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ABSTRACT 

Lake Towuti on Sulawesi Island, Indonesia, is located within the heart of the Indo-Pacific 

Warm Pool. This tropical lake is surrounded by ultramafic (ophiolitic) rocks and lateritic 

soils that create a unique ferruginous depositional setting. In order to understand modern 

sediment deposition in Lake Towuti, a set of 84 lake surface sediment samples was collected 
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from across the entirety of the lake and samples were analyzed for their physical, chemical, 

mineralogical and biological constituents. End-member analyses were carried out to elucidate 

modern sediment origin, transport and depositional processes. This study found that 

allochthonous sediment, characterized by the concentrations of the elements Mg, Fe, Si and 

Al, as well as the clay and serpentine minerals, is dominated by fluvial supply from five 

distinct source areas. Granulometric data and the occurrence of organic matter of terrestrial 

origin suggest that in the southern and north-eastern parts of the lake the near-shore 

sediments may additionally be influenced by mass wasting. This at least is partly due to the 

particularly steep slopes in these areas. Furthermore, sediment composition suggests that 

sediment transport into deeper parts of the lake, particularly in the northern basin, is partly 

controlled by gravitational and density-driven processes such as turbidity currents. 

Directional sediment transport by persistent lake currents, in contrast, appears less important. 

Organic matter deposition in the ultra-oligotrophic lake, albeit limited, is dominated by 

autochthonous production, but with some contribution of fluvial and gravitational supply. 

Biogenic silica deposition, primarily from diatom frustules and sponge spicules, is very 

limited and is concentrated in only a few areas close to the shoreline that are characterized by 

shallow waters, but away from the areas of high suspension loads at the mouths of the major 

inlets. The results of this study build upon current and published work on short piston cores 

from Lake Towuti. Conversely, the results will support the interpretation of the depositional 

history and past climatic and environmental conditions derived from the composition of 

much longer records, which were obtained by the Towuti Drilling Project in May 2015 and 

are currently under investigation. 

 

Keywords Indo-Pacific Warm Pool (IPWP), Lake Towuti, modern sedimentation, 

provenance analysis, redox conditions, tropical lake. 
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INTRODUCTION 

The Indo-Pacific Warm Pool (IPWP) is the most extensive warm water mass in the world´s 

oceans, and houses the largest zone of deep atmospheric convection on Earth. The IPWP 

impacts global climate through its influence on the concentration of atmospheric water 

vapour, the Earth’s most important greenhouse gas (Pierrehumbert, 1999) and through 

interactions with the El Niño–Southern Oscillation (ENSO), the Australian-Asian monsoons 

and the Intertropical Convergence Zone (ITCZ; Clement et al., 2001; Chen and Cane 2008; 

Chiang 2009). Lake Towuti on Sulawesi Island, Indonesia, is the largest tectonic lake in 

Southeast Asia, and sits at the heart of the IPWP.  Lake Towuti has very high rates of 

biological endemism, with species flocks of fishes, snails and shrimp, among others (von 

Rintelen et al., 2011). Despite this endemism, Towuti is one of the least productive tropical 

lakes on Earth.  Lake Towuti is located in a unique catchment, the East Sulawesi Ophiolite 

belt, and lateritic soils, providing ferruginous metal substrates that feed a diverse, exotic 

microbial community in the lake and its sediments.  

 

Given this extraordinary setting, the Towuti Drilling Project (TDP) of the 

International Continental Scientific Drilling Program (ICDP) recovered over 1000 m of 

sediment core from three sites in the northern basin of Lake Towuti to investigate: (i) the 

understanding of the long-term environmental and climatic change in the tropical western 

Pacific; (ii) the impacts of geological and environmental changes on the biological evolution 

of aquatic taxa; and (iii) the geomicrobiology and biogeochemistry of metal-rich, ultramafic-

hosted lake sediment (Russell et al., 2016). 
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The multi-disciplinary investigation of ICDP lake cores will strongly benefit from a 

thorough understanding of modern processes of sediment formation in this area under known 

environmental and climatic conditions. The most important triggering factors of sediment 

formation like fluvial input, terrestrial run-off and authigenic formation vary significantly in 

each lake. This has been shown for ICDP projects on Lake Ohrid in Macedonia/Albania and 

Lake El´gygytgyn in the Russian Arctic (Vogel et al., 2010; Wennrich et al., 2013). These 

studies have highlighted an important role for lake circulation and lateral transport in 

controlling and to some extent homogenizing spatial patterns of clastic and chemical 

sediment deposition within these lakes, as well as a role for organic matter, iron oxides and 

metal adsorption in chemical sedimentation. These findings helped to develop chemical 

tracers for tectonic and lake circulation changes (e.g. Wennrich et al., 2013). Previous work 

on Lake Towuti by Costa et al. (2015), Weber et al. (2015) and Goudge et al. (2017) 

investigated the chemical and mineralogical composition of river inputs to the lake, and 

developed potential tracers for sediment inputs from the largest river entering the lake, the 

Mahalona River. However, those studies were limited by very low areal coverage (only one 

sediment transect in the northern lake basin; Fig. 1), and did not investigate spatial gradients 

in organic matter or other patterns of chemical sedimentation.  It is possible that the low-

latitude setting and ultra-oligotrophic status of Lake Towuti limit the effects of in-lake 

circulation and organic matter production on the spatial patterns of sediment infill in Lake 

Towuti; however, this has yet to be tested through comprehensive sampling and analysis. 

 

In this study, 84 lake surface sediment samples were collected from Lake Towuti to 

document patterns of sedimentation over the entire lake basin. These samples were 

investigated for a variety of physical, mineralogical and chemical attributes. The results 

presented here shed new light on the modern sedimentary processes operating in Lake Towuti 
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and complement studies which focus on modern weathering processes in the lake catchment 

and potential analogues to iron-rich lake sediments observed on Mars. Furthermore, this 

study provides information concerning potential impact of anthropogenic activity during 

recent decades on the composition of the surface sediments in Lake Towuti, in particular the 

impacts of extensive nickel mining to the north-west of the lake (PT Vale, 2017), population 

increase in expanding villages (Robinson, 1986), as well as increased deforestation and 

farming in the lake catchment (Dechert et al., 2004). 

 

STUDY SITE 

 

Lake Towuti is part of the Malili Lake System, a chain of five lakes in the centre of Sulawesi 

Island, north-eastern Indonesia (2.5°S, 121.5°E; Fig. 1). The three largest of these lakes are 

connected by surface outflow from Lake Matano via Lake Mahalona to Lake Towuti, with 

the latter located at 319 m above sea level and draining into the Bay of Bone via the Larona 

River. The 561.1 km
2
 large, and ca 200 m deep Lake Towuti occupies a transtensional basin 

(Lehmusluoto et al., 1995; Haffner et al., 2001) situated at the junction of the Eurasian, 

Caroline–Philippine and Indo–Australian tectonic plates (Hamilton, 1979; Spakman and Hall, 

2010). Frequent earthquakes (168 between 2010 and 2016), including several above 

magnitude five, highlight modern tectonic activity (Watkinson and Hall, 2016). Moreover, 

subduction under North Sulawesi leads to an extensive volcanic field on the island’s northern 

arm, which has been active since the Miocene (Hamilton et al., 1979). 

 

The majority of the catchment area of Lake Towuti (1280 km
2
) consists of mafic to 

ultramafic bedrock of the East Sulawesi Ophiolite belt, the third largest ophiolite complex in 

the world (Fig. 2; Monnier et al., 1995; Kadarusman et al., 2004). The ophiolites around Lake 

Towuti are composed primarily of serpentinized (lherzolite) and unserpentinized peridotites 
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(harzburgite and dunite; Kadarusman et al., 2004, fig. 2), as well as minor gabbros, dolerites 

and basalts. The peridotites are intensely weathered and form laterites several metres thick, 

including nickeliferrous oxisol soils with an FeO content of about 60% (Golightly and 

Aranabia, 1979; Kadarusman et al., 2004). Additionally, the ophiolite is interthrusted by 

Mesozoic and Cenozoic sediments and metasediments (Silver et al., 1983; Kadarusman et al., 

2004). 

 

Lake Towuti is roughly separated into a northern and a southern basin by a large 

island and a series of subaquatic ridges ascending to ca 125 m water depth (Fig. 1; Russell et 

al., 2016;). The largest tributary is the Mahalona River, which forms a large delta in the 

northern part of the lake (the Mahalona Delta) and exerts a strong influence on sedimentation 

in the northern basin (Costa et al., 2015; Vogel et al., 2015; Weber et al., 2015; Goudge et al., 

2017). Today, Lake Towuti is ultra-oligotrophic and dilute (conductivity 210 µS/cm), with a 

circumneutral pH (ca 7.8), and the water chemistry is dominated by Mg and HCO3
- 

ions 

(Lehmusluoto et al., 1995; Haffner et al., 2001; Vuillemin et al., 2016). The lake is thermally 

stratified, with seasonal mixing occurring down to ca 100 m and surface water temperatures 

between 29°C and 31°C (Costa et al., 2015). 

