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ABSTRACT 21 

Forest and steppe communities in the Altai region of Central Asia are threatened by changing 22 

climate and anthropogenic pressure. Specifically, increasing drought and grazing pressure may 23 

cause collapses of moisture-demanding plant communities, particularly forests. Knowledge 24 

about past vegetation and fire responses to climate and land use changes may help anticipating 25 

future ecosystem risks, given that it has the potential to disclose mechanisms and processes that 26 

govern ecosystem vulnerability. We present a unique paleoecological record from the high-27 

alpine Tsambagarav glacier in the Mongolian Altai that provides novel large-scale information 28 

on vegetation, fire and pollution with an exceptional temporal resolution. Our palynological 29 

record identifies several late-Holocene boreal forest expansions, contractions and subsequent 30 

recoveries. Maximum forest expansions occurred at 3000–2800 BC, 2400–2100 BC, and 1900–31 

1800 BC. After 1800 BC mixed boreal forest communities irrecoverably declined. Fires reached 32 

a maximum at 1600 BC, 200 years after the final forest collapse. Our multiproxy data suggest 33 

that burning peaked in response to dead biomass accumulation resulting from forest diebacks. 34 

Vegetation and fire regimes partly decoupled from climate after 1700 AD, when atmospheric 35 

industrial pollution began, and land use intensified. We conclude that moisture availability was 36 

more important than temperature for past vegetation dynamics, in particular for forest loss and 37 

steppe expansion. The past Mongolian Altai evidence implies that in the future forests of the 38 

Russian Altai may collapse in response to reduced moisture availability.  39 
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INTRODUCTION 40 

Forest disruption has substantially increased globally in recent years (McDowell & Allen, 41 

2015). The vast boreal forests and forest steppes in and around the Altai region in Central Asia 42 

provide an important terrestrial carbon storage but respond highly sensitive to recent global 43 

change (Sato et al., 2007; Liu et al., 2013; Chenlemuge et al., 2013; Tian et al., 2013; 2014; 44 

Hijioka et al., 2014; Dulamsuren et al., 2016; Khansaritoreh et al., 2017; Zaoh et al., 2018). In 45 

the past decades, the Altai region experienced rising temperatures combined with increasing 46 

extreme events such as prolonged heatwaves, drought periods and short-term heavy rainfall 47 

events (Lkhagvadorj et al., 2013). As boreal forest growth is not only limited by temperature 48 

but also by moisture availability, the forests progressively suffer from water constraints 49 

(Dulamsuren et al., 2010; 2014). The establishment, persistence and decline of these boreal 50 

forests depend on soil moisture availability which is not only constrained by precipitation, but 51 

also by the local soil development and its water-holding capacity (Henne et al., 2011) that is 52 

extremely low for the predominant soil types in the region. 53 

The central position of the Altai Mountains between the vast Siberian Taiga forests in the 54 

north and the Gobi desert in the south results in a steep climatic and vegetation gradient with 55 

fragmented and diverse habitats including many rare and endemic species (Rudaya et al., 2008). 56 

Their natural resources such as forests, productive grasslands, and fresh water sources have 57 

attracted Central Asian nomadic groups since centuries (Rudaya et al., 2008). In recent years, 58 

these ecotonal mountain steppe ecosystems experienced rapid degradation through over-59 

grazing, systematic logging, dead wood collecting and human-set fires (Tsogtbaatar, 2004; 60 

Dulamsuren et al., 2014). Anthropogenic pressure combined with growing moisture deficiency 61 

may cause irreversible forest vegetation loss, reduce steppe pasture productivity and thus alter 62 

species composition and diversity (Lkhagvadorj et al., 2013). 63 

Knowledge about past vegetation dynamics in the Mongolian Altai contributes to a better 64 

understanding of future ecosystem responses to climate change and human land use, and may 65 

assist forest, grassland and fire management strategies by providing baselines of past ecosystem 66 
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variability in response to strong environmental change. However, paleo records that provide 67 

information about Holocene vegetation and fire history are scarce, lack temporal resolution 68 

and/or chronological precision (Tarasov et al., 2000; Gunin et al., 2009; Rudaya et al., 2009; 69 

Umbanhowar et al., 2009; Unkelbach et al., 2018). Such limitations impede a thorough 70 

assessment of ecosystem resilience and vulnerability. The snow-capped Tsambagarav 71 

Mountain provides a regional to supra-regional ice archive of ecosystem change, which is well 72 

suited to reconstruct ecosystem dynamics with high temporal resolution and precision (Herren 73 

et al., 2009). Here we address persisting knowledge gaps with the following aims: (1) for the 74 

first time, we use microscopic charcoal to reconstruct the fire dynamics in the Mongolian Altai; 75 

(2) pollen, spores and spheroidal carbonaceous particles are used to investigate the long-term 76 

linkages between the fire regime, vegetation, land use, and pollution; (3) we use the 77 

palynological information including charcoal to assess ecosystem response variability to 78 

climate change, and (4) evidence from other studies is used to underscore the spatio-temporal 79 

relevance of our outcomes and to derive implications for ecosystem responses under global-80 

change conditions. 81 

STUDY SITE 82 

The Altai Mountains stretch over ca. 1200 km, crossing the borders of Russia, Mongolia, 83 

Kazakhstan, and China. With 4500 m a.s.l. maximum elevation (Mount Belukha in Russia, Fig. 84 

1A) the Altai Mountains build a continental climate barrier for air masses from northwest, 85 

resulting in a strong northwest (800 mm year-1) to southeast (<200 mm year-1) precipitation 86 

gradient (Klinge et al., 2003) given that the moisture source in the region are the Westerlies. 87 

The extreme continental climate is dominated by the Siberian High with cold dry winters and 88 

precipitation prevailing in June to August (Klinge et al., 2003). The investigated ice archive on 89 

Tsambagarav Mountain is located in the Mongolian Bayan-Ölgii province (Fig. 1A), a region 90 

with very dry climatic conditions (annual precipitation ca. 200 mm at 1700 m a.s.l.). 91 
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 92 

Figure 1 Study area, chronology and modern pollen deposition at Tsambagarav glacier. Panel A: Map of the Altai region 93 
with glacier records (triangle) and selected records of fire and vegetation reconstructions (white dots), map modified (source 94 
of satellite images: U.S. Geological Survey). Panel B: Chronology of Tsambagarav record based on a glacier flow model (blue 95 
dashed line), annual layer counting (2009–1815 AD), maximum tritium peak (red diamond), volcanic layers (red triangles) and 96 
210Pb activity (green circles). From 1815 AD modeled ages as exponential equation (black dashed line) with upper and lower 97 
limit of the equation (gray shaded) based on 14C- dating of water-insoluble organic carbon of atmospheric origin (black squares 98 
with uncertainty bars). Insert: 14C-date of an insect remain (red cross and photo, Uglietti et al., 2016). Figure adapted from 99 
Herren et al. (2013). Panel C: Modern pollen assemblage in Tsambagarav glacier ice (average over 20 years as percentages of 100 
the terrestrial pollen sum). 101 

