
 1 / 37 
 

OsLRR-RLK1, an early responsive leucine-rich repeat receptor-like kinase, 1 

initiates rice defense responses against a chewing herbivore 2 

 3 

Lingfei Hu1,2*, Meng Ye1,2*, Peng Kuai1, Miaofen Ye1, Matthias Erb2 and Yonggen 4 

Lou1 5 

 6 

1State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of 7 

Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, 8 

Zhejiang University, Hangzhou 310058, China; 2Institute of Plant Sciences, University 9 

of Bern, Bern 3013, Switzerland.  10 

 11 

Author for correspondence: 12 

Yonggen Lou 13 

Tel: +86 (0)571 88982622 14 

Email: yglou@zju.edu.cn 15 

 16 

* These authors contributed equally to this work 17 

 18 

Heading: OsLRR-RLK1 initiates rice defenses against herbivores 19 

 20 

Total word count (excluding 

summary, references and legends): 

6104 No. of figures: 7 (Figs 1, 7 in 

color) 

Summary: 202 No. of Tables: 0 

Introduction: 965 No. of Supporting  

Information files: 

12 (Figs S1-S11; 

Table S1 ) 

Materials and Methods: 2519   

Results: 1594   

Discussion: 1796   

Acknowledgements: 129   

 21 

s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
1
7
1
4
8
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
6
.
1
.
2
0
2
0

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/212375125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:yglou@zju.edu.cn


 2 / 37 
 

Summary 22 

 Plants are constantly exposed to a variety of environmental stresses, including 23 

herbivory. How plants perceive herbivores on a molecular level is poorly understood. 24 

Leucine-rich repeat receptor-like kinases (LRR-RLKs), the largest subfamily of RLKs, 25 

are essential for plants to detect external stress signals and may therefore also be 26 

involved in herbivore perception.  27 

 Here, we employed RNA interference silencing, phytohormone profiling and 28 

complementation as well as herbivore resistance assays to investigate the requirement 29 

of an LRR-RLK for initiating rice (Oryza sativa) -induced defense against the 30 

chewing herbivore striped stem borer (SSB) Chilo suppressalis. 31 

 We discovered a plasma membrane-localized LRR-RLK, OsLRR-RLK1, whose 32 

transcription is strongly up-regulated by SSB attack and treatment with oral secretions 33 

of Spodoptera frugiperda. OsLRR-RLK1 acts upstream of mitogen-activated protein 34 

kinase (MPK) cascades, and positively regulates defense-related MPKs, and WRKY 35 

transcription factors. Moreover, OsLRR-RLK1 is a positive regulator of SSB-, but not 36 

wound-elicited levels of jasmonic acid and ethylene, trypsin protease inhibitor activity 37 

and plant resistance towards SSB.  38 

 OsLRR-RLK1 therefore plays an important role in herbivory-induced defenses of 39 

rice. Given the well documented role of LRR-RLKs in the perception of stress-related 40 

molecules, we speculate that OsLRR-RLK1 may be involved in the perception of 41 

herbivory-associated molecular patterns.  42 

 43 

Key words: Chilo suppressalis; defense responses; ethylene; herbivory perception; 44 

jasmonic acid; leucine-rich repeat receptor-like kinase; plant-herbivore interactions; 45 

rice 46 

 47 

 48 

Introduction 49 

In response to herbivore attack, plants activate a wide array of defenses which 50 

can reduce herbivore damage, including the initiation of phosphorylation-dependent 51 

signaling cascades such as mitogen-activated protein kinase (MPK) cascades, 52 

induction of defense-related signaling molecule biosynthesis such as jasmonic acid 53 
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(JA), salicylic acid (SA) and ethylene (ET), and the accumulation of defensive 54 

compounds (Wu & Baldwin, 2010; Erb et al., 2012; Schuman & Baldwin, 2016). In 55 

order to activate their defenses, plants can recognize herbivores through 56 

damage-associated molecular patterns (DAMPs) as general wounding cues and 57 

herbivore-associated molecular patterns (HAMPs) as herbivore-specific cues 58 

(Bonaventure, 2012; Acevedo et al., 2015; Schmelz, 2015). Although the specific 59 

pattern recognition by plants is well understood for pathogens (Zipfel, 2014; Couto & 60 

Zipfel, 2016), and DAMP perception is being unravelled (Choi et al., 2014; Tanaka et 61 

al., 2014; Tripathi et al., 2018), the molecular basis of HAMP perception remains 62 

largely unknown (Mithofer & Boland, 2008; Gilardoni et al., 2011; Mescher & De 63 

Moraes, 2015; Schmelz, 2015; Schuman & Baldwin, 2016).  64 

Leucine-rich repeat receptor-like kinases (LRR-RLKs) have been shown to play 65 

a fundamental role in pattern recognition and initiation of downstream responses 66 

(Meng & Zhang, 2013; Macho & Zipfel, 2014). LRR-RLKs are characterized by 67 

tandem repeats of LRR motifs in their extracellular domains as well as an intracellular 68 

serine/threonine kinase domain (Tor et al., 2009). LRR-RLKs have been shown to be 69 

involved in plant responses to wounding (Brutus et al., 2010), gamma irradiation 70 

(Park et al., 2014), drought (Osakabe et al., 2005), salt (de Lorenzo et al., 2009), heat 71 

(Jung et al., 2015) and pathogens (Song et al., 1995; Gomez-Gomez & Boller, 2000). 72 

The flagellin-sensitive 2 (FLS2), for instance, can recognize a conserved 22 amino 73 

acid epitope (flg22) from bacterial flagellin by its 28 extracellular LRRs 74 

(Gomez-Gomez & Boller, 2000; Gomez-Gomez et al., 2001). Similarly, the 75 

elongation factor Tu receptor (EFR) can bind to N-acetylated 18 amino acid epitope 76 

(elf18) of the bacterial elongation factor Tu (ET-Tu) (Kunze et al., 2004). Xa21 in rice 77 

(Oryza sativa) confers resistance to Xanthomonas oryzae pv. oryzae via the 78 

recognition of the tyrosine-sulfated protein RaxX (Pruitt et al., 2015). LRR-RLKs 79 

have also been associated with plant responses to herbivory. Arabidopsis pepr1(Pep 80 

receptor 1)pepr2 double mutants for instance show a reduced accumulation of oral 81 

secretion (OS)-elicited JA, and a decreased resistance to Spodopera littoralis larvae 82 

(Klauser et al., 2015). Moreover, AtBAK1 (brassinosteroid insensitive1-associated 83 
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receptor kinase 1) is required for green peach aphid (Myzus persicae) 84 

elicitor-mediated callose deposition and reactive oxygen species (ROS) induction 85 

(Prince et al., 2014). Accordingly, atbak1 mutants are less resistant to the pea aphid 86 

