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Abstract

Understanding ion transport through clays and clay membranes is important for many
geochemical and environmental applications. Ion transport is affected by electrostatic
forces exerted by charged clay surfaces. Anions are partly excluded from pore water
near these surfaces, whereas cations are enriched. Such effects can be modeled by the
Donnan approach. Here we introduce a new, comparatively simple way to represent Don-
nan equilibria in transport simulations. We include charged surfaces as immobile ions in
the balance equation and calculate coupled transport of all components, including the
immobile charges, with the Nernst-Planck equation. This results in an additional diffu-
sion potential that influences ion transport, leading to Donnan ion distributions while
maintaining local charge balance. The validity of our new approach was demonstrated
by comparing Nernst-Planck simulations using the reactive transport code Flotran with
analytical solutions available for simple Donnan systems. Attention has to be paid to
the numerical evaluation of the electrochemical migration term in the Nernst-Planck
equation to obtain correct results for asymmetric electrolytes. Sensitivity simulations
demonstrate the influence of various Donnan model parameters on simulated anion ac-
cessible porosities. It is furthermore shown that the salt diffusion coefficient in a Donnan
pore depends on local concentrations, in contrast to the aqueous salt diffusion coefficient.
Our approach can be easily implemented into other transport codes. It is versatile and
facilitates, for instance, assessing the implications of different activity models for the
Donnan porosity.
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1. Introduction

Transport of ions through clays is important in many geochemical and environmental
processes (Bourg et al., 2015; Neuzil & Person, 2017). Clay behaves in many ways
similar to a membrane because the clay surfaces are negatively charged. This affects the
concentration of ions in the pore solution and their transport through the clay sample
(Jougnot et al., 2009; Birgersson & Karnland, 2009; Gimmi & Kosakowski, 2011; Glaus
et al., 2013; Tinnacher et al., 2016). The negative surface charge is compensated by
cations near the surfaces. These cations are — more or less specifically — sorbed forming
inner or outer sphere surface complexes or they occur as indifferently sorbing cations
attracted only by Coulomb forces originating from the (net) surface charge (Delgado
et al., 2005; Tournassat & Steefel, 2015). The innermost layer of adsorbed cations, very
close to the charged surface, is considered as Stern layer (Leroy & Revil, 2004; Leroy
et al., 2006). A diffuse layer (DL) develops adjacent to the Stern layer. There, anion
and cation concentrations vary as a function of the distance to the surface, in response
to electrostatic and thermal forces.

The ion distribution in the DL region, which depends on the "external" or bulk so-
lution composition at infinite distance and the surface charge, can be modeled by the
Poisson-Boltzmann equation, leading to the Gouy-Chapman model for simple geome-
tries (Fig. 1). Alternatively, ion concentrations near charged surfaces can be calculated
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Figure 1: Schematic representation of anion and cation distributions near negatively charged clay surfaces
(left) and of concepts to model such distributions (right). Blue areas represent pore water, with the
darker blue illustrating schematically the Stern layer region. The solid lines (right) show schematically
the anion (yellow) and cation (red) distributions in the pore water for the different concepts; the red
dashed line illustrates the cation distribution including sorbed cations (which are not addressed in the
accessibility concept).

using the Donnan approach (Donnan, 1911; Meyer & Sievers, 1936), which is based on
thermodynamic principles (Tournassat et al., 2016). The Donnan approach considers
a uniform pore water composition in Donnan pores, i.e., pores affected by the surface
charge (Fig. 1). For instance, it has been used to describe the average ion concentrations
within the pore water of a clay sample (Birgersson & Karnland, 2009) as a function of
the bulk solution concentration with which the clay sample is in equilibrium.
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In a Donnan region cations are enriched and anions are depleted compared to the bulk
solution. As a consequence, anion exclusion is typically observed when investigating
the transport of anions through clays (Descostes et al., 2008; Van Loon et al., 2007;
Tournassat & Appelo, 2011; Wigger & Van Loon, 2017). An accessible porosity smaller
than the total, water-accessible porosity (more generally: a lower capacity) is assigned
empirically to the transport of anions while assuming continuity of their concentration
across the clay interface. This allows modeling fluxes of individual anion tracers through
clay samples. However, in more complex situations, where concentrations of multiple
anions and cations vary (such as in reactive transport), this empirical approach is no
longer practical. A more general formulation is required that considers coupled anion
and cation transport influenced by the bulk solution concentration.

So far, only the codes Phreeqc and CrunchFlow-MC offer this capability (Appelo &
Wersin, 2007; Steefel et al., 2015). Both codes follow a multi-porosity approach, where
the pore space of a rock is divided into a charge-free (or free, or macro) porosity and a
Donnan (or diffuse layer, or micro) porosity. Ion concentrations within the Donnan pore
space in equilibrium with those in the charge-free pore space are calculated locally at
every time step based on the Donnan equations. Implementing an explicit consideration
of Donnan equilibrium into a reactive transport code requires major programming efforts.
A different approach has been to couple other transport codes (e.g., Hydrus or generic
ComsolTM codes) to the chemical solver in Phreeqc or CrunchFlow-MC via an operator
splitting approach (Wissmeier & Barry, 2011; Nardi et al., 2014; Parkhurst & Wissmeier,
2015; Muniruzzaman & Rolle, 2016). However, without parallelization these coupled
codes often lack computational performance.

Here we present an alternative, simpler way to represent Donnan equilibria: We con-
sider charged clay surfaces as immobile anions in the pore solution and use the Nernst-
Planck (NP) equation to simulate coupled transport of all components. The immobile
anions lead to a stationary diffusion potential relative to the bulk solution and to Don-
nan ion distributions maintaining local charge balance. We demonstrate the validity of
our approach by comparing NP simulations using the reactive transport code Flotran
(Lichtner, 2007) with analytical solutions of the Donnan equations for single symmet-
ric and asymmetric electrolytes. We show that the ’standard’ numerical evaluation of
the electrochemical migration term in the NP equation produces errors for Donnan dis-
tributions with asymmetric electrolytes and propose a different evaluation of this term
yielding correct results. Sensitivity calculations finally demonstrate the influence of vari-
ous Donnan model parameters on simulated anion accessibilities. Our new approach can
be easily implemented into other codes that consider multi-component diffusion based
on the NP equation. It is versatile and allows for testing different assumptions regarding
ion transport in the diffuse layer.

