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Summary 11 

1. Biological conclusions drawn from phylogenetic comparative methods can be sensitive to 12 

uncertainty in species sampling, phylogeny and data. To be confident about our conclusions, we 13 

need to quantify their robustness to such uncertainty. 14 

2. We present sensiPhy, an R-package to easily and rapidly perform sensitivity analysis for 15 

phylogenetic comparative methods. sensiPhy allows researchers to evaluate the sampling effort, 16 

detect influential species and clades, assess phylogenetic uncertainty and quantify the effects of 17 

intraspecific variation, for phylogenetic regression and for metrics of phylogenetic signal, 18 

diversification and trait evolution. 19 

3. Uniquely, sensiPhy allows users to simultaneously quantify the effects of different types of 20 

uncertainty and potential interactions among them. 21 

4. Using real data, we show how conclusions from comparative methods can be affected by 22 

uncertainty and how sensiPhy can help determine if a conclusion is robust. 23 

5. By providing a single, intuitive and user-friendly resource that can evaluate various sources of 24 

uncertainty, sensiPhy aims to encourage researchers, and particularly less experienced users, to 25 

incorporate sensitivity analyses in their phylogenetic comparative analyses.  26 

      27 

Keywords: PGLS, Phylogenetic Regression; Robustness; Diversification; Trait evolution; Bias 28 
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Introduction 30 

 Over the last few decades, phylogenetic comparative methods have become a central 31 

approach in ecology and evolutionary biology, boosted by the expansion of comparative methods 32 

available in R (Paradis, 2012; Garamszegi, 2014). Like all statistical models, phylogenetic 33 

comparative methods are subject to several types of uncertainty which can affect conclusions we 34 

draw from these analyses (Donoghue & Ackerly, 1996; Huelsenbeck et al. 2000; Felsenstein, 35 

2008). Yet, the sensitivity of (biological) conclusions to uncertainty is seldom considered (Cooper 36 

et al. 2016). This can cause researchers to overestimate the reliability of their findings, for instance 37 

by estimating too narrow confidence intervals or by providing biased parameter estimates (Rangel 38 

et al. 2015; Silvestro, 2015). 39 

 Three main sources of uncertainty can affect comparative methods (Fig. 1). (i) Species 40 

sampling uncertainty encompasses uncertainty in parameter estimates resulting from (arbitrary) 41 

variation in the species set included. (ii) Phylogenetic uncertainty encompasses uncertainty in 42 

phylogenies used in comparative analyses. (iii) Data uncertainty includes both within-species 43 

variation in trait values as well as measurement error that might occur when determining trait 44 

values. Sensitivity analysis is a powerful approach to evaluate if conclusions are influenced by 45 

these uncertainties in comparative biology (Donoghue and Ackerly, 1996; Cooper et al., 2016; 46 

Cornwell & Nakagawa, 2017). Here, we present sensiPhy, an R-package to perform sensitivity 47 

analysis for the most frequently used phylogenetic comparative methods. Our main goal is to make 48 

it easier for less-experienced users to implement the best practices when running comparative 49 
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analyses. To our knowledge, this is the first effort to combine in a single resource functions to 50 

account for three types of uncertainty in commonly used comparative methods. 51 

 52 

The sensiPhy package 53 

 SensiPhy is written in the R-language (R Core Team 2017) and is available on the CRAN 54 

repository. The package provides an umbrella of statistical and graphical methods to estimate and 55 

report sensitivity to uncertainty in phylogenetic comparative analysis (PGLS, phylogenetic signal, 56 

diversification and trait evolution). We leverage methods implemented in the R-packages phylolm, 57 

phytools and geiger (Ho & Ané 2014; Revell 2012; Harmon et al. 2008) and implement functions 58 

to perform sensitivity analysis for phylogenetic generalized least squares models (PGLS; both 59 

using linear and logistic regression models), for estimates of phylogenetic signal in trait data 60 

