
OR Spektrum (1997) 19:47-53 ORSpek m 
�9 Springer-Verlag 1997 

Experiences with applying a genetic algorithm 
to determine an information systems architecture 

Anwendung eines Genetischen Algorithmus 
zur Bestimmung der Architektur yon Informationssystemen 
G. F. Knolmayer, J.-P. Gerber 

Institut ffir Wirtschaftsinformatik, Abteilung Information Engineering, Universit~it Bern, Engehaldenstrasse 8, CH-3012 Bern, Switzerland 
(Fax: ++41/31/6314682, e-mail: knolmayer@ie.iwi.unibe.ch) 

Received: 10 October 1995 /Accepted: 21 May 1996 

Abstract. While determining information systems archi- 
tectures (ISA), business systems planning (BSP) is a well- 
known method to join processes and data classes to sub- 
systems. BSP matrices have generally been rearranged 
without describing the underlying methods. Meanwhile, 
various techniques have been developed for solving the 
ISA problem. Since exact optimization methods often fail 
to provide results for large ISA problems, different heur- 
istics have been applied. A new heuristic for solving the 
ISA problem is the application of genetic algorithms (GA). 
This paper examines the application of a simple GA to the 
ISA problem and compares the results of applying the GA 
with those obtained by exact methods. 

Zusammenfassung. Zur Entwicklung yon Architekturen 
von Informationssystemen (ISA) wird vielfach das Bu- 
siness-Systems-Planning-(B SP)-Konzept vorgeschlagen. 
Ein Teilproblem dieses Planungskonzepts besteht darin, 
unter Berticksichtigung yon Optimalitfitskriterien Unter- 
nehmensprozesse und Datenbestfinde zu mOglichst von- 
einander unabh~ngigen Teilsystemen zusammenzufassen. 
Da die Leistungsgrenzen von exakten Optimierungsver- 
fahren ftir dieses Problem rasch erreicht werden, interes- 
siert der Einsatz von heuristischen Verfahren. Zunfichst 
werden das BSP-Problem und die Vorgehensweise gene- 
tischer Algorithmen kurz erlfiutert. Danach wird die An- 
wendung eines einfachen genetischen Algorithmus auf das 
B SP-Problem beschrieben. Ein Vergleich mit Ergebnissen 
exakter Verfahren bildet einen weiteren wichtigen Be- 
standteil der Untersuchung. 

Key words: Information systems architecture, business 
systems planning, cluster analysis, genetic algorithms 

Schlfisselwiirter: Architektur von Informationssystemen, 
Business Systems Planning, Cluster-Analyse, Genetische 
Algorithmen 

Correspondence to: G. F. Knolmayer 

1. Introduction 

Determining information systems architectures (ISA) to 
support the competitiveness of enterprises has gained 
much attention in recent years. Determining an ISA also 
aims at considering the strategic relevance of data as a cor- 
porate resource and improving data quality [cf. 15, 23, 26, 
29]. A strategic planning approach is of special importance 
in designing distributed information systems (IS) and is 
regarded as the number one of among the ten most criti- 
cal IS management issues [cf. 19]. 

The best-known method supporting this strategic task 
is IBM's business system planning (BSP) [cf. e.g. 1, 8, 26]. 
BSP is a structured approach which assists an organiza- 
tion in planning its short- and long-term IS requirements. 
The main purpose of BSP is to support the translation of 
business strategy into IS strategy by analyzing business 
information needs and structuring them into several dis- 
tinct subsystems according to the principle of modularity. 
The BSP framework proposes 13 steps for conducting the 
study [8]: 

�9 Gaining executive commitment 
�9 Preparing for the study 
�9 Kickoff meeting 
�9 Defining business processes 
�9 Defining data classes 
�9 Analyzing current systems support 
�9 Determining the executive perspective 
�9 Defining findings and conclusions 
�9 Defining the information architecture 
�9 Determining architectural priorities 
�9 Reviewing information resource management 
�9 Developing recommendations and an action plan 
�9 Reporting results. 