2. Theory: Poisson-Boltzmann and Donnan equations

The local ion distribution Ci(x) in a diffuse layer adjacent to a charged surface can
be described by the Boltzmann equation,

Ci(x) = CBi Γi(x) exp

(
−ziFϕ(x)

RT

)
, (1)
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where CBi is the ion concentration in the bulk solution unaffected by the surface charge,
Γi(x) = γBi /γi(x) the ratio of the activity coefficients in bulk solution and in the DL
at position x, zi the charge number of the ion, F the Faraday constant, ϕ(x) the local
electric potential (in J/C=V), R the universal gas constant, and T the temperature. The
Poisson equation,

∇2ϕ(x) = −F
ε

∑
i

zi Ci(x), (2)

links the electric potential to the local net charge density in the diffuse layer, with
ε being the dielectric permittivity of the medium. Combining Eqs. (1) and (2) leads
to the Poisson-Boltzmann (PB) equation for a diffuse layer. Under certain conditions
(e.g., in highly compacted clays) diffuse layers on different clay mineral surfaces may
overlap. In this case the same equations apply but CBi has to be replaced by the midplane
concentration CMi , which can be related to CBi and the width of the interlayer (Mitchell,
1993; Gonçalvès et al., 2007; Hedström & Karnland, 2012). Solving the PB equation for
a symmetric electrolyte and a single planar charged surface leads to the Gouy-Chapman
(GC) model (Fig. 1). An innermost Stern layer of cations of finite size, over which the
electric potential changes linearly, is considered in triple layer models. These innermost
cations may be more rigidly bound forming for instance inner-sphere surface complexes
(Bourg et al., 2017). The modified Gouy-Chapman model (MGC) (Tournassat et al.,
2016) accounts for such a Stern layer by shifting the origin of the diffuse layer and
adapting the net surface charge (or the potential) at the Stern/diffuse layer interface. The
PB equations and the (M)GC model are mean field-approximations defined at the pore
or molecular scale, and their solution for a clay sample would require precise knowledge
of the pore structure (Tournassat et al., 2016). This information is not available for real
clays.

The Donnan approach, in contrast, is well suited for the continuum scale used in
most transport codes. It describes the thermodynamic effects of a charged surface on ion
concentrations averaged over a representative pore volume. Equilibrating the chemical
potentials of an external bulk solution (µBi ) with that of the internal solution within the
Donnan pore space (µDi ) leads to

µB,0i +RT ln aBi = µD,0i +RT ln aDi + ziFϕm, (3)

where ai are activities, ϕm is the Donnan potential and the superscripts B, D, and 0
refer to bulk solution, Donnan solution, and standard state, respectively. From Eq. (3),
the ion concentration CDi within the Donnan pore volume is

CDi = CBi Γi exp

(
−ziFϕm

RT

)
(4)

with Γi = γBi /γ
D
i . The Donnan potential ϕm depends on the surface charge and the

solution composition. It is obtained from balancing the charge over the Donnan porosity
through ∑

i

ziC
D
i = Q (5)

where Q is the net surface charge per volume of Donnan solution (typically negative for
clays). The net charge may be smaller (or larger) than the basic clay layer charge orig-
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inating from isomorphic substitution, in response to a partial shielding (or an addition)
of charges by more strongly bound surface ions (e.g., a Stern layer) or protons.

The relative depletion or enrichment of ions within the Donnan space compared to
the bulk solution,

ξi = CDi /C
B
i , (6)

depends on the ion charge according to Eq. (4). Comparing the concentration ratio ξ for
any two ions in a solution with charge zi and zj , we have

(ξi/Γi)
1/zi = (ξj/Γj)

1/zj . (7)

Thus, for ions with equal valence but opposite charge (e.g., Na+, Cl−) we have ξi =

ΓiΓjξ
−1
j , whereas for Ca2+ and Cl− we have ξCl = ΓClΓ

1/2
Ca ξ

−1/2
Ca , or for Cl− and SO2−

4

we have ξCl = ΓClΓ
−1/2
SO4

ξ
1/2
SO4

.
Combining Eqs. (4) and (5) leads to the general Donnan polynomial given by Sørensen

& Compañ (1996). Solutions for CDi or ξi for any polyelectrolyte can be derived from
this polynomial by finding its real positive root. For an electrolyte with only two species
(i, j), the generic equation to be solved for ξi is

ξ
(1−zj/zi)
i − Q

ziCBi
ξ
−zj/zi
i − Γ

(1−zj/zi)
ij = 0 (8)

with Q the net surface charge concentration and Γij the salt activity coefficient ratio,

Γij = (Γ
zj
i Γ−zij )

1
zj−zi . (9)

A quadratic equation is obtained for any symmetric electrolyte (1:1, 2:2, ...) with the
solution (Birgersson & Karnland, 2009)

ξi =
zi
|zi|

Q

2CBi
+

([
Q

2CBi

]2
+ ΓiΓj

)1/2

. (10)

Cubic equations are obtained for a 2:1 electrolyte (bivalent cation) such as CaCl2, which
can be represented as

ξ3Cl +
Q

CBCl

ξ2Cl − Γ2
ClΓCa = 0 and ξ

3/2
Ca −

Q

2CBCa

ξ
1/2
Ca − ΓClΓ

1/2
Ca = 0. (11)

Similarly, for a 1:2 electrolyte such as Na2SO4, we have

ξ
3/2
SO4

+
Q

2CBSO4

ξ
1/2
SO4
− ΓNaΓ

1/2
SO4

= 0 and ξ3Na −
Q

CBNa

ξ2Na − Γ2
NaΓSO4

= 0. (12)

Note that these equations all depend on the parameter ziCBi /Q or CBeqv/Q, i.e., the
ratio of the bulk solution concentration CBeqv of the anion or cation in (absolute) charge
equivalents to the net surface charge concentration Q, and on the salt activity coefficient
ratio Γij most often assumed to be 1. An analytical solution for cubic equations is given,
for instance, in Sørensen & Compañ (1996), with which ξi in Eqs. (11) and (12) can be
obtained.
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3. New approach to model Donnan equilibrium