Geologically, the Mongolian Altai consists of siliceous bedrock, including schists and 102 

granites with Leptosols as prevailing soil type that are susceptible to erosion and desiccation 103 

(Dulamsuren et al., 2014). The modern vegetation around Tsambagarav reflects the cold semi-104 

arid continental climate characterized by huge differences in maximum and minimum daily and 105 

yearly temperatures (July average +22.7 °C, January average -22.6 °C at Ölgii weather station; 106 

NOAA, 2013). Gradients such as altitude and exposure lead to pronounced local differences in 107 

growth season length, heat sum, precipitation, and soil formation, which together strongly affect 108 

species distribution and productivity (Rudaya et al., 2009). 109 

Wide areas at high elevations surrounding Tsambagarav are occupied by cryo-xerophyllic 110 

mountain steppe communities mainly composed of Festuca sulcata sp., Poa botryoides, Carex 111 

pediformis, but also Artemisia frigida and A. tanacetifolia (Walter, 1974). Alpine tundra 112 

communities with Betula nana ssp. rotundifolia (synonyms Betula nana subsp. rotundifolia 113 

(Spach) Malyschev, Betula glandulosa Michaux subsp. rotundifolia (Spach) Regel, and Betula 114 

rotundifolia Spach, see TPL, 2018; Gunin et al., 2009), Salix glauca, Kobresia, and Potentilla 115 

sericea become more abundant with increasing altitude and may penetrate up to 3000 m a.s.l. 116 
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(Walter, 1974). High alpine Kobresia meadows with Poa altaica, P. sibirica, Festuca, Carex 117 

and Thalictrum alpinum are increasingly fragmented above 3200 m a.s.l. Sedum algidum is 118 

found up to the nival zone close to the eternal snow margin (Walter, 1974), which is at 119 

Tsambagarav between 3000 to 3800 m a.s.l. depending on the exposure (Herren et al., 2013). 120 

Below 1800–2000 m a.s.l. the mountain steppes are gradually replaced by dry Stipa-Artemisia 121 

steppe communities with Stipa glareosa, S. gobica, Allium, Tanacetum, Artemisia species, and 122 

Caragana (Walter, 1974; Gunin et al., 2009). Anabasis brevifolia (Chenopodiaceae) is the most 123 

common halophilous taxon in the region. Desert-steppe communities composed of Stipa sp. and 124 

Salsola dominate in dry isolated valleys and southeast of Tsambagarav in the large mountain 125 

depression “basin of the large lakes”, where precipitation is further reduced to <200 mm year-1 126 

(Gunin et al., 2009). Wet herbaceous communities and small woody stands with Betula 127 

pendula, Populus tremula, Salix, and Alnus glutinosa grow along streams (Walter, 1974; Gunin 128 

et al., 2009; Stritch et al., 2014). The closest of these parklands with dozens of km2 sizes occur 129 

ca. 50 km northwest of Tsambagarav. 130 

The mid-elevation forest belt in the Mongolian Altai is restricted to north facing slopes in 131 

the western (Hoton Nur area, Fig. 1A) and northwestern part of the Mongolian Altai between 132 

1900–2100 m a.s.l., while on south facing slopes, mountain steppe communities directly pass 133 

over to alpine plant communities. The narrow and discontinuous forest belts are composed of 134 

Pinus sibirica, Larix sibirica, Betula pendula. Picea obovata co-occurs where soil moisture is 135 

sufficient (Walter, 1974; Gunin et al., 2009). In these forest stands at ca. 100 km distance from 136 

Tsambagarav, the upper limit of tree growth is controlled by summer temperature and the lower 137 

limit by moisture availability and anthropogenic pressure such as logging activities (Klinge et 138 

al., 2003; Lkhagvadorj et al., 2013; Tsogtbaatar, 2013). Floristically, the Mongolian forest 139 

relicts belong to the forests in the Russian Altai (Walter, 1974) which consist of Pinus sibirica, 140 

Abies sibirica, Larix sibirica and Betula pendula that form a dense boreal forest belt between 141 

ca. 1000 and 2000 m a.s.l. in the region north of the Belukha glacier (see Fig. 1A; Walter, 1974; 142 

Eichler et al., 2011). Below 1000 m a.s.l the Russian Altai is characterized by lowland feather-143 
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grass steppes (Stipa, other Poaceae, Artemisia, and Chenopodiaceae; Walter, 1974). Modern 144 

Pinus sylvestris and Abies sibirica distribution is restricted to the Russian and Kazakh Altai, ca. 145 

150–200 km north of Tsambagarav (Gunin et al., 2009). 146 

MATERIAL AND METHODS 147 

Ice material and microfossil analysis 148 

We analyzed samples from an existing ice core from Tsambagarav Mountain. The core was 149 

drilled on the eastern summit (48° 39.338′ N, 90° 50.826′ E; Fig. 1A) in July 2009 at an altitude 150 

of 4130 m a.s.l. (Herren et al., 2013). The drilling reached bedrock with a total ice core length 151 

of 72 m and a diameter of 8.2 cm. Core segments of ca. 70 cm were transported frozen to the 152 

Paul Scherrer Institute (PSI) in Switzerland. 153 

202 continuous samples spanning the time 3500 BC to 2009 AD (55.6–0 m weq = water 154 

equivalent, corrected for varying density) from the outer part of the ice core were taken for 155 

palynological analysis. The sampling resolution was 40–90 years (3500 BC–1200 AD), 20–30 156 

years (1200–1650 AD), 10 years (1650–1700 AD), five years (1700–1985 AD), and one year 157 

(1985–2009 AD, merged to five years after analysis) using the chronology of Herren et al. 158 

(2013). An additional 14C-date from an insect remain found during palynological sampling 159 

confirmed the accuracy of the existing depth-age model (Fig. 1B; Uglietti et al., 2016). Each 160 

sample contained 200–400 g ice, except one sample with 45 g at 52.2 m weq. The microfossil 161 

extraction followed a protocol for ice sample preparation (Brugger et al., 2018). One 162 

Lycopodium tablet was added to each sample before lab treatment to estimate microfossil 163 

concentrations (Stockmarr, 1971). Due to strong thinning in the deeper part of the glacier caused 164 

by lateral ice flow, annual layers could not be identified before 1825 AD, preventing influx 165 

calculations with a reasonable time resolution. 166 

We use pollen and spores to infer vegetation history and the coprophilous fungal spore 167 

Sporormiella as a proxy for herbivore grazing activity. A pollen sum of 500 was reached except 168 

in the samples of section 54–53 m weq (2600–2000 BC), where due to small pollen 169 
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concentrations we reached 100 grains, which is above the minimum for reliable percentage 170 

calculations and environmental reconstructions (50 items; Heiri and Lotter, 2001). Pollen and 171 

spore identification under a light microscope at 400 x magnification followed palynological 172 

keys (Huang, 1972; Moore et al., 1991; Beug, 2004) and the reference collection in Bern, 173 