(Acyrthosiphon pisum) (Prince et al., 2014). In addition, silencing NaBAK1 in wild 87 

tobacco (Nicotiana attenuata) attenuates wound- and OS-elicited JA and 88 

JA-isoleucine (JA-Ile) levels, but does not affect MPK activity and herbivore 89 

performance (Yang et al., 2011). Despite these findings implicating LRR-RLKs in 90 

plant responses to herbivory, the underlying molecular mechanisms remain largely 91 

unexplored. Furthermore, the role of LRR-RLKs in plant-herbivore interactions in 92 

monocotyledons, as well as their potential to increase resistance against chewing 93 

herbivores, is unknown.  94 

MPK cascades link cell surface receptors, such as LRR-RLKs, with downstream 95 

signaling components (Rodriguez et al., 2010; Meng & Zhang, 2013). Generally, the 96 

stimulated receptors initiate the MPK cascades. Once started, the active MPK kinase 97 

kinases (MPKKKs or MEKKs) can activate downstream MPK kinases (MPKKs or 98 

MEKs), which subsequently activate MPKs through phosphorylation (Pitzschke, 99 

2015). Activated MPKs phosphorylate their substrates, most of which are 100 

transcription factors and enzymes, thereby triggering downstream responses 101 

(Pitzschke, 2015). In Arabidopsis, the YODA-MKK4/MKK5-MPK3/MPK6 cascade 102 

functions at downstream of ERECTA receptor in regulating plant growth and 103 

development (Meng et al., 2012). The MEKK1-MKK1/MKK2-MPK4 and 104 

MEKK1-MKK4/MKK5-MPK3/MPK6 can regulate immune responses which are 105 

activated by FLS2 after perception of flg22 (Asai et al., 2002; Kong et al., 2012). 106 

However, whether MEKK1 acts upstream of MKK4/MKK5 remains controversial 107 

(Meng & Zhang, 2013). Moreover, in N. attenuata, Manduca sexta OS can activate 108 

NaMEK2 (ortholog of AtMKK4/AtMKK5), wound-induced protein kinase (WIPK) 109 

and SA-induced protein kinase (SIPK, orthologs of AtMPK3 and AtMPK6), which 110 

have been reported to be involved in herbivore-induced defense responses via JA 111 

signaling (Wu et al., 2007; Hettenhausen et al., 2015). Similarly, the rice 112 
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OsMEK4-OsMPK3/OsMPK6 cascade positively regulates the JA signaling pathway 113 

and resistance to rice herbivores (Wang et al., 2013; Li et al., 2015).  114 

WRKY transcription factors act as activators or repressors in plant defensive 115 

signaling webs downstream of MPK cascades (Ishihama & Yoshioka, 2012). WRKYs 116 

can be regulated by MPKs at transcriptional and/or post-translational levels (Ishihama 117 

& Yoshioka, 2012; Chi et al., 2013; Li et al., 2015). OsWRKY53, for instance, is 118 

activated by OsMPK3 and OsMPK6 through transcriptional induction and 119 

phosphorylation, thereby conferring rice resistance to both pathogens and herbivores 120 

(Chujo et al., 2014; Hu et al., 2015).  121 

Rice, the most widely consumed food crop, suffers heavily from insect pests 122 

(Chen et al., 2011). The striped stem borer (SSB) Chilo suppressalis, for instance, can 123 

bore into and feed on rice stems and causes large annual yield losses (Chen et al., 124 

2011). SSB attack induces a wide variety of defensive signaling pathways including 125 

MPKs, WRKYs, JA, SA and ET, which, in turn regulate rice defense responses (Zhou 126 

et al., 2009; Zhou et al., 2011; Lu et al., 2014; Hu et al., 2015).  127 

Here, we isolated an SSB-induced LRR-RLK gene, OsLRR-RLK1, and 128 

characterized the involvement of this gene in herbivore-induced defense responses in 129 

rice. OsLRR-RLK1 encodes a plasma membrane-localized protein and responses 130 

differentially to external stimuli. Using a reverse genetics approach, we obtained rice 131 

lines (ir-lrr) with reduced expression of this gene and showed that it can positively 132 

regulate defense-related MPKs, WRKYs as well as the levels of herbivore-induced JA 133 

and ET, which subsequently mediated the activity of defensive trypsin protease 134 

inhibitors (TrypPIs) and resistance to SSB. Our study reveals that OsLRR-RLK1 is an 135 

early responsive component of herbivore-related signaling pathways.  136 

 137 

 138 

Materials and Methods 139 

Plants and insects 140 

The rice (Oryza sativa) genotypes used in this study were cultivar Xiushui 110 141 

wild-type (WT) and transgenic lines of ir-lrr (in this study), as-mpk3 (Wang et al., 142 
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2013), as-mpk6 (Li et al., 2015), as-aos1 (Hu et al., 2015), as-lox (Zhou et al., 2009), 143 

as-acs2 (Lu et al., 2014) and as-ics1 (Wang, 2012). These genotypes were cultivated 144 

hydroponically as described in Hu et al. (2015) with the following composition: 1.43 145 

mM NH4NO3, 1 mM CaCl2, 0.32 mM NaH2PO4·2H2O, 0.51 mM K2SO4, 1.64 mM 146 

MgSO4·7H2O, 7.58 µM MnCl2·4H2O, 15.11 µM H3BO3, 0.12 µM CuSO4·5H2O, 0.06 147 

µM (NH4)6Mo7O24·4H2O, 0.12 µM ZnSO4·7H2O, 28.49 µM FeCl3·6H2O and 56.63 148 

µM citric acid monohydrate (C6H8O7·H2O). The pH of the nutrient solution was 149 

adjusted to 4.5-5.0 (Yoshida et al., 1976). Forty day-old seedlings were individually 150 

transferred to 500 ml hydroponic plastic pots, and then used for experiments 3 to 4 d 151 

after transplanting. Larvae of the SSB Chilo suppressalis larvae were originally 152 

obtained from rice fields in Hangzhou, China, and reared as described by Hu et al. 153 

(2015). All experiments of this study were repeated at least twice.  154 

 155 

Isolation and characterization of OsLRR-RLK1  156 

The full-length cDNA of OsLRR-RLK1 was amplified by PCR. The primers LRR-F 157 

(5’-TGCAGCAGGCGAGTTTCATGA-3’) and LRR-R 158 

(5’-CACAAAAAAGAGGGAAACTAA-3’) were designed based on the sequence of 159 

OsLRR-RLK1 (accession no. Os06g47650). The PCR products were cloned into the 160 

pEASY-blunt cloning vector (TransGen) and sequenced. 161 

 162 

OsLRR-RLK1 sequence analysis 163 

Structural domain prediction was performed with SMART (Simple Modular 164 

Architecture Research Tool, http://smart.embl-heidelberg.de;(Schultz et al., 1998; 165 

Letunic et al., 2015) and Pfam (http://pfam.sanger.ac.uk) databases. Prediction of 166 

trasmembrane domains was performed with TMHMM 167 

(http://www.cbs.dtu.dk/services/TMHMM/) web servers. Prediction of signal peptides 168 

was performed using SignalP 4.0 (http://www.cbs.dtu.dk/services/SignalP). Protein 169 

mass was estimated by ExPASy (http://web.expasy.org/compute_pi/, default setting). 170 

 171 

Subcellular localization assay 172 

http://smart.embl-heidelberg.de/
http://pfam.sanger.ac.uk/
http://www.cbs.dtu.dk/services/TMHMM/
http://www.cbs.dtu.dk/services/SignalP
http://web.expasy.org/compute_pi/


 7 / 37 
 

For subcellular localization, the open reading frame of OsLRR-RLK1 without the 173 

termination code was inserted into the pH7YWG2 plasmid to produce the fused 174 

OsLRR-RLK1-enhanced yellow fluorescent protein (EYFP) protein (Karimi et al., 175 

2005). The constructed plasmid was transformed into Agrobacterium tumefaciens 176 