(Blomberg et al. 2003, Pagel 1999), for macroevolutionary models (both continuous and discrete, 61 

binary, traits) and estimates of diversification rates (Magallón & Sanderson, 2001; Harmon et al. 62 

2008). For each type of sensitivity analysis, a specific set of diagnostics graphics and summary 63 

statistics are provided (Fig. 1). In all PGLS functions, the evolutionary model to use can be 64 

specified (e.g. Brownian Motion and Ornstein-Uhlenbeck; Ho & Ané 2014), allowing the user to 65 

analyse the fit of different models and select the most appropriate one (Cornwell & Nakagawa 66 

2014, Garamszegi 2014; Pennell et al. 2015). Scientists can use sensiPhy to analyse results 67 

originally obtained from other software (e.g. PGLS with caper or gls) when available analysis use 68 

the same macroevolutionary models implemented in phylolm, phytools and geiger (e.g. Brownian 69 

Motion, OU, lambda; see package vignette for examples and details).  70 
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 71 

Fig1: Overview of the main functions in sensiPhy organized by source of uncertainty. sensiPhy contains functions to 72 

quantify the effects of the three types of uncertainty and of interactions among them: phylogenetic uncertainty (tree), 73 

uncertainty arising from species sampling (influ, clade and samp) and uncertainty in the underlying trait data 74 

(intra).  75 

 76 

Sources of uncertainty 77 

We briefly highlight the three main sources of uncertainty, indicating how they can affect 78 

conclusions, and then provide two examples on how researchers can use sensiPhy. A full tutorial, 79 



6 

 

highlighting examples for all sources of uncertainty and implemented functions, can be found in 80 

the package vignette and on Github (https://github.com/paternogbc/sensiPhy/wiki).  81 

 82 

Species sampling uncertainty 83 

 Some species, or clades of species, are particularly important drivers of parameter 84 

estimates. However, often the set of species sampled in a comparative analysis is determined by 85 

considerations that are arbitrary from an evolutionary perspective, like presence in a trait database 86 

or easy access in the field. Also, conclusions can be sensitive to the number of species being 87 

studied, or the sampling effort. Moreover, particular species or clades can represent influential 88 

cases and can drive key results because they show a pattern that is different in strength or direction 89 

than the general pattern. Since in all of these cases, the source of uncertainty is driven by the set 90 

of species considered, we group all these issues under the name of species sampling uncertainty.  91 

The samp functions (samp_phylm, samp_phyglm, samp_physig, 92 

samp_continuous and samp_discrete; Fig. 1) uses a jackknifing method to test if 93 

models are robust to variation in the set of species and sample size (Efron 1982; Werner et al 94 

2014). The function fits PGLS regressions, tests for phylogenetic signal or calculates metrics for 95 

trait evolution after iteratively removing user-defined fractions of species at random and compares 96 

simulations with the model using the full dataset.  97 

The influ-functions (Fig. 1) perform leave-one-out-deletion analysis to test if specific 98 

species are strongly driving the results. For all species, these functions fit a new model without a 99 

https://github.com/paternogbc/sensiPhy)
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given species (reduced data) and compare the estimated parameters using the full dataset. This 100 

analysis can reveal influential cases (species driving relatively large changes in parameter 101 

estimates) and test model stability across samples (Field, 2013). The clade-functions (Fig.1) 102 

extend the same leave-one-out approach to detect influential clades (or more generally, groupings 103 

of species). The functions remove all species belonging to a clade and compare the reduced and 104 

the full datasets using a randomization test to correct for the number of species removed. 105 

 Three simple measures are used to estimate sensitivity in model parameters.  106 

(i) the raw difference: 107 

dbi = bi – b0                                      eqn 1 108 

where bi is the estimated parameter for the reduced dataset and b0 is the estimated parameter for 109 

the full dataset;  110 

(ii) the standardized difference: 111 

Sdbi  = dbi /SDdbi                                         eqn 2   112 

where SDdbi is the standard deviation of dbi, thus Sdbi is a simple z-score of dbi; and  113 