Switzerland. Shrub type (referred to as Betula nana-type) and tree type Betula (Betula alba-174 

type) separation is based on the pore depth and the grain diameter to pore depth ratio (D/P) 175 

following Clegg et al. (2015). The palynological Betula distinction covers B. pubescens, B. 176 

pendula (both B. alba-type), B. glandulosa and B. nana (both B. nana-type) as well as other 177 

North American and Eurasian birch species (Birks, 1968; Clegg et al., 2015). Cerealia-type was 178 

classified according to Beug (2004). Although Artemisia comprises herb and shrub species, we 179 

include all Artemisia pollen in the herb pollen sum following Gunin et al. (2009) since pollen 180 

taxonomy allows no further discrimination. Pollen and spore data are presented as percentages 181 

of the terrestrial pollen sum. 182 

Microscopic charcoal >10 µm is used as a proxy for fire activity (e.g. MacDonald et al., 183 

1991; Tinner et al., 1998; Conedera et al., 2009; Adolf et al., 2017). We counted a minimum 184 

sum of 200 items (charcoal fragments and Lycopodium grains, Finsinger & Tinner, 2005; 185 

Tinner & Hu, 2003). If needed (low charcoal concentrations), we continued until a minimum 186 

of 20 charcoal fragments was reached. Subsequently, the > 90th percentile (= 10 % upper 187 

charcoal concentration values over the entire record) was identified to infer regional fire activity 188 

peaks. SCP (= spheroidal carbonaceous particles) with a diameter >10 µm and clear features 189 

(Rose, 2015) were counted along pollen and spores to reconstruct industrial air pollution. All 190 

microfossil concentrations were standardized to one liter. 191 

Annual layer thickness is highest in the uppermost part of the ice core, resulting in an 192 

exponential depth-age relationship (Fig. 1B). Thus, the temporal sampling resolution in the 193 

younger part is much higher compared to the older part of the ice core where the ice had thinned 194 

substantially (i.e. one to several hundred years per m weq with increasing core depth). These 195 

archive characteristics result in varying detection limits for rare microfossil types along the 196 
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record for comparable time periods. We kept the original lab sampling resolution for the 197 

interpretation of the palynological record (Figs 2–4) while we amalgamated samples of the 198 

overview pollen and charcoal records to reach 40 to 50 years resolution in the younger part 199 

(period 1100–2009 AD, Fig. 5). This resulted in comparable time steps along the sequence. 200 

Numerical analysis 201 

Optimal sum-of-squares partitioning was applied for zonation of the pollen data (Birks & 202 

Gordon, 1985). Subsequently, statistically significant local pollen assemblage zones (LPAZ) 203 

were inferred with the broken stick approach (Bennett, 1996). Only LPAZ with more than two 204 

samples were accepted to account for single microfossil deposition events reaching the exposed 205 

high-alpine glacier site. We applied ordination methods to statistically summarize the pollen 206 

signal and to search for correlations with supplementary variables and similarities with external 207 

data. The short gradient length of the first axis (= 1.35) of a detrended correspondence analysis 208 

(DCA, detrended by segments) justifies using linear ordination methods (ter Braak & Prentice, 209 

1988). Therefore, we applied principal component analysis (PCA) based on a correlation 210 

matrix. Charcoal concentrations, fern spore and Sporormiella percentages of the Tsambagarav 211 

data were included as supplementary variables (Fig. 4) and pollen percentages from Belukha 212 

glacier (Eichler et al., 2011) were included as external samples (not influencing the ordination 213 

dataset) to search for spatio-temporal similarities between the two sites. We amalgamated 214 

Betula (includes Betula nana-type and Betula alba-type) and Chenopodiaceae (Salsola and 215 

remaining Chenopodiaceae) to homogenize the taxonomic resolution between the Tsambagarav 216 

and Belukha data. 217 

To our knowledge palynologically-based diversity measures (e.g. palynological richness, 218 

evenness) are not available yet from the Altai region. To fill this gap we estimated palynological 219 

richness (PRI) with rarefaction analysis as a proxy for species richness and the probability of 220 

interspecific encounter (PIE) as a proxy for evenness (Birks & Line, 1992; Hurlbert, 1971). The 221 

minimum pollen sum for rarefaction analysis was 105 pollen grains. To account for evenness 222 
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distortions of palynological richness we calculated PIE-detrended palynological richness (DE-223 

PRI; Colombaroli & Tinner, 2013). 224 

RESULTS AND INTERPRETATION 225 

Modern pollen composition reflects vegetation and pollen catchment 226 

The modern pollen concentration in the Tsambagarav record is ca. 6000 grains l-1 which 227 

corresponds to a total influx of 450 grains cm-2 year-1. This is very low compared to sedimentary 228 

archives. The largest amount derives from the steppic taxa Artemisia (53 %), Poaceae (8 %) 229 

and Chenopodiaceae (7 %), with arboreal pollen (AP) of Betula alba-type (12 %), Juniperus (4 230 

%), and conifers such as Pinus sibirica (6 %; Fig. 1C). With 25 % AP and 75 % non-arboreal 231 

pollen (NAP) the pollen signal reflects the patchy modern regional vegetation dominated by 232 

dry herbaceous steppes with scattered boreal trees. The presence of conifer and Betula pollen 233 

indicates regional sources, as the closest parklands with Betula pendula (Betula alba-type 234 

pollen) occur at ca. 50 km northwestwards and forested areas around 100 km westwards in the 235 

Hoton Nur region (Fig. 1A). Single grains of warm-loving taxa (e.g. Castanopsis-type and 236 

Pistacia; Fig. 2) along the record indicate pollen transport by southern air masses over more 237 

than 1000 km, where Pistacia has its northern distribution limit today (Golan-Goldhirsh, 2009). 238 

Westerlies are the main moisture source for the Altai region. On the basis of the modern 239 

atmospheric pattern (Herren et al., 2013) we assume northwest as the predominant wind 240 

direction for our site during the mid and late Holocene. The historical pollen assemblages at 241 

Tsambagarav are clearly distinct from those from Belukha glacier in the Russian Altai ca. 320 242 

km northwest (Fig. 1 A; Eichler et al., 2011). This finding suggests little overlap of the two 243 

glacier pollen catchments. Based on the pollen composition in the top sample of Tsambagarav 244 

and its comparison with vegetation composition in the study area (e.g. Walter 1974; Gunin et 245 

al., 2009) we assume that the Tsambagarav pollen signal derives from a catchment of ca. 60–246 

200 km around the site, most likely with a strong northwest bias and with only occasional pollen 247 

grains deriving from longer distances. 248 
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Vegetation history 249 