3.1. General procedure
In our new approach, instead of solving Eqs. (4) and (5) as in Phreeqc and Crunch-

FlowMC, we assign the net surface charge concentration Q to immobile solutes of unit
negative charge and include them in the balance volume (Fig. 2). Transport of ions is

Figure 2: Illustration of conventional balance volume (top, only fluid phase) and balance volume used
in our approach (bottom, fluid phase including surface charges).

then governed by the Nernst-Planck flux equation, which considers (ignoring advection
here) ion diffusion according to the ion activity gradient and ion migration in an electrical
field. In the absence of an external field and for quasi-static charges, the electrochemical
migration term is related to the diffusion potential ϕ that originates when ions diffuse
at different rates (Cussler, 1984; Appelo & Wersin, 2007; Steefel, 2008; Tournassat &
Steefel, 2015). We have in 1D (direction x)

Ji = −θD∗i
∂Ci
∂x
− θDiziCi

F

RT

∂ϕ

∂x

= −θD∗i
∂Ci
∂x

+ θDiziCi

∑
j zjD

∗
j
∂Cj

∂x∑
j z

2
jDjCj

, (13)

where Ji is the solute flux per total cross sectional area, θ the water content, Di the
pore diffusion coefficient of component i, D∗i = Di(1 + ∂ ln γi/∂ lnCi) the pore diffusion
coefficient including the activity term (sometimes called chemical diffusion coefficient),
and x the spatial coordinate. The activity gradients are most often neglected assuming
D∗i ≈ Di. The electrochemical migration term acts like a local advective flux for compo-
nent i that varies depending on its charge and on gradients, concentrations and mobilities
of all other components. Thus, the electrochemical migration term either enhances or
counteracts the local diffusive flux. When no electrical current occurs, the equilibrium
is characterized by zero net ion flux with diffusive and electrochemical migration fluxes
balancing each other. Concentration gradients of mobile ions may persist, if there is a
heterogeneous distribution of immobile ions. At zero net flux,

D∗i
∂Ci
∂x

= DiziCi

∑
j zjD

∗
j
∂Cj

∂x∑
j z

2
jDjCj

(14)
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or
D∗i
ziDi

∂ lnCi
∂x

=

∑
j zjD

∗
j
∂Cj

∂x∑
j z

2
jDjCj

. (15)

The right-hand side of Eq. (15) represents the gradient of the diffusion potential F/(RT )∂ϕ/∂x
(see Eq. 13) and is identical for all components. Accordingly, for any two components i
and j we can write

D∗i
ziDi

∂ lnCi
∂x

=
D∗j
zjDj

∂ lnCj
∂x

(16)

or, using the definition of D∗i ,

1

zi

(
∂ lnCi
∂x

+
∂ ln γi
∂x

)
=

1

zj

(
∂ lnCj
∂x

+
∂ ln γj
∂x

)
. (17)

Integrating this equation across an interface between a bulk solution (superscript B) and
a solution affected by charged immobile ions (superscript D), we arrive at

1

zi
ln

(
γDi
γBi

CDi
CBi

)
=

1

zj
ln

(
γDj
γBj

CDj
CBj

)
. (18)

Substituting Γ for γB/γD and ξ for CD/CB , we recover relation (7) characteristic for
a Donnan equilibrium. Consequently, a diffusion potential created by immobile ions
represents a Donnan potential, and Donnan concentration distributions can be calculated
based on the NP equation.

3.2. Implementation into reactive transport codes
3.2.1. Deriving average concentrations in the NP term

The numerical implementation of the electrochemical migration term in the reactive
transport code Flotran revealed that care has to be taken when local concentrations are
assessed. Whereas the gradient terms in Eq. (13) can be directly calculated from con-
centration differences of two neighboring cells, some averaging is required to obtain the
local concentrations C of the electrochemical migration term in a discrete representation.
Arithmetic averaging is typically used, but this leads to erroneous limiting anion distri-
butions ξa → (zc + za)/(zc − za) (neglecting activity coefficients) for CBi /Q → 0, i.e.,
dilute conditions, as shown in Appendix A and Fig. 3. Accordingly, erroneous limiting
ξa values of 1/3 for CaCl2, of 1/2 for a 3:1 electrolyte, or a tendency to −1/3 for a 1:2
electrolyte (bivalent anion) would be obtained.

Instead of an arithmetic average, a differential logarithmic average should be used to
obtain local concentrations C̃k,k+1 at cell interfaces, defined as

C̃k,k+1 =
dC

d lnC
≈ ∆C

∆ lnC
=

Ck+1 − Ck
lnCk+1 − lnCk

(19)

for the neighboring cells k and k+1. When expanding Eq. (14) with local concentrations
defined according to Eq. (19), correct limiting values of ξa → 0 for CBi /Q → 0 are
obtained and results are consistent with Eq. (16). The differential logarithmic average
leads to values between geometric and arithmetic mean.
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3.2.2. Net surface charge concentration
The surface charge concentration Q per volume of clay pore water can be calculated

as CECρbd/θ, where CEC is the cation exchange capacity (eq/kg solid), ρbd the bulk dry
density, and θ the volumetric Donnan water content of the clay. This charge concentration
Q was then implemented via monovalent anions X− in the Donnan solution which exhibit
a (quasi) zero diffusion coefficient.

A net charge lower than that given by the CEC can also be attributed to the Donnan
solution. Our approach treats X− as any other species in solution such that it can be
involved in further reactions mimicking surface complexation or ion exchange reactions.
In the latter case, the selectivities define the reaction constants, i.e., the logK entries in
the thermodynamic database. However, in addition to selectivities a parameter quan-
tifying the absolute interaction of a reference cation R with the exchanger is required
(see Appendix B and Bradbury & Baeyens 1998; Appelo et al. 2010). For instance, for
a monovalent reference cation this parameter KRX is defined as follows

R+ + X− 
 RX, KRX =
(RX)

(R) (X)
, (20)

where ( ) denotes activity. The parameter KRX allows modeling limiting cases of full
ion exchange (KRX � 1, all surface charges compensated by exchangeable cations; ion
selective) and full Donnan behavior (KRX � 1, all surface charges compensated by ions
in the Donnan space; charge selective), or of any intermediate situation. The net surface
charge concentration Q = CX is then variable depending on the specific composition of
the bulk solution and all reaction constants and exchange selectivities. For symmetric
electrolytes, the modification leads to a cubic instead of a quadratic equation for ξa (cf.
Eq. 10), as shown in Appendix C.