The definition of an information architecture uses an as- 
sociation matrix, hereafter referred to as BSP matrix, to 
define connections between processes and data classes. 
Cross reference matrices which show the relationship 
between various types of objects are in general an impor- 
tant component of ISA and are implemented in CASE tools 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/212377064?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


48 

b 

Fig. 1. a BSP matrix in original form [20]. b BSP matrix in rear- 
ranged form for a given sequence of processes 

G. F. Knolmayer, J.-P. Gerber: A genetic algorithm to determine an IS architecture 

like e.g. KEY (formally named ADW and IEW) for stra- 
tegic IS planning [cf. e.g. 10, 12, 26]. Not-null elements 
of the B SP matrix contain the symbol C for processes creat- 
ing and U for those using data classes. While defining the 
information architecture it is important to determine sub- 
systems which enclose as many of these symbols as pos- 
sible. This determination is usually preceded by rearrang- 
ing rows and columns of the BSP matrix. The rearrange- 
ment of given matrices intends to identify business areas 
or subsystems to be allocated to certain servers in a Client/ 
Server architecture without generating too many inter- 
faces. Thus, the goals to be achieved with the procedures 
described encompass 

�9 Complexity reduction by defining appropriate sub- 
systems 
�9 Identification of different applications areas e.g. for de- 
fining development priorities of building work packets for 
Year2000 conversion 
�9 Top-down framework for IS development with bottom- 
up implementation 
�9 Determining a blueprint for distributed IS 
�9 Reduction of number of interfaces and telecommunica- 
tion costs. 

Figure 1 gives an example of a BSP matrix in original and 
in rearranged form. The resulting subsystems and the data 
flows between them form an ISA. 

2. Methods for restructuring BSP matrices 

One step of defining an ISA is to determine subsystems 
where almost all symbols are positioned within the sub- 
matrices at the main diagonal of a restructured BSP ma- 
trix. All C-entries must reside within those submatrices to 
guarantee the assignment of a data class to the process 
creating it. Early publications [8, 18] provide examples of 
restructuring BSP matrices without describing the under- 
lying procedures. Methods like ISMOD (Information 
System Model and Architecture Generator) define an af- 
finity index to determine an appropriate sequence of pro- 
cesses for a given sequence of data classes [6, 9, 28] and 
were implemented in special tools which have been used 
until 1990 in more than 450 studies [10]. Later on, clus- 
tering techniques have been applied to this problem [11, 
21]. 

Recently, different exact as well as heuristic approaches 
have been considered for two-dimensional restructuring 
of BSP matrices. One possible exact approach is to de- 
velop a quadratic assignment model in which each row and 
each column of a BSP matrix have to be assigned to a sub- 
system. After linearization of the quadratic model one may 
apply mixed-integer programming techniques [13, 14]. 
Branch-and-bound algorithms (BB) considering the small- 
est set of all feasible solutions have also been adapted to 
this type of problem [24]. Experiences with these exact 
methods show that they cannot be applied to large prob- 
lems owing to limited computational resources (cf. 
Sect. 4). 

Another possible approach to the ISA problem is the 
application of heuristics which usually provide good so- 



G. F. Knolmayer, J.-R Gerber: A genetic algorithm to determine an 

lutions within a manageable amount of time but do not 
necessarily find the optimal solution. As generally appli- 
cable heuristics, genetic algorithms (GA) have been ap- 
plied for cluster analysis [16] and for solving the quadratic 
assignment problem [2] with promising results. 

This paper proposes GA as a further approach for solv- 
ing the ISA problem. We briefly review the main princi- 
ples of GA, introduce a problem simplication by prepro- 
cessing the cluster identification algorithm [17], describe 
the bit string representation and the underlying objective 
function of the ISA problem and finally compare the re- 
sults of the GA with results provided by applying exact 
optimization procedures. Thereby we also contribute to 
overcome the scientifically unsatisfying situation that 
most GA applications have never been compared with ex- 
act optimization methods at least for problems of small 
and medium complexity. 