Six statistically significant local pollen assemblage zones (LPAZ) were identified along the 250 

palynological record (Figs 2–3). We additionally divided TSA-3 and TSA-5 in two non-251 

significant subzones a and b. Results are presented as pollen percentages and pollen 252 

concentrations (around 10’000 grains l-1 except the period 2900–1800 BC (zone TSA-3a) with 253 

low concentrations <2000 grains l-1). 254 

Pollen data in zone TSA-1 (3500–3100 BC) indicates that the vegetation was dominated by 255 

herbaceous steppe communities, mainly composed of Artemisia (80 %) with Poaceae, 256 

Chenopodiaceae and other taxa growing in dry Stipa-Artemisia steppe communities (e.g. 257 

Cyperaceae, Bupleurum-type, Galium-type; Fig. 2). The pollen record indicates that Salsola, a 258 

key taxon of semi-desert environments occurring i.e. in sheltered valleys (Walter, 1974), was 259 

also present. AP percentages are low (0–10 %) and mainly composed of Betula alba-type and 260 

the dry adapted taxon Ephedra with single pollen grains of Pinus sylvestris-type and Pinus 261 

sibirica. The conifer pollen suggests either presence of single conifers in locally favorable spots 262 

in the herbaceous steppe or long-distance pollen transport. 263 
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Figure 2 Percentage diagram of Tsambagarav ice core spanning the past 5500 years. Selected pollen types, fern spores, 265 
and coprophilous fungal spores based on the terrestrial pollen sum. Temperate arboreal summary curve consists of Fagus, 266 
Corylus, Quercus and other temperate arboreal pollen taxa. Hollow curves = 10x exaggeration. Diversity estimation (Hurlbert, 267 
1971) based on a minimum pollen sum of 105 for pollen richness (PRI), evenness-detrended pollen richness (DE-PRI), and 268 
evenness index (PIE). Concentration curves for charcoal, pollen and Sporormiella in particles l-1 and total terrestrial pollen 269 
sum. LPAZ = statistically significant local pollen assemblage zones, dashed lines not statistically significant. Chronology 270 
according to Herren et al. (2013), reference horizons in Fig. 1A. 271 
 272 

Tree pollen percentages reach highest peaks between 3000 and 1800 BC (up to 50 %; LPAZ 273 

TSA-2–TSA-3a; Fig. 2) indicating afforestation pulses in the steppes possibly resulting from 274 

moister and/or warmer conditions. Betula alba-type percentages (30 %) as well as tree pollen 275 

concentration peaks around 3000 and 1900 BC hint to periods with propitious environmental 276 

conditions that allowed expansion of the pioneer species. Pollen of the arctic-alpine shrub taxa 277 

Betula nana-type and Salix, as well as Juniperus reaches highest percentages of the entire 278 

record during this phase. This suggests an upward expansion of alpine tundra vegetation to 279 

altitudes higher than 3000 m a.s.l., which is today’s upper altitudinal limit of alpine tundra 280 

shrubs such as Salix glauca and Betula nana ssp. rotundifolia in the area (Walter, 1974; Gunin 281 

et al., 2009). The second tree pollen peak between 2400 and 2100 BC is marked by an initial 282 

rise of Betula alba-type (20 %) followed by a second phase where pollen percentages of Pinus 283 

sibirica, Picea, Larix, Abies, and Alnus viridis increase, indicating a succession from primary 284 

Betula pendula-dominated forests to more diverse secondary forests and green alder thickets 285 

(Fig. 2). The rise of pollen from temperate trees (mainly Quercus, Corylus and Fagus) to 5% 286 

may indicate a stronger influence of southern airmasses since the closest occurrence of these 287 

taxa is in China (Wu & Raven, 1999). The forest expansions coincided with a spread of ferns 288 

(maximum fern spore percentages of the record). This period is further characterized by the 289 

lowest pollen concentrations of the entire record (<2000 grains l-1) that indicate diluted 290 

microfossil concentrations possibly caused by higher ice accumulation rates due to moister 291 

environments (Fig. 2, Herren et al., 2013).  292 
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Figure 3 Percentage diagram of Tsambagarav ice core for the past millennium. Selected pollen types, fern spores, 294 
coprophilous fungal spores based on the terrestrial pollen sum. Temperate arboreal summary curve consists of Fagus, Corylus, 295 
Quercus and other temperate arboreal taxa. Hollow curves = 10x exaggeration. Diversity estimation (Hurlbert 1971) based on 296 
a minimum pollen sum of 105 for pollen richness (PRI), evenness-detrended pollen richness (DE-PRI), and evenness index 297 
(PIE). Concentrations of charcoal, SCP (spheroidal carbonaceous particles), pollen, and Sporormiella in particles l-1. LPAZ = 298 
statistically significant local pollen assemblage zones, dashed line not statistically significant. Chronology, presented 14C-dates 299 
and reference horizons (volcanic layers, drilling year, and tritium peak) according to Herren et al. (2013). 300 
 301 
 302 

AP decreases stepwise at ca. 1800 BC, 800 BC, 1100 AD, and 1700 AD (LPAZ TSA-3b–303 

TSA-5b), pointing to several forest or arboreal vegetation retraction phases in the areas 304 

northwest and north of Tsambagarav. Dry Stipa-Artemisia steppe (e.g. Poaceae, Artemisia) as 305 

well as desert-steppe communities (e.g. increasing Chenopodiaceae and Salsola-type 306 

percentage values, Figs 2–3) expanded. The tree diebacks are defined by LPAZ boundaries 307 

indicating significant shifts in the vegetation around the glacier. A short-term Pinus sibirica 308 

pollen increase between 900 and 1100 AD (defined by LPAZ TSA-4) hints to a temporary 309 

establishment of the species in the catchment. Maximum landscape openness was reached after 310 

1700 AD (AP <10 %; Fig. 3). AP rises noticeably during LPAZ TSA-6 (1960–2009 AD) which 311 

is mainly due to increasing Betula alba-type and indicates rapid spreads of pioneer trees. 312 

The presence of Cerealia-type is interpreted as a primary indicator for farming activities if 313 

associated with other pollen indicative of land use (e.g. Linum usitatissimum, Plantago 314 

lanceolota; Lang, 1994). Association with other adventive pollen (or less ideal apophytes 315 

pollen) is needed, because in entire Eurasia Cerealia-type pollen is occasionally produced by 316 

wild grass species (Beer et al., 2007; Van Zeist et al., 2016), e.g. by Trisetum spicatum, a 317 

common wild grass species of the Mongolian mountain steppes (Walter, 1974). Secondary 318 

anthropogenic pollen indicators such as Rumex crispus (R. acetosa-type), Cichorioideae, Urtica 319 

and Liliaceae prefer nutrient enriched former campsites suggesting pastoralism activities, 320 

although they may occasionally also occur naturally on humid and nutrient-rich soils in the 321 