 

The climate at Lake Towuti is tropical humid, exhibiting a mean annual air 

temperature of 26°C with monthly averages varying by less than 1°C (Costa et al., 2015). 

Precipitation averages ca 2700 mm/year, with its maximum and minimum in March/April 

and in October, respectively, governed by the seasonal influences of the ITCZ and the 

Australian-Indonesian Summer Monsoon (AISM; Konecky et al., 2016). During the wet 

season from December to May, when precipitation can exceed 250 mm/month, the ITCZ 

passes over the region, northerly winds associated with the AISM prevail, and local 
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convective activity, triggered by warm sea-surface temperatures (SST), is high (Aldrian and 

Susanto, 2003). In contrast, from August to October, the atmospheric circulation is 

dominated by south-easterly flows, which transfer latent heat to the Asian mainland, 

decreasing regional SSTs and local convection, and thus decreasing precipitation around 

Lake Towuti below 150 mm/month (Aldrian and Susanto, 2003; Hendon 2003). The lake and 

its surroundings are heavily influenced by ENSO events. The El Niño event 1997/1998, for 

instance, led to strongly reduced precipitation during the rainy season, causing a lake-level 

lowering of ca 3 m, and a nearly closed-basin situation (Tauhid and Arifian, 2000). 

 

Despite its importance in the global climate system, the interaction of the IPWP with 

climate change is still poorly constrained. To further understanding of oceanic and 

continental environmental conditions in the IPWP region, lake sediment cores are valuable 

archives as they contain highly resolved and potentially long records of climatic changes. The 

information presently available concerning the history of Lake Towuti is primarily based on 

the investigation of piston cores of up to 20 m length, which were recovered in 2010 and span 

the past ca 60,000 years (Russell et al., 2014; Vogel et al. 2015). Additional information is 

available from seismic data obtained in 2007, 2010 and 2013 (Russell et al., 2014; Vogel et 

al., 2015) as well as three TDP sites drilled in 2015, with sediment penetrations between 138 

m and 174 m below lake floor (blf; Russell et al., 2016). These cores probably expand the 

existing records to at least 700 kyr (Russell and Bijaksana, 2012), providing a unique, high-

resolution continental archive to investigate the influence of orbital forcing and northern 

hemisphere glaciations on climate variations within the IPWP region.  
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Organic geochemical and compositional analyses of the upper ca 10 m of the 

sediments indicates particularly wet conditions with closed-canopy rainforest in the 

catchment during Marine Isotope Stage (MIS) 3 and the Holocene (Russell et al., 2014). 

These conditions abruptly changed to drier conditions with more open ecosystems (seasonal 

forests and grasslands) during MIS 2, especially during the Last Glacial Maximum (LGM; 

Russell et al., 2014). The palaeoclimatic changes impacted not only the regional vegetation, 

but also sediment supply to the lake, water-column mixing, sediment redeposition, and lake-

levels (Russell et al., 2014, 2016; Vogel et al., 2015; Costa et al., 2015; Konecky et al., 2016; 

Goudge et al., 2017). However, there are still many uncertainties from these studies. For 

instance, Russell et al. (2014) used sedimentary Ti content to infer surface runoff and erosion, 

whereas other studies (Costa et al., 2015; Vogel et al., 2015; Goudge et al., 2017) used 

sedimentary Mg content to infer sediment remobilization driven by lake-level changes.  Costa 

et al. (2015) used Fe concentration data to infer changes in lake mixing, but lacked 

information about whether Fe concentrations changed across the oxycline of Lake Towuti in 

the present day. Improved understanding of the spatial patterns of sedimentation in the 

modern-day lake, and the impacts of lake circulation and heterogeneous sediment source 

areas will significantly facilitate the interpretation of the palaeorecord lake circulation and 

heterogeneous sediment source areas.  

 

MATERIAL AND METHODS 

Field work 

 

Lake Towuti surface sediments were sampled during TDP drilling operations in May 2015. 

Eighty-four samples were collected from water depths between ca 2.8 m and ca 200 m (Table 

1), forming a dense, high-resolution (1 to 4 km) sampling grid that covered the entire lake 
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(Fig. 1). Sampling was conducted using a grab sampler (UWITEC Corp., Mondsee, Austria) 

operated by a hand winch mounted to a local boat. Water depths at the sampling sites were 

measured by echo-sounder (LCX-17M; Lowrance, Tulsa, OK, USA), and the positions were 

determined using a hand-held global positioning system (Furuno
TM 

GPS; Furuno Electric Co. 

Ltd, Mishinomiya, Japan). Material was sampled from the top 5 cm of the recovered grab 

sample. Based on mean Holocene sedimentation rates of 0.205 mm/year at TDP Site 1 

(Russell et al., 2014) and 0.235 mm/year (excluding event layers) close to TDP Site 2 (Vogel 

et al., 2015), the deepwater samples integrate ca 200 to 250 years. 

 

On site, large organic remains; such as shells, woody twigs and leaves, were removed 

using tweezers and the remaining sediment was divided into four homogenized aliquots. The 

aliquots were stored in high-density polyethylene Whirl-pak™ sample bags or 50 ml 

polystyrene NUNC vials and shipped to different laboratories for individual analyses. 

 

Analytical work 

 

At the University of Cologne, Germany, a subsample was taken from one aliquot and used to 

produce smear slides for identification of sedimentary components using transmitted light 

microscopy. On selected samples, sponge spicules and diatom frustules were additionally 

investigated using a Zeiss Gemini Sigma 300VP scanning electron microscope (SEM; Carl 

Zeiss AG, Oberkochen, Germany). Furthermore, some magnetic mineral grains were 

identified with energy dispersive X-ray spectroscopy (EDX) of the Sigma SEM system. 
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Based on smear slide analyses, a set of 40 samples that contain sponge spicules, 

diatoms and/or tephra particles were selected for automated, non-destructive particle image 

analyses using a dynamic imaging system (Benchtop B3 Series VS FlowCAM®; Fluid 

Imaging Technologies Inc., Scarborough, ME, USA) to quantify the abundance of these 

particles. Aliquots of wet bulk samples were treated with hydrogen peroxide (H2O2; 30%) for 

seven days at room temperature to remove organic matter (OM) and disaggregate the 

siliceous biogenic particles, and were subsequently sieved with 25 µm and 80 µm meshes. 

The pre-treated sample fractions were diluted with deionized water (samples <25 µm) or 

polyvinyl pyrrolidone (PVP, 2%; samples 25 to 80 µm and >80 µm). Particle recording in the 

<25 µm and 25 to 80 µm fractions was carried out using a 100 µm flowcell, a 10x objective 

lens with a collimator, and a 1 ml syringe-pump (flow rate 0.3 ml/min), whereas the >80 µm 

fraction was recorded using a 300 µm flowcell, a 4x objective lens without collimator, and a 

5 ml syringe-pump (flow rate 0.6 ml/min). Data were acquired using the software 

VisualSpreadsheet (Fluid Imaging Technologies Inc.) until 10 000 images were recorded or 

30 ml of the sample was investigated. An automated catalogue based on training sets 

developed for sponge spicules, diatoms and tephra particles was compiled to differentiate and 

group components with comparable characteristics in the measured sample fractions. 

 

The mass magnetic susceptibility (MS) was analyzed on wet bulk sediment aliquots 

using a KLY-2 Kappabridge (AGICO, Brno, Czech Republic). Magnetic susceptibility 

measurements were carried out on sample containers of 2.0 x 2.0 x 1.6 cm (i.e. a sample 

volume of 6.4 cm
3
) which frequently are used for palaeo and rock magnetic measurements. 

The only exceptions are samples 12 and 33, which did not contain sufficient material. 
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For granulometric, geochemical and mineralogical analyses, approximately 25 ml of 

each surface sample was frozen for 24 hours and subsequently lyophilized using a Christ 

BETA 1-8 LDplus (Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, 

Germany). The freeze-dried samples were homogenized and split into two aliquots. One 

aliquot of 1 g was used for grain-size analyses, following a three-step pre-treatment 

procedure adapted after Francke et al. (2013). First, OM was dissolved with 15 ml H2O2 

(30%) in a water bath at 50°C for 18 hours. This step was repeated once to ensure that the 

OM was fully dissolved. Subsequently, carbonates were dissolved by treatment with 10 ml 

hydrochloric acid (HCl; 10%) at 50°C in a water bath for three hours, with regular shaking of 

the samples to ensure complete reaction. Finally, biogenic silica (bSi, opal) was dissolved by 

two treatments with 10 ml of sodium hydroxide (NaOH, 1 M) solution for one hour. Each 

step was followed by repeated centrifuging, decanting, and rinsing of the samples with 

deionized water until reaching a neutral pH. These pre-treated aliquots were subsequently 

diluted with 60 ml of deionized water, dispersed with sodium pyrophosphate (Na4P2O7; 2.5 

g/l), and placed on a shaker for at least 12 hours. The grain-size measurements were 

performed with a Beckman Coulter LS13320 laser particle analyzer (Beckman Coulter Life 