3. The application of a simple genetic algorithm 
to the ISA problem 

IS architecture 49 

iterated algorithm which draws in step 1 a horizontal line 
through the first row and then draws in step 2 vertical lines 
through all C-entries in this row. For each C-entry inter- 
sected by the vertical line, a new horizontal line is drawn 
in step 3. Steps 2 and 3 are repeated until no crossed-once 
C-entries are left. All rows and columns of crossed-twice 
C-entries eventually form a cluster or a so-called base- 
block [cf. 25]. For the next iteration this baseblock is re- 
moved and the CIA continues with step 1 until there are 
no more C-entries left in the BSP matrix. These subma- 
trices are called baseblocks because they represent an in- 
itial solution to the original problem with the largest num- 
ber of feasible subsystems. The subsystems of the solu- 
tions either equal a single baseblock or are combined of 
several baseblocks. Referring to the original BSP matrix 
of Fig. la, we graphically emphasize in Fig. 2a the rows 
and columns clustered by the third CIA iteration. In Fig. 
2b we show the corresponding transformed matrix after 
completing all CIA iterations. In the following, the result 
of applying the CIA sets the basis for further improve- 
ments of the ISA. 

3.1. Principles of genetic algorithms 

Genetic algorithms base on mechanisms of natural repro- 
duction with are, according to Darwin, characterized by 
the adoption of advantageous modifications and the dis- 
card of disadvantageous ones through selection. This ev- 
olutionary principle is regarded as powerful and efficient 
in nature, being probably the best compromise between 
determination and chance, and has therefore been trans- 
ferred to construct algorithms for solving complex opti- 
mization problems [cf. e.g. 4]. 

The basic principle of GA is to pass on advantageous 
genetic information from one generation to the next while 
ignoring inferior information. In nature the genetic infor- 
mation is carried by a chromosome, in GA usually by a bit 
string. A set of bit strings forms a population where each 
bit string represents a possible solution to an optimization 
problem. An objective function evaluates the quality of 
each bit string with respect to the underlying optimization 
problem. The probability for selecting the best bit strings 
for recombination is proportional to their performance. 
The most important recombination operators are crossover 
and mutation. The former exchanges randomly selected 
portions of bits between two bit strings of the subsequent 
generation. The latter is designed to invert bits by chance 
and prevents a premature loss of possibly useful solutions. 
After applying the recombination operators to a bit string 
population, a new generation evolves which is expected to 
consist of some superior bit strings. This procedure of eval- 
uation, selection and recombination is continuously re- 
peated until a user defined condition causes the GA to stop. 

3.2. Preprocessing the ISA problem 

The ISA problem can be simplified by applying the clus- 
ter identification algorithm (CIA) [17] to identify the set 
of submatrices fulfilling the constraint that all C-entries 
must reside within the created subsystems. The CIA is an 

3.3. Bit string representation of the ISA problem 

In the following we discuss the application of a GA to an 
easier example. Fig. 3a depicts the original BSP matrix 
and Fig. 3b shows the BSP matrix after applying the CIA 
with n = 5 baseblocks. 

To apply a GA to the ISA problem, each feasible com- 
bination of baseblocks must be represented by a bit string 
which can be manipulated by the GA operators. In order 
to explain the chosen representation, a bit matrix is intro- 
duced which contains the bit representation of a possible 
solution to the ISA problem. The element mii~ {0,1 } of 
the quadratic bit matrix states whether the two baseblocks 
indexes with i and j are joined (mij= 1) or not (mij=O). 
Fig. 4 gives an example of a bit matrix for the above ISA 
problem. The matrix expresses in binary terms that the 
baseblocks with the indices 1, 3 and 5 are joined and that 
the two residual blocks 2 and 4 remain unclustered and 
form subsystems on their own. Elements at the diagonal 
of this bit matrix are irrelevant and those beneath it are re- 
dundant. 