C5851, and co-infiltrated into Nicotiana benthamiana leaves with the C5851 177 

containing mCherry plasma membrane marker plasmid (Nelson et al., 2007) at optical 178 

density at 600 nm of 0.7: 0.7. Small living pieces of N. benthamiana leaves were 179 

assayed for fluorescence 72 h after agroinfiltration. EYFP and mCherry fluorescence 180 

were observed and photographed by confocal microscopy (Leica TCS SP5). Spot 181 

detection and quantification on confocal micrographs were determined by the ImageJ 182 

software with Plot Profile function (https://imagej.nih.gov/ij/index.html).  183 

 184 

Plant Treatments 185 

For SSB treatment, one pre-starved third-instar SSB larva was placed on the stem of 186 

each plant. Typically, SSB larva crawls toward to the bottom portion of stem and 187 

chews a hole to feed on the inner tissues of the plant (Fig. S1). The moment the larva 188 

started to chew a hole was defined as time point zero for time course experiments. To 189 

measure SSB-induced plant responses, 2 cm portions of the stems around the entry 190 

hole were harvested at different time points after infestation. Control plants were not 191 

infested, and the same stem portions were harvested for analysis (Zhou et al., 2009). 192 

For mechanical wounding, the lower portion of plant stems (approximately 2 cm long) 193 

was individually pierced 200 times with a sterilized needle. This piercing treatment 194 

aimed at mimicking the tissue damage inflicted by SSB. The damaged sections were 195 

harvested in a similar manner as for SSB experiments. Control plants were not pierced, 196 

and the same stem portions were harvested (Zhou et al., 2009). For OS treatments, we 197 

could not rely on SSB OS, as the larvae do not regurgitate. We therefore used 198 

Spodoptera frugiperda OS. Spodoptera frugiperda attacks rice in the field (Pantoja et 199 

al., 1986; Stout et al., 2009) and produces OS that contains well-known defense 200 

elicitors such as fatty acid conjugates (FACs) (Yoshinaga et al., 2010; Bonaventure et 201 

al., 2011). Plants were wounded as described, and 10 µl of S. frugiperda OS was 202 
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immediately applied to the wound sites (W + S. frugiperda OS). OS was collected 203 

from third instar S. frugiperda larvae that had been feeding on rice leaves for 48 h, 204 

and diluted 1:1 in autoclaved Milli-Q water before use. Ten microliters Milli-Q water 205 

were applied to the wounds of control plants (W + water). For JA or SA treatments, 206 

plants were individually sprayed with 2 ml of JA (100 µg ml-1) or SA solution (70 µg 207 

ml-1) in 50 mM sodium phosphate buffer. Controls (Buf) were sprayed with 2 ml of 208 

the buffer (Zhou et al., 2009). For MeJA complementation, plant stems were 209 

individually treated with 100 µg of MeJA in 20 µl of lanolin paste. For lanolin 210 

treatment (+lanolin), plants were treated similarly with 20 µl of pure lanolin (Hu et al., 211 

2015). 212 

 213 

QRT-PCR  214 

For QRT-PCR analysis, five independent biological samples were used. Total RNA 215 

was isolated using the SV Total RNA Isolation System (Promega, catalog no. Z3100). 216 

One microgram of each total RNA sample was reverse transcribed with the 217 

PrimeScript RT-PCR Kit (TaKaRa, catalog no. RR014A). The QRT-PCR assay was 218 

performed on CFX96 Real-Time system (Bio-Rad). Gene expression levels were 219 

calculated using a standard curve method (Wong & Medrano, 2005). Briefly, a linear 220 

standard curve was constructed using serial dilutions of a specific cDNA standard, and 221 

drawn by plotting the threshold cycle (Ct) against the log10 of the serial dilutions. The 222 

relative transcript levels of the target genes in all unknown samples were then 223 

determined according to the standard curve. The rice actin gene OsACTIN (accession 224 

no. Os03g50885) was used as an internal standard to normalize the cDNA 225 

concentrations. Primer specificity was confirmed by agarose gel electrophoresis, 226 

melting curve analysis, and sequence verification of cloned PCR amplicons. Primer 227 

pair efficiency was determined using the above standard curve method and was found 228 

to be between 95% and 105%. The primers, amplification efficiency, TaqMan probe 229 

sequences used for TaqMan QRT-PCR (Premix Ex Taq™ [Probe qPCR]; Takara, 230 

catalog no. RR390A), and primer sequences for SYBR Green-based QRT-PCR 231 

(SYBR®Premix Ex Taq™ II [Tli RNaseH Plus]; Takara, catalog no. RR820A) are 232 
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shown in Table S1.  233 

 234 

Phylogenetic Analysis 235 

The program MEGA 6.0 was used for the phylogenetic analysis (Tamura et al., 2013). 236 

The protein sequences were aligned using the ClustalW method in MEGA 6.0 237 

(pairwise alignment: gap opening penalty 10, gap extension penalty 0.1; multiple 238 

alignment: gap opening penalty 10, gap extension penalty 0.2, protein weight matrix 239 

using Gonnet). The residue-specific and hydrophilic penalties were on, and the end 240 

gap separation and the use negative separation matrix were off. Gap separation 241 

distance was 4, and the delay divergence cutoff (percentage) was at 30. This 242 

alignment was then used to generate an unrooted tree with statistical tests (parameters 243 

for phylogeny reconstruction were neighbor-joining method [Saitou & Nei, 1987] and 244 

bootstrap [Felsenstein, 1985], n = 1,000, amino acid, Poisson model, rate among sites: 245 

uniform rates gaps/missing, data treatment: complete deletion, traditional tree without 246 

modification for graphics) with MEGA 6.0. 247 

 248 

Generation and characterization of transgenic plants  249 

A 298-bp cDNA fragment of OsLRR-RLK1 was inserted into the pCAMBIA-1301 250 

transformation vector to yield an RNA interference (RNAi) construct (Fig. S2). The 251 

vector was inserted into Xiushui 110 using A. tumefaciens-mediated transformation. 252 

The rice transformation, screening of homozygous T2 plants and identification of the 253 

number of insertions followed the same method as described in Zhou et al. (2009). 254 

Two T2 homozygous lines (ir-1 and ir-3) were used in subsequent experiments. 255 

 256 

MPK activation detection 257 

One-month-old plants of different genotypes were randomly assigned to SSB or 258 

wounding treatments (see earlier). Plant stems were harvested at 0, 15, and 30 min 259 

after treatments. Total proteins were extracted from pooled stems of five replicates at 260 

each time point using the method described by Wu et al. (2007). Forty micrograms of 261 

total proteins were separated by SDS-PAGE and transferred onto Bio Trace pure 262 
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nitrocellulose blotting membrane (PALL). Immunoblotting was performed using the 263 

method described previously (Hu et al., 2015). The primary antibodies used were the 264 

plant-actin rabbit polyclonal antibody (EarthOx, catalog no. E021080), which is used 265 

as a loading control or the rabbit monoclonal anti-phospho-ERK1/2 (anti-pT-E-pY) 266 

antibody (Cell Signaling Technologies, catalog no. 4370), which is specific for the 267 

activated (phosphorylated) form of the p44/42 MPKs, when catalytically activated by 268 

phosphorylation at the Thr-x-Tyr (TXY) motif (Segui-Simarro et al., 2005; Anderson 269 

et al., 2011). As a loading control, actin was detected on a replicate blot. 270 

Chemiluminescence-based detection (Thermo Scientific, catalog no. 32109) was 271 

performed using horseradish peroxidase-conjugated goat anti-rabbit secondary 272 

antibody (Thermo Scientific, catalog no. 31460). The signal intensities of MPKs and 273 

loading actin in the immunoblots were quantified by the ImageJ software as described 274 