Mongolian Altai (Gunin et al., 2009). Thus, the presence and in particular the combined 322 

increase of these indicators (Fig. 2) might point to land use activities in the Mongolian Altai 323 

after 3500 BC. Cerealia-type pollen occurs regularly after 2000 BC and reaches a maximum 324 

around 1000 AD, often in combination with Urtica, Rumex and Liliaceae. Cerealia-type pollen 325 
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rises again around 1700 AD, and after 1700 AD Urtica, Cannabis-type and Rumex percentages 326 

increase indicating intensified pastoralism activities (Gunin et al., 2009). 327 

Dung fungal spores of Sporormiella are continuously present in large quantities along the 328 

entire record indicating continuous herbivore grazing in the steppes. The Sporormiella record 329 

suggests that herbivore grazing activities reached a maximum during the afforestation phase 330 

(20 % around 2200 BC). Increased grazing activity was possibly released by an enhanced 331 

productivity of the steppes related to increasing moisture, or less likely, by favorable (humid) 332 

conditions for fungi growth and spore production. As observed for pollen, Sporormiella 333 

concentration values remain low due to increased ice accumulation rates. The Sporormiella 334 

concentrations rise slightly after 1600 AD, which might be related to intensified herding 335 

activities over the past centuries. 336 

Diversity and ordination analysis 337 

In a large pollen catchment such as Tsambagarav that includes a wide range of habitats, 338 

pollen richness is rather related to ecosystem diversity and thus the number of habitats, than to 339 

floristic diversity within plant communities. Low PIE values (<0.5) throughout the sequence 340 

follow PRI suggesting that species evenness was constantly low. However, evenness 341 

reconstructions were possibly affected by the large Artemisia portions, a pollen taxon that is 342 

commonly overrepresented in steppic ecosystems (Liu et al., 1999) and prevails over the entire 343 

record (Figs 2–3). PRI and DE-PRI remain low until 3000 BC (PRI ca. 5–15; DE-PRI ca. 10), 344 

followed by an increase (PRI max. 20–30, DE-PRI 15) between 3000 and 2400 BC when AP 345 

percentages are peaking. Given that pollen richness is correlated with AP (r = 0.64, Figs 2–3) 346 

it is likely that forest expansions contributed to increasing diversity. After the forest retreat at 347 

1800 BC, diversity remained at intermediate levels (PRI ca. 10–20, DE-PRI ca. 10–15) until 348 

1700 AD. Higher diversity in the younger steppes (pre-3000 BC vs. post-1800 BC) was possibly 349 

related to reorganizations to grassy steppe communities (e.g. Poaceae increase; Fig. 3). 350 

Palynological diversity drops to low values after 1700 AD (PRI and DE-PRI around 10) 351 
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suggesting a further decline of diversity perhaps related to intensified herding (e.g. 352 

Sporormiella rise). 353 

The sample distribution on the PCA axes 1 and 2 (Fig. 4A) shows a large LPAZ overlap 354 

with only minor vegetation changes over the past five millennia. Samples of LPAZ TSA-1 and 355 

TSA-6 vs. TSA-4 are separated along axis 1 and samples of LPAZ TSA-2 and TSA-3a are 356 

shifted along axis 2, reflecting variations in the vegetation composition between different steppe 357 

communities and boreal forests over time. A very high share (66 %) of the variance is explained 358 

by axis 1 which splits mainly moist steppe communities (Artemisia, Persicaria vivipara) from 359 

the rest: dry steppic (Chenopodiaceae, Rheum, Poaceae), cryophilous alpine Kobresia-meadow 360 

(e.g. Cyperaceae) and rather mesophilous boreal forests (e.g. Betula, Pinus sibirica). Axis 2 361 

explains another 21 % of the variance and separates dry grass steppe (e.g. Poaceae, 362 

Chenopodiaceae, Thalictrum) from cryophilous, mesophilous and rather thermophilous 363 

communities: tundra shrublands (e.g. Alnus viridis), boreal (Picea, Larix, Betula) and 364 

nemoboreal or temperate (e.g. Ulmus, Quercus, Corylus) arboreal taxa. Thus, both axes may 365 

indicate aspects related to moisture availability and associated temperatures, such as steppic 366 

species composition (e.g. Artemisia vs. Chenopodiaceae and Poaceae for axis 1) and biomass 367 

or biome allocation (steppic vs. boreal or nemoboreal) for axis 2. 368 

PCA for the Belukha samples (Fig. 4B) reveals that the Tsambagarav results are reproducible 369 

in the Russian Altai. Axis 1 explains 42 % of the variance separating Artemisia from dry steppic 370 

Stipa-communities (e.g. Poaceae, Chenopodiaceae) and axis 2 explains 22 % separating dry 371 

steppes from boreal forests (Betula, Pinus sibirica). The compositional similarities between the 372 

two PCA suggests moisture availability and less important temperature as drivers of vegetation 373 

change. If combined (Fig. 4A) Russian Altai sample scores group in one edge of Axis 1, along 374 

an axis 2 gradient. The sample score comparison suggests a high similarity of Belukha with 375 

Tsambagarav during the afforestation phase 3000–1800 BC (TSA-2–TSA-3a). The ordination 376 

clearly separates modern Tsambagarav (TSA-6) and Belukha samples probably because of 377 

moisture-related differences and different anthropogenic influence on both, Mongolian and 378 
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Russian Altai plant communities. 379 

 380 
Figure 4 Principle component analysis (PCA) for pollen percentages of Altai glacier records. Panel A: PCA for the 381 
Mongolian Altai (Tsambagarav glacier) today surrounded by open steppes with only relict forest patches, spanning 3500 BC–382 
2009 AD. Sample scores with different symbols for the corresponding local pollen assemblage zone (LPAZ), selected species 383 
scores (black arrows corresponding to pollen types) indicate vegetation composition changes for sample scores from boreal 384 
forest (e.g. Pinus cembra) to less dry (e.g. Artemisia) and arid steppes (e.g. Chenopodiaceae). Selected supplementary variables 385 
(grey arrows, Sporormiella and fern spores as percentages of the terrestrial pollen sum [%], charcoal concentrations [particles 386 
l-1]). Russian Altai (Belukha glacier) today surrounded by abundant boreal forests spanning 1250–2001 AD. Sample scores are 387 
plotted as supplementary data not influencing the ordination (black cross symbols). The PCA results underline the similarity 388 
of mid-Holocene forest communities in the Mongolian Altai with historical and modern boreal forests in the Russian Altai. 389 
Panel B: Selected species scores for the Belukha dataset. Selected species scores for the Russian Altai show a close relationship 390 
with species scores from the Mongolian Altai (Panel A). Taken together this finding underscores the vulnerability of extant 391 
Central Asian forests to current and future climate change. Specifically, future vegetation dynamics in the Russian Altai may 392 
follow past climate impact trajectories in the Mongolian Altai, from forested (positive scores) to steppic communities (negative 393 
scores) along PCA axis 1.  394 
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Fire and industrial pollution history 395 