(iii) the percentage of change: 114 

Pdbi  = (|dbi| / b0)* 100                         eqn 3 115 

where |dbi| is the absolute raw difference (eqn 1). While these functions provide useful estimates 116 

of how subsets of the dataset change key results, they do not account for potential structural biases 117 
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in the available data (e.g. bias in missing data).  For instance, a common problem in comparative 118 

analyses occurs when data is missing non-randomly with respect to the phylogeny. To help detect 119 

this problem, we provide a supplementary function (miss.phylo.d), which detects 120 

phylogenetic signal in missing data (D-statistics; Fritz and Purvis, 2010, Orme et al 2013).  121 

 122 

Phylogenetic uncertainty 123 

 Phylogenetic uncertainty refers to the notion that there are usually a number of alternative 124 

phylogenetic hypotheses with different topologies and/or branch lengths. Yet, comparative studies 125 

often analyse a single tree which is thought of as the ‘best’ estimate out of a family of candidate 126 

phylogenies, without accounting for phylogenetic uncertainty, potentially biasing statistical 127 

inference (Donoghue & Ackerly, 1996, Hernandez et al. 2013; Rangel et al. 2015). A simple way 128 

to account for phylogenetic uncertainty in comparative methods is to repeat the analysis using a 129 

sample of relevant phylogenetic trees (Donoghue & Ackerly, 1996). The influence of phylogenetic 130 

uncertainty can be quantified by the amount of variation in model parameters between competing 131 

models fitted with alternative trees (Hernandez et al. 2013; Martinez et al. 2015). The tree-132 

functions (Fig.1) account for multiple phylogenetic hypotheses, by rerunning the models over a 133 

multiPhylo object containing different candidate phylogenies and comparing parameter estimates 134 

across these reruns. 135 

 136 

Data uncertainty 137 
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 Intraspecific variation due to differences between individuals or to measurement errors is 138 

an important source of uncertainty and can influence both parameter estimation and hypothesis 139 

testing (Felsenstein, 2008; Garamszegi & Møller, 2010; Silvestro et al. 2015). One way to account 140 

for intraspecific variation is by simulating trait values for each species derived from the 141 

intraspecific standard deviation of the mean, which users can calculate from their own data if they 142 

have multiple measurements per tip (Martinez et al 2015). Rather than assuming a single trait value 143 

per species, this approach tests the sensitivity of comparative models to variation in the underlying 144 

trait data, accounting for the confidence range around the estimate (Garamszegi 2014). The 145 

intra-functions (Fig.1) account for such uncertainties both in response and explanatory 146 

variables. While the statistical distribution of such intraspecific variation may not always be 147 

known, the functions implement two potential trait distributions (normal and uniform). 148 

 149 

Interactions among uncertainty types 150 

Most users of phylogenetic comparative methods will face multiple sources of uncertainty 151 

simultaneously (Cooper et al. 2016; Cornwell & Nakagawa 2017). Different types of uncertainty 152 

can interact, potentially further reducing the robustness of a result. Yet, the interaction between 153 

types of uncertainty is rarely studied (but see: Martinez et al. 2015), even in cases where sensitivity 154 

to single uncertainties is quantified (Werner et al. 2014), potentially because of a lack of available 155 

tools. We implemented functions to study interactions of both phylogenetic uncertainty (tree-156 

functions) and data uncertainty (intra-functions) with sampling uncertainty (clade-, influ-, 157 

and samp-functions), as well as interactions between data and phylogenetic uncertainty. 158 
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 159 

Example 1: Influential clades 160 

 We included two datasets in sensiPhy: "primates" (Jones et al. 2009) and "alien" 161 

(Gonzalez-Suarez et al. 2015). Each dataset contains a multiPhylo file with 101 phylogenetic trees 162 

originated from pseudo-posterior distribution and pruned to match species in data (Fritz et al 2009; 163 

