
Chronology of alluvial terrace sediment accumulation and 1 

incision in the Pativilca Valley, western Peruvian Andes 2 

  3 

Camille Litty1*, Fritz Schlunegger1, Naki Akçar1, Romain Delunel1, Marcus Christl2, 4 

Christof Vockenhuber2 5 

  1 Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, CH- 3012 Bern. 6 

2Laboratory of Ion Beam Physics, ETH Zurich, Zurich, Switzerland 7 

* Current address: Univ. Grenoble Alpes, IUGA, ISTerre, 38000 Grenoble, France 8 

ABSTRACT  9 

 The incision and aggradation of the Pativilca alluvial fan delta system in the western Peruvian 10 

Andes through Quaternary time can be traced in detail using well-exposed fill terraces studied by a 11 

combination of cosmogenic nuclide dating, terrace mapping and paleo-erosion rate calculations. Two 12 

alluvial terraces have been dated through depth-profile exposure dating using in-situ 10Be. The dating 13 

results return an age for the abandonment of the terrace at 200 r 90 ka in Pativilca and 1.2 Ma r 0.3 14 

Ma in Barranca. These new ages complete the database of previously dated terrace fills in the valley. 15 

Together with the results of the terrace mapping and the absolute ages of the terraces, we show that 16 

the valley fills are made up of at least four terraces; two terraces near the city of Pativilca and two 17 

terraces in the city of Barranca. While previous studies have shown two periods of sediment 18 

aggradation, one period around 100 ka (Barranca) and another period around 30 ka (Pativilca), our 19 

new results show two additional periods of sediment aggradation and subsequent incision that have 20 

not been reported before. Finally, paleo-erosion rates at the time of the deposition of the terrace 21 

material were calculated and compared to the available modern estimates. The paleo-erosion rates 22 

vary from 140 ± 12 m/Ma to 390 ± 40 m/Ma.  The period of sediment accumulation prior to the 23 

abandonment of the terrace at 200 ka corresponds to a wet phase and a pulse of erosion. In contrast, 24 

the period of sediment accumulation prior to the abandonment of the terrace at 1.2 Ma does not 25 
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correspond to a pulse of erosion and could rather correspond to a change of the base level possibly 26 

induced by a sea-level rise. 27 

Keywords: 10Be depth-profile dating; alluvial terraces; Pativilca Valley; Western Peruvian Andes 28 

1. Introduction  29 

 Fluvial sediments originating from mountain belts like the Andes yield important archives of 30 

past environmental or tectonic changes. The sediments can record changes in precipitation rates and 31 

climate (Litty et al., 2016; d’Arcy et al., 2017). They can also record the response to earthquake-32 

induced landslides (McPhillips et al., 2014). The reconstruction of the timing of alluvial sediment 33 

deposition thus bears important information when the scope lies in the detection of specific climate or 34 

tectonic events as driving forces of landscape evolution. In this context, depth-profile dating based on 35 

in-situ produced 10Be measured in quartz has been proven a reliable method to establish a chronology 36 

of sediment deposition (e.g., Bookhagen et al., 2006; Hidy et al., 2010). In particular, this 37 

methodology yields an age when sediment aggradation stopped and when a period of sediment 38 

accumulation was superseded by a phase of erosion and incision into the previously deposited 39 

material.  10Be is the most commonly measured in situ–produced cosmogenic nuclide (Granger et al., 40 

2013). Its dominance in geological applications stems from several factors, including the abundance 41 

of the target mineral, quartz, a standardized chemistry procedure (Kohl and Nishiizumi, 1992), a 42 

relatively simple production depth profile, and routinely good precision by accelerator mass 43 

spectrometry (AMS) (Granger, 2006). Additionally, isochron burial dating using 10Be and 26Al is 44 

becoming increasingly important in studies related to river terraces (e.g., Darling et al., 2012; Erlanger 45 

et al., 2012; Akçar et al., 2017). Isochron-burial dating yields in an age when the investigated material 46 

accumulated. It is thus a variation of traditional burial dating methods. Ages, or alternatively the 47 

burial times of sediment, are determined using the difference between the cosmogenic 26Al/10Be 48 

surface production ratio at the time of burial and the 26Al/10Be ratio measured in buried sediments 49 

(Granger, 2006). Sediments of alluvial terrace deposits with flat tops are ideal for surface exposure 50 

dating and isochron burial dating: they are persistent, easily identifiable as surfaces that were formed 51 

at a specific time and that have been isolated from the fluvial system since deposition. Because they 52 



are typically coarse-grained, well drained, and nearly flat, they can be remarkably well preserved and 53 

unaffected by erosion, especially in arid environments like in the western side of the Peruvian Andes 54 

(Litty et al., 2017a; Reber et al., 2017). 55 

 Alluvial terrace sequences are common features along the coastal margin between Peru and 56 

northern Chile. They are located particularly in lower valley reaches near to the Pacific coast (Steffen 57 

et al., 2009, 2010; Trauerstein et al., 2014; Litty et al., 2017a). Climate change has been considered to 58 

have controlled pulses of erosion on the western Andean margin through the increase in mean surface 59 

runoff resulting either in sediment accumulation along stream segments close to the Pacific coast 60 

(Bekaddour et al., 2014; Norton et al., 2016), or in surface erosion in upstream segments of major 61 

rivers (Veit et al., 2016). These climate-driven changes have been interpreted as being the main 62 

driving force controlling the sediment accumulation and the formation of cut-and-fill terraces on the 63 

western Andean margin (Norton et al., 2016). In the Pativilca Valley, situated on the western margin 64 

of the Peruvian Andes at about 10°S (Fig. 1A), a terrace sequence has been previously dated through 65 

infrared stimulated luminescence (IRSL) techniques (Trauerstein et al., 2014). The results have 66 

disclosed the occurrence of at least two periods of sediment aggradation, one period spanning from 10 67 

ka to 90 ka with an age of the samples cluster around 30 ka and another period spanning the time 68 

interval between 80 ka and 130 ka with an age estimate of the samples cluster around 110 ka 69 