The approach can easily be generalized to multi-site sorption by distributing the total
surface charge over different immobile surface ions X−j . In this way, only certain sites
may contribute to the Donnan equilibrium. Protons H+ can be included in any such
exchange reaction, or in additional sorption reactions, e.g.,

H+ + X−j 
 HXj , KHXj (21)

H+ + HXj 
 H2X+
j , KH2X

+
j
. (22)

The net Donnan charge then depends on the pH.
Note that the net charge concentration Q as well as, for heterovalent exchange, the

logKR
A depend on the water content θ (see also Appendix B). Accordingly, these param-

eters need to be updated when a system with time-dependent water contents should be
modeled.

3.3. Modeled systems
In the following, we compare equilibrium ion distributions calculated numerically

according to the NP equation (13) with analytical results of the Donnan distribution
obtained from Eqs. (8) – (12). A 1D system including only two cells was modeled. One
cell, with a fixed electrolyte concentration, represented the bulk solution, the other cell
with a given Q the Donnan porosity of a clay. In all simulations the activity coefficients
were set to 1.
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To demonstrate the effect of the averaging approach (i.e. arithmetic versus log-
averaged), we also simulated transient in-diffusion of Ca2+ and Cl− into a 0.1 m thick
heterogeneous clay sample, with a constant electrolyte solution at the inlet and a zero
gradient boundary condition at the other end. The clay sample was heterogeneous with
a smaller surface charge concentration Q in the first 0.05 m and a larger concentration
in the second 0.05 m.

4. Results

4.1. Verification of approach
Equilibrium anion distributions ξCl obtained numerically with immobile surface an-

ions X− in the Donnan solution are presented in Fig. 3 as a function of the Donnan
parameter CBeqv/Q (i.e., the equivalent concentration of the bulk solution per surface
charge concentration). For NaCl solutions, the numerical simulations (solid lines) match
perfectly with the analytical results (crosses). At low concentration of the bulk solution,
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0.8

1

0.0001 0.001 0.01 0.1 1 10 100

analytic
Flotran numeric NP
Flotran num. NP, incorr. EM
Crunch numeric NP
Phreeqc numeric NP
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n 
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io

n 
ra

tio
 

a

Relative solution concentration Ceqv /Q [–]

Na2SO4
CaCl2 NaCl

B

Figure 3: Donnan anion distribution ratios ξa (anion accessibilities) as a function of the relative solution
concentration CB

eqv/Q calculated based on the NP equation with Flotran (solid lines) compared to
analytical results (crosses) for various electrolytes. Dashed lines: Flotran results using an arithmetic
average when evaluating the electrochemical migration term; open squares and diamonds: NP solution
with CrunchFlow and Phreeqc at three different values of CB

eqv/Q.

Cl tends to be fully excluded from the Donnan solution, whereas the Donnan pore space
becomes increasingly accessible to Cl at higher concentrations. For CaCl2 and Na2SO4

electrolytes, a perfect agreement was obtained if the differential logarithmic average in
Eq. (19) was used. The anion exclusion (at given CBeqv/Q) is weaker in a CaCl2 elec-
trolyte, and stronger in a Na2SO4 electrolyte, as compared to a NaCl electrolyte. For
comparison, results using an arithmetic concentration average in the numerical evalu-
ation of Eq. (13) are also shown (dashed lines in Fig. 3). In this case, ξCl tended to
1/3 for CaCl2 and to negative values for Na2SO4, instead of approaching zero at low
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bulk solution concentrations. The same incorrect result was obtained with Phreeqc and
CrunchFlow using their NP implementation (diamonds and squares for CaCl2 in Fig. 3).
Note that correct results were obtained with these two codes when their explicit Donnan
implementation (i.e., the solution of Eqs. (4) and (5)) was used, which does not rely on
the NP equation.

Anion distribution ratios ξa for single electrolytes only were compared in Fig. 3.
Results for a polyelectrolyte composed of Na2SO4, NaCl, CaCl2 and AlCl3 obtained
with the NP approach are presented as solid lines in Fig. 4. We see that ξSO4 and ξCl,
i.e. the SO4 and Cl accessibility, increase compared to single Na electrolytes especially
at low solution concentration. This effect results from stronger charge shielding by the
bi- and trivalent cations. As in binary electrolytes, the bivalent SO4 is always more
excluded than Cl. The numerical results obtained with Flotran for ξCl and ξSO4 are in
perfect agreement with the analytical Eq. (7), i.e., we have ξSO4 = ξCl

2.
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electrolyte
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electrolytes

SO4
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electrolyte

B

Figure 4: Anion distribution ratios ξCl and ξSO4 for a polyelectrolyte (equal charge equivalents for Na,
Ca, and Al and for Cl and SO4, solid lines), compared to those of single electrolytes (dotted lines). CB

eqv

is the total charge equivalent in bulk solution.

4.2. Sensitivity of anion accessibilities to Donnan model parameters
A reduction of the net surface charge Q due to a partial ion exchange behavior

according to Eq. (20) leads to a slight steepening of the ξa curve compared to a full
Donnan model and to a gradual shift of the curve to lower CBeqv/QCEC (Fig. 5). Note
that in this and the following figures, the x-axis is normalized by the constant QCEC =
CECρbd/θ for the full Donnan case, calculated from the CEC and the pore water content,
and not by the variable Q. The slight steepening is related to a decrease of the net
charge Q = CX with higher solution concentration of the reference cation R (Na here)
for a given KRX. The second observation, the gradual shift, depends on KRX. At low
KRX, the full Donnan case is recovered with maximum anion exclusion. At high KRX,
all surface charges are complexed already at low concentrations, leading in the limit to
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the full ion exchange case. For illustration purposes, Cl accessible pore fractions (Cl
accessibilities, which are equivalent to ξCl) determined directly from the data of various
field experiments in Opalinus Clay at the Mont Terri Rock Laboratory (Switzerland) are
also shown as dots in Fig. 5.
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KNaX   1, 0.1100, 10,

CEC

Figure 5: Effect of a decrease of the net surface charge X− due to ion exchange reactions according to
Eq. (20) on the Cl distribution ratio, for increasing KNaX. Data (symbols) directly obtained from the
DI-A1, DI-A2, DR, and DR-A field experiments in Opalinus Clay at the Mont Terri Rock Laboratory
(Switzerland) are also shown (Van Loon et al., 2004; Wersin et al., 2008; Gimmi et al., 2014).