(Wu & Jackson, 2018). The signal intensity of OsMPK3, OsMPK6 or loading actin 275 

for the WT sample at 0 min was set to 1. The relative activation or quantity of all 276 

other samples at each time point was expressed relative to the WT sample at 0 min. 277 

 278 

JA, JA-Ile, SA, and ET analysis 279 

Plants of different genotypes were randomly assigned to SSB or wounding treatments 280 

(see above). Plant stems were harvested at 0, 1.5 and 3 h after the start of the 281 

treatments. JA, JA-Ile and SA were extracted with ethyl acetate spiked with labeled 282 

internal standards (13C2-JA, 13C6-JA-Ile and D-SA, each with 100 ng) and analyzed 283 

with HPLC-MS/MS system following the method as described in (Lu et al., 2015). 284 

For ET analysis, infested and control plants were covered with sealed glass cylinders 285 

(diameter, 4 cm; height, 50 cm). ET levels were determined using the method 286 

described by (Lu et al., 2006). Each treatment at each time interval was replicated five 287 

times.  288 

 289 

Analysis of TrypPI activity 290 

The stems of WT plants and transgenic lines were harvested with SSB treatment for 3 291 

d. The TrypPI activity was measured using a radial diffusion assay as described by 292 
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(Jongsma et al., 1994; van Dam et al., 2001). Each treatment was replicated five 293 

times. 294 

 295 

Herbivore resistance experiments 296 

For SSB performance, freshly hatched SSB neonates were introduced to feed on 297 

different rice genotypes. Larval mass was measured 12 d after the start of the 298 

experiment. Thirty replicate plants from each line and treatment were used. To 299 

determine differences in the tolerance of plants to SSB attack, the different genotypes 300 

were individually infested with one third-instar SSB larva. The damage levels of 301 

plants were checked and photographs were taken. 302 

 303 

Data analysis 304 

Differences in transcript levels of genes, concentrations of JA, JA-Ile, SA, and ET, 305 

and herbivore performance in different treatments, lines, or treatment times were 306 

determined by analysis of variance (ANOVA). When needed, pairwise or multiple 307 

comparisons of Least Squares Means (LSMeans) were corrected using the False 308 

Discovery Rate (FDR) method (Benjamini & Hochberg, 1995). All analyses were 309 

conducted using R 3.2.2 (R Foundation for Statistical Computing, Vienna, Austria). 310 

 311 

Accession Numbers 312 

Sequence data from this article can be found in the Rice Annotation Project under 313 

accession numbers OsLRR-RLK1 (Os06g47650), OsWRKY70 (Os05g39720), 314 

OsWRKY53 (Os05g27730), OsWRKY45 (Os05g25770), OsWRKY24 (Os01g61080), 315 

OsWRKY33 (Os03g33012), OsWRKY30 (Os08g38990), OsMEK4 (Os2g54600), 316 

OsMPK3 (Os03g17700), OsMPK6 (Os06g06090), OsHI-LOX (Os08g39840), 317 

OsAOS1 (Os03g55800), OsICS1 (Os09g19734), OsACS2 (Os04g48850), and 318 

OsACTIN (Os03g50885). 319 

 320 

 321 

Results 322 
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OsLRR-RLK1 is an herbivory induced LRR-RLK  323 

Using microarrays, we identified a putative LRR-RLK that was up-regulated after 324 

SSB infestation (Zhou et al., 2011), and obtained its full-length cDNA by reverse 325 

transcription PCR. The cDNA nucleotide sequence contains an open reading frame 326 

(ORF) of 3201 bp encoding a predicted protein of 1066 amino acids with an estimated 327 

molecular mass of 116 kDa (Fig. S3). Analysis of the deduced amino acid sequence 328 

predicted the presence of an N-terminal extracellular region including a signal peptide 329 

and multiple LRR domains, a single transmembrane domain, and a C-terminal 330 

cytoplasmic serine/threonine domain (Fig. S3). Based on these characteristics, the 331 

gene was named OsLRR-RLK1 (for O. sativa leucine-rich repeat receptor-like kinase 332 

1). 333 

Comparative analysis of the RLK families in Arabidopsis and rice showed that 334 

OsLRR-RLK1 belongs to the LRR-Xb subfamily, cluster 45, clade JA (Shiu et al., 335 

2004). Its closest characterized homologs in Arabidopsis were identified as plant 336 

peptide containing sulfated tyrosine 1 receptor (PSY1R), phytosulfokine receptor 2, 337 

(PSKR2), phytosulfokine receptor 1 (PSKR1), and receptor like protein 2 (RLP2) 338 

(Fig.S4 and S5). PSY1R and PSKR1 have been reported to modify the immunity of 339 

Arabidopsis to pathogens (Igarashi et al., 2012; Mosher et al., 2013; Shen & Diener, 340 

2013), and we therefore hypothesized that OsLRR-RLK1 may also be involved in rice 341 

defenses.  342 

To determine the subcellular localization of OsLRR-RLK1, its coding region was 343 

fused to enhanced yellow fluorescent protein (EYFP) at the N-terminal end, and then 344 

expressed in N. benthamiana leaves under the control of CaMV 35S promoter 345 

(35S::OsLRR-RLK1::EYFP). As the membrane-localized marker AtPIP2A (Nelson et 346 

al., 2007), a fluorescent signal was observed at the plasma membrane (Fig. 1). This 347 

suggests that OsLRR-RLK1 may contribute to signal transduction as a component of 348 

a receptor system in the plasma membrane.  349 

To investigate the regulation of OsLRR-RLK1, we examined its expression levels 350 

upon different elicitation treatments using quantitative real-time (QRT)-PCR. 351 

Compared with basal mRNA levels in non-manipulated stems (Con), OsLRR-RLK1 352 
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transcript levels were rapidly and strongly increased upon SSB attack (Fig. 2a). 353 

Mechanical wounding also increased OsLRR-RLK1 mRNA levels, but the induction 354 

was weaker and slower compared to SSB attack (Fig. 2a, b). Adding S. frugiperda OS 355 

to the wounds strongly enhanced wound-induced expression of OsLRR-RLK1 (Fig. 356 

2c). JA treatment only marginally induced the OsLRR-RLK1 transcript levels, and SA 357 

treatment did not (Fig. 2d, and Fig. S6). These data show that OsLRR-RLK1 is 358 

strongly induced by herbivory, and responds strongly to OS and weakly to wounding 359 

alone.  360 

 361 

OsLRR-RLK1 silencing by RNA interference 362 

To study the function of OsLRR-RLK1 in herbivore-induced responses in rice, 363 

transformed rice plants with reduced expression levels of OsLRR-RLK1 were 364 

generated by Agrobacterium tumefaciens-based plant transformation. Two 365 

homozygous single insertion OsLRR-RLK1-silenced lines (ir-lrr lines: ir-1 and ir-3) 366 

were selected and used to characterize the role of OsLRR-RLK1 (Fig. S7). QRT-PCR 367 

analysis showed that both the constitutive and SSB-induced transcript levels of 368 

OsLRR-RLK1 in ir-lrr lines were reduced 70-80% compared to wild-type (WT) plants 369 

