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1 Introduction

Negative results from direct and indirect detection experiments and collider searches pose

a challenge for many minimal dark matter models. This has led to the construction of less

minimal models. In the latter, the cross sections probed experimentally are not directly

related to the cross section affecting freeze-out dynamics in the early universe. Therefore

experimental bounds might be respected while at the same time maintaining the correct

cosmological abundance.

If the dark matter particles are massive and interact strongly enough with the Standard

Model to have been in equilibrium with it at some time in the early universe, the basic

feature that is needed for the above task is a strongly temperature-dependent annihilation

cross section. At low temperatures, the cross section needs to be very small, to satisfy the

non-observation bounds from indirect detection. In the early universe, the cross section

needs to be large enough to keep dark matter in chemical equilibrium for a long while,

reducing its number density and thereby evading overclosure of the universe.

An example of a possible scenario along these lines is to postulate a model in which

the dark sector consists of two particle species. The lighter one is the true dark matter,

long-lived and interacting very weakly. In contrast, the heavier one could interact strongly

and act as an efficient dilution channel for the overall abundance at high temperatures (cf.,

e.g., ref. [1]).
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If the heavy species interacts strongly, as in QCD, this scenario could lead to rather

rich phenomenology. Strongly interacting particles form generally bound states. Because

of the associated binding energy, their thermal abundance is larger than that for the same

particles in a scattering state. Bound states may annihilate efficiently because the two

particles are close to each other. Though often alluded to previously, a more intensive

study of bound-state effects on the freeze-out dynamics has only started a few years ago

(cf., e.g., refs. [2, 3]).

Recently, we have participated in developing a non-perturbative formalism for address-

ing the thermal annihilation of non-relativistic particles [4, 5]. The formalism was already

applied to a first full model, which did not include strongly interacting particles but never-

theless displayed weakly bound states [6]. The purpose of the current paper is to apply the

formalism to a strongly interacting model that has been much discussed in recent literature.

Our plan is as follows. Having introduced the model in section 2, we review some

salient features concerning its thermal behaviour in section 3. The main technical ingre-

dients of our analysis are specified in section 4: the operators responsible for the hard

annihilation event; the spectral functions describing the soft initial-state effects that in-

fluence the annihilation; as well as generalized “Sommerfeld factors” which capture the

effect both of bound and scattering states on the thermal annihilation cross sections. The

cosmological evolution equations are integrated in section 5, whereas conclusions and an

outlook are offered in section 6.

2 Model

The model considered consists of the Standard Model extended by a gauge singlet Majorana

fermion (χ) as well as a scalar field (η) which is singlet in SU
L
(2) but carries non-trivial

QCD and hypercharge quantum numbers.1 The Majorana fermion is chosen as the dark

matter particle, given that its low-energy scattering cross section is naturally suppressed,

being p-wave at tree level [8]. In the MSSM language, the Majorana fermion could be a

bino-like neutralino and the scalar a right-handed stop or sbottom. However, for generality

we do not fix couplings to their MSSM values. The hypercharge coupling of the scalar is

generally omitted, as its effects are subleading compared with QCD effects.

The Lagrangian for this extension of the Standard Model can be expressed as

L = L
SM

+
1

2
χ̄
(

i /∂ −M
)

χ+ (Dµη)
†Dµη −M2

η η
†η − λ2(η

†η)2

− λ3 η
†η H†H − y η†χ̄a

R
q − y∗q̄a

L
χη . (2.1)

The notation λ1 is reserved for the self-coupling of the Higgs doublet (H). The chiral

projectors a
L
= (1−γ5)/2, aR

= (1+γ5)/2 imply that χ only interacts with SU
L
(2) singlet

projections of quarks. We assume that the Yukawa coupling y couples dominantly to one

quark flavour only. The Yukawa coupling determining the mass of that flavour is denoted

by h, and the strong gauge coupling by gs. The free parameters of the model are then the

1An SUL(2) doublet η would lead to similar results but a somewhat more complicated analysis [7].
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two mass scales2 M and ∆M ≡Mη −M as well as the two “portal” couplings λ3 and |y|2
that are assumed to be small at the MS scale µ̄ ∼ 2M .