Anion accessibilities for bentonites measured in NaCl solutions of different ionic
strengths by Muurinen et al. (1989) and Van Loon et al. (2007) and also shown by
Birgersson & Karnland (2009) are presented in Fig. 6. Here, they are shown as a func-
tion of the dimensionless Donnan parameter CBeqv/QCEC, which allows a comparison of
data for materials with different CEC , bulk dry density and water content. Two model
curves are shown. The solid line represents the full Donnan case, where all pores are
considered to belong to the Donnan space. The dashed line was obtained by assuming
5% charge-free porosity, i.e., by attributing only 95% of the porosity to the Donnan pore
space, and by setting KNaX = 1. The overall Cl accessibility shown in the figure is the
weighted average of ξa for the Donnan porosity and for the charge-free porosity. The data
at higher bulk densities follow roughly the full Donnan model (Fig. 6). However, the full
Donnan model underestimates the accessibility in samples at low bulk densities. A better
match for the low-density data (mainly M89 ρbd 1.2, partly VL07 ρbd 1.3) is obtained
by the modified model with KNaX = 1 and 5% charge-free porosity. This increases the
modeled Cl accessibility at all solution concentrations.

The calculations shown in Fig. 6 are based on the assumption that the Donnan and the
charge-free pore volumes remain constant for all ionic strengths, i.e., for all bulk solution
concentrations. However, this assumption may not be true as the Donnan porosity may
change as a function of the ionic strength of the bulk solution, in particular when the
bentonite shrinks or swells. A coupling between ionic strength and the Donnan volume
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Figure 6: Data on Cl accessibilities ξCl obtained from bentonites at various bulk dry densities (circles:
Muurinen et al., 1989; triangles: Van Loon et al., 2007) compared to simulations for a full Donnan
approach or a modified approach with KNaX = 1 and 5% charge-free pores.

has been implemented into Phreeqc and CrunchFlowMC. In these codes the Donnan
porosity θD can be calculated from the specific surface area S per unit volume porous
medium and the Debye length λD (a characteristic length of a DL) multiplied by a scaling
factor aD as

θD = aDλDS. (23)

This coupling is based on the idea that the DL thickness and thus the Debye length
changes with ionic strength. The factor aD is an adjustable parameter that has to
be estimated from experimental data. By linking the Donnan volume change to the
Debye length, two approaches (Donnan and PB) are mixed that differ in their concepts
and scale, but the approach may be useful to describe experimental data. Thus, for
comparison purposes, Fig. 7 demonstrates the effects of variable Donnan and charge-free
pore volumes on the modeled overall anion accessibility ξa (again calculated as weighted
average of ξa for Donnan porosity and for charge-free porosity) for a NaCl solution. Type
curves are shown for different values of the parameter aD (other parameters similar as
for Opalinus Clay, i.e., S = 2.4 · 108 m2 m−3 or Sm = 100 m2 g−1, θ= 0.15, CEC = 0.1
eq kg−1). The average anion accessibility for this model is generally larger than that
calculated for the full Donnan case. Note that there is always a lower concentration limit
for this model. It is reached when, for a given aD, the Donnan porosity θD equals the
total porosity θ. For concentrations below this limit the Donnan porosity would exceed
the total porosity. For large aD, the limit is reached at relatively high CBeqv/QCEC values
and the ξa curve becomes similar to that assuming only Donnan pores, represented by the
blue solid curve. For small aD, the limit is reached at lower bulk solution concentrations.
The smaller aD, the smaller the fraction of the Donnan volume at a given CBeqv/QCEC,
and the larger the fraction of the charge-free volume. A smaller Donnan volume leads,
for a given CEC , to a larger net Q = CECρbd/θD and thus to a comparably low anion

12
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Terri Rock Laboratory (Switzerland) are also shown (Van Loon et al., 2004; Wersin et al., 2008; Gimmi
et al., 2014).

accessibility within the Donnan volume. But this effect is more than outweighed by the
increase of the charge-free pore volume. Accordingly, the overall accessibility increases
with decreasing aD at a given CBeqv/QCEC. For comparison, the range of ξCl determined
directly from the data of field experiments in Opalinus Clay is again shown in Fig. 7.

4.3. Evaluation of concentration averaging in the NP equation
It was shown above that only the differential logarithmic average yields local concen-

trations that give correct Donnan distributions for asymmetric electrolytes. Given the
potential implication of this result for the implementation of the Nernst-Planck equation
into (reactive) transport codes, it is useful to look at the effect of different averaging
techniques on simulation results in greater detail.

Fig. 8 shows concentration profiles for transient in-diffusion of Ca and Cl from a
reservoir with a constant electrolyte concentration of 0.05 M CaCl2 into a 0.1 m thick
heterogenous clay sample. The initial pore water has no Cl and there is a zero-gradient
boundary condition at the opposite end of the sample. Tabulated aqueous diffusion
coefficients (2.032·10−9 m2 s−1 for Cl− and 0.792·10−9 m2 s−1 for Ca2+, Flury & Gimmi,
2002) were used, and sample parameters similar to those of Opalinus Clay (porosity 0.15,
tortuosity factor 0.1). The distribution of the surface charge Q is heterogeneous, with
0.8 M between 0 and 0.05 m and 1.6 M between 0.05 and 0.1 m, respectively.

With the arithmetic average in the NP term, larger Cl concentrations in the pore
water (and correspondingly larger Ca concentrations, not shown) are obtained compared
to the logarithmic average. At x = 0.05 m a concentration jump occurs due to the increase
in Q leading to lower Cl concentrations between 0.05 and 0.1 m. The anion accessibility
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for Cl− 2.032 · 10−9 m2 s−1, for Ca2+ 0.792 · 10−9 m2 s−1.

