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Abstract Deleterious microcirculatory effects of Intrali-
pid (IL) infusion may be caused by hemorheological or
vascular effects. The aim of this investigation was to
study vascular and hemorheological effects of IL in
preterm and fullterm neonates and children. Ten pre-
term newborns, 10 fullterm neonates, and 10 children
received an initial infusion of IL (0.6 g/kg) over 4 h. Calf
blood flow (venous occlusion plethysmography), blood
pressure (Dinamap), whole blood and plasma viscosity
(capillary viscometer), red blood cell deformability
(rheoscope), and erythrocyte aggregation (aggregome-
ter) were measured before and after administration of
IL. Plasma triglyceride levels showed the greatest in-
crease in preterm infants. Whole blood viscosity de-
creased by about 10% in all three groups because of a
similar reduction in hematocrit. Red blood cell aggre-
gation decreased by about 20% after IL infusion. Blood
pressure rose by 10%, and peripheral blood flow de-
clined by about 10% in the three groups. Vascular hin-
drance, a calculation of blood pressure divided by blood
flow and viscosity, was raised by about 20%, suggesting
marked vasoconstriction of peripheral arteries. Vaso-
constriction rather than hemorheological changes dur-
ing infusion of IL may play a crucial role in the
pathogenesis of circulatory alterations in parenterally-
fed neonates.
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Introduction

Intravenous lipid emulsions of soybean triglycerides,
such as Intralipid (IL), are principally given to prevent
deficiency of essential fatty acids, to supply the necessary
calories for energy expenditure and growth, and to im-
prove the support of fat-soluble vitamins in patients of
all ages, including newborn infants.

Besides various metabolic side effects of fat emulsions
in neonates, several papers report pulmonary compli-
cations in preterm infants as a result of IL infusion,
including fat embolism [1, 2], increased pulmonary vas-
cular resistance [3, 4], increased alveolar–arteriolar
oxygen gradient [5], and increased risk of bronchopul-
monary dysplasia [6, 7]. These observations have been
connected with lipid accretion in pulmonary microves-
sels [2] and with several mechanisms that influence
microcirculation, such as lipid peroxide production [8],
increased production of prostaglandins and thrombox-
ane [9, 10], and diminished bioavailability of the endo-
thelium-derived vascular relaxant NO [11]. Thus, a
relationship between IL infusion and microcirculatory
deterioration in neonates seems probable, although
clinical impact and mechanisms remain unclear.

In healthy adults, IL infusion has resulted in a marked
rise in systolic arterial blood pressure [12] and peripheral
[12] and systemic [13] vascular resistance. It has been
suggested that alterations of hemorheological properties
through hypertriglyceridemia caused by IL may be a
causative factor in the rise of peripheral resistance.

An increase in either vascular reactivity or blood
viscosity caused by a fast rise in plasma triglycerides may
contribute to the circulatory effects of IL infusions
according to the Hagen–Poiseuille law [14]. There are
only few and partially differing results about the effects
of IL infusion on blood viscosity and its determinants
plasma viscosity, red blood cell (RBC) aggregation, and
RBC deformability [15–17].

In preterm and small-for-gestational-age newborns,
intravenous fat elevates the concentrations of triglyce-
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rides and free fatty acids significantly more than in
fullterm neonates, children, or adults [18, 19]. These
findings prompted us to determine blood viscosity and
its determinants (hematocrit, plasma viscosity, and RBC
aggregation and deformabililty) as well as vascular
hindrance in preterm newborns, fullterm neonates, and
children before and after IL infusion.