In the MSSM context, the importance of co-annihilations in such a model was stressed

long ago [1]. Sommerfeld enhancements from QCD interactions were included in refs. [9, 10],

however without the consideration of bound states. Similar theoretical ingredients were

applied to the generalized model in ref. [11]. Direct, indirect and collider constraints on the

generalized model were reviewed in ref. [7]. More recently, bound-state effects have been

approximately included in this model [12–14], as a single additional degree of freedom in a

set of Boltzmann equations, a treatment which we aim to improve upon in the following.

3 Parametric forms of thermal masses and interaction rates

The coloured scalars are responsible for most of the annihilations during thermal freeze-out.

We start by reviewing the thermal mass corrections and interaction rates that they experi-

ence. The important point is that, because of Bose enhancement, the gluonic contributions

are infrared (IR) sensitive, and need to be properly resummed for a correct result.

As a first step, consider a naive (i.e. unresummed) computation of the self-energy of

the coloured scalar. Evaluating the (retarded) self-energy at the on-shell point yields (the

line “ ” stands for η and the wiggly line for a gluon)

+ ⇒ ReΠ
R

2Mη

=
g2sCF

T 2

12Mη

, (3.1)

∼ 2 ⇒ ImΠ
R

2Mη

= 0 , (3.2)

where C
F
≡ (N2

c − 1)/(2Nc). The real part is analogous to that for a heavy fermion [15].

The imaginary part vanishes because there is no phase space for the 1 ↔ 2 process.

However, at high temperatures these naive results are misleading. Perhaps the simplest

way to see this is to replace the scalar in the loop by a particle with a different mass,

Mη+∆M , and consider the case ∆M ≪ πT ≪Mη. Then it can be verified that ReΠ
R
/Mη

is modified by a correction of order ∼ g2sCF
∆M , and ImΠ

R
/Mη by a correction of order

∼ g2sCF
|∆M |nB(|∆M |) ≈ g2sCF

T , where nB is the Bose distribution. In other words, the

result in eq. (3.2) seems to change qualitatively because Bose enhancement of the soft

contribution compensates against the phase-space suppression.

The correct treatment of the Bose-enhanced IR contribution requires resummation.

The heavy scalars are almost static, and interact mostly with colour-electric fields (Aa
0).

In a plasma, colour-electric fields get Debye screened. We denote the Debye mass by m
D
.

Parametrically, m
D
∼ gsT , where gs ≡

√
4παs. The proper inclusion of Debye screening in

a gauge theory requires Hard Thermal Loop (HTL) resummation [16–19]. Recomputing

the 1-loop self-energy with HTL propagators, and setting ∆M → 0 since IR sensitivity

2More precisely, M and Mη refer to the renormalized parts of the masses appearing in the non-relativistic

effective theory for χ and η. The non-perturbative QCD contribution to Mη is of the order O(GeV/TeV) ∼

10−3 which is smaller than the effects that we discuss below.
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has now been regulated, we get (here p ≡ |p| and a blob stands for a HTL-resummed

propagator)

+ ⇒ ReΠ∗
R

2Mη

=
g2sCF

T 2

12Mη

+
g2sCF

2

∫

p

1

p2 +m2
D

=
g2sCF

T 2

12Mη

− g2sCF
m

D

8π
, (3.3)

∼ 2 ⇒ ImΠ∗
R

2Mη

= −g
2
sCF

2

∫

p

πTm2
D

p (p2 +m2
D
)2

= −g
2
sCF

T

8π
. (3.4)

The new contribution in eq. (3.3), originating from the Debye-screened Coulomb self-energy,

is known as the Salpeter correction (cf. ref. [20] for a review). It dominates over the other

mass correction if T . gsMη, which is generally the case. The imaginary part in eq. (3.4),

i.e. the interaction rate, reflects fast colour and phase-changing 2 → 2 scatterings off light

medium particles. It was first derived for the case of a heavy quark [16].

We finally replace the coloured scalar by a pair of heavy scalars, separated by a dis-

tance r. The HTL-resummed computation of the thermal mass correction (“static poten-

tial”) and interaction rate as a function of r was carried out in refs. [21–23]. At leading

non-trivial order the result can be expressed as

G(r, t)
t→+∞∼ G(r, 0) exp

{

−i[V (r)− iΓ(r)]t
}

, (3.5)

r V (r) = −g
2
sCF

4π

[

m
D
+

exp(−m
D
r)

r

]

, (3.6)

Γ(r) =
g2sCF

T

2π

∫ ∞

0

dz z

(z2 + 1)2

[

1− sin(zm
D
r)

zm
D
r

]

. (3.7)

As a crosscheck, for r → ∞ twice the results of eqs. (3.3) and (3.4) are reproduced.