(Fig. S8a). The RNAi construct did not co-silence the transcript levels of the genes 370 

whose nucleotide sequences have the highest similarity to OsLRR-RLK1, e. g. 371 

LOC_Os06g47760 (Top identity 92.72%, Top query coverage, 56.66%, rice genome 372 

annotation project algorithm), LOC_Os02g05960 (82.42%, 18.23%), 373 

LOC_Os02g05980 (82.37%, 18.89%), LOC_Os02g05920 (82.21%, 12.91%), and 374 

LOC_Os02g05940 (82.03%, 18.36%) (Fig. S8). The growth and morphology of ir-lrr 375 

lines were indistinguishable from those of WT plants at all the development stages 376 

both in the greenhouse and the field (Fig. S9).  377 

 378 

OsLRR-RLK1 regulates SSB-elicited OsMEK4, OsMPK3 and OsMPK6 379 

MPKs are required for rice defense in response to SSB attack (Wang et al., 2013). To 380 

determine whether the silencing of OsLRR-RLK1 changes MPK cascades, we 381 

measured the activation and expression levels of OsMPK3 (also called OsMPK5) and 382 
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OsMPK6 (OsMPK1 and OsSIPK) in WT and ir-lrr plants. OsMPK3 is the ortholog of 383 

AtMPK3 and WIPK, and OsMPK6 is the ortholog of AtMPK6 and SIPK (Xie et al., 384 

2014). Their activation was determined by immunoblot analysis using an 385 

anti-phosphoERK1/2 (anti-pT-E-pY) antibody. This antibody specifically recognizes 386 

the phosphorylated residues within MPK activation loop (the so called pT-E-pY motif, 387 

where p denotes the phosphorylated residue), which is required for kinase activity. 388 

(Segui-Simarro et al., 2005; Anderson et al., 2011; Schwessinger et al., 2015). In WT 389 

plants, SSB infestation rapidly and strongly induced the activation of OsMPK3 and 390 

OsMPK6. The activation was reduced in ir-lrr lines (Fig. 3a, and Fig. S10). 391 

Furthermore, SSB infestation rapidly and strongly induced the expression levels of 392 

OsMPK3 and OsMEK4, and marginally induced the expression of OsMPK6 in WT 393 

plants (Fig. 3b-d). The expression levels of OsMPK3 and OsMEK4 were significantly 394 

decreased in ir-lrr plants compared with those in WT plants, whereas OsMPK6 395 

expression was not affected (Fig. 3b-d). To investigate whether OsLRR-RLK1 is 396 

regulated by MPKs, OsLRR-RLK1 expression was measured in MPK-silenced plants 397 

(as-mpk3 and as-mpk6, Wang et al., 2013; Li et al., 2015). OsLRR-RLK1 expression 398 

did not differ between WT and MPK-silenced plants (Fig. 3e, f). These results show 399 

that OsLRR-RLK1 is a positive regulator of MPKs, and probably acts upstream of the 400 

MPK signaling pathway.  401 

 402 

OsLRR-RLK1 regulates defense-related WRKYs 403 

WRKYs are an important family of transcription factors to regulate plant defenses 404 

(Bakshi & Oelmuller, 2014). We have identified that OsWRKY70, OsWRKY53, 405 

OsWRKY45, OsWRKY24 play crucial roles in the modulation of rice defense in 406 

response to herbivory (Li, 2012; Hu et al., 2015; Li et al., 2015; Huangfu et al., 2016). 407 

Thus, we determined whether OsLRR-RLK1 regulates the transcript levels of these 408 

four WRKYs and two additional defense-related WRKYs: OsWRKY30 and 409 

OsWRKY33 (Koo et al., 2009; Han et al., 2013). Silencing of OsLRR-RLK1 greatly 410 

attenuated transcript accumulations of OsWRKY70, OsWRKY53, OsWRKY45 and 411 

OsWRKY24, while it significantly enhanced OsWRKY30 and OsWRKY33 transcript 412 
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levels after infestation with SSB larvae for 15 and 30 min (Fig. 4). 413 

 414 

OsLRR-RLK1 regulates SSB-elicited JA, SA and ET biosynthesis 415 

Given that JA, JA-Ile, SA and ET are central mediators of rice defenses against 416 

herbivores (Zhou et al., 2009; Zhou et al., 2011; Lu et al., 2014), we tested whether 417 

the reduced expression of OsLRR-RLK1 alters the production of these phytohormones. 418 

JA and JA-Ile induction were significantly reduced in ir-lrr lines relative to WT plants 419 

(Fig. 5a, b). The transcript levels of JA biosynthesis genes OsHI-LOX and OsAOS1 420 

(Zhou et al., 2009; Hu et al., 2015) were also reduced in ir-lrr lines (Fig. 5c, d). ET 421 

also accumulated in smaller amounts in SSB-infested ir-lrr lines (Fig. 5e), which was 422 

associated with reduced expression of the ET biosynthetic gene OsACS2 (Fig. 5f; Lu 423 

et al., 2014). By contrast, ir-lrr lines accumulated significantly higher SSB-induced 424 

SA levels (Fig. 5g) and showed higher expression of the SA biosynthesis gene OsICS1 425 

(Wang, 2012) (Fig. 5h).  426 

Most LRR-RLKs act upstream of hormonal signaling pathways (Antolin-Llovera 427 

et al., 2012). To determine if this is also the case for OsLRR-RLK1 in rice, we 428 

quantified the expression of OsLRR-RLK1 in transgenic plants with impaired JA, SA 429 

or ET biosynthesis (as-lox, Zhou et al., 2009; as-aos1, Hu et al., 2015; as-ics1, Wang, 430 

2012; as-acs2, Lu et al., 2014). The levels of constitutive and induced OsLRR-RLK1 431 

transcripts in as-lox, as-aos1, as-ics1 and as-acs2 lines were similar to those in WT 432 

plants (Fig. 6). Taken together, these results show that OsLRR-RLK1 acts upstream of 433 

JA, SA and ET signaling, and regulates the herbivory-induced biosynthesis of these 434 

hormones. 435 

 436 

OsLRR-RLK1 does not regulate wound-elicited OsMPK3 and OsMPK6 437 

activation and the levels of JA and SA  438 

To further clarify the OsLRR-RLK1 regulation of herbivory-induced defense 439 

responses, we analyzed the MPK activation, JA and SA levels, in ir-lrr lines and WT 440 

plants after mechanical wounding. OsMPK3 was strongly activated at 30 min, while 441 

OsMPK6 was slightly induced at 15 min and decreased at 30 min by wounding. 442 
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However, in contrast with SSB infestation, the wound-induced MPK activation 443 

remained unchanged in ir-lrr lines relative to WT plants (Fig. S11a). Similarly, 444 

mechanical wounding significantly induced JA, JA-Ile and SA, but the induction of 445 

these phytohormones did not differ between ir-lrr lines and WT plants (Fig. S11b-d). 446 

These results suggest that OsLRR-RLK1 does not regulate wound-induced OsMPK3 447 

and OsMPK6 activation and the JA, JA-Ile and SA production in the absence of an 448 

actual herbivore.  449 

 450 

Silencing OsLRR-RLK1 leads to decreased TrypPI activity and rice resistance to 451 

SSB 452 

TrypPIs in rice are antidigestive proteins which are strongly induced by SSB and slow 453 

down SSB growth (Zhou et al., 2009). To analyze the function of OsLRR-RLK1 in 454 

regulating TrypPIs, we determined the TrypPI activity in ir-lrr lines and WT plants 3d 455 

after SSB infestation. Compared with WT plants, ir-lrr lines showed a decrease of 456 