(Trauerstein et al., 2014). While generally wetter climate results in fluvial incision, the results from 70 

Trauerstein et al. (2014) suggested that here wetter climate conditions do correlate with periods of 71 

fluvial aggradation. 72 

The aim of this study is to date additional terrace deposits using in-situ terrestrial cosmogenic 73 

nuclides to complete the chronological framework and to infer the history of sediment aggradation 74 

and incision in this alluvial fan delta system. In addition concentrations of in-situ 10Be recorded by 75 

detrital quartz minerals in the terrace deposits will be used to infer the paleo-erosion rates recorded at 76 

the time when sediment accumulation occurred. These rates will be compared to the modern ones 77 

(Reber et al., 2017) to quantify the erosion in the upstream drainage basin during the phases of 78 

aggradation within the downstream valley. The final aim is to understand the factors controlling 79 

fluvial aggradation and incision in fan delta environments in the western Andes. 80 



 81 

2. Regional settings 82 

 The Pativilca Valley is located in central Peru, about 200 km to the northwest of Lima. The 83 

Rio Pativilca, which is trunk stream of the region, debouches into the Pacific at 10.7°S and 77.8°W 84 

(Fig. 1A). The drainage basin has an area of about 4400 km2, and the longest flow path measures 85 

approximately 200 km. The upper section of the stream is characterized by a bedrock channel with a 86 

steep gradient (knickzone), whereas in the lower segment the narrow valley floor is covered by 87 

alluvial deposits that are thickening and widening towards the coast, giving way to an alluvial fan 88 

delta. The sedimentological architecture of the deposits is characterized by amalgamated stacks of 20 89 

to 50 m-thick units of poorly sorted, clast-supported conglomerates with a coarse-grained sandy 90 

matrix (Fig. 1B). The clasts are subrounded and sometimes imbricated, but the sedimentary fabrics are 91 

predominantly massive (Fig. 1B). The alluvial conglomerates are part of an alluvial fan delta system 92 

characterized by a suite of individual fill terraces with different altitudes of the tread (Fig. 1B). 93 

 The precipitation pattern of South America is strongly influenced by the low level Andean jet 94 

and the position of the Inter Tropical Convergence Zone (ITCZ), which experiences seasonal shifts in 95 

response to insolation differences between austral summer and winter. The Andean jet transfers 96 

humidity from the Pacific Ocean and the Amazon basin to the eastern margin of the Andes, and also 97 

to the Altiplano and the western Andean margin (Garreaud, 2009). The Andean mountain range thus 98 

acts as a major topographic barrier to the atmospheric circulation. As a result of this circulation 99 

pattern, the Peruvian western margin shows an E-W contrasting precipitation pattern with high annual 100 

precipitation rates up to 800 mm on the Altiplano and ~0 mm along the coast. From north to south, the 101 

annual rainfall rates on the Altiplano decrease from 1000 mm near the Equator to <200 mm in 102 

northern Chile. Every 2-10 yr, near the Equator, the Pacific coast is subjected to stronger precipitation 103 

than the mean precipitation rates, resulting in high flood magnitude variability related to the El Nino 104 

Southern Oscillation (ENSO) weather phenomenon (DeVries, 1987). Today, this phenomenon is 105 

limited to the coastal area of northern Peru, but during the past, southern Peru might also have been 106 

affected by such events (Lagos et al., 2008).  107 



 On orbital time scales, the position of the ITCZ has shifted in response to larger insolation 108 

and heat contrasts between the Northern and Southern Hemispheres, which has been related to the 109 

effects of shifts in the Earth’s precession (Strecker et al., 2007). The results are stronger upper air 110 

easterlies and more precipitation on the Altiplano (Garreaud et al., 2003). Variations in precipitation 111 

rates and patterns led to remarkable lake level variations on the Altiplano as recorded by lake level 112 

highstands on the plateau (Ouki, Minchin and Tauca pluvial periods, e.g., Fritz et al., 2004). These 113 

climate changes have also controlled pulses of erosion and deposition on the western Andean margin 114 

(Bekaddour et al., 2014; Veit et al., 2016). Related variations in erosional fluxes have been interpreted 115 

as being the main factor controlling the formation of cut-and-fill terrace systems along the western 116 

margin of the Peruvian Andes (Norton et al., 2016).   117 

 118 

3. Methods 119 

3.1. Cosmogenic nuclides 120 

 Over the past 25 yr, cosmogenic nuclides have become an essential tool in Quaternary 121 

geochronology (e.g., Gosse and Phillips, 2001; Granger, 2006). Cosmogenic nuclides are produced 122 

through spallation reactions and muon capture in minerals of rocks and sediment at or near the Earth’s 123 

surface (Gosse and Philips, 2001). Cosmogenic 10Be and 26Al can be applied to determine a post-124 

depositional age of a geological layer using their accumulation (depth-profile dating). Alternatively, 125 

they can also be used to determine the timing of sediment accumulation through their radioactive 126 

decay (burial dating) history (e.g., Anderson et al., 1996; Repka et al., 1997; Granger and Smith, 127 

2000; Granger and Muzikar, 2001; Wolkowinsky and Granger, 2004; Balco and Rovey, 2008; Akçar 128 

et al., 2017).  129 

 Depth-profile dating is based on the exponential decrease of cosmogenic nuclides with depth 130 