The interaction rate in eq. (3.7) can again be traced back to 2 → 2 scatterings. At

short distances, up to logarithms, Γ(r) ∼ g2sCF
Tm2

D
r2. This can be compared with the

1 ↔ 2 gluon radiation contribution, ∼ g2sCF
(∆E)3r2nB(∆E) [23], where ∆E is the energy

difference between the singlet and octet potentials. At high temperatures, when m
D
, πT ≫

∆E, the 2 → 2 contribution dominates over the 1 ↔ 2 one.

In order to determine the spectral function of the scalar pair, characterizing the states

that appear in the scalar-antiscalar sector of the Fock space, V (r) and Γ(r) can be in-

serted into a time-dependent Schrödinger equation satisfied by the appropriate Green’s

function [24]. More details are given in section 4. We have checked numerically that,

in accordance with theoretical expectations [25], the states originating from this solution

respect the qualitative pattern seen above for Γ(r), namely that at high temperatures the

width from 2 → 2 reactions dominates over the gluo-dissociation contribution.

We close this section by considering another essential ingredient of the framework,

namely the rate at which Majorana dark matter particles convert into the coloured scalars.
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Once more, this rate is dominated by 2 → 2 scatterings, and obtaining the correct result

requires HTL resummation. Setting for simplicity the external momentum to zero, we find

(the thick line is the Majorana fermion and the arrowed line the quark flavour with which

it interacts, treated for simplicity as massless in vacuum which is a good approximation if

mvac . πT )

∼ 2
+

2 ⇒ ImΣ∗
R
= −|y|2Nc

8M

∫

p

πm2
q nF

(

∆M + p2

2M

)

p(p2 +m2
q)

(3.8)

≈ −
|y|2Ncm

2
q

64πM
ln

(

1.76388MT

m2
q

)

, (3.9)

where the last line applies under the assumption ∆M ≪ mq, πT ≪
√
TM . The thermal

quark mass mq, originating from the phase space integral of the light plasma particles off

which the 2 → 2 scattering takes place, is

m2
q = 2g2sCF

∫

q

nB(q) + nF(q)

q
=
g2sT

2C
F

4
. (3.10)

The rate in eqs. (3.8) and (3.9) is faster than the Hubble rate in a broad temperature

range, e.g. down to M/T & 3000 for y = 0.3 and ∆M/M . 0.01. It does fall out of

equilibrium when T ≪ ∆M , however transitions to virtual bound-state constituents may

continue and form presumably the relevant concern. Non-equilibrium effects have been

discussed in ref. [26].

4 Quantitative framework for estimating the annihilation rate

We now present a framework for computing (co-)annihilation rates in the model of section 2.

4.1 Non-relativistic fields

The basic premise of our framework is to make use of the non-relativistic approximation,

assuming that πT , mtop, ∆M ≪M , whereM is the dark matter mass and ∆M =Mη−M
is the mass splitting within the dark sector. This simplification opens up the avenue to a

non-relativistic effective field theory investigation of soft initial-state effects.

In the non-relativistic limit, the interaction picture field operator of the coloured scalar

is expressed as

η =
1

√

2Mη

(

φ e−iMηt + ϕ† eiMηt
)

, η† =
1

√

2Mη

(

ϕe−iMηt + φ† eiMηt
)

. (4.1)

The non-relativistic fields φ and ϕ† transform in the fundamental representation of SU(Nc),

with colour indices denoted by α, β, γ, δ, . . . . The Majorana spinor χ is simplest to handle

by choosing the standard representation for the Dirac matrices, i.e. γ0 = diag(1,−1). Then

χ =

(

ψ e−iMt

−iσ2ψ∗ eiMt

)

, χ̄ =
(

ψ† eiMt ,−ψT iσ2 e
−iMt

)

, (4.2)
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Ma = + , Mb = , Mc = ,

Md = + , Me = + ,

Mf = + + + ,

Mg = , Mh = + + ,

Mi = + , Mj = + .