The transformation into the bit string can be easily 
understood when scanning the matrix elements column- 
wise. Referring to the matrix in Fig. 4, the corresponding 
bit string is 0'10'000'1010. The length 1 of the resulting 
bit string depends on the number of baseblocks n with 
l=n.(n- 1)/2. Hence, with increasing number of base- 
blocks, the bit string length grows with O(n2). This may 
well affect the performance of the GA in terms of time 
consumption and its abilities to provide good solutions. A 
further problem that arises in connection with the above 
representation is that there exist strings which do not rep- 
resent feasible solutions. Assume that the evolution creates 
the string 0'10"011'0000 which implies that block 1 is 
joined to block 3 and blocks 2 and 3 are combined with 
block 4. Consequently, block 1 has also to be joined with 
blocks 2 and 4 but the respective bits have not been set. 
We cope with this inconsistency by applying a 'filling-in' 



50 G. F. Knolmayer, J.-P. Gerber: A genetic algorithm to determine an IS architecture 

C 

C 

U 

u! c u  

C 
U 
U I C  

C C 
U 

C a 

Fig. 3. a Original BSP matrix, b BSP matrix after application of the 
CIA (initial solution) 

Block 1 Block 2 Block 3 Block 4 Block 5 
Block 1 0 1 0 1 
Block 2 ] 0 0 0 
Block 3 0 1 
Block 4 .l_ 0 
Block 5 

Fig. 4. Example of a bit matrix expressing that baseblocks 1,3 and 
5 are combined 

strategy that switches all inconsistent bits from 0 to 1; in 
the above example the bit string 1'11'111'0000 results. 

A further drawback of this representation is that the 
schema theorem [4] might not work properly. It states that 
the ratio of schemata with short defining length, with low 
order and with exceptionally good fitness increases expo- 
nentially in subsequent generations. This theorem requires 
an efficient bit string representation which meets two de- 
mands. First, the smallest possible alphabet should be used 
to code the string in order to make it as short as possible. 
Second, the representation should be chosen such that 
short and compact schemata can be identified, i.e., parts 
of a chromosome which represent closely related informa- 
tion should not be dispersed in the bit string. These two 
recommendations are not satisfied by the above represen- 
tation of the ISA problem. Nevertheless, this representa- 
tion was implemented as it is presumably the only mean- 
ingful one that allows to use GENESIS 5.0 (Genetic Search 
Implementation System), a generally available GA pro- 
gram library. GENESIS is task independent and allows to 
perform all the fundamental GA operations including se- 
lection, recombination (mutation and crossover) and eval- 
uation [5]. 

Fig. 2. a The third CIA iteration applied to the original BSP matrix. 
b BSP matrix after preprocessing by the CIA 

3.4. Calculating the objective function value 

After preprocessing, the ISA problem is reduced to find 
suitable combinations of baseblocks and positions of the 



G. F. Knolmayer, J.-R Gerber: A genetic algorithm to determine an IS architecture 

B~ock 1 Block 2 [ Block 3 Block 4 Block 5 

Block 1 - 0,5 0.1 0.1 - 1.8 

Block 2 - 0 . 9  -0 .9  0.1 

Block 3 - 0.6 - 0.9 

Block 4 I - 0.9 

Block 5 I 

Fig. 5. Corresponding delta matrix 

resulting subsystems (S) which result in as few interac- 
tions as possible between them. Two subsystems interact 
if there is a U-entry in position kis or krj of the BSP matrix 
with i,je S 1 and 1;se S 2. Thus, the objective function (in 
terms of GA: fitness) is defined to incorporate as many U- 
entries as possible within the subsystems. However, the 
objective function should also prevent that all baseblocks 
are put together to one or a very small number of big sub- 
systems containing all or too many rows and columns of 
the original problem as this obviously contradicts the plan- 
ning intentions. Therefore, we decided to use an objective 
function that considers this trade-off: joining two base- 
blocks is evaluated in such a way that each new U-entry 
in the subsystems is rewarded one point and each new null 
entry is penalized with p points. The objective is to max- 
imize the fitness, measured by the sum of points: 

Objective function value (fitness) = u - p .  b ~ max! (1) 

where lA = number of U-entries in the subsystems 
p = penalty value 
b = number of null entries in the subsystems 

For our comparisons we fixed the coefficient to p = 0.3 be- 
cause this value provided reasonable compromises in solv- 
ing some pretest problems. Effects of employing different 
values of p are described in [25]. We use the parameter 
value 0.3 also for further explaining the proposed proce- 
dure. 

A delta matrix, consisting of exactly the same structure 
as the bit matrix, is introduced for calculating the objec- 
tive function value. The elements of the delta matrix, also 
referred to as delta factors, represent the absolute changes 
of the fitness when two baseblocks are joined. Applying 
the objective function to the initial solution, the delta fac- 
tors of all possible combinations of baseblocks can be cal- 
culated and stored in this matrix. 