(Gosse and Philips, 2001). On the other hand, the burial dating technique uses the difference in half-131 

lives of 10Be (1.387 Ma; Korschinek et al., 2010; Chmeleff et al., 2010) and 26Al (0.705 Ma; Norris et 132 

al., 1983) and thus the 26Al versus 10Be ratio to determine the burial time, when the pre-burial and 133 

post-burial concentrations are known or estimated (e.g., Granger and Muzikar, 2001; Akçar et al., 134 



2017). We followed the Erlanger et al. (2012) isochron approach where one of the advantages is the 135 

assumption that post-burial production is identical across a single stratigraphic horizon. 136 

 The collected samples (see section 3.3 for description of sample sites and sampling strategy) 137 

were processed in the Surface Exposure Laboratory of the Institute of Geological Sciences at the 138 

University of Bern following the lab protocol described in Akçar et al. (2012). The 10Be/9Be and 139 

26Al/27Al AMS measurements were then performed at the Swiss Federal Institute of Technology 140 

tandem facility in Zurich (Christl et al., 2013). The long-term weighted average 10Be/9Be ratio of (2.41 141 

± 0.53) × 10−15 was used for full process blank correction. Table 1 presents the samples information 142 

and cosmogenic nuclide results. 143 

 Depth-profile ages were modelled with MATLAB® using Monte Carlo simulations 144 

developed by Hidy et al. (2010). Depth-profile patterns were simulated based on exposure age, 145 

erosion rate and inheritance. Table 2 shows the input parameters for the Barranca and Pativilca depth-146 

profile simulations. We applied no correction factor for topographic shielding. We justify this 147 

approach because there is no significant topography around the sampling sites that could block a 148 

portion of incoming cosmic radiations (Dunne et al., 1999; Gosse and Phillips, 2001), as the sampling 149 

sites are located on the widest and flattest part of the valley close to the coast. We did not consider 150 

snow cover to have a major impact on the results as the mean basin elevation of the sampled 151 

catchment is largely situated below the snow line. The 10Be half-life with a value of 1.387 ± 0.012 Ma 152 

was utilized (Chmeleff et al., 2010; Korschinek et al., 2010). The local production rate was scaled to 153 

the Lal (1991) and Stone (2000) scheme using a production rate caused by spallation (SLHL: at sea-154 

level, high latitude) of 4.01 ± 0.12 atoms gSiO2
-1 (CRONUS calculator update from v. 2.2 to v. 2.3 155 

published by Balco in August 2016 after Balco et al., 2008; Borchers et al., 2016). Thus a site-specific 156 

spallogenic production rate of 2.5 ± 0.5 atoms g-1 a-1 was obtained for Barranca and for Pativilca. We 157 

applied a bulk density ranging between 1.6 and 2.1 g cm-3 for the sediment samples in Barranca and 158 

Pativilca. Finally, to model a depth-profile age we simulated 100,000 profiles and used a χ2 cut-off 159 

value of ≤ 20 for Barranca and ≤ 3 for Pativilca (Table 2). 160 

 161 

3.2. Paleo erosion rates  162 



 Paleo basin-averaged erosion rates can be calculated using the cosmogenic nuclide 163 

concentrations of past sediment samples following Granger et al. (1996) and von Blanckenburg 164 

(2005). To calculate the basin averaged paleo-erosion rate, we used the 10Be cosmogenic nuclide 165 

concentrations of the sand embedded in the terrace deposits after corrections have been made for 166 

shielding, post-depositional nuclide production at sample depth z, and atom loss due to radioactive 167 

decay during time t (both considered in Eq. (1); Balco et al., 2008). These equations can be used 168 

assuming: (i) The material was well mixed in the upstream basin and finally embedded in the terrace 169 

fill. This appears to be the case in the western Peruvian valleys where the fluvial processes have 170 

dominated the transport of sediment (Litty et al., 2017b), thus providing well-mixed material. (ii) The 171 

paleo-erosion is representative for the entire catchment. Indeed, the sediments of the Pleistocene 172 

terrace fills in western Peru record an origin from both the upper flat part of the catchments and the 173 

lower steep reaches (Litty et al., 2017a). (iii) The residence of the material on the hillslopes and the 174 

channels is much shorter than the erosional timescale. This is the case in the western Peruvian valleys 175 

where regolith was considered to have been rapidly stripped from hillslopes, which most likely 176 

resulted in the supply of large volumes of sediment to the trunk streams during the periods of 177 

sediment aggradation (Norton et al., 2016). (iv) The individual terraces have not experienced multiple 178 

phases of erosion and re-deposition, so that major internal unconformities are not present (von 179 

Blanckenburg, 2005). This appears to be the case in the Pativilca Valley as no unconformities in the 180 

individual terrace fills have been observed in the field. 181 

 182 

3.3. Sampling sites 183 

 Two previously undated alluvial terrace fills were sampled for depth-profile exposure dating. 184 

These terraces are located along the lowermost reach of the Pativilca River and in the city of Barranca 185 

(Fig. 1; Table 1). At each sampling site, six samples were collected along a vertical profile from 0.9 to 186 

4.7 m beneath the tread of the terrace in Pativilca, and from 0.4 to 3.2 m beneath the tread of the 187 

terrace in Barranca (Fig. 1A). Two to three kilograms of medium grained sand embedded between the 188 

pebbles were taken for each sample. Additionally, the lowermost samples of the two depth profiles 189 

(PAT-DP6 and BAR-DP6) were used to infer a paleo-erosion rate at the time when the sediments of 190 



the two newly dated terraces were deposited. Two other samples (PAT-PE and BAR-PE2) were 191 

collected in two other terrace fills previously dated (Trauerstein et al., 2014) for the calculation of 192 

paleo-erosion rates (one in Pativilca and one in Barranca; Table 4). Additionally, quartz bearing clasts 193 

were sampled for isochron burial dating (Fig. 1B; Table 1). For each isochron burial site, the samples 194 

were collected from the same sedimentologic unit and from a single stratigraphic horizon following 195 