Figure 1. 2 → 2 annihilation processes leading to the coefficients in eq. (4.4). Thick solid lines

stand for Majorana particles, thick dashed lines for coloured scalars, wiggly lines for gluons, arrowed

lines for quarks, and thin dashed lines for Higgs bosons and longitudinal polarizations of W± and

Z0 bosons.

where the Grassmannian spinor ψ has two spin components, labelled by p, q, r, s, . . . . Only

the left-chiral projection of χ participates in interactions according to eq. (2.1).

In the following, we generally set Mη → M whenever possible. The influence of

∆M 6= 0 (and its thermal modification) is discussed in section 4.3.

4.2 Imaginary parts of 4-particle operators

The first step is to determine annihilation cross sections for all possible processes with

dark matter initial states. The leading order Feynman diagrams are shown in figure 1.

According to the optical theorem, the amplitudes squared |M|2 can be expressed as an

imaginary (or “absorptive”) contribution to an effective Lagrangian [27].

An important simplification in the Majorana case follows from the identity satisfied

by Pauli matrices, σkpqσ
k
rs = 2δpsδqr − δpqδrs. Therefore a possible spin-dependent operator

can be reduced to a spin-independent one: ψ†
pψ

†
rψsψq σ

k
pqσ

k
rs = −3ψ†

pψ
†
qψqψp.

At leading order in an expansion in 1/M2, the absorptive operators read

Labs = i
{

c1 ψ
†
pψ

†
qψqψp + c2

(

ψ†
pφ

†
αψpφα + ψ†

pϕ
†
αψpϕα

)

+ c3 φ
†
αϕ

†
αϕβφβ + c4 φ

†
αϕ

†
β ϕγφδ T

a
αβT

a
γδ + c5

(

φ†αφ
†
βφβφα + ϕ†

αϕ
†
βϕβϕα

)

}

. (4.3)

Here T a are Hermitean generators of SU(Nc). In the partial wave language, the operators

in eq. (4.3) correspond to s-wave annihilations, whereas p-wave annihilations would lead

to operators of O(1/M4). At leading order in couplings, the coefficients read

c1 = 0 , c2 =
|y|2(|h|2 + g2sCF

)

128πM2
,

c3 =
1

32πM2

(

λ23 +
g4sCF

Nc

)

, c4 =
g4s(N

2
c − 4)

64πM2Nc

, c5 =
|y|4

128πM2
. (4.4)
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A non-zero value of c1 may be generated at higher orders. To minimize the magnitude

of higher-order effects, the couplings should be evaluated at the MS renormalization scale

µ̄ ∼ 2M . We note that c5 gets contributions from the “Majorana-like” processes Mi and

Mj in figure 1, but not from the “Dirac-like” amplitude Mh.

4.3 Number density, effective cross section, evolution equation

Within Boltzmann equations the overall dark matter abundance evolves as [28–30]

ṅ = −〈σeff v〉
(

n2 − n2eq
)

, (4.5)

where ṅ is the covariant time derivative in an expanding background. To go beyond

the quasiparticle approximation underlying the Boltzmann approach, the effective cross

section can be re-interpreted as a chemical equilibration rate, Γchem, and then defined on

the non-perturbative level within linear response theory [31]. Furthermore, within the non-

relativistic effective theory, Γchem can be related to the thermal expectation value of Labs

from eq. (4.3) [4]. These relations can be expressed as

〈σeff v〉 =
Γchem

2neq
=

4

n2eq
〈ImLabs〉 . (4.6)

In our model the number density amounts to

neq =

∫

p

e−Ep/T
{

2 + 2Nc e
−∆MT /T

}

, Ep ≡M +
p2

2M
. (4.7)

The mass difference ∆MT gets a vacuum contribution, ∆M = Mη −M , and a thermal

correction from eq. (3.3) as well as from a similar tadpole involving λ3,

∆MT ≡ ∆M +
(g2sCF

+ λ3)T
2

12M
− g2sCF

m
D

8π
. (4.8)

Note that the negative Salpeter correction may cancel against the positive terms. At

leading order the Debye mass parameter amounts to

m
D
= gsT

√

Nc

3
+
Nf

6
, (4.9)

where Nf is the number of quark flavours (cf. ref. [32] for higher orders). The effective

values of gs and Nf are changed with the temperature, as reviewed in appendix A.