Kuhn et al. 2011). As an example, we use the “primates” dataset to investigate how the deletion 164 

of entire clades (families) can influence model parameters for a PGLS linear regression between 165 

sexual maturity (days) and adult body mass (g). 166 

 167 

> data("primates") 168 

> fit <- clade_phylm(log(sexMaturity) ~ log(adultMass),  169 

phy = primates.phy[[1]], data = primates.data, clade.col = "family",  170 

n.sim = 500, model = "lambda") 171 

 172 

The function clade_phylm reruns the phylogenetic regression between sexual maturity and 173 

body mass, iteratively leaving out individual families. This is defined by the argument ‘clade.col’ 174 

which indicates the grouping variable defining which species to include. Typically, these will be 175 

taxonomically defined, but other groupings can be used, for instance based on geographic 176 

locations, sampling methods or data sources. The function sensi_plot can be used to visualize 177 
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the results (Fig. 2) while summary shows the effect of each clade on model parameters (Table 1; 178 

complete output in supplementary material).   179 

 180 

> summary(fit)                                        # table 1 181 

> sensi_plot(fit, clade = "Cercopithecidae") # Fig 2AB 182 

> sensi_plot(fit, clade = "Cebidae")          # Fig 2CD 183 

 184 

The analysis reveals that without species from the Cercopithecidae the regression slope is 185 

22.8% higher than the full dataset model (Table 1; Fig 2a), indicating that this family has a major 186 

negative influence on the relationship between sexual maturity and mass. Removal of Cebidae 187 

species had a smaller and inverse effect (Table 1; Fig 2b) while Lemuridae species had only a 188 

minor effect on model parameters (Table 1).  189 
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Table 1: Subset of the summary output from clade_phylm. Estimated model parameters after removing clades. 

DIFestimate indicates the shift in slope when excluding a species grouping (eqn 1), ‘change %’ expresses this as a 

percentage (eqn 3). Pval.randomization indicates the P-value for the randomization test (main text).  

 

 190 

However, Cercopithecidae contains substantially more species (N=32) than Cebidae (N= 191 

19). We would therefore expect Cercopithecidae to have a larger effect on parameter estimates, 192 

by virtue of it containing a larger proportion of the species analysed. To correct for clade size, a 193 

randomization test analyses if the change in parameter estimate is significantly different from a 194 

null distribution when randomly removing the same number of species as the focal clade. The 195 

randomisation test shows that in fact the Cercopithecidae are an influential clade only because 196 

they contain a large number of species, not because the biological pattern is substantially different 197 

(P = 0.168, Table 1, Figure 2AB). This is different for the Cebidae (and the Callitrichidae), which 198 

strongly influence our parameter estimates even when correcting for clade size, indicating a 199 

substantially different pattern (P = 0.006, Table 1, Fig. 2CD). The exclusion of the Lemuridae 200 

continues to have no effect, both in absolute terms and when correcting for clade size (Table 1).   201 

 202 
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 203 

Fig 2.  Diagnostic graphs from the function clade_phylm for the clade Cercopithecidae (A;B) and Cebidae (C;D). 204 

The effect of clade removal on the phylogenetic regression between sexual maturity and adult body mass of 95 205 

primates species (A;C). Null distribution of estimates after randomly removing the same number of species as the 206 

focal clade (B;D).    207 

 208 

 209 
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Example 2: Interaction among influential clades & phylogenetic uncertainty 210 

 In the first example, we considered only a single primate phylogeny. However, a range of 211 

alternative phylogenetic hypotheses is available for this group (Fritz et al. 2009; Kuhn et al. 2011). 212 