Sciences, Indianapolis, IN, USA) applying the Fraunhofer diffraction theory. For that 

purpose, each sample was pumped into the measurement tank of the analyzer and filled with 

deionized and degassed water until the sediment-water mixture reached the required 

transparency. Three measurements of each sample were used to calculate the average grain-

size distribution. Results were calculated by averaging triplicate measurements of each 

sample and are given in volume percentages (vol. %) for 116 grain-size classes between 0.04 

µm and 2000 µm diameter.  
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The other aliquot of the freeze-dried surface samples was ground to <63 µm with a 

Planetary Mill Pulverisette 5 (FRITSCH GmbH, Idar-Oberstein, Germany) and used for 

mineralogical and geochemical analyses. The bulk mineralogy was determined on powder 

samples using an X-ray diffractometer (D8 Discover; Bruker, Billerica, MA, USA) with a Cu 

X-ray tube (λ = 1.5418 Å, 40 kV, 30 mA) and a LYNXE XE detector (opening angle = 

2.9464°). The spectrum from 3° to 100° 2-theta was measured in 0.02° steps at 1 second 

exposure time. Mineral identification was carried out using the software packages SEARCH 

(Stoe and Cie GmbH, Darmstadt, Germany) and Match! (Crystal Impact 2014, Bonn, 

Germany), supported by the data base pdf2 (ICDD 2003, Newton Square, PA, USA). The 

concentration of the minerals was evaluated using the program TOPAS Rietveld (Coelho 

Software, Brisbane, Australia), which yields a standard deviation of analyzed minerals 

varying from ±2% (for quartz) to ±5 to 10% (for feldspars and clay minerals; Środoń et al., 

2001; Vogt et al., 2002). For the clay mineral group illite the error range can be even higher 

(Scott 1983). Given these uncertainties, a detection limit of 5% is considered in the 

discussion of the mineralogical composition of the surface sediments. 

 

Total organic carbon (TOC) as well as total carbon (TC), total nitrogen (TN) and total 

sulphur (TS) were measured with a vario MICRO cube and vario EL cube combustion 

elemental analyzers (Elementar Analysesysteme Corp., Langensebold, Germany), 

respectively. For the TOC measurements, 15 mg of sediment powder was placed into metallic 

silver containers, heated to 100 to 120°C, and treated three times with a few drops of HCl 

(32%) to dissolve carbonates. The metallic silver containers were then wrapped and pressed 

into silver paper, and the resulting pellets were analyzed for their TOC concentration using 

the vario EL cube. All concentrations are given as mean values of duplicate measurements. 

For TC, TN and TS measurements with the vario MICRO cube, 10 mg of sediment powder 
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was placed in zinc containers, with 20 mg of tungsten (VI) oxide (WO2) added to catalyze 

oxidation. The total inorganic carbon (TIC) was calculated as the difference between TC and 

TOC. Analytical errors were determined on internal and external reference material. The C/N 

ratio is calculated as the weight ratio of TOC and TN. 

 

For quantitative analyses of the inorganic element composition of the surface samples, 

including concentrations of selected major, minor and trace elements (Ti, K, Al, Mg, Ca, Fe, 

Cr and Mn), 0.5 g of dry and ground bulk sample material was digested using a near-total 

digestion protocol with HCl, nitric (HNO3), perchloric (HClO4) and hydrofluoric (HF) acids 

in heated and closed teflon vessels. Measurements were performed by means of inductively 

coupled plasma-mass spectroscopy (ICP-MS) at Activation Laboratories Limited, Ancaster, 

ON, Canada.  

 

Separate Si measurements were conducted by energy-dispersive X-ray fluorescence 

(ED-XRF) using a portable analyzer (NITON XL3t; Thermo Fisher Scientific, Waltham, 

MA, USA) at the University of Cologne, Germany. Triplicate measurements were performed 

on pellets of freeze-dried and ground sample aliquots, which were pressed into teflon rings 

under 12 bars, and subsequently covered with a 4 µm polypropylene film (X-ray film, TF-

240-255, Premier Lab Supply, Port St. Lucie, FL, USA). Measurements were performed 

using a gold anode X-ray source (70 kV) and the ‘mining-minerals-mode’. The secondary X-

rays of element-specific photon energies were detected with a silicon drift detector and 

processed by a digital signal processor. Si concentrations (in ppm) were calculated from the 

element-specific fluorescence energies and compared with external and internal reference 

materials (STDS-4, BCR142R and BCR-CRM 277). 
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The carbon isotopic composition of bulk OM (δ
13

COM) in the sediment was measured 

on a set of 42 subsamples at Brown University, Providence, RI, USA. For that purpose, ca 50 

mg of sediment was acidified in HCl (2 N) for one hour at 80ºC to remove carbonate 

minerals. The acid-treated samples were subsequently rinsed in deionized water and 

centrifuged four times to remove any excess HCl. The samples were then freeze-dried and 

homogenized prior to isotopic analysis. The δ
13

COM values were measured using a Carlo Erba 

Elemental Analyzer coupled to a Thermo DeltaV Plus isotope ratio mass spectrometer 

(Thermo Fisher Scientific). The analytical precision determined through replicate 

measurements of internal sediment standards was 0.16‰. All results are reported relative to 

the Vienna Pee-Dee Belemnite (VPDB) standard. 

 

Elevation model, interpolation and statistical analysis  

A digital elevation model (DEM) of Lake Towuti and its surrounding was calculated using 

ArcGIS (Esri, Inc., Redlands, CA, USA). The model is based on open source satellite data for 

Sulawesi provided by the United States Geological Survey (Aster Global DEM based on the 

Shuttle Radar Topography Mission carried out by the National Aeronautics and Space 

Administration at 1 arc-second 30 m spatial resolution). Spatial interpolation of the analytical 

surface sediment data was carried out with the software Surfer 9 (Golden Software Inc., 

Golden, CO, USA) using the kriging method. 

 

Statistical analyses employed on the surface sediment data sets comprise end-member 

(EM) unmixing, principal component analysis (PCA) and a redundancy analysis (RDA). End-

member analyses were carried out on normalized and standardized grain-size (EMGS), 

chemical (EMChem) and mineralogical (EMMin) data sets. Assuming a sedimentary mixture 

from different sources the mixing model in all cases can be written as: 
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           X = AS + E  (1) 

 

where X represents the n by m matrix of n samples (one per row) and m variables (relative 

abundance of individual data). Matrix A (n by l) denotes the mixing proportion of l end-

members for the n samples, S represents the m properties of the l EMs and E is the error 

matrix of residuals. The uncertainties of the EM analyses are controlled by the errors of the 

data sets used. 

 

The EM algorithm developed by Heslop and Dillon (2007) adopting the approach of 

Weltje (1997) was applied. The decision criterion of how many EMs are included in the three 

models is based partly on the coefficients of determination derived from the PCA. 

Nevertheless, the number of the respective EMs should also be reasonable in the geological 

context of the data set (Weltje, 1997; Weltje and Prins, 2007). Residuals of the EM models 

include analytical errors and non-identified additional sources of variability. 

 

All other multivariate statistical analyses were carried out with the Excel-based 

software Addinsoft XLSTAT (STATCON GmbH, Witzenhausen, Germany) The PCA was 

conducted with the sand content and the concentrations of selected elements determined by 

ICP-MS and XRF analyses (Fe, Mg, Al, Si, K, Ca, Cr and Ni). In the RDA, the results 

derived from the PCA are expanded by the concentrations of major minerals, the MS and 

TOC values and the C/N ratio. The correlation matrix includes all data except 
13

COM and the 

concentrations of diatom frustules, sponge spicules and tephra particles, which all were 

determined on a subset of the surface samples only. 
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RESULTS 

Biological particles  

 

The surface samples of Lake Towuti consist mostly of dark greenish-grey, structureless 

clastic sediments with low but varying amounts of amorphous OM, macrofossils and 

microfossils. Macrofossils include plant remains and wood fragments, which frequently 

occur in near-shore, shallow-water samples as well as a few deepwater samples in Towuti’s 

northern basin (samples 16, 17 and 22; Table 1; Fig. 1). In addition, mollusc macrofossils 

were observed in four samples (samples 18, 50, 51 and 83) that are located proximal to the 

shore in water depths of less than 4.5 m. 

 

 Diatom frustules and sponge spicules are the most abundant microfossils 

observed in the sediments (Fig. 3); they are, however, quite rare, and together average only 

0.46% of the total number of the detected sediment particles, with the highest concentrations 

reaching 2.34% (sample 5). The concentrations of these particles relative to the total sediment 

mass are considerably lower, as sample pretreatment prior to particle detection enhanced their 

abundance. The diatom frustule content is somewhat elevated in front of the Timampu inlets 

at the north-western shore and in front of the Mahalona River at the northern shore, and 

shows pronounced maxima in front of the Tomerakah and Taora rivers at the eastern shore 

and along the southeastern shore near the Lengke and Lantibu rivers (Figs 2, 3A and 4A). 