The average charcoal concentration in the upper firn (ca. 6000 particles l-1 for the period 396 

2009–2005 AD) corresponds to a microscopic charcoal influx of ca. 200 particles cm-2 year-1 397 

or 0.085 mm2 cm-2 year-1 (Tinner & Hu, 2003), which is extremely low if compared to sediment 398 

records (Adolf et al., 2017). Charcoal concentrations reveal no major fire activity trend between 399 

3500 BC and 1700 AD with an average of ∼5000 particles l-1. A single outstanding charcoal 400 

peak around 1540 BC (29’000 particles l-1) suggests a short phase of major fire activity ca. 250 401 

years after a major forest decline. Other charcoal-concentration inferred fire-activity peaks 402 

(>90-percentile = >7300 particles l-1; Figs 2–3) also occurred following forest declines (e.g. 403 

~2650 BC ca. 150 years after the forest decline around 2800 BC), suggesting that collapses of 404 

boreal taxa provided dead biomass and thus fuel for fire activity (De Groot et al., 2000; Eichler 405 

et al., 2011; Tinner et al., 2015; Kuuluvainen et al., 2017). Charcoal concentrations remain low 406 

after 1700 AD with an average of ∼2600 particles l-1 and no peaks >90-percentile indicating 407 

minimal fire activity when herbaceous steppe ecosystems were dominant. However, 408 

microscopic charcoal hints to minor increase of fire activity after 1960 AD. Charcoal 409 

concentration as supplementary variable in the PCA (Fig. 4) groups with AP, again suggesting 410 

biomass availability as an important factor for burning. 411 

First SCP occur around ca. 1720 AD at the beginning of zone TSA-5b (Fig. 3). Those 412 

scattered but frequent particles indicate initial atmospheric pollution, possibly deriving from 413 

early industrialization and mining activities (Naumov, 2006). Regionally, they coincide with 414 

minimum fire activity and maximum landscape openness, indicating a possible shift from solely 415 

timber-based to increasingly fossil fuel-based energy consumption, perhaps motivated by 416 

limited timber availability. SCP rise after 1920 AD, suggesting amplified industrial air pollution 417 

during the 20th century. A first concentration peak around 1960 AD with 80 particles l-1 and a 418 

second maximum around 2000 AD (100 particles l-1) coincide with highest charcoal 419 

concentration values (6000 particles l-1) during the 20th century. 420 
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DISCUSSION 421 

Fire and fuel dynamics during the past 5000 years 422 

Tsambagarav receives ca. 200 microscopic charcoal particles cm-2 yr-1 today which is in the 423 

same order of magnitude as Belukha glacier 320 km northwest in the Russian Altai (150 424 

particles cm-2 yr-1; Eichler et al., 2011) at a similar altitude (4062 m a.s.l.). Charcoal influx 425 

values at Belukha are ca. 40 times lower than at nearby Teletskoye Lake at 1900 m a.s.l. (8200 426 

particles cm-2 yr-1; Andreev et al., 2007). The influx difference between glaciers and 427 

neighboring lake sediment archives is best explained by the remoteness of the glaciers and the 428 

limited vertical atmospheric transport to the high elevation ice core sites (Gilgen et al., in 429 

review). To our knowledge, no microscopic charcoal records from the Mongolian Altai are 430 

available. Local fire reconstructions are based on macroscopic charcoal and cover the past 431 

millennia (Umbanhowar et al., 2009; Unkelbach et al., 2018). Despite the spatio-temporal 432 

variability their reconstructed fire signal corresponds to our regional fire activity peaks from 433 

Tsambagarav (microscopic charcoal peaks >90-percentile, Fig. A1), if dating uncertainties are 434 

considered. Recent calibration studies at the continental scale showed that micro- and 435 

macroscopic charcoal has very similar spatial proveniences spanning a radius of about 40 km 436 

around sedimentary sites (Adolf et al., 2017). Glaciers on the other hand act as a regional to 437 

subcontinental archive of biomass burning, integrating fire activity over larger spatial scales 438 

(Legrand et al., 2016). Very high concentrations >20.000 particles l-1 suggest that the fire 439 

activity peak in the Tsambagarav record around 1500 BC was comparable to the maximum 440 

burning of the past 800 years that occurred around 1600 AD at Belukha glacier in the Russian 441 

Altai (Fig. A2). The 1500 BC maximum fire phase in the Tsambagarav record may 442 

chronologically correspond to the late-Holocene fire activity peak at Zagas Nur around 20 km 443 

southwest of Tsambagarav (Umbanhowar et al., 2009) where it is dated to 1400 BC, while at 444 

Doroo Nur (50 km south) fire activity was only moderate around 1500 BC. As the fire peak 445 

does not occur in more distant records from western Mongolia (Fig. A1; Umbanhowar et al., 446 
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2009) we assume that the fire might have been localized close to the glacier (20–40 km) or 447 

located north or northwest. 448 

 449 

Figure 5 Comparison of the palynological record from Tsambagarav with regional and climate records. From left: 450 
Tsambagarav ice accumulation rate (anomaly from the mean of the past 6000 years, Herren et al., 2013), Tsambagarav 451 
vegetation reconstruction (summary curve for pollen, DCA-axis 1, correlation arboreal pollen percentages : DCA scores axis 452 
1: r = 0.95; this study), regionally-averaged moisture index for the Altai Mountains based on pollen records (Wang & Feng, 453 
2013), biome scores from Hoton Nur with original chronology adjusted (Tarasov et al., 2000; Rudaya et al., 2009), Asian 454 
monsoon reconstruction from Dongge cave (Wang et al., 2005), solar activity fluctuation reconstruction based on 10Be 455 
measurements in polar ice (Steinhilber et al., 2009), Tsambagarav fire reconstruction (charcoal concentrations, this study) and 456 
selected nomadic empires (Rogers, 2012). Green numbers indicate climatically induced forest minima phases at Tsambagarav. 457 
 458 

Increased fire activity at Tsambagarav was related to declines of boreal tree stands or forests 459 

that likely provided fuel for burning (Fig. 5), similarly to what was found at Belukha (Eichler 460 

et al., 2011). There, a dry period inducing forest diebacks was succeeded by maximum fire 461 

activity around 1600 AD (Fig. A2), a period with increased fire activity also in the Tsambagarav 462 

area (three consecutive charcoal peaks >90-percentile; Fig. 5) and in the Eurasian Arctic 463 

(Akademii Nauk ice record; Griemann et al., 2017). Lacking biomass availability combined 464 

with low temperatures during the Little Ice Age period may explain the fire minimum at 1700–465 
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1960 AD when maximum vegetation openness is documented in the pollen record of 466 

Tsambagarav and at adjacent sites (Fig. 5; Umbanhowar et al., 2009, Unkelbach et al., 2018). 467 