ξa can be calculated from the equilibrium pore water concentration in the clay divided
by the external Cl concentration (0.1 M). It equals about 0.35 (left part, Q=0.8 M) and
0.25 (right part, Q=1.6 M) for the logarithmic average, which corresponds to the correct
values as seen in Fig. 3 at the given CBeqv/Q of 0.125 and 0.0625, respectively. Using the
arithmetic average these values are strongly overestimated (0.44 and 0.31). In addition,
only ξa = 0.44 in the left part of the clay sample is consistent with the dashed line for
the arithmetic average in Fig. 3, whereas the value in the right part is smaller than the
value of 0.38 obtained from Fig. 3, which further points to an erroneous calculation of
the fluxes for heterogeneous Q with the arithmetic average.

Interestingly, using arithmetic averages in the NP term, as is the default in most
(reactive) transport codes, does not affect multi-component simulations without immobile
charges. Differences could be observed only in systems undergoing strongly transient
behavior, but these differences remained negligible. The reason for this becomes clear
when considering that for Q → 0 or CBeqv/Q → ∞, the equilibrium anion distribution
ratio ξa always equals 1, and that no differences occur between the different averaging
approaches at ξa = 1 (see Fig. 3). Also, withQ = 0, Eq. (A.6) derived from the arithmetic
average correctly leads to ξa = 1 for any finite bulk concentration. Nevertheless, to be
more general in terms of model applicability, we recommend that the implementation of
the electrochemical migration term into transport codes uses the differential logarithmic
average of concentrations as described in Eq. (19).
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5. Discussion

5.1. Cl accessibility in Opalinus Clay
The Cl accessibilities in the field experiments shown in Figs. 5 and 7 are larger than

those simulated for the full Donnan case and are better described, for instance, by a
mixed ion exchange/Donnan model with KNaX ≈ 10. One has to keep in mind, though,
that (i) the composition of the pore solutions derived for Opalinus Clay are dominated
by Na and Cl, but other ions such as Ca, Mg, and Sr are also important, and that
(ii) in addition to Donnan pores, charge-free pores and possibly inaccessible pores may
also be present, requiring a multi-porosity model (Appelo & Wersin, 2007; Tinnacher
et al., 2016; Wigger & Van Loon, 2017). Charge-free pores increase the limiting ξa at
low concentrations (ξa > 0), inaccessible pores decrease the limit at high concentrations
(ξa < 1). Unfortunately, the limited range of the field data does not allow a direct
estimation of these parameters. Furthermore, when comparing the same experimental
data with a model with variable fractions of Donnan and charge-free pores in Fig. 7, it
appears that such a model could describe the experimental data equally well when using a
scaling factor aD around 0.5. The limited range of CBeqv/QCEC for the field experiments in
Opalinus Clay precludes any conclusion on whether a model with variable Donnan volume
is better suited than one with constant volume. The recent DR-A field experiment at
the Mont Terri Rock Laboratory, which is still under evaluation, was started to test such
different modeling concepts.

5.2. Cl accessibility in Na bentonite
For the bentonite data in NaCl solutions shown in Fig. 6, a full Donnan model seems

appropriate for the high bulk density data, but a mixed model with some charge-free
pores and a partial complexation of the surface charge appears to be better suited for
the data at lower bulk densities, or at least for the M89 ρbd 1.2 data. The samples at low
density have a higher water content and probably also larger pore sizes. Accordingly, it
could be plausible that a fraction of the pore water is not directly affected by any surface
charge. But other factors, such as a dependency of the activity coefficient ratios (see
Eq. 10) on the density of the samples, or the release of Ca from the non-smectite mineral
fraction, could also play a role.

5.3. Parameter problem for mixed ion exchange/Donnan models
Considering a mixed model including both, ion exchange and Donnan distributions

according to Eq. 20, raises some questions regarding the selectivities to be used. Pub-
lished selectivities are usually derived considering ion exchange only. Thus it may be
necessary to adapt the ’intrinsic’ selectivities in a mixed model such that the overall
apparent selectivities including also the cation excess in the Donnan pores match with
literature data. Alternatively, published selectivities could be re-evaluated considering
mixed ion exchange/Donnan models, provided the necessary parameters (notably the
Donnan water content) are available. The potential effects depend on the water-rock
ratio and the ionic strength of the solution in a batch experiment. ’Intrinsic’ selectivities
of two equivalent cations would tend to be more extreme than overall selectivities in a
mixed system, if the Donnan distribution (assuming equal activity coefficients in bulk
and Donnan solution) is only charge selective, but not ion selective. If, however, activity
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coefficient ratios vary between different ions, as recently discussed by Birgersson (2017),
Donnan distributions also become ion selective and could possibly even fully account for
reported selectivities between equally charged cations.

5.4. Salt diffusion coefficient in Donnan pore water
During transient diffusion of a binary electrolyte in Donnan pore water as in Fig. 8,

both ions move in the end according to a single diffusion coefficient Ds such that the
charge is always balanced. In aqueous solutions, this salt (or electrolyte) diffusion co-
efficient can be calculated as a weighted harmonic mean of the individual ion diffusion
coefficients Da and Dc (e.g., Cussler, 1984),

Ds =
(zc − za)(
zc
Da
− za

Dc

) , (24)

with the weights given by the ion charges za and zc. In a Donnan pore space affected
by surface charges, the salt diffusion coefficient is modified. Using the charge balance
condition in the Donnan space, zcCc+zaCa+zxCx = 0, with Ca and Cc the anion and
cation concentrations in the Donnan pore space, respectively, zx the valence of the surface
ion X, and Cx=Q, we arrive at

Ds =

(
z2cCc + z2aCa

)(
z2cCc

Da
+

z2aCa

Dc

) =

(
zc

[
1 + zxQ

zaCa

]
− za

)
(
zc
Da

[
1 + zxQ

zaCa

]
− za

Dc

) =

(
zc − za

[
1 + zxQ

zcCc

])
(
zc
Da
− za

Dc

[
1 + zxQ

zcCc

]) . (25)

The salt diffusion coefficient in a Donnan pore is thus affected not only by the ion charges
and ion diffusion coefficients, but also by the concentrations of the anion and the cation, or
equally by the fraction of the surface charge per anion or cation charge. It is the ion with
the lower (equivalent) concentration that tends to dominate the salt diffusion coefficient.
This is typically the co-ion, that is, the anion if the surface is negatively charged and the
cation if the surface is positively charged. If no surface charge is present (Q = 0), the
aqueous salt diffusion coefficient is regained. In the limit of very large negative surface
charge, zxQ/(zaCa) → ∞ (or equally Ca � Cc, or zxQ/(zcCc) → −1 because the
counter-ion charge in absolute values has to be equal or larger than the surface charge)
and Ds → Da. In the limit of very large positive surface charge, zxQ/(zcCc) → ∞ (or
equally Cc � Ca, or zxQ/zaCa → −1) and Ds → Dc.