Patients and methods

Patients and blood samples

Effects of parenterally administered IL were studied in
10 preterm infants (gestational age 26–32 weeks, birth
weight 1,000–2,300 g), 10 fullterm neonates (gestational
age 38–41 weeks, birth weight 2,900–3,600 g), and 10
children (age 0.5–12 years). Excluded were infants and
children with signs of septicemia, arterial hypotension,
pulmonary hypertension, or cardiac or renal disease, as
well as infants and children with serum bilirubin
>12 mg/dl or inspiratory oxygen >40%. None was
being treated with sedatives, analgesics, diuretics, or
vasoactive drugs. In the preterm and fullterm neonates,
IL was started at 48–72 h of postnatal age because they
had not tolerated oral feeding since birth. The children
were given IL because they had not tolerated oral
feeding 48–72 h after an operation. All infants and
children were studied immediately before and after they
received an initial total dose of 6 ml/kg of IL 10% over
4 h. Blood samples were taken before and at the end of
the infusion.

Hemodynamic measurements

Bilateral calf blood flow was measured by venous
occlusion plethysmography using calibrated mercury in
silastic strain gauges. Blood pressure was assessed via
oscillometry (Dinamap Pro Monitor 300, Criticon,
Tampa, USA). In plethysmography and in blood pres-
sure measurements, an average of five recordings was
used for analysis.

Hematologic methods

Hematocrit was determined by a micro-hematocrit
method. The values were corrected for 2% of trapped
plasma. RBC count, hemoglobin concentration, and
white cell count were determined using a Coulter
Counter (Coulter Electronics, Harpenden, Herts, UK).
Total plasma protein concentration was measured by the
Biuret test. Plasma fibrinogen, immunoglobulin G, and
albumin concentrations were determined via radial-
immunodiffusion techniques (M-Partigen kits, Behring,
Marburg, Germany).

Hemorheological methods

All hemorheological measurements were made within
1 h after blood collection. Blood and plasma viscosities
were determined by means of a capillary viscometer [20].
A tube with a diameter of 100 lm and length of 1 cm
was perfused with whole blood and plasma at a tem-
perature of 37� and a pressure of 25 cm H20. Blood and
plasma viscosities (11) were calculated from the passage
times of the samples (ts) and distilled water (tH2O) and
from the viscosity of water at 37� (0.6915 mPas):

g ¼ ts=tH2Oð Þð0:6915Þ:

Relative viscosity was calculated as ratio of blood to
plasma viscosity.

RBC aggregation was assessed at 22�C using the
Myrenne Erythrocyte Aggregometer MA2 (Myrenne,
Roetgen, Germany), which consists of a transparent
cone plate viscometer [21]. A blood sample with an ad-
justed hematocrit of 40% is sheared for 20 s to disperse
all RBC aggregates. The drive motor is then stopped,
and the light transmission increases with time at a rate
proportional to the rate of RBC aggregation. The in-
crease in light transmission during 20 s of blood stasis is
measured and displayed as an aggregation index.

The deformability of single RBCs was observed and
measured at 22�C using a counter-rotating, cone-plate
rheoscope [22] (Effenberger Munich, Germany), which
was mounted on an inverted microscope (Leitz Diavert,
Wetzlar, Germany). Six shear stresses from 6 to 85 dyn/
cm 2 were applied, and microphotographs of the cells
were taken at each of the shear stresses. Deformation
results in elongation of the RBC, and deformation (D)
is defined as 0=(L�W)/(L +W), where L is the length
and W the width of the deformed cell. To achieve shear
stresses causing marked RBC deformation, 5 ll of blood
were diluted 1:50 in a dextran solution with a viscosity of
21 mPas (centipoise).

Statistical evaluation

A paired t-test was used to analyze differences between
values before and after IL administration within each
group. The magnitude of changes produced by IL in the
different groups was compared using an unpaired t-test.
A value of P<0.05 was considered significant. Data are
presented as mean ± standard error of the mean (SEM)
unless otherwise specified.

Ethics

The studies were conducted according to the Helsinki
Declaration and approved by the Ethical Committee of
the Department of Pediatrics of the University of Hei-
delberg. The parents of all infants and children gave
their informed consent.
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Results

Several differences in hemorheological parameters be-
fore IL infusion were noted among preterm infants,
fullterm neonates, and children: blood viscosity, plasma
viscosity, and RBC aggregation were lower in preterm
infants than in fullterm neonates and reached the highest
values in children (Figs. 1 and 2 and Table 1). As pre-
viously reported, these observations can be related to
differences in total plasma protein and fibrinogen con-
centrations [20, 21, 23]. The deformability of RBCs
studied by means of a rheoscope did not differ among
the various groups (Fig. 1).