Some of the discovered diatoms were identified as Pinnularia sp. and Surirella robust var. 

splendida, the latter of which is known to occur in all Malili Lakes, Lake Poso to the north-

west and possibly on Java Island (Roy et al., 2007; Sabo et al., 2008; Vaillant et al., 2011; 

Bramburger et al., 2014). 
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Sponge spicules occur in two different forms, both up to 200 µm in length. One form 

has an ornamented surface structure with rounded ends, whereas the other is smooth with 

sharp tip ends (Figs 3B and C). Since both types are very similarly distributed within the 

lake, their abundances are shown as combined in Fig. 4B. The highest abundances of spicules 

were detected in the northern part of Lake Towuti, between the Mahalona and Timampu 

rivers, and in the eastern part of the lake, in particular in front of the Lemo-Lemo and 

Tomerakah rivers. Somewhat elevated values also occur at the southern shore, in front of the 

Tokolalo River. 

 

Physical properties 

 

The grain-size distribution (classification after Udden, 1914 and Wentworth, 1922) of surface 

sediments in Lake Towuti is highly variable. Sand (63 to 2000 µm) ranges from 0.0 to 82.8% 

of the sediment and shows highest concentrations in the vicinity of large inlets, such as the 

Mahalona River, and generally higher values close to the shore (Fig. 5A). With increasing 

distance to the inlets and the shores, the sand content rapidly decreases. In the central part of 

the lake, sand is absent in 41 samples, but still accounts for 10.1% and 20.5% in samples 16 

and 17 in the northernmost part of the lake, in 174.9 and 195.5 m water depths, respectively. 

Silt (2 to 63 µm) ranges from 11.9 to 75.9% and also shows highest concentrations in front of 

major inlets, in particular the Mahalona, Timampu, and Loeha rivers (Fig. 5B), but reaches its 

highest concentrations further away from the river inlets compared to the sand fraction. The 

clay fraction (<2 µm) varies between 3.4% and 71.8% and has highest concentrations in parts 

of the lake most distal from the inlets (Fig. 5C).   
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The sand, silt, and clay distributions are reflected by two distinct non-parametric EMs, 

which explain 85.4% of the variance in the grain-size data set and 93.7% of the median 

variance of the samples (Fig. 5D). One EMGS represents the fine-grained fraction, with an 

average of 60.6% clay, 39.4% silt and no sand, whereas the other EMGS is characteristic for 

the coarse-grained fraction with 13.2% clay, 57.9% silt and 28.9% sand. 

 

The MS (0.7 to 10.4 x 10
-6 

kg/m
3
) exhibits highest values at shallow, coastal sites 

along the eastern and southern shores, and in front of the Mahalona River (Fig. 5E). The MS 

values are positively correlated with the sand and silt contents (Fig. 5A and B). 

 

Geochemistry 

 

The TOC content (0.17 to 6.43%) is highest in the north-eastern and south-western areas of 

the lake, close to the shores but distant from the major inlets (Fig. 6A). The C/N ratio (4.5 to 

24.0) is elevated in some near-shore areas, in particular in the north-eastern and eastern parts 

of the lake (Fig. 6B), which partly overlap with elevated TOC contents. The C/N values do 

not show a clear relationship with the locations of major inlets. A different pattern is shown 

by the δ
13

C ratio (-37.45 to -32.18‰), which is characterized by distinctly heavier values in 

front of the Mahalona River (Fig. 6C).  

 

The concentrations of Ti (0.03 to 0.41%), K (0 to 1.56%), Al (2.0 to 9.1%) and Si (7.1 

to 19.6%) reach their highest values in front of the Loeha River (Fig. 6D to G). The Ti, K and 

Al concentrations remain high towards the deeper central part of the southern basin, whereas 

Si is slightly enriched in front of the Mahalona River in the north. Mg (2.3 to 18.5%) shows a 

strong maximum in front of the Mahalona River, as do Ca (0.27 to 5.31%) and Cr (0.12 to 
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>1%; Fig.6H to J). Ca and Cr have additional maxima in other near-shore areas, but at 

different location; Ca exhibits a pronounced maximum also in front of the Timampu inlets, 

while Cr is enriched in the southern and north-eastern lake parts. The distribution of Fe (6.5 

to 28.9%) partly tracks that of Cr, with the most prominent enrichment occurring in the 

southern and north-eastern parts of the lake (Fig. 6K). Nevertheless, Fe shows a distinct 

minimum in front of the Mahalona River, where Cr concentrations are high. The distribution 

of Mn (0.06 to 0.56%) differs from all other elements, with maximum values in the north-

eastern lake and in the central southern part of the lake, in front of the Larona outflow (Fig. 

6L).  

 

Mineralogy 

 

Minerals of the serpentine group (including antigorite, nacrite, greenalite, lizardite and 

chrysotile) constitute 12.6 to 62.3% of the mineral assemblage and thus are the most 

abundant minerals in the surface sediments of Lake Towuti (Fig. 7A). This group has high 

concentrations over a large part of the lake but particularly in front of the Mahalona, 

Tomerakah and Taora rivers. This is due to maxima of antigorite (Fig. 7B) and nacrite (not 

shown) in these areas, which range from 5.5 to 48.2% and 5.7 to 17.7% in the sediments, 

respectively. A clearly different pattern is shown by the serpentine mineral greenalite, which 

reaches up to 16.0% in several samples from the southern basin of the lake, but is almost 

absent in the northern basin (Fig. 7C). Lizardite and chrysotile were only detected in few 

samples at low concentrations close to the detection limit of 5%. 
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 The surface sediments contain significant amounts of four clay mineral groups: 

smectite, illite, chlorite and kaolinite. Smectite clays (including saponite, montmorillonite, 

vermiculite and other phases) constitute up to 46.4% of the minerals present (Fig. 7D). They 

are heterogeneously distributed, but with distinct minima for instance in front of the 

Timampu, Mahalona and Loeha rivers. Illite has a distinct maximum (with up to 61.8%) in 

front of the Timampu inlets (Fig. 7E). High concentrations also occur close to the Mahalona 

and Loeha rivers, and in south-western parts of the lake, including the area in front of the 

outflowing Larona River. Chlorites are also enriched in front of the Mahalona River, reaching 

maximum values of 17% (Fig. 7F). Except for this similarity, chlorite shows a distribution 

opposite to illite, with minima in front of the Timampu and Loeha rivers, and some 

enrichment in other near-shore areas. Compared to the other clay mineral groups, kaolinite 

shows a homogeneous distribution, comprising up to 22.9% of the sediment (Fig. 7G). The 

only exception is the area in front of the Mahalona River, which has significantly reduced 

kaolinite concentrations. 

 

 The distribution of quartz (2.5 to 45.0%, Fig. 7H) is characterized by a distinct 

maximum in front of the Loeha inlet and slightly enriched values in the north-western part of 

the lake, particularly in front of the Timampu inlets. A generally opposite pattern is shown by 

goethite, which constitutes up to 16.2% of the present minerals (Fig. 7I). Goethite shows 

highest concentrations in most of the southern lake basin and in the north-eastern region of 

the northern basin, and minima in front of the Timampu, Mahalona and Loeha rivers. The 

same minima are shown by the amphibole tremolite, which ranges from 7.3 to 54.2% (Fig. 

7J). The amphibole hornblende was detected in only eight samples, located in front of the 

Timampu, Mahalona and Loeha rivers, with low concentrations of 3.6 to 5.9% (Fig. 7K). 

Additional minerals close to the detection limit of ca 5% are combined as ´others´ (Fig. 7L), 



This article is protected by copyright. All rights reserved. 

which constitute 7.5 to 21.4% of the present minerals. This group includes greenalite, 

magnetite, siderite, cuprite and spinel, also showing highest concentrations in front of the 

Timampu, Mahalona and Loeha rivers. 

 

Tephra particles, mostly as glass shards, were found at low concentrations (<2.62 

particles/1000) across the lake (Fig. 4C). Maxima occur south-east of the Mahalona River 

and, less pronounced, in other near-shore areas of the north-western (off the Timampu inlets), 

eastern (off the Tomerakah, Taora, and Loeha rivers), and southern lake (off the Tokolalo, 

Lantibu and Lengke rivers). 

 

DISCUSSION  

 

The physical, chemical, mineralogical and biological properties of the surface sediments from 

Lake Towuti show distinct spatial patterns (Figs 4 to 7) that reflect a variety of external and 

internal processes. 

 

Sediment supply to the lake 

 

SBecause it can be assumed that the dense vegetation in the catchment of Lake Towuti 

stabilizes the slopes and restricts aeolian sediment transport, the majority of allochthonous 

material supplied to the lake is likely to be of fluvial origin. This assumption is supported by 

strongly enriched sand and silt contents of the lake sediments in front of the major inlets, 

reaching values beyond those of other near-shore areas (Fig. 5). Furthermore, there is a 

generally good correspondence between the elemental compositions of these lake sediments 
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and those of the adjacent rivers in the different geologically distinct catchments (Figs 2 and 6; 

Costa et al., 2015;).  