Erlanger et al. (2012). Three horizons were sampled in Barranca and two horizons have been sampled 196 

in Pativilca (Fig. 1B; Table 1). Depth-profile dating and isochron burial dating techniques have be 197 

chosen as sand lenses that are required for IRSL sampling are not present in every terrace fill. 198 

 199 

4. Results 200 

4.1. Cosmogenic nuclides: isochron burial dating 201 

 The measured 26Al concentrations are plotted versus 10Be concentrations including 2σ 202 

uncertainties (Fig. 2).  The cosmogenic nuclide results are shown in Table 1. As the Al/Be ratios are 203 

higher than the surface ratio, it is not possible to calculate an isochron burial age from these samples 204 

(for details, see Erlanger et al., 2012). The surface ratio of 26Al/10Be is not constant since it depends 205 

on the time of exposure and erosion. On a banana-plot, the ratios decrease from 8.4 to ~3, and a 206 

regression through these yields a surface ratio around 6.8. Therefore, in most of the isochron burial 207 

applications this ratio has been used as the surface ratio. Recently, Akçar et al. (2017) showed that 208 

this ratio varied between 7 and 12 in deeply eroding landscapes, particularly in glacial environments. 209 

However, these mechanisms fail to explain the 26Al/10Be ratios > 12 obtained in this study as glacial 210 

processes were most likely not the most important erosional mechanisms. Therefore, we tentatively 211 

attribute these ratios to the analytical problems related to the measurements of the total Al or to the 212 

quartz purification process. Given that no age can be determined from these samples; isochron burial 213 

dating is therefore not further discussed in this paper. 214 

 215 

4.2. Cosmogenic nuclides: depth-profile dating 216 



4.2.1. Barranca 217 

 AMS-measured 10Be/9Be (with uncertainties) as well as calculated 10Be concentrations for 218 

each sample are shown in Table 1. The concentrations of the six sediment samples vary from ~12 x 219 

105 atoms g-1 for the uppermost sample to ~1 x 105 atoms g-1 for the lowermost sample (Table 1). In 220 

Fig. 3, the 10Be concentrations together with 1σ uncertainties are plotted against depth. They display 221 

an exponential decrease with depth. The simulated best fit curve through the six data points is 222 

illustrated in Fig. 4, whereas the possible solution space with a χ2 cut-off value of ≤ 20 is shown in 223 

Fig. 5.  224 

 The simulation yields a best-fit solution to the measured nuclide concentrations for a modal 225 

depth-profile age of 1.2 r 0.3 Ma, and a modal top erosion rate of 0.07 r 0.02 cm ka-1 (Table 3A). The 226 

modal values of the age and erosion rate are similar to the mean and median values of the simulation, 227 

thus the errors of the modal values are based on the minimum and maximum values generated by the 228 

simulation. Note that the Monte Carlo simulation code requires a constraint on the net erosion on the 229 

top of the section as a modal input parameter to calculate an age (Hidy et al., 2010). This parameter is 230 

iteratively adjusted within a range of values.  231 

 232 

4.2.2. Pativilca 233 

 The concentrations of the six sediment samples vary from ~86 x 104 atoms g-1 for the 234 

uppermost sample to ~44 x 104 atoms g-1 for the lowermost sample (Table 1). In Fig. 6, the 10Be 235 

concentrations together with 1σ uncertainties are plotted against depth. The best fit through the six 236 

data points is illustrated in Fig. 7, whereas the possible solution space with a χ2 cut-off value of ≤ 3 is 237 

shown in Fig. 8.  238 

 The simulation yields a best-fit solution to the measured nuclide concentrations for a modal 239 

depth-profile age of 200 r 90 ka, a modal top erosion of 0.48+ 0.41- 0.13 cm ka-1 and an inheritance 240 

of 35,100+ 8700-8000 atoms g-1 (Table 3B). The modal values are similar to the mean and median 241 

values of the simulation, thus the errors of the modal values are based on the minimum and maximum 242 

values generated by the simulation. 243 



 The results of the depth-profile dating return a surface exposure age of ~1.2 Ma in Barranca 244 

and of ~200 ka in Pativilca. These results show minimum ages when the accumulation of material has 245 

terminated and when dissection of the previously deposited material started, yielding in the formation 246 

of a terrace level. These two periods when sediment aggradation was superseded by dissection, have 247 

not been dated before. These new results together with the ones from Trauestein et al. (2014) suggest 248 

the occurrence of at least four terraces referred to as T1 to T4 from older to younger (Figs. 9 and 249 

10A), corresponding to at least four different periods of sediment accumulation. Terrace deposits were 250 

correlated on the basis of landscape position, tread altitude and absolute dating (Figs. 9 and 10A).  251 

 252 

4.3. Paleo-erosion rates 253 

 The in-situ 10Be analytical data together with the inferred paleo-erosion rates recorded by the 254 

alluvial terrace sediments are presented in Table 4. The paleo-erosion rate values are 143 r 12 m Ma-1 255 

at the time of the accumulation of the terrace deposits T1 (~1.2 Ma ago), 302 r 28 m Ma-1 at the time 256 

when terrace material T2 was deposited, 392 r 40 m Ma-1 at the time of the deposition of the terrace 257 

sediments T3, and finally 297 r 29 m Ma-1 at the time terrace T4 was constructed (Fig. 10B). In 258 

addition, Reber et al. (2017) reported a modern catchment-averaged denudation rate of 260 r 23 m 259 