Figure 5 gives an example of a delta matrix resulting 
from the initial solution of the corresponding problem 
shown in Fig. 3b. I f  e.g. blocks 1 and 2 are joined, the new 
subsystem will include five blanks which are penalized 
with 0.3 points each, and one additional U-entry, scored 
with 1 point; the resulting delta factor is d12= 1 - 0 . 3 . 5  = 
-0.5. 

The change of fitness as a result of  combining base- 
blocks can be easily computed using the bit matrix and the 
delta matrix according to formula (2). 

Change of fitness = ~ ~ d,:j. m,:/ (2) 
i j 

where mzj = element of the bit matrix 
dij = element of  the delta matrix 
i =1  ..... n - 1  
j = i + 1  ..... n. 

51 

The change of the fitness is the sum of all relevant delta 
factors. A delta factor is relevant if the two corresponding 
baseblocks are joined which is indicated by the respective 
bit set in the bit matrix. The algorithm starts with an in- 
itial solution, consisting of n baseblocks, which provides 
the initial fitness, defined as the sum of all scored blanks 
and U-entries in the baseblocks: 

Initial fitness = u b - p .  b b (3) 

where u b = total number of U-en t r i e s  in the baseblocks 
b b = total number of  blank entries in the baseblocks. 

To compute an absolute fitness instead of one relative to 
the initial solution, the initial fitness is added to the accu- 
mulated value of all the changes derived from overlapping 
the delta matrix with the bit matrix: 

Fitness = 1A b -- p . b b + ~ .  ~ .  d o �9 rrl(j. (4) 
t j 

Referring to our example, if the GA selects the string 
0"00"100"0100, the accumulated change of the fitness is 
calculated and added to the initial fitness according to (4), 
resulting in: Fitness = 2 - 0 . 3 . 0  + 1.0.1 + 1.0.1 = 2.2. Thus, 
joining the baseblocks 1 and 4 as well as 2 and 5 improves 
the initial solution. 

4. Results of computational tests 

The GA and other optimization methods are compared 
with respect to the quality of the solutions obtained and 
the consumed computing time for ISA problems of differ- 
ent complexity. The algorithms were run on an IBM RS 
60000-320H. Details of the comparisons are given in 
Table 1. 

The GA was run 30 times on each ISA problem. The 
preliminary number of trials per experiment was intui- 
tively set for each problem and stepwise increased if fur- 
ther improvements of the fitness could be expected. The 
standard parameter settings of GENESIS (population 
size = 100; crossover rate = 0.6; mutation rate = 0.001; gen- 
eration gap= 1.0) were used. 

In order to compare the GA with exact optimization al- 
gorithms, a specialized branch-and-bound algorithm [7, 
24] and mixed-integer programming (MIP) using IBM's  
OSL, Release 2 [13] were also applied to the same ISA 
problems. One difficulty in the comparison is that several 
equivalent MIP formulations exist which may obtain the 
same solution with different computational resources. The 
computational effort is also influenced in a rather unpre- 
dictable way by fixing the number of subsystems and their 
minimal size [13]. Another problem of the comparison is 
that in MIP the number of  subsystems, the minimum num- 
ber of columns per subsystem and the minimum number 
of rows per subsystem have been fixed whereas the GA 
selects suitable values for these parameters by itself. For 
a fair comparison, the best parameter values found by the 
GA were used to fix the accompanying parameters of the 
MIP models. 

Under these preliminaries, the 7 cases regarded in Ta- 
ble 1 may be clustered in 3 groups. In the first 2 cases, the 
MIP-model and the BB were able to find solutions in rea- 



52 

Table 1. Results of tests 

G. F. Knolmayer, J.-R Gerber: A genetic algorithm to determine an IS architecture 

ISA Genetic algorithm MIP-OSL d Specialized 
problem a (30 experiments per case) branch-and-bound e 

Dim of Number Number of Best Average Best fitness Average Input- Objective CPU-s Objective CPU-s 
matrix of base- trials per fitness fitness found in % CPU-s b parameters function function 

blocks experiment of exper. (n,c,r) c value value 

17 x 10 9 4000 6.80 6.80 100 1.00 6.80 180 6.80 0.08 
12x07 10 10000 14.00 10.37 27 5.10 14.00 45 14.00 0.06 

3,3,3 
3,1,1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

16x28 12 4000 12.00 11.80 37 1.60 6,2,1 11.60 f 12.00 0.22 
19x 12 16 6000 21.60 21.28 63 4.80 6,1,1 21.60 212400 21.60 0.28 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , . . . . . . . . . . . . . . . .  

28x18 24 15000 30.90 29.97 16 31.00 5,2,1 29.60 f 22.30 h 
27x36 26 15000 36.40 33.29 3 32.00 7,1,1 27.40 f 15.10 h 
37x24 28 25000 32.60 31.11 3 65.70 8,1,1 22.50 g 10.10 h 

a Sources of problems solved: 17x10, 37x24: [18]; 12x7: [22]; 
16x28: [3]; 19x12: [11]; 28x18: [20]; 27x36: [27] 
b Average CPU-s for all trials of o n e  experiment. To obtain the to- 
tal CPU-time used for the GA, the numbers in this column have to 
be multiplied by the number of experiments, i.e., by 30 
c Parameters determining the structure of the resulting matrix: 
n = number of subsystems, c = minimum number of columns per sub- 
system, r=minimum number of rows per subsystem 
d Mixed-integer programming using IBM's OSL [13] 

e Cf [24] 
r Interrupted after several days (exceeding running time limit) 
g Interrupted after severaldays (exceeding running time limit). [131 
shows 6 different solutions to this problem for (n,c,r)= (5,3,3); the 
best objective function value obtained equals 26.2 (without proof of 
optimality). However, this value cannot be compared to the GA-so- 
lution due to different parameters (n,c,r) 
h Interrupted due to memory overflow after an approximate CPU- 
time of 120 s 

sonable  t ime. However ,  the BB algor i thm needed far less 
CPU- t ime  than the OSL. For  the first  case, the total t ime 
taken for pe r fo rming  30 exper iments  by  the G A  lay 
be tween  the CPU- t imes  of  the BB and MIP whereas  for 
case 2 the G A  took the most  t ime of  all three procedures  
compared .  

For  the cases 3 and 4 which const i tute group 2 the MIP-  
formula t ion  run several  days;  only  in one of  the two cases 
it found the op t imal  solut ion within the given t ime limit.  
The BB again needed  only fract ions of  one CPU-second  
to obtain the opt imal  solut ion! The G A  took less than 3 
minutes  in both cases. With  respect  to the opt imal  objec-  
t ive funct ion value,  the G A  found the opt imal  solut ion in 
every case which  could  be solved by exact  op t imiza t ion  
methods.  

Group  3 consists  of  the cases  5 to 7 in which both ex- 
act op t imiza t ion  procedures  fa i led ei ther due to memory  
over f lows  (BB) or excess ive  running t ime (MIP).  The op- 
t imal  solut ions of  the p rob lems  in class 3 are still  unknown.  
Both the BB and the MIP  prov ided  non-op t imal  solut ions 
before  s topping.  However ,  the G A  obta ined  in 2 of  the 3 
cases r emarkab ly  bet ter  solutions;  in all three cases the G A  
needed  far less computa t iona l  t ime than the MIP. Taking 
the 27 x 36 matr ix  presented  in [27], the BB reached the 
m e m o r y  l imi t  after 120 CPU seconds  and was in terrupted 
at a best  objec t ive  funct ion value  o f  15.10, the OSL was 
s topped after more  than 4 days  of  ca lcula t ion with a tem- 
porary  bes t  of  27.40 and the G A  proposed  a f i tness value 
of  36.40 within 16 minutes  ( taken by all 30 exper iments) .  
Al though  the best  f i tness was only found in one exper i -  
ment,  the average  value  per  exper iment  of  33.29 indicates  
that the G A  is far bet ter  sui ted for complex  prob lems  than 
the exact  methods .  