For future reference we define a “tree-level” effective cross section, 〈σeff v〉(0), by eval-

uating the thermal expectation value 〈ImLabs〉 at leading order and then making use of

eqs. (4.6) and (4.7). Wick contracting the indices in eq. (4.3) leads to

〈

σeff v
〉(0)

=
2c1 + 4c2Nc e

−∆MT /T + [c3 + c4CF
+ 2c5(Nc + 1)]Nc e

−2∆MT /T

(

1 +Nc e
−∆M

T
/T
)2 . (4.10)
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4.4 Plasma-modified Schrödinger equation and generalized Sommerfeld

factors

Going beyond leading order, we evaluate 〈ImLabs〉 as elaborated upon in ref. [5], expressing

it as a Laplace transform of a spectral function characterizing the dynamics of the dark

matter particles before their annihilation. Denoting by E′ the energy of the relative motion

and by k the momentum of the center-of-mass motion, this implies

〈

ImLabs

〉

≈
∫

k

e−
2M
T

− k2

4MT

∫ ∞

−Λ

dE′

π
e−E′/T

∑

i

ci ρi(E
′)

=
(MT

π

)3/2
e−2M/T

∫ ∞

−Λ

dE′

π
e−E′/T

∑

i

ci ρi(E
′) , (4.11)

where α2M ≪ Λ ≪ M restricts the average to the non-relativistic regime.3 The spectral

functions are obtained as imaginary parts of Green’s functions,4

[

−∇2
r

M
+ Vi(r)− E′

]

Gi(E
′; r, r′) = Ni δ

(3)(r− r′) , (4.12)

lim
r,r′→0

ImGi(E
′; r, r′) = ρi(E

′) . (4.13)

Here Vi contains a negative imaginary part, and Ni is a normalization factor giving the

number of contractions related to the operator that ci multiplies in eq. (4.3):

N1 ≡ 2 , N2 ≡ 4Nc , N3 ≡ Nc , N4 ≡ NcCF
, N5 ≡ 2Nc(Nc + 1) . (4.14)

If the potentials Vi(r) were r-independent and with an infinitesimal imaginary part,

i.e. Vi(r) = ReVi(∞) − i0+, they would only induce mass shifts. In this case the spectral

functions can be determined analytically,

ρ
(0)
i (E′) =

NiM
3

2

4π
θ
(

E′ − ReVi(∞)
)

√

E′ − ReVi(∞) . (4.15)

This form can be used for defining generalized Sommerfeld factors:

S̄i ≡
∫∞
−Λ

dE′

π e−E′/T ρi(E
′)

∫∞
−Λ

dE′

π e−E′/T ρ
(0)
i (E′)

=
( 4π

MT

)
3

2

∫ ∞

−Λ

dE′

π
e[ReVi(∞)−E′]/T ρi(E

′)

Ni

. (4.16)

Then eq. (4.11) combined with eqs. (4.6) and (4.7) leads to a generalization of eq. (4.10),

〈

σeff v
〉

=
2c1+4c2Nc e

−∆MT /T+[c3S̄3+c4S̄4CF
+2c5S̄5(Nc+1)]Nc e

−2∆MT /T

(

1+Nc e
−∆M

T
/T
)2 . (4.17)

3Some elaboration about the need to introduce such a cutoff can be found in ref. [5]. In practice, we choose

Λ ≃ 2α2M , and have verified that making it e.g. 2-3 times larger plays no role on our numerical resolution.
4At higher orders in the non-relativistic expansion, kinetic terms and potentials suppressed by powers

of 1/M2 could be added. In addition, operators suppressed by 1/M4 should be added in eq. (4.3).
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If a potential Vi(r) leads to a bound state, whose width is much smaller than the bind-

ing energy, the corresponding generalized Sommerfeld factor can be computed in analytic

form. In this case eq. (4.12) can be solved in a spectral representation, resulting in

ρi(E
′) = πNi

∑

j

|ψj(0)|2 δ(E′ − E′
j)

∫

d3r |ψj(r)|2
, (4.18)

where ψj are the bound state wave functions. Inserting into eq. (4.16), the contribution of

the jth bound state to S̄i reads

∆jS̄i =
( 4π

MT

)
3

2
|ψj(0)|2 e[ReVi(∞)−E′

j ]/T

∫

d3r |ψj(r)|2
. (4.19)

This becomes (exponentially) large when T ≪ α2
sM , however chemical equilibrium is lost

in the dark sector at low T , which imposes an effective cutoff on the growth (cf. sections 5

and 6).