In contrast to the aqueous salt diffusion coefficient, Ds in a Donnan pore is not
constant, but varies with time and position, because it depends on the local ion concen-
trations. For the example of CaCl2 in-diffusion in Fig. 8, the variation is relatively small
(1.88 · 10−9 m2 s−1 ≤ Ds ≤ 2.03 · 10−9 m2 s−1), as could be verified with our simulation
results. In this case, the anion concentrations are always comparably low, and thus Ds

is always close to the limiting Da. For larger maximum anion concentrations (larger
external electrolyte concentration or smaller surface charge), Ds will vary more. For in-
stance, for the same boundary concentration of 0.05 M CaCl2 but a lower surface charge
concentration of Q = 0.016 M, Ds would vary between Da and 1.38 · 10−9 m2 s−1, which
is close to the lower limit of the aqueous CaCl2 salt diffusion coefficient (1.335 · 10−9 m2

s−1).
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6. Summary and conclusions

We presented a new model for simulating Donnan equilibrium. It is based on immo-
bile anions in the Donnan porosity that represent the surface charge. It can be easily
implemented into codes that have the capability of solving the NP equation. Here we
used an analytical approach to demonstrate the validity of the new method. Atten-
tion has to be paid to the numerical evaluation of the electrochemical migration term
in the NP equation; a differential logarithmic average has to be used to calculate local
concentrations, an arithmetic average leads to non-physical results. In sensitivity simu-
lations we demonstrated that the anion accessibility may increase as a result of partial,
ionic-strength dependent complexation of surface charges in a mixed model involving
ion exchange and Donnan equilibrium. The accessibility also increases with increasing
charge-free porosity.

It is possible with this approach to run transient ’dual continuum’ simulations by
treating Donnan and charge-free porosities as separate continua which are in diffusive
exchange with each other. A second model dimension is then needed for a 1D problem
(Jenni et al., 2017; Alt-Epping et al., 2018), or a third for a 2D problem. This on one
hand limits the application of the approach, but on the other hand offers the possibility to
investigate non-equilibrium effects, which cannot be done with an explicit implementation
of Donnan equilibrium. Moreover, with this ’dual continuum’ approach reactive transport
processes can be evaluated in each porosity domain. It allows, for instance, to test the
effect of activities on Donnan equilibrium, a topic that has reached more awareness
recently (Birgersson, 2017). While the explicit Donnan implementation always assumes
equal activity coefficients in bulk and Donnan solution, in our approach this is only one
option. It is now possible to calculate activity coefficients explicitly for free and Donnan
porosities (Alt-Epping et al., 2018), even with different activity models for each porosity
domain. This allows one, for instance, to use an activity model that accounts for high
ionic strengths in the Donnan porosity (either with or without the immobile ions X−).
Note that inclusion of the activity gradients in the electrochemical migration term in
Eq. (13) is then required.

Finally, transient simulations in heterogeneous systems can be easily performed as
shown for instance in Fig. 8. In more complex cases, where the porosity and/or the surface
charge changes with time, an update of the concentration Q is required (similarly as for
other solutes). Also, if advection is considered in the Donnan space (being meaningful
or not), the velocity of X needs to be set to zero, which may require additional code
modifications. Transient simulations allowed to check the analytical relation for the salt
diffusion coefficient of a binary electrolyte in Donnan pores. This Donnan salt diffusion
coefficient is time- and position dependent, in contrast to the salt diffusion coefficient in
aqueous solution, and can vary between the latter and the co-ion diffusion coefficient.
Overall, the presented approach to simulate Donnan systems is simple in many cases,
flexible, and has a large potential for further applications.

Acknowledgement

Partial financial support by Nagra, the Swiss Cooperative for the Disposal of Ra-
dioactive Waste, is acknowledged.

17



Appendix A

When numerically evaluating the electrochemical migration flux term in the Nernst
Planck equation (Eq. (13) in the main manuscript) in a discretized representation, some
averaging is required to obtain the local concentrations Cj . In the following, we show that
using an arithmetic average, which appears to be the standard implementation in numer-
ical codes, leads to erroneous limiting values for steady-state Donnan ion distributions
and thus generally to erroneous electrochemical migration fluxes in Donnan systems.

We start with the steady-state version of the Nernst-Planck flux equation as given in
Eq. (14) in the main manuscript. For a single electrolyte C|za|Azc consisting of cation C
and anion A with valences zc and za, respectively, the discretized form of this equation
leads to

D∗a
Da

1

za

∆Ca
Ca

=
D∗c
Dc

1

zc

∆Cc
Cc

. (A.1)

where C is the concentration, D the pore diffusion coefficient, D∗ = D(1 + d ln γ/d lnC)
the pore diffusion coefficient including the activity term (sometimes denoted as chemical
diffusion coefficient), and subscripts a and c refer to the anion and the cation, respectively.

We consider a model with two neighboring cells at equilibrium, one representing the
bulk solution (superscript B) and the other the Donnan solution in a clay (superscript
D). The concentration differences can then be given as

∆Ca = CDa − CBa and ∆Cc = CDc − CBc . (A.2)

Now, when using arithmetic averages for Ca and Cc in Eq. (A.1) and setting ra = D∗a/Da

and rc = D∗c/Dc, we have

ra
za

CDa − CBa
CDa + CBa

=
rc
zc

CDc − CBc
CDc + CBc

. (A.3)

We then make use of the electroneutrality conditions in the bulk and the Donnan solution,

CBc = −za
zc
CBa and CDc = −za

zc
CDa −

zx
zc
Q, (A.4)

where Q is the net surface charge concentration and zx is the valence of the surface ion
X taken as −1, to eliminate the cation concentrations in Eq. (A.3), and use the anion
concentration distribution ratio (or anion exclusion parameter) ξa,

ξa = CDa /C
B
a . (A.5)