The results of the measured parameters before and
after IL infusion are given in Table 1 and Fig. 1. Basal
serum triglyceride levels were lower in neonates than in
children. After IL infusion, the highest rise in triglycer-
ide levels was observed in preterm infants. Hemoglobin
concentration and hematocrit decreased by about 7%,
blood viscosity fell by about 10%, and RBC aggregation
fell by 20% (Fig. 1). No significant changes were noted
in total plasma protein, plasma albumin, immunoglob-
ulin G, fibrinogen, MCV, MCH, MCHC, plasma vis-
cosity, RBC deformation, or blood viscosity at constant
hematocrit of 0.45 (Table 1 and Fig. 1). IL infusion
significantly elevated blood pressure in fullterm neonates
and children (from 542±7 to 592±8 mmHg in fullterm
neonates,P<0.05, and from 732±10 to 782±11 mmHg
in children,P<0.05). A slight rise in blood pressure of
preterm infants was not shown to be significant (Fig. 2).
Although reduction of peripheral blood flow was not
significant in any of the three groups, a significant ele-
vation of peripheral resistance (from 4.72±0.6 to
5.22±0.7 mmHg/ml/min 100 ml in preterm in-
fants,P<0.05, from 6.62±0.9 to 7.22±1.2 mmHg/ml/
min 100 ml in fullterm neonates, P<0.05 and from
13.82±1.9 to 15.22±2.4 mmHg/ml/min 100 ml in full-
term neonates,P<0.05) and of vascular hindrance, cal-
culated as the ratio of resistance to blood viscosity (R/
BV) (from 2.22±0.3 to 2.82±0.5 R/BV in preterm in-
fants,P<0.05, from 2.2±0.4 to 2.92±0.6 R/BV in
fullterm neonates,P<0.05 and from 5.42±1.0 to
6.32±0.9 R/BV in children,P<0.05) was found.

Discussion

In agreement with previous studies, we observed that
whole blood viscosity at given hematocrit, plasma
viscosity, and RBC aggregation were lower in preterm
infants than in fullterm neonates and lower in fullterm
neonates than in children and adults. These differences
have been related to lower plasma proteins in neonates
compared with adults [20, 21, 23, 24]. Plasma viscosity is
strongly dependent on total plasma protein concentra-
tion, but it is more influenced by macroproteins as
fibrinogen than by smaller proteins as albumin. Aggre-
gation of RBCs is entirely dependent on the concentra-

tion of macroproteins forming bridges among adjacent
RBC [21, 24]. Thus, the steady increase of macroproteins
with gestational and postnatal age explains the con-
comitant rise in RBC aggregation.

We found that IL infusion caused a marked decrease
in RBC aggregation in children and neonates, whereas

Fig. 1 Effects of Intralipid infusion (0.6 g/kg over 4 h) on
hemorheologic parameters
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plasma viscosity and RBC deformation remained un-
changed (Fig. 1). As we reported before, the decrease in
RBC aggregation following in vitro incubation was
strongly dependent on the IL concentration [25]. The in
vitro addition of IL decreased plasma proteins by 1%
(1 mg/ml) to 8% (8 mg/ml). This decline in macropro-
teins could only partially explain the marked decrease of
RBC aggregation. We have previously shown that a
decrease in fibrinogen concentration of 8% reduces RBC
aggregation by 22% in a fibrinogen range of 2–3 g/l [21],
whereas the decrease in RBC aggregation after the
addition of IL at concentrations of 8 mg/ml decreased
RBC aggregation in adults by 50% and abolished RBC
aggregation in the neonates.