We can use the function tree_clade_phylm to evaluate potential interactions among these 213 

two uncertainty types.  214 

 215 

> fit2 <- tree_clade_phylm(log(sexMaturity) ~ log(adultMass),  216 

phy = primates.phy, data = primates.data, clade.col = "family", 217 

n.sim = 100, n.tree = 30) 218 

 219 

This function reruns Example 1 across multiple trees to test if the effect of clade removal 220 

on model parameters interacts with phylogenetic uncertainty. The number of trees evaluated is set 221 

with the argument ‘n.trees’.  222 

 223 

> summary(fit2)                               #Supplementary Table S1 224 

> sensi_plot(fit2, graphs = 1)                              # Fig 3A 225 

> sensi_plot(fit2, graphs = 2, clade = "Cercopithecidae") # Fig 3B 226 

> sensi_plot(fit2, graphs = 2, clade = "Cebidae")     # Fig 3C 227 
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> sensi_plot(fit2, graphs = 2, clade = "Lemuridae") # Fig 3D 228 

 229 

This analysis reveals that clade effects on estimates remained the same after taking into 230 

account multiple phylogenetic trees (Fig. 3, Supplementary Table 1). For instance, the removal of 231 

the Cercopithecidae family continues to cause a strong increase in slope (Fig. 3A). Furthermore, 232 

the effect of Cebidae (and Callitrichidae) on parameter estimates is significantly different from 233 

the null expectation across all alternative phylogenies tested (few blue dots below the red line in 234 

Fig. 3B), while the effect of Cercopithecidae and Lemuridae falls within the null distribution (Fig. 235 

3CD). Therefore, this analysis confirms the robustness of previous results, suggesting there is no 236 

interaction among sampling and phylogenetic uncertainty.  237 

 238 
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 239 

Fig 3.  Diagnostic graphs from the function tree_clade_phylm. (A) Estimated slopes after clade removal across 240 

multiple trees. Solid black line: average slope estimate among trees using the full dataset. Red dots: reruns between 241 

phylogenetic trees (small dots) and average estimate (larger dot). (B-D) The effect of clade removal on slope estimate 242 

across individual trees for Cebidae (B), Cercopithecidae (C) and Lemuridae (D). Blue dots: null expectation estimates 243 

after removing the same number of species as in the focal clade.  244 

 245 

Implications & Solutions of a sensitive result 246 

Sensitivity analyses from sensiPhy can be a starting point for further analyses (Table 2). 247 

Considering our examples, a first step could be to verify if the Cebidae data are somehow biased, 248 
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resulting in a substantially different pattern. For instance, perhaps a different method to estimate 249 

sexual maturity was used than in the other primates, which may have overestimated age of sexual 250 

maturity in this clade. Alternatively, there could be biological reasons why the Cebidae show a 251 

stronger correlation among traits, which could provide interesting biological insight. New 252 

biological hypotheses could in turn be tested using comparative analyses. For instance, if an 253 

interaction with climate might drive the differential effects of body mass on sexual maturity in the 254 

Cebidae and the Callitrichidae, an expanded comparative analysis could test that hypothesis. 255 

We highlight that a sensiPhy-analysis cannot directly reveal the underlying reason why a 256 

biological effect is not robust to a given type of uncertainty. This can be for various methodological 257 

reasons or reflect an actual biological effect. While the implications of finding that a biological 258 

conclusion is sensitive to some, or multiple, forms of uncertainty will be highly context and model-259 

system specific, we provide general pointers and solutions that users can explore (Table 2).    260 

 261 

Table 2: Potential implications and solutions when finding sensitive results 262 
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 263 

 264 

Conclusions and future directions 265 

 The sensiPhy-package offers a quick and easy approach to check the robustness of 266 

frequently used comparative methods to multiple types of uncertainties. Performing sensitivity 267 

analysis can greatly benefit authors by providing ways to estimate and account for uncertainties 268 

and to detect and report possible bias in inference. The package helps researchers to be extra 269 

careful with their results in an easy and straightforward way, increasing transparency in reporting 270 

results from comparative analyses. We hope sensiPhy will encourage the inclusion of sensitivity 271 

analysis as a common practice in comparative biology. The statistical reasoning implemented in 272 
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sensiPhy can be applied more generally to many other types of analyses. The package is open-273 

platform and welcomes users to contribute with new functionalities, facilitating new developments 274 

for sensitivity analysis in phylogenetic comparative methods through the Github platform. 275 
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