package74. Residuals were
checked for normality and variance homogeneity.

Code availability. The computer code of the analyses is available in figshare with
the identifier https://doi.org/10.6084/m9.figshare.6633032. The JAGS code for the
Bayesian hierarchical structural equation model is also given as part of the Sup-
plementary Information (Supplementary Note 1).

Data availability. The data that support the findings of this study are available in
figshare with the identifier https://doi.org/10.6084/m9.figshare.6633032. Due to the
Data and Publication Policy of the Research Unit FOR1246, the figshare data
are embargoed for public release until 1 January 2020. Until the embargo date for
public release the data are available from the corresponding author upon reason-
able request.
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