Finally, the past four decades of the Tsambagarav record suggest again a slight increase of 468 

regional and local fire activity possibly caused by increased biomass availability due to pioneer 469 

birch forest expansions. 470 

Composition, successional dynamics and diebacks of the mid-Holocene forests 471 

Our high-resolution record from Tsambagarav provides a unique chronological control in 472 

combination with high-temporal and continuous sampling resolution and is therefore suited to 473 

assess rapid ecosystem responses to climate change. The Tsambagarav record suggests that the 474 

Mongolian Altai experienced several prominent forest contraction and expansion phases before 475 

1800 BC. The magnitude and fluctuation pattern of this early phase are comparable to the 476 

pattern observed for the past 800 years in the Russian Altai (Eichler et al., 2011). There, mixed 477 

Pinus sibirica-Larix sibirica stands form a dense forest belt between 1000 m a.s.l. and the 478 

timberline around 2000 m a.s.l. in which Abies sibirica and Picea obovata co-occur in areas 479 

where soil moisture is sufficient (Eichler et al., 2011). Below this belt Betula pendula and Pinus 480 

sylvestris form boreal forests (Walter, 1974). The forests in the Russian Altai produce a pollen 481 

signal which is comparable to that of the Tsambagarav record during the period 3000–1800 BC 482 

(Figs 4 and A2). The Belukha pollen assemblage is mainly composed of Pinus sibirica and 483 

Betula with only single Larix grains despite its importance in the vegetation (Eichler et al., 484 

2011). Scattered Larix pollen in the Tsambagarav record may thus suggest that Larix sibirica 485 

was an important forest element during the afforestation phases in the Mongolian Altai. This 486 

similarity is striking, given that nowadays Larix sibirica and Pinus sibirica form only relict and 487 

discontinuous forest belts in the northern part of the Mongolian Altai and Abies sibirica has 488 

completely vanished (Walter, 1974; Gunin et al., 2009). 489 

The multiproxy Belukha record suggests that forest diebacks in the Russian Altai were 490 

induced by severe drought decades resulting in enhanced fire risk and that forests recovered 491 
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rapidly after moisture re-increased (Eichler et al., 2011). The repeated forest contractions at 492 

Tsambagarav followed by Artemisia steppe expansions indicate similar vegetation responses to 493 

moisture variability. Forest recoveries similar to the Russian Altai ended 1800 BC. This is in 494 

line with regional sedimentary pollen records showing consistent deforestation in the 495 

Mongolian Altai during the mid- to late-Holocene. For instance, pollen-inferred vegetation 496 

reconstructions from Hoton Nur point to taiga forest contractions between 3000–2000 BC (Fig. 497 

5; Rudaya et al., 2009) to never recover again. At Bayan Nur forests contracted around 1500 498 

BC, in the Dayan Nur region around 650 BC and in the Achit Nur area between 4000 BC and 499 

200 AD (Gunin et al., 2009; Sun et al., 2013; Unkelbach et al., 2018). Diachronic forest 500 

diebacks suggest that moisture thresholds for forest growth were underrun in different periods 501 

in the Mongolian Altai. Specifically, local forest persistence until about 800 BC, 1200 AD and 502 

1700 AD indicates that decreasing moisture effects on forests endured until modern times, 503 

resulting in stepwise forest and tree stand disruptions. These late-Holocene dynamics occurred 504 

also at larger distances, e.g. at Akkol Lake (ca. 190 km) in the northern Tuva region after 1000 505 

BC (Blyakharchuk et al., 2004; Fig. 1A) suggesting that forests contracted also far north of the 506 

Mongolian Altai in response to moisture reductions. However, chronological uncertainties as 507 

resulting from few 14C-dates from bulk sediments (see Rey et al., 2018) and a general lack of 508 

14C-dates in the mid- to late-Holocene (Gunin et al., 2009; Sun et al., 2013) impede precise 509 

assessments of the deforestation timing at individual sites. 510 

Climate-driven pulses of steppe expansions and human impact after 1800 BC 511 

Hunter and gatherer communities inhabited the Altai region since the early-Holocene 512 

(Volkov, 1995; Hauck et al., 2012), and nomadic herders were present since at least 1000 BC 513 

(Fig. 5; Fernández‐Giménez, 1999; Rogers, 2012; Rudaya et al., 2008), but their impact on the 514 

natural vegetation is supposed to be minor (Bourgeois et al., 2007; Rudaya et al., 2009). We 515 

thus assume that natural climate change, such as aridity and/or cooling, was the main forcing 516 

of repeated forest contractions and subsequent herbaceous steppes expansions during the late-517 
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Holocene (Schlütz et al., 2008). A pollen-based moisture index derived from other sites in the 518 

Mongolian Altai (Wang & Feng, 2013) was previously interpreted as a proxy for the Asian 519 

summer monsoon strength (Fig. 5). This index is driven by the same factors as our pollen data 520 

and is therefore not an independent climatic proxy and indeed its course is in line with our 521 

ecological interpretation, thus indicating similar moisture trends across sites. The vegetation-522 

based reconstructions are in good agreement with mid-Holocene climate model simulations for 523 

Asian monsoon strength (Harrison et al., 2016) and with pollen-independent oxygen isotope 524 

records (e.g. Dongge cave record; Fig. 5; Wang et al., 2005; Wang & Feng, 2013) that suggest 525 

declining moisture availability in the Mongolian Altai in response to a weakening of monsoon 526 

activity resulting from changes of orbital forcing during the late-Holocene. Reduced monsoon 527 

sources of moisture as a possible cause for deforestation at Hoton Nur was proposed by Rudaya 528 

et al. (2009). Although our Tsambagarav vegetation and fire record begins at 3500 BC when 529 

monsoon had already started to weaken (Wang et al., 2005), we assume that the progressive 530 

late-Holocene reduction of subtropical air-masses resulted in strong moisture oscillations that 531 

may have resulted in flickering of forest ecosystems before their final collapse at ca. 1800 BC 532 

(Dakos et al., 2013). 533 

The Tsambagarav record suggests that the long-term tree contraction in the Mongolian Altai 534 

continued stepwise after 1800 BC to reach its apex only 300–200 years ago. Contractions of 535 

forest ecosystems were possibly induced by climate variability related to e.g. solar activity 536 

changes (Eichler et al., 2009; Steinhilber et al., 2009; Roth & Joos, 2013). For instance, the 537 

forest minima around 3400 BC, 2800 BC, 2500 BC, 800–400 BC, 500 AD, and 1200 AD might 538 

have been related to dry cooling events (Fig. 5) as partly recorded regionally (e.g. the 4.2 kyr 539 

cool and dry period, Staubwasser & Weiss, 2006; Dixit et al., 2014), in other Northern 540 

Hemisphere records from the Alpine region and Alaska (Haas et al., 1998; Tinner et al., 2015) 541 

or in the reconstructed global surface air temperature (Roth & Joos, 2013). 542 

During the past decades, climate proxies suggest reversing climate trends with warming (e.g. 543 