 

Statistical analysis of the geochemical data from the lake sediments identifies three 

major chemical end-members (Fig. 8): EMChem 1 is characterized by the highest Mg 

abundance, as well as relatively high Si scores, and is clearly elevated in front of the 

Mahalona River; EMChem 2 is characterized by the highest Si and Al scores and shows 

maxima in the northern part of Towuti’s southern basin and, less pronounced, in the north-

western part of the lake; and EMChem 3 is marked by a very high Fe score, and is highest in 

the southern and north-eastern parts of the lake. Merging these with mineralogical, 

sedimentological and biogeochemical datasets, summarized by an RDA (Fig. 9), a correlation 

matrix of all data (Fig. S1) and an end-member analysis of the mineralogical data (S2), five 

distinct fluvial sediment sources can be defined: (i) the Mahalona River to the north; (ii) the 

Timampu inlets to the north-west; (iii) the Loeha River to the east; (iv) the Lengke River to 

the south; and (v) the Lemo-Lemo River to the north-east of Lake Towuti (Fig. 2).  

 

Mahalona River 

The sediment deposited near the Mahalona River has elevated values of Mg and Si, and to a 

lesser extent Ca and Cr in front of the river delta (EMChem 1; Figs 8A and 9). High Mg 

concentrations (Fig. 6H) were also found in adjacent lake surface sediment samples by 

Weber et al. (2015) and in the Mahalona River itself by Costa et al. (2015) and Goudge et al. 

(2017). The enrichment of Mg can best be explained by an elevated supply of Mg-rich 

serpentines (Figs 7A and S2A), for example antigorite and lizardite. Antigorite shows a 

maximum in front of the Mahalona River (Fig. 7B) and is positively correlated with Mg (r = 

0.58; Fig. S1). The Mg-end-member lizardite exclusively occurs in the same area, albeit with 
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low concentrations (therefore assigned to other minerals; Fig. 7L). Serpentines are minerals 

derived from the surrounding ophiolites (Fig. 2); they are either formed during 

serpentinization on the deep-sea floor through hydrothermal alteration of mafic and 

ultramafic rocks prior to their uplift to form the island of Sulawesi, or in the case of lizardite, 

occur as a secondary mineral provided by chemical weathering in the saprolite zone 

(Apostolidis and Distin, 1978). Another potential source of Mg could be chlorites, detected in 

small amounts in the serpentinized peridotites to the north of Lake Towuti. Chlorites have 

generally lower concentrations in Lake Towuti, but do have a distinct maximum in front of 

the Mahalona River (Figs 7F and S2A). 

 

The relatively high Si concentrations in front of the Mahalona River (Fig. 6G) may be 

explained by fluvial input of silicates, including the serpentine minerals antigorite (Fig. 7A) 

and lizardite; the illite clay mineral group (Fig. 7E) and the chlorite clay mineral group (Fig. 

7F), as well as hornblende (Fig. 7K). Additional supply may originate from quartz veins, 

which were observed in the saprolite and laterite horizons of soil profiles to the north of Lake 

Towuti (Silver et al., 1983). Furthermore, the Si distribution shows a similar pattern to that of 

tephra particles (Fig. 4C), which likely originate from volcanoes located in North Sulawesi 

(Wilson and Moss, 1999). The tephra particles are enriched in the surface sediments in front 

of the major inlets, suggesting fluvial remobilization from the catchment. The highest 

concentrations in front of the Mahalona River might be due to successive remobilization from 

the Quaternary alluvium making up most of the catchment of the Lampensiu River, a 

tributary of the Mahalona River (Figs 1 and 2), where volcanic ash from several eruptions 

could have accumulated. 
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In contrast to Mg and Si, the enrichment of Ca in front and west of the Mahalona 

Delta (up to 5.31%; Fig. 6I) cannot exclusively be traced back to supply from the Mahalona 

River. This is indicated by the Ca concentration in the Mahalona River sediment, which 

average 1.31% (Costa et al., 2015), thereby being higher than in many of the rivers entering 

Lake Towuti, but lower than the concentrations observed in the lake sediment in this region 

(Fig. 7A). Hence, the Ca enrichment cannot be explained by fluvial supply from the 

Mahalona River alone but needs additional sources. The most likely source is in situ 

production from calcareous macrofossils, such as molluscs. Molluscs are not present in the 

Mahalona River but were found in shallow waters of Lake Towuti (<4.5 m water depth), for 

instance at sample location 18 directly in front of the Mahalona Delta (Table 1; Fig. 1).  

 

The Cr enrichment in front of the Mahalona Delta (up to >1%; Fig. 6J) also cannot 

solely be explained by fluvial supply, since the Cr concentrations in the Mahalona River 

sediments (0.93%) are lower than the average values of the rivers entering the lake (1.35%; 

Costa et al., 2015). The Cr predominantly derives from Cr-spinels, including chromite, which 

originate from the ultramafic and mafic catchment rocks and are included in the group of 

‘other minerals’ (Fig. 7L). Chromium-spinels have been detected by EDX analysis on thin 

sections in the basal, sandy parts of turbidites occurring in a piston core (Co1230) taken in 

front of the Mahalona Delta (Vogel et al., 2015). Spinels observed in the smear slides of Lake 

Towuti´s sediments are quite large and almost euhedral mineral grains. Their presence in 

surface sediments in front of the Mahalona Delta is confirmed by EDX analyses. Because the 

observed high Cr values generally occur in coarser-grained, sandy sediments (Fig. 5A), the 

concentrations of Cr-spinels may be enriched by shallow-water winnowing leading to 

particle-size sorting.  
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Another potential source of Cr in front of the Mahalona River could be mining and 

smelting. Mining and smelting has taken place since 1968 to the north of Lake Towuti, in the 

catchments of Lake Matano and Lake Mahalona (Fig. 2) and thus could have significantly 

changed the composition of the surface sediment samples. However, since samples from this 

study integrate ca 200 to 250 years, any anthropogenic Cr pollution would have occurred 

during only 25% of this time and thus would significantly be diluted. In any case a significant 

contamination of Cr from the mines and smelters is highly unlikely. First, the Cr 

concentrations in the lake surface and river sediments argue against a significantly increased 

fluvial supply via the Mahalona River; in fact, the highest Cr concentrations occur in the 

Lengke, Lantibu and Tokolalo inlets (1.00 to 2.38%; Costa et al., 2015), furthest from the 

mine smelter. Second, an aeolian supply would have led to a Cr enrichment in particular in 

the lake centre via atmospheric deposition of fine particles followed by shallow-water 

winnowing; however, the Cr concentrations are lowest in the centre of the lake (<1200 ppm). 

Third, the Cr concentrations in the surface sediments close to TDP Site 1 (Fig. 1) are 

comparable to the Holocene samples of a sediment core from the same area (Costa et al., 

2015), which represent the geogenic background. This also suggests that contamination by Fe 

from mining and smelting can be excluded, since Fe shows particularly low concentrations in 

front of the Mahalona River and in the central lake basin.  

 

Loeha and Timampu Rivers 

End-memberChem 2 is reflected by high amounts of Si, Ca, Ti, K and Al (Figs 8B and 9) and 

shows the strongest maximum offshore from the Loeha and Bantilang rivers along the eastern 

shore in the southern part of the lake (Fig. 6D to G and I). A secondary maximum of EMChem 

2 occurs in the north-western corner of the lake, offshore from the Timampu inlets. Slightly 

higher Si concentrations in front of the Timampu and Loeha rivers than in front of the 
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Mahalona River (see above) suggest additional Si supply from the sandstones and siltstones 

occurring in the Wasuponda Mélange to the north-west and from the metasediments exposed 

to the east of Lake Towuti, respectively (Fig. 2).  

 

Elevated Ca concentrations in front of the Timampu and Loeha rivers may partially be 

explained by in situ production from calcareous macrofossils, which for instance occur at 

sampling sites 2 and 5 close to the shore off the Timampu inlets (Table 1; Fig. 1). Additional 

sources for the Loeha River may be Ca-bearing minerals in the metasediments, which are 

exposed in the Loeha catchment (Fig. 2). Even higher Ca concentrations in front of the 

Timampu inlets argue for additional sources in the undefined ultramafic rocks that are 

widespread in the Timampu catchment (Fig. 2). In addition, Ca supply from restricted 

limestone outcrops, which are known to occur in wider areas to the west of the Timampu 

catchment, cannot be excluded. 

 

In contrast to Si and Ca, the enrichments of Ti, K and Al in front of the Loeha River, 

as well as of Ti and Al in front of the Timampu inlets, differ strongly from minimum values 

of these elements in the sediments in front of the Mahalona River (Fig. 6D to F). The 

enriched Ti content in front of the Loeha River is in agreement with elevated Ti 

concentrations in the river itself (Costa et al., 2015). Elevated Al content in the north-western 

part of the lake was also observed by Weber et al. (2015). The Ti enrichment, as well as that 

of K and Al, in the Loeha River is probably derived from the felsic metasediments occurring 

in the catchment (Fig. 2). Elevated Ti and Al concentrations in front of the Timampu inlets, 

corresponding with a depletion in K, are potentially due to significant sediment supply from 

the sandstones and siltstones in the Wasuponda Mélange to the northwest of Lake Towuti 

(Fig. 2). The sediment supply obviously includes illite (Fig. 7E) and kaolinite (Fig. 7G), 
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which may result from intense weathering of silicates. Kaolinite may additionally originate 

from the laterite soils formed on top of serpentinized and unserpentinized bedrock in the 

catchment. 