TrypPI activity of 45% (Fig. 7a). Consistently, SSB neonates gained more weight on 457 

ir-lrr lines than WT plants (Fig. 7b). Furthermore, ir-lrr lines were more susceptible to 458 

SSB than WT plants: after infestation by a third instar SSB larva for 7d, ir-lrr plants 459 

had completely died, whereas WT plants only showed mild dead heart symptoms (Fig. 460 

7g). 461 

To determine if the impaired TrypPI activity and rice resistance in ir-lrr lines can 462 

be rescued by restoring JA-dependent defenses, we treated ir-lrr plants with 100 μg 463 

methyl jasmonate (MeJA) in lanolin paste. This complementation restored the TrypPI 464 

activity to WT levels (Fig. 7c). Meanwhile, SSB larvae feeding on MeJA-treated ir-lrr 465 

plants exhibited the same performance as the ones feeding on WT plants (Fig. 7d). 466 

Moreover, in another experiment, we found that application of pure lanolin did not 467 

impair the difference in TrypPI activity and larval performance between ir-lrr lines 468 

and WT plants (Fig. 7 e and f). These results suggest that the compromised resistance 469 

of OsLRR-RLK1-silenced plants is a result of reduced JA signaling that leads to a 470 

reduction in defense activation, including TrypPI activity.  471 

 472 
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Discussion  473 

This study identifies OsLRR-RLK1 as an early herbivore-responsive receptor-like 474 

kinase that is required for the initiation of rice defenses against a chewing herbivore.  475 

RLKs can be classified on the basis of their extracellular domains (Tor et al., 476 

2009). OsLRR-RLK1 is placed into the LRR-RLK family due to its putative LRRs in 477 

the ectodomain. OsLRR-RLK1 shows high sequence similarity to three receptors 478 

PSY1R, PSKR2, PSKR1 and one LRR-receptor like protein (RLP) RLP2 in 479 

Arabidopsis (Fig. S5). PSY1R and PSKR1 can specifically bind their ligands, the 480 

tyrosine-sulfated peptides PSK or PSY1, via LRR domains (Matsubayashi et al., 481 

2002). PSKR2 is the paralog of PSKR1. RLP2 shares high sequence similarity with 482 

the receptor CLAVATA2 (CLV2), which can bind the small signaling peptide CLV3 483 

(Wang et al., 2010). Like PSKR1 and RLP2, OsLRR-RLK1 localized at the plasma 484 

membrane (Fig. 1). It is therefore plausible that OsLRR-RLK1-LRR binds to early 485 

signaling elements that are associated with herbivory, including for instance HAMPs 486 

themselves. Identifying the ligands of OsLRR-RLK1 is an exciting prospect of this 487 

work. 488 

Plants can specifically distinguish HAMPs and DAMPs to tailor their defense 489 

responses (Bonaventure, 2012). In N. attenuata, NaBAK1 transcript levels are quickly 490 

and strongly increased after M. sexta OS treatment, but only marginally increased by 491 

wounding (Yang et al., 2011). In Arabidopsis, the application of OS as well as S. 492 

littoralis feeding strongly activates the promoters of PEPR1 and PEPR2, whereas 493 

wounding alone does not (Klauser et al., 2015). In our study, the transcript levels of 494 

OsLRR-RLK1 were low in non-manipulated WT plants, but rapidly induced at the 495 

early stage (at 0.5 h) and strongly induced at the late stage (after 4 h) by SSB attack. 496 

The induction by larval OS was much stronger than mechanical wounding alone. 497 

Furthermore, OsLRR-RLK1 regulated SSB-elicited, but not wounding-elicited MPK 498 

activation and phytohormone biosynthesis (Fig. 5, and Fig. S11). These results show 499 

that OsLRR-RLK1 specifically responds to herbivory, and regulates herbivory-induced 500 

plant defenses.  501 

Our work places the transcriptional induction of OsLRR-RLK1 upstream of MPK, 502 
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WRKY and phytohormone signaling. Exogenous JA only marginally induced 503 

OsLRR-RLK1 expression, and SA did not induce the expression of the gene at all (Fig. 504 

2). Furthermore, impairing MPK, JA, SA, or ET signaling did not influence 505 

OsLRR-RLK1 induction (Figs. 3 and 6). Thus, the rapid transcriptional induction of 506 

OsLRR-RLK1 occurs independently of MPKs, JA, SA and ET. For instance it is 507 

possible that OsLRR-RLK1 activation triggers transcription via a positive feedback 508 

loop. In Arabidopsis, PEPR1 and PEPR2 are transcriptionally induced by small 509 

peptides (AtPeps), which are produced from damage-/herbivore-responsive Precursor 510 

Protein of Plant Elicitor Peptide (PROPEP) genes, which are in turn regulated by 511 

AtWRKY33 (Huffaker et al., 2006; Yamaguchi et al., 2010; Logemann et al., 2013). 512 

Furthermore, WRKY proteins can directly bind the W-box elements in the promoter 513 

of RLK4 gene to regulate its expression (Du & Chen, 2000). Therefore, the 514 

transcriptional induction of OsLRR-RLK1 by herbivory or wounding may be achieved 515 

through yet unidentified WRKY activity.  516 

Plant MPK cascades play central roles in amplifying and transducing signals 517 

generated by receptors (Meng & Zhang, 2013). In Arabidopsis, for example, 518 

pepr1pepr2 double mutants have markedly reduced expression levels of MPK3 519 

(Yamaguchi et al., 2010). A loss of SERK3/BAK1 results in a marked reduction of 520 

flg22 and elf18-triggered activation of MPK3 and MPK6 (Heese et al., 2007), and the 521 

knock out mutants for chitin elicitor receptor kinase 1 (CERK1) completely lose the 522 

ability to activate MPK3 and MPK6 in response to chitin (Miya et al., 2007). 523 

Respective CLV receptors possess unique activities for the regulation of MPK6 in 524 

Arabidopsis and N. benthamiana (Betsuyaku et al., 2011). Here, we found that 525 

OsMPK6 had high constitutive transcript levels and was only slightly induced by SSB 526 

infestation, while OsMPK3 exhibited the opposite effect. Moreover, silencing 527 

OsLRR-RLK1 reduced the expression levels of OsMEK4 and OsMPK3, as well as the 528 

activation of OsMPK3 and OsMPK6 (Fig. 3). These data suggest that OsMPK3 and 529 

OsMPK6 might also be a pair of paralogous genes, like AtMPK3 and AtMPK6 in 530 

Arabidopsis (Menges et al., 2008), and that OsLRR-RLK1 can activate MPK 531 

components upstream of OsMPK3 and OsMPK6. So far, several receptor-MPK 532 
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cascades have been reported. For example, cascades composed of 533 

CERK1-PBL27-MAPKKK5-MKK4/MKK5-MPK3/MPK6 in Arabidopsis and 534 

OsCERK1-OsRLCK185-OsMAPKKK18 (or OsMAPKKKε) 535 

-OsMKK4-OsMPK3/OsMPK6 in rice have recently been reported to be involved in 536 

chitin signaling (Yamada et al., 2016; Wang et al., 2017; Yamada et al., 2017). Further 537 

researches should elucidate which MPK cascades function downstream of 538 

OsLRR-RLK1. 539 

MPKs are known to be upstream regulators of WRKY transcription factors, 540 

including the ones that are regulated by OsLRR-RLK1 (Fig. 4). It has been reported 541 

that OsWRKY70, OsWRKY53, OsWRKY45, OsWRKY33, OsWRKY30 and 542 

OsWRKY24 are downstream of MPK cascades (Koo et al., 2009; Li, 2012; Shen et 543 

al., 2012; Ueno et al., 2013; Chujo et al., 2014; Hu et al., 2015; Li et al., 2015). 544 