Ma-1.  260 

5. Discussion 261 

5.1. Chronology of sediment accumulation and incision  262 

 The fluvial aggradation and subsequent incision in the Pativilca Valley has occurred in 263 

multiple episodes through the Quaternary (Figs. 9 and 10). Figure 11 shows the position of the active 264 

river and the position of the sediment accumulation during the periods of aggradation. Our dating 265 

results imply that the sediments of terrace T1 in Barranca have been deposited prior to 1.2 Ma. The 266 

aggradation then ceased and the tread formation began ~1.2 Ma ago (terrace T1; Fig. 11A). During 267 

the period of the terrace fill, the erosion rate was two times lower than the modern rate (Fig. 12). 268 

Following this, for approximately 1 Ma, either a period of no sedimentation occurred in the valley or 269 

no sediments have been preserved. The river then moved its course towards Pativilca. The sediments 270 



of terrace T2 in Pativilca have been deposited prior to 200 ka. The accumulation of sediment then 271 

stopped and exposed the terrace tread at around 200 ka (terrace T2; Fig. 11B). During the period of 272 

sediment accumulation, the erosion rate was up to ~300 m.Ma-1 (Fig. 12). The river bed again 273 

changed its course towards Barranca, and a phase of accumulation occurred around 100 ka (deposition 274 

of the sediment of T3; Fig. 11C; Trauerstein et al., 2014). In this period, the erosion rate was at its 275 

highest (~400 m Ma-1; Fig. 12). Finally, the lobe of the Pativilca fan delta moved back towards the 276 

city of Pativilca close to its current course, and a phase of aggradation occurred from 10 to 45 ka ago 277 

(deposition of the sediment of T4; Fig. 11D; Trauerstein et al., 2014). During this period, the 278 

catchment-wide denudation rate dropped back to ~300 m Ma-1 (Fig. 12). This phase was followed by 279 

a period of incision exposing the tread and riser of terrace level T4. Today the erosion rate is slightly 280 

lower than during the past at ~200 ka (Fig. 12) and the river appears to be incising. 281 

 282 

5.2. Implications for climate variability as controls on cyclic deposition and erosion 283 

 A stratigraphic record of river terrace sediments is formed and preserved as a stream changes 284 

its activity between incision, lateral planation, and aggradation (Pederson et al., 2006). These fill 285 

terraces in the Pativilca Valley represent a relatively complete archive of both incision and deposition. 286 

They can be used to understand the response to climate or to other driving forces that have an impact 287 

on the balance between sediment transport and deposition (Pederson et al., 2006). These terrace fills 288 

have been formed in the alluvial fan delta of the Pativilca River and they might also record the change 289 

in the position of the different lobes of the delta through shifts in transport and sediment capacity. 290 

Alternatively, a phase of accumulation requires the availability of sediments on the hillslopes to be 291 

eroded, transported and deposited (Hancock and Anderson, 2002). This implies that the river 292 

experiences an increase in the ratio between sediment supply and the stream’s capacity to control the 293 

deposition the supplied material (Tucker and Slingerland, 1997). The youngest period of sediment 294 

accumulation ranging from 10 to 45 ka (terrace T4) could correspond to the wet intervals recorded by 295 

the Minchin (47.8–36 ka ago) and Tauca (26–14.9 ka ago) paleolakes (Fritz et al., 2004). The period 296 

of sediment accumulation ranging from 80 to 130 ka (terrace T3) could correspond to the wet period 297 

characterized by the Ouki paleolakes (120-98 ka ago; Fritz et al., 2004). These two periods of 298 



sediment accumulation previously dated by Trauerstein et al. (2014) are thus correlated with phases of 299 

enhanced precipitation with higher water discharge in the river. These wet conditions could have been 300 

induced by summer insolation forcing of the South American summer monsoon at precessional time-301 

scales (Baker et al., 2001a,b). Indeed, the precession together with the obliquity has been considered 302 

to control the seasonal cycles of insolation (Milankovitch, 1941). The wettest phases, and hence the 303 

highest lake levels (Bills et al., 1994; Sylvestre et al., 1999; Placzek et al., 2006), were additionally 304 

forced by warm North Atlantic sea surface temperatures (Baker et al., 2001a). These climate changes 305 

were also used to explain the pulses of upland erosion and deposition in the stream valleys on the 306 

western Andean margin (Bekaddour et al., 2014), which agree with our data of relative fast paleo-307 

erosion rates recorded by these two terraces. Indeed, the 10-45 ka denudation rate was >10% higher 308 

than the modern one and the 80-130 ka denudation rate was even >30% higher than the modern rates 309 

(Fig. 12). Fluvial aggradation is here correlated with wetter climates and an increased sediment supply 310 

from the uplands. However, we also note that wetter climates can result in fluvial incision and terrace 311 

formation because of greater stream discharge (Veit et al., 2016), provided that the hillslopes have 312 

been depleted of  material (Norton et al., 2016). In our case, the start of the incision phases could then 313 

correspond to the end of the pluvial period and the time of decrease of the supply of sediment to the 314 

river. Alternatively, it is also possible that erosional recycling of the terrace material started within the 315 

pluvial periods, when the preceding phase of rapid hillslope erosion resulted in the depletion of the 316 

sediment reservoirs, yielding high ratios between water and sediment fluxes in the trunk stream. The 317 

Altiplano lake sediment cores do not record climatic variations older than 130 ka (Placzek et al., 318 

2006). In this context, we cannot correlate the two older periods of sediment accumulation (prior to 319 

~200 ka and prior to ~1.2 Ma) to any lake level variations. However, the high paleo-erosion rate 320 

calculated for the newly dated fills of the terrace T2 (~15% higher than the modern one) appears also 321 

to correspond to a pulse of upland erosion, which could point towards a period of wet conditions. 322 