 

Lengke and Lemo-Lemo rivers 

High score percentages of EMChem 3 occur in the southern and north-eastern parts of Lake 

Towuti, in front of the Lengke and Lemo-Lemo rivers, respectively (Figs 8C and 9); they 

mainly reflect very high Fe concentrations (Fig. 6K), and are also characterized by elevated 

Cr (Fig. 6J) and Ni concentrations. High Fe and Cr concentrations were also reported by 

Costa et al. (2015) from sediment samples off of river mouths at the southern shore. 

 

Iron enrichment can predominantly be related to supply from the saprolites and 

laterites that are formed on top of the peridotites in the catchment (Fig. 2) and are 

characterized by Fe concentrations of up to 49%. The Fe oxyhydroxide goethite is the 

dominant mineral phase of these Fe oxides. This corresponds well with positive correlations 

of the EMChem 3 scores with goethite (r = 0.72; Fig. S1) and Fe concentrations (r = 0.69; Fig. 

S1). Another mineral likely to contribute to the Fe enrichment in the sediments is magnetite. 

Magnetite has been detected with less than 5% abundance in the surface sediments (therefore 

assigned to other minerals; Fig. 7L). It may be supplied to the lake from the catchment, where 

it was found to be enriched in the coarse fraction of the laterites and detected as an accessory 

mineral in the peridotite rocks. Magnetite is also produced in the water column of Lake 

Towuti (Tamuntuan et al., 2015; Vuillemin et al., 2016). In the southern lake area, additional 

Fe supply is likely derived from greenalite, the Fe-enriched form of the serpentine group, a 

common mineral phase in the serpentinized ultramafic bedrock that reaches concentrations of 

up to 16.1% (sample 68) in the surface sediments (Fig. 7C).  
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The elevated concentrations of Cr and Ni in the lake surface sediments can also be 

traced back to supply from the saprolite and laterite horizons in the catchment. There, they 

are enriched by secondary serpentinization at the bedrock–soil interface. In addition, 

weathering of Cr-spinels releases Cr and Ni, which can be incorporated into silicates such as 

kaolinite (Fig. 7G; Koppelman et al., 1980; Jiang et al., 2010). Chromium may also be 

incorporated into goethite (Fig. 7I), as suggested by a distinct positive correlation (r = 0.62; 

Fig. S1). 

 

Steep catchment slopes 

While the abundances of EMChem 1 and EMChem 2 appear to reflect distinct fluvial sediment 

sources, EMChem 3 may also be influenced by shoreline and catchment morphologies. The 

highest EMChem 3 scores occur in front of the south-western and northeastern shores, where 

the slopes at the shoreline are particularly steep (Fig. 1). Hence, the adjacent lake sediments 

could be influenced not only by fluvial sediment supply but also by mass wasting and direct 

run-off from the slopes (e.g. Vogel et al., 2015). These processes may have intensified 

recently due to increased deforestation in the catchment of Lake Towuti (Nasution, 2007), 

driven by manual wood factories and regional population growth, as well as the expansion of 

the agriculture area per farmer (Dechert et al., 2004). Deforestation could have increased the 

vulnerability of the slopes to mass wasting and run-off, possibly, but not exclusively, in 

combination with high seismic activity.  

 

When mass movement and run-off events occur, they can enter the lake, spreading 

fine-grained material from the laterites far into the lake, as indicated by the broad distribution 

of the clay fraction (Fig. 5C). Together with high contents of the particularly fine-grained 
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clay mineral group smectite (Fig. 7D), this suggests a low-energy setting, with limited fluvial 

supply to the distal lake areas.  

 

Lake-internal physical and chemical processes 

 

The highest transport energies in Lake Towuti, as indicated by increased sand and silt 

content, occur in front of major inlets, in shallow waters along the lake shores, and in areas 

influenced by subaquatic mass movement processes (Fig. 5A and B).  

 

The sediments directly in front of the inlets often show enriched sand content (Fig. 

5A). Further offshore, the sediments are characterized by high silt content, in particular in 

front of the Mahalona, Timampu and Loeha rivers (Fig. 5B). This reflects successive 

deposition from suspension and hydrodynamic sorting with distance from the inlet. The 

extension of the silt enrichment relatively far into the lake suggests that the distribution is 

also influenced by hyperpycnal flows or by wave-driven sediment resuspension and focusing 

from the river mouths to the deeper lake areas.  

 

High sand content also characterizes the lake areas close to the shorelines in between 

some of the inlets (Fig. 5A), in particular at sampling sites with distances of less than 1 km 

from the shore. These areas differ from those adjacent to steep slopes, thus excluding an 

impact of terrestrial mass movement and rather suggesting shoreline erosion, resuspension 

and lateral sediment transport along the lake shores, presumably by wave action.  
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Recent subaquatic mass movements are indicated in the northern part of Lake Towuti, 

close to TDP Site 2 (Fig. 1). There, the surface sediments have sand contents of 10.1%, 

20.5% and 3.2% at sampling locations 16, 17 and 22, respectively, in water depths between 

171.4 m and 195.5 m, and at distances between 2.8 km and 4.5 km to the shore (Fig. 1). The 

position of this sand enrichment can neither be explained by fluvial supply nor by near-shore 

redeposition, so it most likely results from deposition by lateral transport via mass movement 

events. This suggestion is supported by the appearance of terrestrial macrofossils at all three 

locations, since macrofossils otherwise are enriched in near-shore samples only (Table 1). 

Furthermore, sample 16 exhibits a characteristic bimodal grain-size distribution, which 

according to Vogel et al. (2015) is an indicator for increased sediment input from 

hyperpycnal flows in deeper, distal parts of Lake Towuti. The composition of the mass 

movement deposits suggests sourcing from the Mahalona Delta slopes at the northern shore. 

Without having detailed information on the structure of the delta, it is inferred that these mass 

movement deposits are turbidites. The occurrence of at least one turbidite in the surface 

sediments, which were deposited during the past ca 200 to 250 years, is not surprising, taking 

the mean turbidite recurrence rate of ca 300 years identified by Vogel et al. (2015) in a 19.8 

m long sediment core covering the last ca 30 000 years close to TDP Site 2 in the same area 

(Fig. 1). 

 

 Furthermore, the composition of the surface sediments argues for at least occasional 

oxygenation of the entire water column. For instance, both the Fe and Mn distributions are 

highly heterogeneous and do not show systematically lower concentrations in deeper water 

that might be expected from reductive Fe dissolution of oxides under anoxic conditions (Fig. 

6K and 6L; Davison 1993; Kylander et al., 2011). Although low Mn and Fe values in the 

northern basin could result from the absence of oxygen, much higher values in the southern 
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basin, reaching water depths of 160 m, clearly argue against permanently anoxic conditions. 

Much of this iron could reside in silicates or other minerals that are not susceptible to 

reductive dissolution. However, the distribution of the Fe oxyhydroxide goethite, which has a 

high concentration in the southern basin (Fig. 7I), also argues against permanent anoxia. 

Measurements of temperature, oxygen and dissolved iron concentration in the upper 140 m of 

Lake Towuti’s water column, conducted between September 1995 and June 2015 (Costa et 

al., 2015; Vuillemin et al., 2016), suggest that Lake Towuti usually does not mix to the 

bottom and is oxygen depleted in water depths below ca 100 m.   

 

Biogenic sedimentation 

 

Total organic carbon is concentrated in the south-western and north-eastern parts of Lake 

Towuti (Fig. 6A), in areas close to steep catchment slopes and distant to major inflows (Fig. 

1), and where fine-grained deposition prevails (Fig. 5C). The C/N ratio in the surface 

sediments averages 10.8, arguing for a predominance of autochthonous biogenic production. 

These values slightly exceed traditional end-member values for aquatic OM, but given Lake 

Towuti’s N-poor, ultra-oligotrophic status in combination with water temperatures of ca 

28°C and occasional mixing of the water column, these C/N ratios at least partly result from 

substantial lake-internal nitrogen recycling (Talbot et al., 2006). Intermixing with 

allochthonous OM sources is indicated by elevated C/N ratios in front of the Mahalona and 

Loeha inlets, and in front of the steep slopes at the northeastern shore, suggesting fluvial and 

gravitational supply. This is partly supported by terrestrial macrofossil remains, such as 

leaves, rods and twigs, which mainly occur in near-shore samples, but also distal areas in 

front of the Mahalona River (Table 1). Allochthonous OM supply via the Mahalona River is 

furthermore indicated by a distinct trend towards heavier 
13

COM values in the northern lake 
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part (Fig. 6C). Potentially, this trend reflects stronger supply of terrestrial OM originating 

from tropical grasses (C4 plants; Meyers and Lallier-Vergès, 1999), which are widespread in 

the plain terrain of the Mahalona River. However, samples with elevated 
13

COM values do 

not have higher C/N ratios, suggesting low terrigenous OM contributions. Alternatively, 

autochthonous OM can obtain a terrigenous 
13

COM value while maintaining low C/N ratios 

due to algal and microbial metabolism of terrestrially-sourced dissolved inorganic and 

organic carbon (Webb et al., 2016). Data from this study suggests that this may occur on a 

catchment scale in Lake Towuti. 