The f igures state also that the more  complex  the ISA 
problem,  i.e., the more  baseb locks  and hence the larger  the 

length o f  the bi t  string, the lower  the probabi l i ty  o f  f ind- 
ing the opt imal  f i tness in one exper iment .  In cases 6 and 
7 the G A  found the best  solut ions only in 1 of  30 exper i -  
ments  a l though we chose a compara t ive ly  large number  of  
trials per  exper iment .  Each exper iment  with the G A  leads 
the search into different  solut ions areas which may  pro-  
mote  or restrain the evolut ion  towards  the g lobal  opt imum. 

In conclus ion,  the G A  possesses  a high potent ia l  for 
quickly  converg ing  towards  good  solut ions for  large ISA 
prob lems  for which  opt imiza t ion  methods  fail. In our study 
the best  fi tness is usual ly  not found in each G A  exper i -  
ment,  but  the average value over  a series of  30 exper iments  
is a lways  fai r ly  c lose  to the best  f i tness and super ior  to the 
temporary  best  results  de l ivered  by  exact  methods.  

5. Conclusion and outlook 

This paper  examines  the appl ica t ion  of  a genet ic  a lgor i thm 
to a c luster ing p rob lem emerg ing  f rom planning  an infor-  
mat ion  systems architecture.  To solve this p rob lem one has 
to rearrange the rows and columns of  a BSP matr ix  with 
respect  to several  op t imiza t ion  criteria.  Since exact  meth-  
ods fail to p rovide  results  for large ISA problems,  the ap- 
p l icabi l i ty  of  a G A  is studied. This paper  descr ibes  how a 
G A  can be app l ied  to the ISA prob lem and presents  com-  
puta t ional  exper iences  with opt imiza t ion  techniques and 
a GA. 

In conclusion,  the results  and the per formance  achieved 
with the G A  are surpr is ingly  good.  The G A  seems to be a 
genuine  a l ternat ive to the appl ica t ion  of  exact  methods  for 
solving complex  problems.  It p rovides  opt imal  solut ions 
for those ISA prob lems  which could  be solved by exact  
methods  and it de termines  feas ible  solut ions for large 
p rob lems  which were  not t ractable  by these procedures .  



G. E Knolmayer, J.-R Gerber: A genetic algorithm to determine an 

Furthermore,  GA always provide solutions whereas the 
optimizat ion methods may fail to deliver at least a non-  
optimal solution when stopped due to the lack of compu-  
tational resources. 

All  automatically applied procedures are chal lenged by 
the speculation that a human decision maker may find bet- 
ter solutions, especially if he is supported by a decision 
support system. Therefore, an alternative to the procedures 
described for solving the ISA problem are onl ine decisions 
on combin ing  different baseblocks. Generally,  only few 
results are available in which the performance of heuris- 
tics and of human decision-makers  are compared in a sci- 
entifically sound setting. As in many other applications, 
experiments  of such performance comparisons for deter- 
min ing  IS architectures look promising but are fairly dif- 
ficult to realize. Therefore, this comparison has not been 
considered in the present study. 

References 

1. Brathwaite KS (1992) Information Engineering, Vol. I. Con- 
cepts. CRC, Boca Raton 

2. Brown DE, Huntley CL, Spillane AR (1989) A Parallel Genet- 
ic Heuristic for the Quadratic Assignment Problem. In: Schaffer 
JD (ed) Proceedings of the 3rd International Conference on Ge- 
netic Algorithms. Morgan Kaufmann, San Mateo, pp 406-415 

3. Flaatten POet  al. (1989) Foundations of Business Systems. 
Dryden, Chicago 

4. Goldberg DE (1989) Genetic Algorithms in Search, Optimiza- 
tion, and Machine Learning. Addison-Wesley, Reading, Mass. 