Effects of IL infusion on various rheological prop-
erties of blood in adults have recently been reported by
Linde et al. [16]. Thirteen healthy adults received a bolus
injection of 0.5 ml/kg of IL 20% in 10 min followed by
an IL infusion of 90 ml/h over 4 h, resulting in a total IL
dose of approximately 0.4 g/kg.

Using a rotational viscometer, Linde et al. estimated
RBC aggregation from measurements of whole blood
viscosity at a low shear rate of 1/s and RBC deform-
ability from viscosity measurements of RBCs suspended
in buffer solution at a hematocrit of 55% and a shear
rate of 1/s [16]. They found a decrease in whole blood
viscosity of 5%, indicating a decrease in RBC aggrega-
tion, and a decrease in the viscosity of RBC buffer sus-
pension of about 10% after IL infusion, suggesting an
improvement of RBC deformability. In principle, the
viscosity of RBCs suspended in a protein-free medium at
given hematocrit is determined by RBC deformability
only [22, 26]. However, Linde et al. found no change in
whole blood viscosity at a high shear rate of 1/100 s in
hematocrit and plasma viscosity after IL infusion, al-
though at constant hematocrit and plasma viscosity,
increased RBC deformability should have decreased
whole blood viscosity.

In contrast to the report of Linde et al. [15] and our
results, Rim et al. found a significant positive correlation
between whole blood viscosity (measured in a rotational
viscometer at a shear rate of 7.34 S-1) and plasma tri-
glyceride levels in dogs with hyperglyceridemia induced

Table 1 Effects of Intralipid infusion (0.6 g/kg over 4 h) on hematologic parameters

Preterm infants Fullterm neonates Children

Pre Post Pre Post Pre Post

Plasma triglycerides (g/l) 0.13±0.09 2.16±0.22 0.14±0.07 1.64±0.17 0.65±0.1 2.26±0.19
Hemoglobin (g/dl) 15.3±0.5 14.2±0.5 16.4±0.6 14.8±0.4* 12.5±0.3 11.8±0.25
Hematocrit (%) 0.46±0.02 0.43±0.02 50±0.02 0.46±0.02* 0.39±0.01 0.37±.01
MCV (fl) 120±2.8 118±2.5 108±1.9 106±2.2 91±1.3 90±1.3
MCH (pg) 39±1.0 38±1.0 36±0.6 35±1.0 29±0.6 29±1.0
MCHC (g/dl) 33±0.63 33±0.63 33±0.63 32±0.32 32±0.32 32±0.63
Total plasma protein (g/l) 48±1.3 46±1.0 53±1.9 50±0.6 72±2.5 70±2.2
Plasma fibrinogen (g/l) 2.2±0.2 2.1±0.2 2.6±0.2 2.4±0.2 2.8±0.2 2.6±0.2

Values are means ± SEM; *P<O.05 when compared with basal values (paired t-test)

Fig. 2 Effects of Intralipid infusion for 3 h on circulatory param-
eters
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by IL infusion. It is unclear which of the determinants of
blood viscosity (hematocrit, plasma viscosity, RBC de-
formability, or aggregation) was responsible for the tri-
glyceride-dependent rise in blood viscosity, as only
blood viscosity was reported.

The decrease in RBC aggregation after IL infusion
may be explained by an increase in the RBC surface
negativity [27], thereby increasing the repelling forces
between RBCs. Moreover, fatty acids may compete with
the binding sites of macroproteins on the RBC surface
[28]. Our finding of normalization of RBC aggregation
after resuspending RBCs in IL-free plasma indicates that
IL decreased RBC aggregation as a result of direct ef-
fects of IL compounds on RBCs [25].

Effects of lipids on RBC deformability depend on the
composition of the fatty acids. Docosahexaenoic acid
has been shown to increase RBC deformability [29, 30].
IL contains little docosahexaenoic acid (0.25%) and
therefore does not increase RBC docosahexaenoic acid
[30]. This may explain why IL had no effect on RBC
deformability.