 

Additional indicators of autochthonous biological production in Lake Towuti are 

calcareous shells, which mainly occur in near-shore samples (3, 12, 25, 32, 73, 74 and 79; 

Fig. 1), and sponge spicules and diatoms (Fig. 3). The sponge spicules are enriched in near-

shore areas, in front of some minor inlets (Fig. 4B). This suggests that the sponges prefer 

locations with mildly turbid waters and low sedimentation rates, which provide nutrients but 

do not result in burial of the filter-feeding organisms. The proximity to the inlets may be of 

importance for nutrient supply, including Si, given the ultra-oligotrophic status of the lake. 

The distribution of diatoms in the surface sediments is similar to that of the sponge spicules 

(Fig. 4A). The diatoms may be partly dependent on the nutrient supply by the inlets; 

however, since the majority of the diatoms in Lake Towuti are benthic, they likely derive the 

Si and P required for their growth from sediment reflux. If so, the distribution of the benthic 

diatoms is mainly supported by shallow and clear waters, with sufficient light available 

(modern Secchi depth is 22 m, therefore light transparency is ca 40 m; Lehmuslouto et al., 

1995; von Rintelen et al., 2012).  

 



This article is protected by copyright. All rights reserved. 

Based on the TOC contents, C/N ratios, 
13

COM values, and concentrations of 

calcareous shells, sponge spicules and diatoms in the surface sediments, the biogenic 

sedimentation in Lake Towuti is predominantly controlled by natural processes. Except for 

the potential impact of deforestation in the north-eastern and south-western lake catchments, 

which could lead to enhanced TOC supply via mass wasting and direct run-off, an 

anthropogenic impact is not discernible in data from this study. This includes the lack of 

evidence for increased primary production due to nutrient supply in front of major 

settlements (cf. Fig. 2). 

 

Implications for the palaeorecord 

 

The understanding gained from the here presented study of surface sediments concerning the 

modern processes operating in Lake Towuti has a number of implications for similarly 

structured research projects on large tropical lakes and, in this case, also for ongoing 

palaeoenvironmental investigation of the TDP drill cores (Fig. 1). These sediment cores 

predominantly consist of pelagic clays, which are interrupted by turbidites, tephra layers, 

diatomaceous oozes, and, at the base of the core, a variety of shallow-water and fluvial 

deposits, such as peats, gravels and sands (Russell et al., 2016). 

 

This study of modern lake sediments provides a detailed characterization of the 

chemical, sedimentological and biological signature of fluvial and other sediment sources. It 

will facilitate disentangling the changing influence of different sediment sources in the 

palaeorecord of this complex tropical setting. The pelagic sediments in Lake Towuti today 

are predominantly of fluvial origin, with chemical and mineralogical compositions 

characteristic of five distinct source areas. This finding will enable researchers to relate 
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changes in fluvial sediment supply in the palaeorecord to environmental processes, in 

particular tectonic activity, lake-level fluctuations and changes in the hydrological 

connectivity of lakes Towuti, Mahalona and Matano (Fig. 1; Russell et al., 2016). As 

suggested by investigations in the catchment of Lake Towuti, the kaolinite content in the 

pelagic sediments may reflect the degree of chemical weathering. In contrast, the current 

study has revealed that classical proxies for lake mixing behavior, such as the concentrations 

of redox-sensitive elements (for example, Fe, Mn and Cr), siderite and vivianite (Melles et 

al., 2012; Vuillemin et al., 2017), do not unequivocally reflect anoxia and thus have to be 

interpreted with caution in ancient sediments of Lake Towuti.  

 

In short sediment records from Lake Towuti, turbidity currents have been identified as 

an important sedimentation process (Vogel et al., 2015). The sub-recent turbidite identified in 

this study in the northern basin of Lake Towuti differs from the pelagic sediments by the 

occurrences of coarser grains, terrestrial OM and shallow-water calcareous macrofossils. This 

composition indicates that the turbidites can remobilize and transport shallow-water 

sediments into the deep lake basin. With the multi-disciplinary characterization of the various 

shallow-water areas in modern Lake Towuti, potentially different sources of turbidites in the 

palaeorecord may be attributed to specific source areas in the lake. This, in turn, could be 

indicative of areal changes in sediment supply and tectonic activity through time. 

Furthermore, variations in the frequency and thickness of turbidites may be traced back to 

changes in earthquake activity, lake-level, precipitation and vegetation. 

 

Tephra occurs in the surface sediments of Lake Towuti as dispersed particles with 

characteristic grain shapes but not as distinct layers. This indicates that presently, tephra 

particles are predominantly remobilized and supplied by fluvial activity from the catchment. 
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In the palaeorecord, tephra may thus occur both as a product of direct fallout and as a more 

diffuse signal of remobilized particles from the catchment. Direct fallout may be 

differentiated from redeposited tephra by sharper shard edges. Remobilization of the tephra 

deposited in the catchment can increase the supply of Si and other elements to the lake for a 

longer period of time. This tephra supply may have played an important role for the degree of 

biogenic production by diatoms and sponges, taking its high Si content and the ultra-

oligotrophic, Si-limited nature of the lake. Diatoms and sponge spicules are rare in the 

surface sediments, but occur close to areas with higher concentrations of tephra particles in 

the surface sediments. 

 

The shallow-water surface sediment samples are composed of rather coarse-grained 

deposits with high MS values and Cr concentrations; they exclude peat and differ from all 

other deposits mainly by the occurrence of diatom frustules and sponge spicules. Hence, 

coarse-grained deposits with comparable compositions occurring in the TDP cores can be 

traced back to shallow-water environments at the coring site during the time of deposition, or 

to extensive redeposition of the sediments. The occurrence of peat layers and fluvial 

sediments, in contrast, represent times, when no lake existed at the drill sites. 

 

CONCLUSION 

 

A multi-proxy approach combining sedimentological, geochemical, mineralogical and 

microscopic analyses with statistical methods was performed on a set of 84 surface sediment 

samples from Lake Towuti, Indonesia. The results provide a detailed understanding of the 

major physical, chemical and biological processes controlling modern sedimentation in this 

tropical lake. These results will facilitate the reconstruction of the climatic and environmental 
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history based upon the composition of Towuti Drilling Project (TDP) drill cores recovered in 

2015. 

 

The composition of the surface sediments in Lake Towuti is highly heterogeneous. 

Sedimentation is controlled mainly by fluvial sediment supply from five distinct source areas. 

The individual chemical and mineralogical signatures can be traced relatively far into the 

lake. Near-shore environments are additionally influenced by redeposition due to wave 

action. Most calm settings, with deposition of fine-grained particles and organic matter (OM), 

occur in the central lake, most distal to the major inlets. There, coarser grain sizes are related 

to aquatic mass movement events that ignite hyperpycnal flows. Biogenic silica derived from 

diatoms and sponges is found only in special ecological niches, which are dependent on 

individual water depths, light availabilities, nutrients and the degree of turbidity. 

 

Significant anthropogenic impacts on the composition of the surface sediment 

samples, which average the sedimentation over the past ca 200 to 250 years, is not evident 

from the data in this study. However, mass wasting and direct run-off on the steep north-

eastern and south-western catchment slopes may have become amplified by deforestation. In 

contrast, Cr and Fe supply from mines and smelters to the north of Lake Towuti is not yet 

reflected in the chemistry of the surface sediments. The same holds true for human impact on 

the amount of biogenic accumulation, which seems to be unaffected by influences from 

nearby settlements.  
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In interpretation of the TDP cores, attribution of chemical and mineralogical proxies 

to different sediment source areas is of special importance. Based on measurements of the 

respective indicators in the pelagic sediments and mass movement deposits in the drill cores, 

the individual source areas may be reconstructed. This will help with understanding changes 

in palaeogeography, for example in the hydrological connectivity between the Malili Lakes 

through the Mahalona River (Fig. 1), which could be controlled by climatic variations within 

the Indo-Pacific Warm Pool (IPWP) region as well as tectonic activity. Taking the 

environmental limitations of diatoms and sponges today, investigations of siliceous 

microfossils in the TDP cores may contribute to the understanding of lake-level changes, 

which could be triggered by orbital-scale climate changes and/or short-term El Niño–

Southern Oscillation (ENSO) events. Furthermore, they may help to reconstruct the nutrient 

availability in the water column, which is dependent, for instance, on the weathering 

conditions in the catchment, on volcanic ash supply and on lake-internal mixing.  

 

Towuti Drilling Project Sites 1 and 3 are located in an area (Fig. 1) which is 

dominated by pelagic sedimentation and may be influenced by all three chemically and 

mineralogically distinct sediment sources (EMChem 1 to 3 and EMMin 1 to 3; Figs 8 and S2). 