5. Grefenstette J (1991) Documentation for GENESIS. The Soft- 
ware Partnership 

6. Hein KP (1985) Information System Model and Architecture 
Generator. IBM Syst J 24:213-235 

7. Hess J (1993) Implementierung von Branch-and-Bound Verfah- 
ren zur Strukturierung von BSP-Matrizen. Master Thesis, Uni- 
versity of Bern 

8. IBM (ed) (1978) Business Systems Planning: Information 
Systems Planning Guide. IBM-Form, GE 20-0527-2 

9. IBM (ed) (1990) Information System Model and Architecture 
Generator, Operation Guide, Release 1.3. IBM-Form SE 11- 
5989-2 

10. Katz RL (1990) Business/enterprise modeling. IBM Syst J 29: 
509-525 

11. Kiewiet DJ, Stegwee RA (1991) Conceptual Modeling and 
Cluster Analysis: Design Strategies for Information Architec- 
tures. In: DeGross JI et al. (eds) Proceedings of the 12th Inter- 
national Conference on Information Systems. ACM, Baltimore, 
pp 315-326 

12. Kim YG, Everest GC (1994) Building an IS architecture. Inf & 
Manag 26:1-11 

IS architecture 53 

13. Knolmayer G (1994) The Application of Mixed Integer Pro- 
gramming to the "Business Systems Planning"-Problem. In: 
Dyckhoff H et al. (eds) Operations Research Proceedings 1993. 
Springer, Berlin, pp 457-463 

14. Knolmayer G, Spahni D (1993) Darstellung und Vergleich 
ausgew~ihlter Methoden zur Bestimmung von IS-Architekturen. 
In: Reichel H (ed) Informatik, Wirtschaft, Gesellschaft. Sprin- 
ger, Berlin, pp 99-104 

15. Krcmar H (1990) Bedeutung und Ziele von Informationssystem- 
Architekturen. Wirtschaftsinformatik 32:395-402 

16. Krovi R (1992) Genetic Algorithms for Clustering: A Prelimi- 
nary Investigation. In: Nunamaker JF, Sprague RH (eds) Pro- 
ceedings of the 25th International Conference on System Sci- 
ences, Vol. IV. IEEE, Los Alamitos, pp 540-544 

17. Kusiak A, Chow WS (1987) An Efficient Cluster Identification 
Algorithm. IEEE Transactions on Systems, Man, and Cybernet- 
ics 17:696-699 

18. Martin J (1982) Strategic Data-Planning Methodologies. Pren- 
tice-Hall, Englewood Cliffs 

19. Niederman F, Brancheau JC, Wetherbe JC (1991) Information 
Systems Management Issues in the 1990s. MIS Quarterly 15: 
475-500 

20. Orsey RR (1982) Methodologies for Determining Information 
Flow. In: Goldberg R, Lorin H (eds) The Economies of Infor- 
mation Processing, Vol. I. Wiley, New York, pp 57-70 

21. Raz T, Yaung AT (1995) Application of clustering techniques 
to information systems design. Information and Software Tech- 
nology 37:145-154 

22. Schumann M, Sch~te H, Schumann U (1994) Entwicklung von 
Anwendungssystemen. Springer, Berlin 

23. Sowa JF, Zachman JA (1992) Extending and formalizing the 
framework for information systems architecture. IBM Syst J 
31:590-616 

24. Spahni D (1993) Solving the "Business System Planning"-Prob- 
lem Using Specialized Branch & Bound Algorithms. In: Ba- 
chem A et al. (eds) Extended Abstracts of the 18th Symposium 
in Operations Research. Physica, Heidelberg, pp 491-494 

25. Spahni D (1996) Verfahren zur Bestimmung geeigneter Teilsy- 
steme integrierter Informationssysteme. Diss Universit~it Bern 
1996 

26. Spewak SH, Hill SC (1993) Enterprise Architecture Planning. 
QED, Wellesley 

27. Teng JTC, Kettinger W J, Guha S (1992) Business Redesign and 
Information Architectures: Establishing the Missing Links. In: 
DeGross JI, Becket JD, Elam JJ (eds) Proceedings of the 13th 
Intl. Conference on Information Systems. ACM, Baltimore, 
pp 81-89 

28. Vetter M (1988) Strategie der Anwendungssoftware-Entwick- 
lung - Planung, Prinzipien, Konzepte. Teubner, Stuttgart 

29. Wetherbe JC, Davis GB (1983) Developing a long range infor- 
mation architecture. In: Smith AN, Medley DB (eds) Proceed- 
ings of AFIPS National Computer Conference, AFIPS, Arling- 
ton, pp 261-269 