4.5 Thermal potentials

In order to write down the potentials Vi(r) appearing in eq. (4.12), let us define

v (r) ≡ g2s
2

∫

k

eik·r
{

1

k2 +m2
D

− iπT

k

m2
D

(k2 +m2
D
)2

}

(4.20)

=
g2s
2

×















exp(−m
D
r)

4πr
− iT

2πm
D
r

∫ ∞

0

dz sin(zm
D
r)

(z2 + 1)2
, r > 0

−mD

4π
− iT

4π
, r = 0

. (4.21)

The integrand in eq. (4.20) corresponds to the static limit of the time-ordered HTL-

resummed temporal gluon propagator. Then we find

V1(r) = 0 , V2(r) = C
F
v(0) , V3(r) = 2C

F

[

v(0)− v(r)
]

, (4.22)

V4(r) = 2C
F
v(0) +

v(r)

Nc

, V5(r) = 2C
F
v(0) +

(Nc − 1)v(r)

Nc

. (4.23)

The structure V3(r) equals the combination V (r)− iΓ(r) shown in eqs. (3.5)–(3.7), whereas

C
F
Re[v(0)] yields the Salpeter part of ∆MT in eq. (4.8). The potential V3(r) corresponds

to a singlet potential, V4(r) to an octet potential, and V5(r) to a particle-particle potential,

relevant because of the presence of a particle-particle annihilation channel generated by

Majorana exchange (cf. the discussion around the end of section 4.2).

We note in passing that at T < 160GeV, when the Higgs mechanism is operative,

additional potentials can be generated, particularly through the Higgs portal coupling λ3
in eq. (2.1) (cf. e.g. ref. [33]). However the coefficients of these potentials are suppressed by

∼ λ23v
2/M2, where v is the Higgs expectation value. Given that we consider M ≥ 2TeV,

we expect their contributions to be negligible compared with QCD effects and have not
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included them. We also note that an r-dependence can be generated for V2(r) through

quark exchange, however this is suppressed by ∼ |y|2σ · ∇/M .

For a practical use of eq. (4.21), numerical values are needed for the parameters g2s
and m2

D
. We relegate a discussion of this point into appendix A. Let us however note that

we restrict to temperatures T & 1GeV, so that the real part of the potential contains no

trace of a string tension [34]. Furthermore, in accordance with the low-temperature gluon-

radiation contribution specified below eq. (3.7) and with general arguments presented in

ref. [6], the imaginary part of the potential is multiplied by the Boltzmann factor e−|E′|/T

for E′ < 0.

5 Numerical evaluations

Having determined the spectral functions from eqs. (4.12) and (4.13) and the generalized

Sommerfeld factors from eq. (4.16) or (4.19), the effective cross section is obtained from

eq. (4.17). Subsequently eq. (4.5) can be integrated for the dark matter abundance. As

usual we define a yield parameter as Y ≡ n/s, where s is the entropy density, and change

variables from time to z ≡M/T , whereby eq. (4.5) becomes

Y ′(z) = −〈σeff v〉MmPl ×
c(T )

√

24πe(T )
×
Y 2(z)− Y 2

eq(z)

z2

∣

∣

∣

∣

∣

T=M/z

. (5.1)

Here mPl is the Planck mass, e is the energy density, and c is the heat capacity, for which

we use values from ref. [36] (cf. also ref. [37]). The final value Y (zfinal) yields the energy

fraction Ωdmh
2 = Y (zfinal)M/[3.645× 10−9GeV].

We integrate eq. (5.1) up to zfinal = 103. At around these temperatures, depending on

the value of ∆M/M , the processes of interest have either ceased to be active, or are falling

out of chemical equilibrium, because their rates are suppressed by e−∆M/T ≪ 1. Therefore

they cannot be reliably addressed within the current framework.

In figure 2(left) we show the spectral function ρ3 corresponding to the attractive chan-

nel, displaying a dense spectrum of bound states at low temperatures. The corresponding

generalized Sommerfeld factor, obtained from eq. (4.16), is shown in figure 2(right). An

exponential increase is observed at low temperatures, as indicated by eq. (4.19). The repul-

sive channels also show a modest increase at very low temperatures, due to the fact that the

spectral function extends below the threshold at finite temperature [6]. Examples of results

obtained by integrating eq. (5.1) are shown in figure 3. In particular, it can be observed

how a very efficient annihilation sets in at low temperatures, if ∆M is small so that bound

states of coloured scalars are lighter than scattering states of Majorana fermions. Finally,

figure 4 shows slices of the parameter space leading to the correct dark matter abundance.