Support for this interpretation is provided by the periodicity of about 100 ka for this orbital-induced 323 

summer insolation forcing (Milankovitch, 1941; Lisiecki, 2010; Abe-Ouchi et al., 2013). If this 324 

interpretation is valid, then the ages of 100 ka (T3) and 200 ka (T2) would then correspond to this 100 325 

ka periodicity, suggesting that the period prior to ~200 ka might also have corresponded to a wet 326 



phase on the Altiplano. The oldest dated period of sediment accumulation (terrace T1) does not record 327 

a distinct pulse of erosion as the calculated paleo erosion rate was twice as low as the modern one. 328 

The production of sediments on the hillslopes through weathering and erosion can occur through an 329 

increase in precipitation rates (e.g., Bookhagen et al., 2005; Norton et al., 2016), for which there is no 330 

evidence from the records reported here indicating that sediment accumulation of the terrace T1 has 331 

not been induced by a phase of enhanced precipitation. Alternatively, this T1 phase of accumulation 332 

could have occurred in response to a rise in sea level. Indeed, a rise in sea level would cause a back 333 

filling and a super-elevation of the channel, which then would cause the delta lobe to switch positions. 334 

Supporting evidence for this interpretation has been provided by Pillans et al. (1998), who proposed 335 

that the ~1.2 Ma-old period was relatively warm and corresponded to a rising sea level. Nevertheless, 336 

we note that further research in the region is required to sustain this interpretation. 337 

 338 

6. Conclusions 339 

 The results of the depth-profile dating together with the previously published IRSL ages 340 

(Trauerstein et al., 2014) disclose at least four terraces located in the fan delta of the Pativilca River. 341 

The sediments of terrace T1 accumulated until ~1.2 Ma ago and terraces T2, T3 and T4 were 342 

deposited prior to ~200 ka, ~100 ka ago and ~30 ka ago respectively. Additionally, paleo-erosion 343 

rates at the time of the deposition of the terrace fills were calculated and compared to the modern 344 

rates. The modern erosion rate is ~260 mm/ka, while the paleo-erosion rates vary from ~143 mm/ka to 345 

~391 m Ma-1. 346 

 The oldest period of accumulation does not correspond to a distinct pulse of erosion and could 347 

rather correspond to a period when the sea level was rising. The three younger phases of sediment 348 

accumulation most likely correspond to wet phases and pulses of erosion in the uplands. These wet 349 

conditions were likely to have been induced by summer insolation forcing of the South American 350 

summer monsoon at precessional time scales (Baker et al., 2001a, 2001b). Generally, wetter climate 351 

results in fluvial incision caused by greater stream discharge. However, wetter climate is here 352 

correlated with fluvial aggradation due to the inferred increased sediment supply from the uplands. 353 

The abandonment of the terrace treads would then correspond to the end of the pluvial period and thus 354 



a decrease of the sediment supplied to the river. Additionally, this long period of preservation of the 355 

alluvial sediments on a coastal area implies a constant base level after the deposition of the terrace T1 356 

despite the occurrence of an active subduction zone. 357 

 358 
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Tables and Figures captions 582 
 583 
Table 1: Sample and cosmogenic nuclide data. 584 
 585 
Table 2: Input parameters for the Monte Carlo simulator in Matlab® (Hidy et al., 2010). 586 
 587 
Table 3: Results of the Monte Carlo simulations with Matlab® for (A) Barranca and (B) Pativilca. 588 
Total number of simulated profiles is 100,000. The bold numbers represent the modelled values and 589 
are therefore the ones that are used in this paper. 590 



 591 
Table 4: Information relevant for interpreting 10Be concentrations. Modern and paleo catchment-592 
averaged denudation were calculated using the SRTM DEM with a 90 m resolution. A 10Be half-life 593 
of 1.39 +/- 0.01 Ma was used (Chmeleff et al., 2010; Korschinek et al., 2010) and a SLHL 10Be 594 
production rate of 4.01 at g-1 a-1.  A density of 2.65 g cm-3 was employed. 595 
 596 
Fig. 1: (A) Maps of the study area showing the location of Pativilca and Barranca on the western side 597 
of the Peruvian Andes. (B) Field photographs showing the alluvial terraces in Barranca and Pativilca. 598 
Samples PAT-DP-1 to 6 (Pativilca), BAR-DP 1 to 6 (Barranca) were collected for depth-profile 599 
dating. The white lines represent the bracket level where quartz bearing clasts were sampled for 600 
isochron burial dating purposes. The concentrations obtained for the samples BAR-DP6 and PAT-601 
DP6 were used for the calculation of the paleo-basin wide denudation rates 602 
 603 
Fig. 2: Measured 26Al concentrations plotted vs. 10Be concentrations of the isochron-burial dating 604 
samples in Barranca (BAR-IS1, BAR-IS2 and BAR-IS3) and in Pativilca (PAT-IS1 and PAT-IS2). 605 
The sampling sites are shown on Fig. 1B. The errors represent 2σ uncertainties. The dash lines 606 
illustrate the surface production rate ratio of 6.75 (Balco et al., 2008). 607 
 608 
Fig. 3: Measured 10Be concentrations including the 1σ uncertainties of the Barranca depth-profile 609 
samples plotted against depth. 610 
 611 
Fig. 4: Modal output of the Monte Carlo simulations showing frequency distributions and χ2 values 612 
for exposure age, erosion rate and inheritance. 613 
  614 
Fig. 5: Output of the Monte Carlo depth-profile age simulation. (A) Illustration of the best fit through 615 
the samples for the lowest χ2 value. (B) Possible solution space with a χ2 cut-off values of < 20. 616 
 617 
Fig. 6: Measured 10Be concentrations including the 1σ uncertainties of the Pativilca depth-profile 618 
samples plotted against depth. 619 
 620 
Fig. 7: Modal output of the Monte Carlo simulations showing frequency distributions and χ2 values 621 
for exposure age, erosion rate and inheritance. 622 
  623 
Fig. 8: Output of the Monte Carlo depth-profile age simulation. (A) Illustration of the best fit through 624 
the samples for the lowest χ2 value. (B) Possible solution space with a χ2 cut-off values of < 3. 625 
 626 
Fig. 9: Map of the alluvial terraces in Pativilca and Barranca showing the age of the different terraces. 627 
 628 
Fig. 10: (A) Summary of the IRSL and depth-profile ages in Pativilca and Barranca. The black dots 629 
represent the IRSL samples from Trauerstein et al. (2014) and the white dot represents the depth 630 
profile (this study). (B) Summary of the paleo-catchment wide denudation rates.The transect A-B can 631 
be seen in Fig. 9. 632 
 633 
Fig. 11: Maps showing the inferred channel belt position during the sediment accumulation phases in 634 
the Pativilca Valley. (A) prior to ~1.2 Ma ago. (B) prior to ~200 ka ago. (C) ~100 ka ago. (D) ~30 ka 635 
ago. 636 
  637 
Fig. 12: Erosion rates versus time. 638 
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Table 1.
        Sample information and cosmogenic nuclide data of the samples