Eichler et al., 2009; Roth & Joos, 2013) and re-strengthening of the Asian monsoon (e.g. 544 
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reconstructed from Dongge cave isotope record; Wang et al., 2005). In contrast, after the end 545 

of the Little Ice Age at ca. 1850 AD (Eichler et al., 2011) tree stands in the Mongolian Altai did 546 

not recover suggesting a decoupling of vegetation dynamics from climate, e.g. due to increasing 547 

human activities. The historical onset of larger-scale smelting in the Altai dates to 1729 AD 548 

(Naumov, 2006) coinciding with the beginning of the industrial pollution signal in our ice 549 

record as documented in SCPs (Fig. 3). The related energy requirements induced increasing 550 

human pressure not only on the Russian Altai forests but also on the remaining tree stands in 551 

the Mongolian Altai until 1960 AD (Lkhagvadorj et al., 2013), likely shifting the lower tree 552 

line upwards (Dulamsuren et al., 2014). Thus, human activities altered vegetation responses to 553 

climate. The Tsambagarav record suggests that industrial pollution remained high after 1960 554 

AD and only pioneer Betula pendula may have very recently recovered, when fossil fuel-based 555 

energy consumption (e.g. coal or diesel-consuming engines for heating, transportation or water-556 

supply) increased, relieving pressure on woody stands (Fernández‐Giménez, 1999). 557 

Altai ecosystems under future climate change 558 

Past vegetation dynamics suggest that warmer and moister conditions during the mid-559 

Holocene allowed boreal forest establishments in the Tsambagarav area in the Mongolian Altai. 560 

These forests collapsed around 1800 BC. Subsequently, further stepwise tree reductions and a 561 

gradual shift to more dry adapted steppe communities occurred likely in response to drying and 562 

cooling during the late-Holocene. Future climate projections for continental areas propose 563 

further warming and drying in the coming decades for the Altai Region (Sato, Kimura, & Kitoh, 564 

2007; Tchebakova, Blyakharchuk, & Parfenova, 2009; Dai, 2011; Collins et al., 2013; 565 

Dulamsuren, Khishigjargal, Leuschner, & Hauck, 2014; IPCC, 2014; Lehner et al., 2017). In 566 

agreement, during the past decades, the Mongolian Altai experienced significant warming and 567 

increasing numbers of drought periods. Precipitation more often included heavy rainfall events 568 

that are only partly beneficial for vegetation (D'Arrigo et al., 2001; Dulamsuren, Hauck, & 569 

Leuschner 2010; Lkhagvadorj, Hauck, Dulamsuren, & Tsogtbaatar, 2013). Other areas in 570 
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Mongolia and southern Siberia also experienced climate warming and moisture decrease, 571 

probably affecting tree growth and hindering forest regeneration (Allen et al., 2010; 572 

Tsogtbaatar, 2013; Dulamsuren, Khishigjargal, Leuschner, & Hauck, 2014; Xu et al., 2017). If 573 

future climate projections are correct about declining moisture availability, the persisting forest 574 

patches and belts in the Mongolian, Russian Altai and other dry areas of Central Asia will be 575 

strongly affected. For instance, forest boundaries might shift north of the Russian Altai 576 

releasing unprecedented forest collapses in response to increasing drought. The available fire 577 

histories from ice core records from the Russian and Mongolian Altai also suggest that fire 578 

incidence may increase where biomass is not limiting burning (Eichler et al., 2011; Hessl et al., 579 

2016). This interpretation of the paleo record agrees with modern observations indicating a 580 

significant link between dry conditions and fire activity (Tsogtbaatar, 2013; Ponomarev & 581 

Kharuk, 2016). Thus, fire may exacerbate the effects of future climate change on vegetation, 582 

especially if associated to high grazing pressure (Tsogtbaatar, 2004; Hauck et al., 2014; 583 

Ponomarev & Kharuk, 2016).  584 

In the past, when climate forcing was natural, warm conditions were in this region usually 585 

accompanied by increases in moisture availability, likely deriving from increased monsoonal 586 

and/or westerly wind activity that promoted forest growth. Despite many projection efforts and 587 

progresses, the magnitude of global warming and in particular of precipitation changes remains 588 

ambiguous (Braconnot et al., 2012). Future projections may underestimate moisture availability 589 

in continental areas (Berg, Sheffield, & Milly, 2017), as for example, northern hemisphere 590 

monsoon simulations for the mid-Holocene underestimate its magnitude (Braconnot et al., 591 

2012; Harrison et al., 2015). If moisture should unexpectedly increase with future warming as 592 

it did during the early and mid late-Holocene, forests may thus persist and perhaps even expand 593 

in the Mongolian Altai, as they did during the period 3000–1800 BC, at least if human pressure 594 

will not become excessive. 595 
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CONCLUSIONS 596 

The Tsambagarav record demonstrates for the first time the ecological potential of ice 597 

palynology, specifically, based on its high chronological resolution and precision, it provides 598 

novel insights into past fire, vegetation, and land use dynamics in the Mongolian Altai region. 599 

Late-Holocene vegetation reorganizations in response to climate and moisture availability 600 

changes underscore the vulnerability of forest ecosystems that are still thriving in the 601 

Mongolian or Russian Altai. We conclude that precipitation regime changes were the main 602 

driver for forest diebacks ca. 4700–4000 years ago and their final collapse ca. 3800 years ago. 603 

The lacking resilience of forest communities (e.g. Pinus sibirica-Larix sibirica stands) to 604 

moisture changes emphasizes the vulnerability of forests in other dry areas of Central Asia, if 605 

global warming will be associated to moisture declines as anticipated by future scenarios (IPCC, 606 

2014). To better assess past vegetation and forest fire dynamics, new high-resolution and -607 

precision multiproxy studies from natural archives are urgently needed. Such studies may help 608 

to disclose the mechanisms and processes behind the vulnerability of plant species and 609 

communities. Ultimately, they are thus essential to improve our knowledge of future ecosystem 610 

responses to global change. 611 
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APPENDIX A 927 

 928 
Figure A1 Comparison of Tsambagarav vegetation and fire reconstruction (charcoal concentrations and charcoal 929 
concentrations exceeding 90-percentile of all samples) with local fire reconstructions (macroscopic charcoal influx 930 
of particles >180µm) from lakes in western Mongolia (Umbanhowar et al., 2009) over the past 5500 years. 931 
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  932 
Figure A2 Comparison of forest phases recorded in glacier archives in the Mongolian and Russian Altai. Left: 933 
Tsambagarav main pollen diagram (percentages) and charcoal concentrations (particles l-1) during maximum 934 
afforestation (3000–1800 BC), right: Belukha main pollen diagram and charcoal concentrations 1250–1990 AD 935 
(Eichler et al., 2011). Hollow curves = 10x exaggeration. 936 