This is, to our knowledge, the first investigation to
demonstrate elevated vasoconstriction after IL infusion
in newborns. Vasoconstriction after IL infusion is
known to occur in adults, mainly via an endothelium-
dependent, still unclear mechanism [31]. Above that,
blocking of endothelium-dependent vasorelaxation in
adults has been shown to exclusively occur in the pres-
ence of heparin [31]. Our observations demonstrate that
in newborns and children, mechanisms of vasoconstric-
tion and dilation are different from those in adults.

We conclude that an initial infusion of IL at a dose of
0.6 g/kg given in 4 h does not impair flow properties of
blood, but it enhances peripheral vasoconstriction in
neonates and children. RBC aggregation appears to
decrease during IL infusion, suggesting improved blood
flow properties at low shear forces (i.e., in veins). Pre-
viously described pulmonary side effects of IL as
increasing pulmonary arterial pressure thus cannot be
related to impaired flow properties of blood.

References

1. Skeie B, Askanazi J, Rothkope MM, Rosenbaum SH, Kvetan
V, Thomashow B (1988) Intravenous fat emulsion and lung
function: a review. Crit Care Med 16:83–193

2. Puntis JWL, Rushton DI (1991) Pulmonary intravascular
lipid in neonatal necropsy specimens. Arch Dis Child 66:26–
28

3. Prasertsom W, Phillipos EZ, Van Aerde JE, Robertson M
(1996) Pulmonary vascular resistance during lipid infusion in
neonates. Arch Dis Child Fetal Neonatal Ed 74:95–98

4. Barrington KJ, Chan G, Van Aerde JE (2001) Intravenous
lipid composition affects hypoxic pulmonary vasoconstric-
tion in the newborn piglet. Can J Physiol Pharmacol
79:594–600

5. Brans YW, Dutton EB, Andrew OS, Menchaca EM, West
DL (1986) Fat emulsion tolerance in very low birth weight
neonates: effect on diffusion of oxygen in the lungs and on
blood pH. Pediatrics 78:79–84

6. Cooke RWI (1991) Factors associated with chronic lung
disease in preterm infants. Arch Dis Child 66:776–779

7. Sosenko IRS, Rodriguez-Pierce M, Bancalari E (1993) Effect
of early initiation of intravenous lipid administration on the
incidence and severity of chronic lung disease in premature
infants. J Pediatr 123:975–982

8. Pitkanen O, Hallman M, Andersson S (1991) Generation of
free radicals in lipid emulsion used in parenteral nutrition.
Pediatr Res 29:56–59

9. Haastrup AT, Gadegbeku CA, Zhang O, Mukhin YV, Greene
EL, Jaffa M, Egan BM (2001) Lipids stimulate the production
of 6-keto-prostaglandin F1a in human dorsal hand veins.
Hypertension 38:858–863

10. Stepniakowski KT, Lu G, Davda RK, Egan BM (1997)
Fatty acids augment endothelium-dependent dilation in hand
veins by a cyclooxigenase-dependent mechanism. Hyperten-
sion 30:1634–1639

11. Davda RK, Stepniakowski KT, Lu G, Ullian ME, Goodfriend
TL, Egan BM (1995) Oleic acid inhibits endothelial nitric oxide
synthase by a protein kinase C-independent mechanism.
Hypertension 26:764–770

12. Paolisso G, Manzella O, Rizzo MR, Ragno E, Barbieri M,
Varricchio G, Varricchio M (2000) Elevated plasma fatty acid
concentrations stimulate the cardiac autonomic nervous system
in healthy subjects. Am J Clin Nutr 72:723–730

13. Stepniakowski KT, Goodfriend TL, Egan BM (1995) Fatty
acids enhance vascular and adrenergic sensitivity. Hyperten-
sion 25:774–778

14. Linderkamp O (1996) Pathological flow properties of blood in
the fetus and neonate. Clin Hemorheol16:105–116

15. Rim SJ, Leon-Poi H, Lindner JR, Wei K, Fisher NG, Kaul S
(2001) Decrease in coronary blood flow reserve during hyper-
lipidemia is secondary to an increase in blood viscosity. Cir-
culation 104:2704–2709