OsWRKY70, OsWRKY53, OsWRKY45 and OsWRKY30 can physically interact 545 

with and be phosphorylated by OsMPK3 and/or OsMPK6 (Shen et al., 2012; Ueno et 546 

al., 2013; Chujo et al., 2014; Hu et al., 2015; Li et al., 2015). In Arabidopsis, after 547 

perception by FLS2, flg22 induces WRKY22 and WRKY29 through activation of a 548 

MPK cascade composed of MEKK1, MKK4/MKK5, and MPK3/MPK6 (Asai et al., 549 

2002). In rice, upon herbivore or pathogen infestation, OsWRKY53 and OsWRKY70 550 

are phosphorylated and activated by the OsMKK4-OsMPK3/OsMPK6 cascade 551 

(Chujo et al., 2014; Li et al., 2015). Therefore, the regulation of defense-related 552 

WRKYs probably occurs through MPK cascade which is modulated by 553 

OsLRR-RLK1. Additionally, the induction of some WRKYs as well as MPKs and 554 

hormone biosynthesis-related genes seems to be delayed after OsLRR-RLK1-silencing. 555 

This may be caused by functional redundancy with other homologous RLK genes or 556 

non-complete silencing of OsLRR-RLK1. 557 

In N. attenuata, NaBAK1 regulates the accumulation of JA in responses to M. 558 

sexta (Yang et al., 2011). In Arabidopsis, the lack of PEPR1/PEPR2 receptors leads to 559 

reduced production of JA and JA-Ile after the application of S. littoralis OS (Klauser 560 

et al., 2015). Furthermore, PSKR1 and PSY1R modify plant immunity to pathogens 561 

via JA- and SA- mediated signaling pathways (Mosher et al., 2013). Here, we found 562 
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that OsLRR-RLK1 positively regulated the production of SSB-elicited JA, ET as well 563 

as the transcript levels of their biosynthesis-related genes, such as OsHI-LOX, 564 

OsAOS1 and OsACS2, whereas it negatively influenced the accumulation of SA after 565 

SSB infestation, including the transcript levels of SA biosynthesis-related gene 566 

OsICS1 (Fig. 5). Interestingly, it was also observed that expression levels of 567 

OsHI-LOX, OsAOS1 and OsACS2 were initially reduced in ir-lrr lines, and then back 568 

to WT levels by 90 min after SSB attack, while OsICS1 showed the opposite effect. 569 

This may reflect the antagonistic crosstalk of JA/ET and SA signaling pathways in 570 

rice as reported previously (Lee et al., 2004; Qiu et al., 2007; Yuan et al., 2007). 571 

Extensive studies have shown that MPKs and WRKYs mediate the biosynthesis of JA, 572 

SA, and ET in rice. For example, OsMPK3 positively regulates SSB-elicited JA levels 573 

(Wang et al., 2013). OsMPK6 is involved in pathogen-related JA, SA accumulation 574 

(Shen et al., 2010). OsWRKY70, OsWRKY53, OsWRKY45, and OsWRKY24 are 575 

implicated in herbivore-induced JA, SA and ET biosynthesis (Li, 2012; Hu et al., 576 

2015; Li et al., 2015; Hu et al., 2016; Huangfu et al., 2016). OsWRKY33 and 577 

OsWRKY30 function as positive regulators of SA signaling pathway in rice (Koo et 578 

al., 2009; Han et al., 2013). Given the strong effects of OsLRR-RLK1 on MPKs and 579 

WRKYs found here, the regulation of JA, SA, and ET levels by OsLRR-RLK1 may 580 

be achieved mainly through MPK cascades and WRKYs.  581 

In Arabidopsis, pepr1pepr2 double mutants display reduced resistance to S. 582 

litorralis (Klauser et al., 2015), and bak1 mutant plants are compromised in immunity 583 

to aphids (Prince et al., 2014). Here our experiments show that silencing of 584 

OsLRR-RLK1 decreased the TrypPIs activity and the resistance of rice to SSB larvae, 585 

possibly via the impaired JA signaling (Fig. 7). This finding is consistent with our 586 

previous results showing that as-lox plants, which had lower elicited JA levels, were 587 

susceptible to SSB attack (Zhou et al., 2009). Previous studies have also demonstrated 588 

that the ET signaling pathway positively regulates rice resistance to SSB: antisense 589 

expression of OsACS2 (as-acs2) reduced herbivore-induced ET emission and the 590 

resistance of rice to SSB (Lu et al., 2014). Therefore, we propose that the 591 

compromised resistance of ir-lrr lines to SSB is a result of low JA and ET levels, 592 



 21 / 37 
 

which are positively mediated by OsLRR-RLK1. 593 

In summary, our results demonstrate that OsLRR-RLK1 functions as a potential 594 

herbivore-recognition receptor of rice, and initiates induced defenses against SSB. We 595 

propose that the membrane-localized OsLRR-RLK1 may either directly bind to 596 

HAMPs or indirectly bind to other HAMP-induced early signaling molecules and 597 

immediately activate MPKs, which subsequently increase the activity of downstream 598 

WRKYs. Then, the activated MPKs and WRKYs regulate the biosynthesis of 599 

herbivore-related phytohormones, including JA, SA and ET, which result in effective 600 

induced defense responses against SSB. Our findings show how a plant employs an 601 

early responsive LRR-RLK to trigger specific defense responses against herbivores. 602 

We propose OsLRR-RLK1 as a candidate receptor of early signaling molecules that 603 

are associated with herbivory.  604 
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Figure Legends 937 

 938 

Fig. 1. Subcellular localization of OsLRR-RLK1. 939 

Agrobacterium-mediated transient expression in Nicotiana benthamiana leaves of 940 

AtPIP2A-mCherry and OsLRR-RLK1-enhanced yellow fluorescent protein (EYFP). 941 

The first column shows mCherry fluorescence, and the second column shows the 942 

EYFP fluorescence. Overlaid image indicates co-localization of AtPIP2A-mCherry 943 

and OsLRR-RLK1-EYFP. White square in the overlaid image is shown as a detailed 944 

picture which is magnified in the fourth column. Yellow line in the detailed picture 945 

indicates the region of interest (ROI) that corresponds to the intensity profile in the 946 

last column. Intensity profile indicates the gray value of pixels across the ROI in the 947 

mCherry and EYFP channels. Leaf epidermal cells were imaged by confocal 948 

microscopy 72 h after infiltration with a suspension of each Agrobacterium 949 

tumefaciens strain at an OD600 = 0.7. Scale bars: 20 μm. 950 

Fig. 2. Transcriptional regulation of OsLRR-RLK1. 951 

Mean transcript levels (+SE, n = 5) of OsLRR-RLK1 in rice stems that were infested 952 

by rice striped stem borer (SSB, a), mechanically wounded (W, b), treated by 953 

Spodoptera frugiperda oral secretions (OS) after wounding (W + S. frugiperda OS, c), 954 

or jasmonic acid (JA, d). Con, control plants; Buf, buffer. Transcript levels were 955 

analyzed by quantitative real-time PCR. Asterisks represent significant differences 956 

between treatments and controls at the indicated times (Two-way analysis of variance 957 