Site Technics Latitude (°) Longitude (°)
Altitude of the 

top of the 
terrace (m)

Sample name Sample 
depth(cm)

Sample type Quartz 
dissolved(g)

9Be spike(mg) 10Be/9Be
Relative 

uncertainty(
%)

10Be 
concentration 
(10^4 atoms/g)

Al(mg) 26Al/27Al
Relative 

uncertainty(
%)

26Al concentration 
(10^4 atoms/g)

26Al/10Be Error on 
the ratio

Pativilca Depth Profile 
dating

-10.704 -77.775 96 PAT-DP1 90-100 Sand 15.0271 0.1731 1,14E-13 8.72 8.59 n.d n.d. n.d. n.d. n.d. n.d.

PAT-DP2 130-140 49.8738 0.1702 2,68E-13 5.23 6.06
PAT-DP3 170-180 49.8325 0.1745 2,98E-13 5.18 6.91
PAT-DP4 210-220 50.0394 0.175 2,71E-13 5.38 6.26
PAT-DP5 270-280 49.9998 0.1725 1,96E-13 7.08 4.46
PAT-DP6 460-470 49.8804 0.1743 2,43E-13 4.64 5.62

Isochron burial 
dating

-10.704 -77.775 96 PAT-IS1-1 460-470 Quartz bearing 
clasts

38.207 0.1739 5,79E-13 18.4 17.5 3.79 3,46E-13 17,5 76.7 4.38 1.11

PAT-IS1-2 38.7454 0.1737 6,45E-14 22.9 1.86 2.90 2,30E-13 18,6 38.5 20.7 6.24
PAT-IS1-7 36.6074 0.1747 1,40E-14 9.96 0.368 4.10 2,03E-14 33,7 5.07 13.8 4.92
PAT-IS1-9 37.689 0.1746 1,68E-14 9.81 0.443 3.79 1,76E-14 37,8 3.96 8.92 3.52

Isochron burial 
dating

-10.708 -77.772 75 PAT-IS2-1 400-410 Quartz bearing 
clasts

39.5056 0.1737 1,32E-14 16.0 0.315 4.33 1,66E-14 39,3 4.06 12.8 5.65

PAT-IS2-3 40.9181 0.1739 1,41E-12 2.73 3.98 3.86 1,25E-12 2,78 263 6.62 0.26
PAT-IS2-7 36.3518 0.175 9,91E-15 15.6 0.241 2.18 1,89E-14 32,8 2.53 10.5 4.08
PAT-IS2-2 32.5973 0.2004 2,39E-14 11.5 0.884 3.94 3,25E-14 10,6 8.77 9.93 1.65
PAT-IS2-4 39.2653 0.1972 2,05E-14 10.6 0.608 4.32 3,47E-14 11,6 8.52 14.0 2.34
PAT-IS2-6 39.8664 0.1998 4,47E-14 8.79 1.41 3.78 5,44E-14 8,79 11.5 8.12 1.04

Barranca Depth Profile 
dating

-10.758 -77.765 53 BAR-DP1 40-50 Sand 36.2984 0.1661 3,94E-12 1.54 12.0 n.d n.d. n.d. n.d. n.d. n.d.

BAR-DP2 70-80 33.0576 0.1673 2,43E-12 3.04 82.1
BAR-DP3 100-110 25.7899 0.1731 1,34E-12 2.52 60.1
BAR-DP4 160-170 35.9971 0.1705 8,31E-13 3.02 26.2
BAR-DP5 250-260 50.2153 0.1747 6,08E-13 5.27 14.1
BAR-DP6 310-320 33.2556 0.1744 2,96E-13 4.41 10.3

Isochron burial 
dating

-10.758 -77.765 53 BAR-IS1-2 250-260 Quartz bearing 
clasts

37.67 0.1736 4,37E-13 3.07 13.4 3.55 4,35E-13 16.0 91.6 6.84 1.12

BAR-IS1-5 25.9268 0.1718 2,36E-13 4.15 10.3 3.62 2,98E-13 6.92 65.2 6.30 0.71
BAR-IS1-6 32.4907 0.1741 3,13E-13 4.44 11.1 4.05 2,85E-13 6.58 62.6 5.63 1.68
BAR-IS1-3 37.025 0.2017 3,11E-13 3.38 11.2 2.36 3,32E-13 11.3 67.3 5.99 0.51
BAR-IS1-4 41.1355 0.2023 3,48E-13 5.25 11.3 3.04 3,83E-13 23.3 79.9 7.03 0.45
BAR-IS1-7 26.5406 0.2033 2,42E-13 3.91 12.3 2.29 3,31E-13 5.38 63.9 5.21 0.35