This leads finally to

(rcza − razc)ξ2a + (rcza − razc)
zx
za

Q

CBa
ξa +

(rcza + razc)
zx
za

Q

CBa
− (rcza − razc) = 0. (A.6)

In the limit of CBa → 0 and thus ξa � 1, the first term on the left hand side becomes
much smaller than the second term, and the last term on the left hand side much smaller
than the second to last term. Accordingly, for CBa → 0 we arrive at

(rcza − razc)
zx
za

Q

CBa
ξa + (rcza + razc)

zx
za

Q

CBa
= 0 (A.7)
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or
ξa =

rcza + razc
razc − rcza

. (A.8)

For ra/rc = 1, we thus have

ξa =
za + zc
zc − za

, (A.9)

as was observed in numerical simulations based on the arithmetic average. According
to this relation, ξa could even become negative when |za| > zc, which is physically im-
possible. This demonstrates that discretized electrochemical migration fluxes in Donnan
systems with immobile charges are incorrect when using an arithmetic average to calcu-
late this term, both in transient and steady situations. In contrast, the limit of ξa for
CBa → 0 is well behaving and approaches the correct result when using the differential
logarithmic average proposed in Eq. (19) of the main manuscript, as can be verified in the
same manner. Hence the proposed averaging leads to correct electrochemical migration
fluxes in all cases.

Appendix B

Here we outline the conversion of selectivities to reaction constants as needed for
mixed ion exchange/Donnan systems in the present approach. A mixed ion exchange/Donnan
distribution model can be simulated by considering immobile anions X− in the Donnan
solution representing surface charges and a set of reactions of cations A with valence zA
with these immobile species X according to

A + zAX 
 AXzA , KAX =
(AXzA)

(A) (X)zA
, (B.1)

whereKAX is the formation constant and ( ) denotes activity. Two such reactions describe
an exchange reaction between cation A and the reference cation R with valence zR (e.g.,
Appelo & Postma, 2005),

zRA + zARXzR 
 zAR + zRAXzA . (B.2)

The exchange constant KA
R for this reaction is defined as

KA
R =

KAX
zR

KRX
zA

=
(R)zA (AXzA)zR

(A)zR (RXzR)zA
. (B.3)

Selectivities cKA
R for ion exchange reactions using the Gaines-Thomas convention are

defined as
cKA

R =
(R)zA NzR

A

(A)zR NzA
R

, (B.4)

where Ni denotes equivalent fraction of i defined as charge equivalents occupied by cation
i on the exchanger per total equivalents of the exchanger.

According to these definitions, exchange constants KA
R are related to exchange selec-

tivities cKA
R (see Appendix A of Bradbury & Baeyens 1998) as

KA
R = cKA

R

zR
zA

[
θC0

ρbdCEC

]zA−zR
, (B.5)
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where θ [L L−1] is the volumetric water content, ρbd [kg L−1] the bulk dry density, and
CEC [mol kg−1] the cation exchange capacity of the material, and C0 (typically 1 M)
the standard state concentration for solutes (consistent units have to be used within the
square brackets). Note that the CEC can be considered as the ’standard state’ value for
equivalent fractions, so the term C0/CEC is a ratio of standard state values. Also, the
term in square brackets is only relevant for heterovalent exchange and disappears if ions
of equal valence exchange. In logarithmic form, the relation is

logKA
R = log cKA

R + log
zR
zA

+ (zA − zR) log

[
θC0

ρbdCEC

]
. (B.6)

We see from this equation that for heterovalent exchange the exchange constants depend
on the bulk dry density and the porosity of the material and thus may have to be
updated during transient simulations (assuming that the selectivities remain constant),
as mentioned in Bradbury & Baeyens (1998).

Having obtained the exchange constants KA
R from the selectivities of each cation, all

but one reaction constants KAX of Eq. (B.1) are defined; they can be calculated from
Eq. (B.3) as

KAX = KA
R

1/zR
KRX

zA/zR (B.7)

One reaction constant, e.g., KRX for the interaction of the reference cation with the
immobile anion, remains a free parameter (see Eq. (20) of the main manuscript). De-
pending on the value of KRX, the system may be dominated by ion exchange or by
Donnan reactions, or show an intermediate behavior.

Appendix C

A cubic equation for the anion accessibility ξa is derived here for a symmetric elec-
trolyte (e.g., NaCl) in a mixed complexation/Donnan system. This equation can be used
to verify numerical solutions for such a mixed system. Ion exchange reactions lead to a
decrease of the net surface charge concentration Q in response to the partial occupation
of the exchanger. Starting with Eq. (8) of the main manuscript, we can derive a modified
equation for ξa, the anion distribution ratio, for a symmetric electrolyte. The net surface
charge Q equals the concentration CX of the uncomplexed immobile anions X−. It can
be given as

CX = QCEC − CNaX, (C.1)

where QCEC is the maximum surface charge concentration given by the CEC and CNaX

is the concentration of the NaX exchange complexes. This latter can be obtained from
Eq. (B.1) or Eq. (20) of the main manuscript as

CNaX = CX CDNa ΓNa,XKNaX, (C.2)

where ΓNa,X = γXγ
D
Na/γNaX is a term combining all activity coefficients. Combining the

last two equations and setting K ′NaX = ΓNa,XKNaX, the net surface charge concentration
can be calculated as

Q = CX =
QCEC

1 + CDNaK
′
NaX

. (C.3)
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We see already from this equation that the net surface chargeQ will tend toQCEC for very
smallK ′NaX, and to zero for very largeK ′NaX. The concentration C

D
Na is unknown a priori,

but we can eliminate it by making use of the relations ξNa = CDNa/C
B
Na, ξNa = 1/ξCl, and

CBNa = CBCl. This leads to

Q = CX =
QCEC

1 +
CB

Na

ξCl
K ′NaX

. (C.4)

Plugging this expression into Eq. (8) of the main manuscript expressed for NaCl, we
arrive finally at a cubic equation that describes the anion concentration distribution
ratio ξCl for a NaCl electrolyte in a mixed complexation/Donnan system:

ξ3Cl +

(
QCEC

CBCl

+ CBClK
′
NaX

)
ξ2Cl − Γ2

NaCl ξCl − Γ2
NaClC

B
ClK

′
NaX = 0 (C.5)

The numerical simulations obtained for NaCl in such a mixed system were verified by
solutions of the above cubic equation.
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