16. Linde T, Sandhagen B, Fugman A, Lithell H, Berne C, Lind L
(2000) Improved hemorheological properties during infusion of
a lipid emulsion (lntralipid) in healthy subjects. Intensive Care
Med 26:1462–1465

17. Bergentz SE, Gelin LE, Rudenstam CM (1960) Intravascular
aggregation of blood cells following intravenous infusion of fat
emulsions. Acta Chir Scand 120:115

18. Brans YW, Andrew OS, Carrillo OW, Dutton EB, Menchaca
EM, Puelo-Scheppke BA (1990) Tolerance of fat emulsions in
very low birthweight neonates: effect of birthweight on plasma
lipid concentrations. Am J Perinatol 7:114–117

19. Ruben S, Kleinfeld AM, Richeiri GV, Hiatt M, Hegyi T (1997)
Serum levels of unbound free fatty acids. II: The effect of in-
tralipid administration in premature infants. J Am Col Nutr
16:85–87

20. Linderkamp O, Stadler A, Zilow EP (1992) Blood viscosity
and optimal hematocrit in preterm and full-term neonates in
50- to 500-l Jm tubes. Pediatr Res 32:97–102

21. Linderkamp O, Ozanne P, Wu PYK, Meiselman HJ (1984) Red
blood cell aggregation in preterm and full-term neonates and
adults. Pediatr Res 18:1356–1360

22. Linderkamp O, Guntner M, Hiltl W, Vargas VM (1986)
Erythrocyte deformability in the fetus, preterm and term neo-
nate. Pediatr Res 20:93–96

23. Linderkamp O, Nelle M, Kraus M, Zilow EP (1992) The effect
of early and late cord-clamping on blood viscosity and other
hemorheological parameters in full-term neonates. Acta Pae-
diatr 81:745–750

24. Rampling MW, Whittingstall P, Martin G, Bignall S, Rivera
RPA, Lissauer TJ, Bailey PC (1989) A comparison of the
rheologic properties of neonatal and adult blood. Pediatr Res
25:457–460

25. Kessler U, Poeschl J, Raz O, Linderkamp O, Bauer J (2004)
Effects of intralipid infusion on blood viscosity and other
haemorheological parameters in neonates and children. Acta
Paediatr 93:1058–1062

26. Reinhart WH, Oanoff SJ, King RG, Chien S (1985) Rheology
of fetal and maternal blood. Pediatr Res 19:147–153

201



27. Lapshina EA, Zavodnik IB, Bryszewska M (1995) Effect of free
fatty acids on the structure and properties of erythrocyte
membrane. Scand J Clin Lab Invest 55:391–397

28. Bojesen E, Bojesen IN (1982) A mean distance of more than
100 A separates the surfaces of lipoproteins and rat erythro-
cytes. Acta Physiol Scand 114:513–522

29. Poeschl JM, Leray C, Groscolas R, Ruef P, Linderkamp O
(1996) Dietary docosahexaenoic acid improves red blood cell
deformability in rats. Thromb Res 81:283–288

30. Smuts CM, Tichelaar HY, Kirsten GF, Dhansay MA, Faber
M, van Jaarsveld PJ, Benade AJS (1998) The effect of paren-

teral nutrition with Lipovenous or Intralipid on the fatty acid
composition of plasma and erythrocyte membrane lipids in
very low birthweight (VLBW) infants. SA J Clin Nutr 89:687–
694

31. Steer P, Millgard J, Basu S, Lithell H, Vessby B, Berne C, Lind
L (2003) Vitamin C, diclophenac, and L-arginine protect
endothelium-dependent vasodilation against elevated circulat-
ing fatty acid levels in humans. Atherosclerosis 168:65–72

202


	Sec2
	Sec4
	Sec6
	Sec8
	Sec10
	Sec12
	Sec14
	Sec16
	Sec18
	Sec20
	Fig1
	Tab1
	Fig2
	Sec21
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR29
	CR30
	CR31