[ANOVA], followed by pairwise comparisons of Least Squares Means [LSMeans], P 958 

values were corrected by False Discovery Rate [FDR] method; *, P < 0.05; **, P < 959 

0.01; ***, P < 0.001). 960 

Fig. 3. OsLRR-RLK1 acts upstream of MPK cascades. 961 

(a) MPK activation in ir-lrr lines and wild-type (WT) plants, which were infested by a 962 

third-instar striped stem borer (SSB) larva. Infested stems from five replicate plants 963 

were harvested at indicated times. Immunoblotting was performed using either 964 

anti-pTEpY antibody (upper panel) to detect phosphorylated MPKs, or actin antibody 965 

(lower panel) as a loading control which was detected on a replicate blot. For 966 
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quantification of immunodetection signals, see Fig. S10. This experiment was 967 

repeated three times, and the effect of OsLRR-RLK1 was consistently observed (Fig. 968 

S10). (b to d) Mean transcript levels (+SE, n = 5) of OsMPK3 (b), OsMEK4 (c) and 969 

OsMPK6 (d) in ir-lrr lines and WT plants that were individually infested by a 970 

third-instar SSB larva. (e, f) Mean transcript levels (+SE, n = 5) of OsLRR-RLK1 in 971 

as-mpk3 (e), as-mpk6 (f) and WT plants that were individually infested by a 972 

third-instar SSB larva. Asterisks represent significant differences between ir-lrr lines 973 

and WT plants at indicated times (Two-way analysis of variance [ANOVA], followed 974 

by pairwise comparisons of Least Squares Means [LSMeans], P values were corrected 975 

by False Discovery Rate [FDR] method; *, P < 0.05; **, P < 0.01; ***, P < 0.001). 976 

Fig. 4. OsLRR-RLK1 regulates defense-related WRKY transcription factors. 977 

Mean transcript levels (+SE, n = 5) of OsWRKY70 (a), OsWRKY53 (b), OsWRKY45 978 

(c), OsWRKY24 (d), OsWRKY30 (e) and OsWRKY33 (f) in ir-lrr lines and wild-type 979 

(WT) plants that were individually infested by a third-instar striped stem borer larva. 980 

Asterisks represent significant differences between ir-lrr lines and WT plants at 981 

indicated times (Two-way analysis of variance [ANOVA], followed by pairwise 982 

comparisons of Least Squares Means [LSMeans], P values were corrected by False 983 

Discovery Rate [FDR] method; *, P < 0.05; **, P < 0.01; ***, P < 0.001).  984 

Fig. 5. OsLRR-RLK1 mediates herbivore-induced jasmonic acid (JA), salicylic 985 

acid (SA) and ethylene (ET) biosynthesis. 986 

(a, b) Mean levels (+SE, n = 5) of JA (a) and JA-Ile (b) in ir-lrr lines and wild-type 987 

(WT) plants that were individually infested by a third-instar striped stem borer (SSB) 988 

larva. (c, d) Mean transcript levels (+SE, n = 5) of OsHI-LOX (c) and OsAOS1 (d) in 989 

ir-lrr lines and WT plants that were individually infested by a third-instar SSB larva. 990 

(e) Mean levels (+SE, n = 5) of ET in ir-lrr lines and WT plants that were individually 991 

infested by a third-instar SSB larva. (f) Mean transcript levels (+SE, n = 5) of 992 

OsACS2 in ir-lrr lines and WT plants that were individually infested by a third-instar 993 

SSB larva. (g) Mean levels (+SE, n = 5) of SA in ir-lrr lines and WT plants that were 994 

individually infested by a third-instar SSB larva. (h) Mean transcript levels (+SE, n = 995 

5) of SA biosynthesis-related gene OsICS1 in ir-lrr lines and WT plants that were 996 
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individually infested by a third-instar SSB larva. FW, fresh weight. Asterisks 997 

represent significant differences between ir-lrr lines and WT plants at indicated times 998 

(Two-way analysis of variance [ANOVA], followed by pairwise comparisons of Least 999 

Squares Means [LSMeans], P values were corrected by False Discovery Rate [FDR] 1000 

method; *, P < 0.05; **, P < 0.01; ***, P < 0.001). 1001 

Fig. 6. OsLRR-RLK1 is not regulated by defense hormone signaling cascades. 1002 

Mean transcript levels (+SE, n = 5) of OsLRR-RLK1 in as-lox (a), as-aos1 (b), as-ics1 1003 

(c), as-acs2 (d) lines and wild-type (WT) plants that were individually infested by a 1004 

third-instar striped stem borer larva.  1005 

Fig. 7. Silencing of OsLRR-RLK1 attenuates trypsin protease inhibitor (TrypPI) 1006 

activity and rice resistance to the striped stem borer (SSB). 1007 

(a) Mean TrypPI activity (+SE, n = 5) in ir-lrr lines and wild-type (WT) plants that 1008 

were individually infested by a third-instar SSB larva for 3 days. (b) Mean larval 1009 

weight (+SE, n = 30) of SSB feeding on ir-lrr lines or WT plants for 12 days. Letters 1010 

indicate significant differences between lines (one way-analysis of variance [ANOVA], 1011 

followed by multiple comparisons of Least Squares Means [LSMeans], which were 1012 

corrected using False Discovery Rate [FDR] method, P < 0.05). (c) Mean activity 1013 

(+SE, n = 5) of TrypPIs in ir-1 line and WT plants which were individually treated 1014 

with 100 μg of methyl jasmonate (MeJA) in 20 µl of lanolin paste (+MeJA) followed 1015 

by a SSB larva feeding for 3 days. (d) Mean larval weight (+SE, n = 30) of SSB 1016 

larvae 12 d after feeding on ir-1 and WT plants that were individually treated with 100 1017 

μg of MeJA in 20 µl of lanolin paste (+MeJA). (e) Mean activity (+SE, n = 5) of 1018 

TrypPIs in ir-1 line and WT plants which were individually treated with 20 µl of pure 1019 

lanolin paste (+Lanolin) followed by a SSB larva feeding for 3 days. (f) Mean larval 1020 

weight (+SE , n = 30) of SSB larvae 12 d after feeding on ir-1 and WT plants that 1021 

were individually treated with 20 µl of pure lanolin paste (+Lanolin). Asterisks 1022 

represent significant differences between ir-1 and WT plants (Student’s t tests, **, P < 1023 

0.01). (g) Damaged phenotypes of ir-lrr lines and WT plants that were individually 1024 

infested by a third-instar SSB larva for 7 days (n = 20). 1025 
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Supporting Information 1026 

 1027 

Additional supporting information may be found in the online version of this article. 1028 

Fig. S1 Experimental setup used to infest rice plants with striped stem borer 1029 

(SSB) larvae.  1030 

Fig. S2 Transformation vector used in this study. 1031 

Fig. S3 Nucleotide sequence and the deduced amino acid sequence of 1032 

OsLRR-RLK1. 1033 

Fig. S4 Phylogenetic analysis of defense-related leucine rich repeat receptor-like 1034 

kinases from Arabidopsis, tobacco and rice. 1035 

Fig. S5 Protein alignment of OsLRR-RLK1 with homologous proteins in 1036 
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Fig. S6 Salicylic acid (SA) treatment does not induce the expression of 1038 

OsLRR-RLK1. 1039 
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Fig. S8 Reduction of OsLRR-RLK1 does not co-silence the transcript levels of its 1041 
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(WT) plants. 1045 
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activation and the levels of JA and SA. 1047 
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