This makes them ideal sites for reconstruction of the regional environmental and climatic 

history. In contrast, the upper 62 m of TDP Site 2, is mainly built up of mass movement 

deposits, intercalated with pelagic sediments and, in the present, is primarily influenced by 

only two major sources, reflected by EMChem 1 and 3 (Fig. 8) as well as EMMin 1 and 3 (Fig. 

S2). This supports the use of TDP Site 2 for the reconstruction of the fluvial input and mass 

movement history in the northern basin of Lake Towuti, which may mainly mirror the history 

of the Mahalona River and the lakes further upstream, but also reflect lake-level fluctuations 

and seismic events. 
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FIGURE CAPTIONS 

 

Fig.1. (A) Digital elevation model (DEM) of the Lake Towuti area showing the lakes Matano 

and Mahalona further upstream, the major inlets, the outlet Larona River, the lake 

bathymetry, and the sampling sites. (B) Location of Lake Towuti (red dot) on Sulawesi 

Island, south-eastern Asia. 

 

Fig. 2. Geological map, showing the catchment areas of the lakes Towuti, Matano and 

Mahalona (red lines), along with the names of major settlements (underlined) as well as the 

inlets and the outlet (blue; after Costa et al., 2015, based on data from PT Vale).  

 

Fig. 3. Scanning electron microscope (SEM) images showing: (A) a single, well-preserved 

benthic diatom; (B) a sponge spicule with rounded ends and smaller benthic diatoms 

attached; and (C) a sponge spicule with tip ends. 

 

Fig. 4. Distribution of (A) diatoms; (B) sponge spicules; and (C) tephra particles in the 

surface sediments of Lake Towuti. The surface sediment samples are indicated by black dots, 

the International Continental Scientific Drilling Program (ICDP) drill sites by grey circles, 

and the names of major rivers by abbreviations (cf. Fig. 2). 

 

Fig. 5. Distribution of physical properties in the surface sediments of Lake Towuti, with (A) 

sand; (B) silt; (C) clay contents; (D) the grain-size variations of all 84 samples (grey curves) 

along with their end-members representing clay (blue) and silt and sand (red); as well as (E) 

the magnetic susceptibility (MS). In (A) to (C) and (E) the surface sediment samples are 
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indicated by black dots, the International Continental Scientific Drilling Program (ICDP) drill 

sites by grey circles and the names of major rivers by abbreviations (cf. Fig. 2). 

 

Fig. 6. (A) to (C) Distribution of geochemical properties in the surface sediments of Lake 

Towuti, reflecting biogenic deposition (TOC, C/N and 
13

COM). (D) to (L) Accumulation of 

selected major elements (Ti, K, Al, Si, Mg, Ca and Fe) and trace elements (Cr and Mn). For 

comparison, the elemental composition of river sediments (after Costa et al., 2015) is shown 

by open circles with the same colour scale as for the surface sediments. The surface sediment 

samples are indicated by black dots, the International Continental Scientific Drilling Program 

(ICDP) drill sites by grey circles, and the names of major rivers by abbreviations (cf. Fig. 2). 

 

Fig. 7. Distribution of major minerals in the surface sediments of Lake Towuti, comprising 

the serpentine group with antigorite and greenalite (A) to (C); the clay mineral groups 

smectite, illite, chlorite and kaolinite (D) to (G); the oxides, quartz and goethite (H) and (I); 

the amphiboles, tremolite and hornblende (J) and (K); and other minerals (L). The surface 

sediment samples are indicated by black dots, the International Continental Scientific Drilling 

Program (ICDP) drill sites by grey circles, and the names of major rivers by abbreviations (cf. 

Fig. 2). 

 

Fig. 8. End-member diagrams of the major and trace elements in the surface sediments of 

Lake Towuti.  (A) Reflecting fluvial supply by the Mahalona River at the northern shore 

(EMChem 1). (B) By the Timampu inlets at the northwestern shore and the Loeha River at the 

eastern shore (EMChem 2). (C) By the Lengke inlet at the southern shore and the Lemo-Lemo 

inlet at the north-eastern shore (EMChem 3). The ICDP drill sites are indicated by grey circles 

and the names of major rivers by abbreviations (cf. Fig. 2). 
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Fig. 9. Redundancy analysis (RDA) plot showing the surface samples from Lake Towuti, 

with their water depths indicated by different symbols along with most of the geochemical, 

physical, and mineralogical data obtained and the geochemical end-members EMChem 1 to 

EMChem 3 (cf. Fig. 8). 
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Fig. S1. Correlation matrix showing the dependency between the geochemical, 

granulometric, and mineralogical data of the surface samples from Lake Towuti. Note that 

this table relies on a reduced data set for only those samples, on which all proxies shown 

were determined; the real correlation coefficients of two proxies can be higher, when all data 

existing is considered.  

 

Fig. S2. End-member diagrams of the major minerals in the surface sediments of Lake 

Towuti, reflecting fluvial supply by the Mahalona River at the northern shore – EMMin 1 (A), 

by the Timampu inlets at the north-western shore and the Loeha River at the eastern shore 

(EMMin 2 – (B), and by the Lengke inlet at the southern shore and the Lemo–Lemo inlet at the 

north-eastern shore – EMMin 3 (C). The ICDP drill sites are indicated by grey circles and the 

names of major rivers by abbreviations (cf. Fig. 2). 
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Table 1.  Surface sediment samples from Lake Towuti with their locations and water depths; stars in 

front of the sample numbers indicate sediment samples that contain organic macro-remains. 

Sample 
number 

Longitude Latitude Water 
depth [m] 

1 121.42 -2.67 6.30  

*2 121.44 -2.65 5.40  

3 121.45 -2.67 48.40 

4 121.45 -2.69 97.50 

*5 121.48 -2.65 47.10  

6 121.48 -2.67 7.50 

7 121.45 -2.67 62.40 

8 121.52 -2.67 49.00 

9 121.53 -2.68 96.40 

10 121.52 -2.67 72.60 

11 121.51 -2.68 83.40 

12 121.52 -2.69 124.70 

13 121.55 -2.68 140.00 

*14 121.53 -2.69 125.40  

*15 121.56 -2.67 171.20  

*16 121.56 -2.69 174.90  

*17 121.59 -2.70 195.50  

18 121.53 -2.67 3.50 

19 121.49 -2.69 123.70 

20 121.44 -2.70 75.60 

21 121.48 -2.70 144.70 

*22 121.56 -2.70 171.40  

23 121.59 -2.68 177.90 

24 121.64 -2.68 133.30 

25 121.66 -2.70 129.20 

26 121.63 -2.72 137.70 

27 121.66 -2.73 59.30 

28 121.61 -2.71 194.50 

29 121.58 -2.71 172.10 

30 121.54 -2.71 147.60 

31 121.52 -2.71 147.40 

32 121.49 -2.72 153.70 

33 121.47 -2.72 100.40 

34 121.56 -2.72 141.10 

35 121.54 -2.72 154.00 

36 121.51 -2.73 157.70 

37 121.48 -2.73 146.50 

38 121.46 -2.74 78.50 

*39 121.66 -2.66 101.10  

40 121.46 -2.75 101.20 

*41 121.50 -2.74 130.10  

*42 121.52 -2.74 161.80  

Sample 
number 

Longitude Latitude Water 
depth [m] 

43 121.56 -2.73 141.60 

*44 121.58 -2.73 126.80  

45 121.61 -2.73 81.80 

46 121.61 -2.74 53.80 

47 121.60 -2.75 73.90 

48 121.60 -2.76 92.20 

*49 121.59 -2.76 25.60  

50 121.59 -2.78 4.50 

*51 121.57 -2.80 4.40  

*52 121.57 -2.78 32.90  

53 121.57 -2.76 73.20 

54 121.56 -2.74 129.60 

*55 121.54 -2.76 96.00  

*56 121.51 -2.75 134.90  

57 121.59 -2.78 58.90 

58 121.48 -2.76 127.60 

59 121.48 -2.79 112.00 

*60 121.47 -2.82 134.30  

*61 121.44 -2.83 117.60  

*62 121.44 -2.86 117.50  

63 121.42 -2.87 119.60 

*64 121.40 -2.89 77.50  

*65 121.39 -2.93 19.10  

66 121.41 -2.92 40.70 

67 121.43 -2.91 120.80 

68 121.45 -2.88 168.80 

69 121.48 -2.86 177.00 

70 121.48 -2.84 152.00 

71 121.50 -2.81 132.00 

72 121.51 -2.78 71.60 

73 121.46 -2.91 87.10 

*74 121.48 -2.90 93.30  

75 121.50 -2.88 50.60 

76 121.50 -2.86 160.00 

77 121.53 -2.85 53.40 

78 121.51 -2.83 119.00 

79 121.55 -2.83 46.80 

80 121.53 -2.81 99.80 

81 121.46 -2.84 168.50 

*82 121.44 -2.93 36.10  

83 121.40 -2.93 2.80 

*84 121.54 -2.87 9.60  
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