Isochron burial 
dating

-10.759 -77.764 BAR-IS2-1 < 20 m Quartz bearing 
clasts

40.3743 0.1737 9,12E-14 8.10 2.55 3.20 3,06E-13 11.5 54.1 21.2 3.02

BAR-IS2-4 44.6497 0.1715 1,14E-13 5.99 2.85 3.94 5,91E-13 54.7 116,00 40.8 22.47
BAR-IS2-6 37.5191 0.1742 1,02E-13 5.63 3.08 2.96 1,86E-13 23.5 32.9 10.6 2.58

Isochron burial 
dating

-10.76 -77.763 BAR-IS3-2 < 25 m Quartz bearing 
clasts

49.9169 0.1726 9,04E-14 5.68 2.03 4.09 2,74E-13 19.7 50.1 24.7 5.09

BAR-IS3-4 45.1403 0.1737 1,04E-13 10.11 2.61 3.42 3,11E-13 27.3 52.6 20.2 5.89
BAR-IS3-7 40.7863 0.1729 7,10E-14 8.56 1,94 3.62 2,79E-13 25.5 55.3 28.4 7.68



Table 2 
Input parameters for the Monte Carlo simulator in Matlab (Hidy et al., 2010).

Barranca Pativilca
Parameter Value Parameter Value

Latitude (degree) -10,758 Latitude (degree) -10,704
Longitutde (degree) -77,765 Longitutde (degree) -77,776

Altitude (m) 53 Altitude (m) 96
Strike (degree) 0 Strike (degree) 0

Dip (degree) 0 Dip (degree) 0
Shielding correction factor 1 Shielding correction factor 1

Cover correction factor 1 Cover correction factor 1
Uncertainty of 10Be Half-life (%) 1 Uncertainty of 10Be Half-life (%) 1

Local spallogenic production rate (at g-1 a-1) 2,50 Local spallogenic production rate (at g-1 a-1) 2,50
Error in local spallogenic production rate (at g-1 a-1)  ± 0.5 Error in local spallogenic production rate (at g-1 a-1)  ± 0.5

Depth of muon fit (m) 6 Depth of muon fit (m) 6
Error in total production rate (%) 5 Error in total production rate (%) 5

Density (g cm-3) 1.6-2.1 Density (g cm-3) 1.6-2.1
X2 value 20 X2 value 3

Numbers of profiles 100,000 Numbers of profiles 100,000
Age (a) 700,000-2,200,000 Age (a) 30,000-500,000

Erosion rate (cm ka-1) 0.04-0.12 Erosion rate (cm ka-1) 0.2-4
Total erosion threshold (cm) 75-400 Total erosion threshold (cm) 75-400

Inheritance (at g-1) 0-70,000 Inheritance (at g-1) 0-58,000
Attenuation length (g cm-2) 160 r�� Attenuation length (g cm-2) 160 r��



Table  Barranca
A Results of the Monte Carlo simulations with Matlab

Age (ka) Inheritance (atom/g) Erosion rate (cm/ka)
Mean 1254.3 8300 0.07

Median 1239.4 6400 0.07
Mode 1197.1 300 0.07

Minimum X2 1261.5 1200 0.06
Maximum 1503.0 5,8000 0.09
Minimum 1043.2 0 0.05

Table  Pativilca
B Results of the Monte Carlo simulations with Matlab

Age (ka) Inheritance (atom/g) Erosion rata (cm/ka)
Mean 200.6 3,5500 0.52

Median 200.3 3,5500 0.51
Mode 204.1 3,5100 0.48

Minimum X2 217.6 3,7800 0.35
Maximum 314.3 4,3800 0.89
Minimum 125 2,7100 0.25



Sample name
Paleo/modern erosion 

rates
Age of the deposits

Latitude 
(DD.DD) 
WGS84

Longitude 
(DD.DD) 
WGS84

Altitude of 
the top of 

the terrace 
(m.a.s.l)

Sample 
depth (cm)

Quartz 
dissolved (g)

9Be spike 
(mg)

Measured 
10Be/9Be ratio 

(10^-12)

AMS 
error (%)

10Be 
concentration 

(at/g)

Concentration at 
the time of 

deposition (at/g)

Denudation rates 
(mm/ka)

PAT-ME Modern erosion rates Modern Pativilca river 10.717°S 77.767°W 71 Surface 50.11 0.1991 0.24 4.0 6,4052 +/- 2695 6,4052 +/- 2695 260 +/- 23

PAT-DP6 Paleo erosion rates  Terrace T1 (Pativilca) : 200 ka 10.704°S 77.775°W 95 465 cm 49.88 0.1743 0.24 4.6 5,6219 +/- 2634 5,5203 +/- 2539 302 +/-28

PAT-PE Paleo erosion rates Terrace T3 (Pativilca) : 40 ka 10.708°S 77.772°W 75 400 cm 49.97 0.1953 0.22 5.5 5,6468 +/- 3144 5,6004 +/- 3080 297 +/- 29

BAR-DP6 Paleo erosion rates Terrace (Barranca) : 1.2 Ma 10.758°S 77.765°W 52 315 cm 33.25 0.1744 0.30 4.4 10,2942 +/- 4574 11,6020 +/- 2464 143 +/- 12

BAR-PE2 Paleo erosion rates Terrace (Barranca) : 100 ka 10.759°S 77-764°W 33 400 cm 41.24 0.1984 0.14 6.3 4,4416 +/- 2823 4,2570 +/- 2682 392 +/- 40