In the plots the Yukawa couplings have been set to the stop-like values y = 0.3, h = 1.0.

However these couplings only have a modest effect if chosen otherwise, because they do

not affect the coefficient c3 appearing the attractive channel, cf. eq. (4.4). As an example,

setting h = 0.0 increases the abundance typically by ∼ 5%, cf. figure 3. The most important

role is played by the coupling λ3. For c3 this coupling has been evaluated at the scale
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Figure 2. Left: the spectral function ρ
3
of the scalar pair, interacting via the attractive potential

V
3
. Here ω ≡ 2M + E′. At low temperatures a dense spectrum of bound states can be observed,

which gradually “melts away” as the temperature increases. Right: the generalized Sommerfeld

factors, eq. (4.16), corresponding to the annihilation of the coloured scalars via different channels.

Figure 3. Left: solutions of eq. (5.1) for M = 3TeV and selected values of ∆M/M . The quark

Yukawa coupling h is either 0.0 (upper edges of bands) or 1.0 (lower edges). If ∆M/M is too small,

dark matter may convert to coloured scalars and get efficiently annihilated; this is only partly

visible, because we have stopped the integration at zfinal = 103. Right: the dark matter abundance

at zfinal = 103. The horizontal band shows the observed value 0.1186(20) [35].
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Figure 4. Left: values of the coupling λ
3
(2M) needed for producing the correct dark matter

abundance. In the shaded region, bound states of coloured scalars are lighter than scattering states

of two Majorana fermions. Right: a corresponding plot for the dark matter mass scale M/TeV.

Note that h has two different meanings here, a quark Yukawa coupling and a rescaled Hubble rate.

µ̄ = 2M , whereas for collider phenomenology its value at a scale µ̄ ∼ mH would be more

relevant. The latter can be obtained from eq. (A.7), and is some tens of percent smaller

than λ3(2M). We stress that, as shown by eq. (A.7), Yukawa couplings always generate a

non-zero value for λ3 through renormalization group running.

6 Conclusions

We have investigated a simple extension of the Standard Model, cf. section 2, which has

become popular as a prototypical fix to the increasingly stringent empirical constraints

placed on “WIMP”-like frameworks. In this model dark matter consists of a Majorana

fermion, which only has a p-wave annihilation cross section at tree level, helping to respect

experimental non-observation constraints from indirect detection. The Majorana fermion

has a Yukawa interaction with a QCD-charged scalar field (such as a right-handed stop

or sbottom in the MSSM) and a Standard Model quark. For large masses and small

mass splittings between the Majorana fermion and the scalar field, the best sensitivity

for discovering the Majorana fermion appears to be direct detection by XENON1T [7],

enhanced by resonant scattering off quarks through scalar exchange, even if interactions

with top or bottom quarks are much less constrained than those with up or down quarks.

Despite its simplicity, the model displays rich physics in the early universe. We have

extended previous investigations [7, 9–14] by incorporating the full spectrum of thermally

broadened bound states as well as the effect of soft 2 ↔ 2 scatterings. In general such
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scatterings dominate interaction rates at small mass splittings, because they are not phase-

space suppressed in the same way as 1 ↔ 2 scatterings are, cf. section 3.

The reason that the model leads to a viable cosmology is that at high temperatures

dark matter annihilates efficiently through the scalar channel, guaranteeing that its overall

abundance remains low. The fast annihilations proceed particularly through bound states

formed by the scalars, cf. figure 2. As shown in figure 4, the model can be phenomenolog-

ically viable for masses up to M ∼ 5 . . . 6TeV, provided that the mass splitting is small,

∆M/M < 5× 10−3, and that the “Higgs portal” coupling λ3 between the coloured scalar

and the Higgs doublet is substantial. We recall that in supersymmetric theories, λ3 is

proportional to the quark Yukawa coupling squared, λ3 ∼ |h|2, and therefore indeed large

if we identify the coloured scalar as a right-handed stop. Actually, similar arguments but

a somewhat more complicated analysis are expected to apply to a left-handed stop as well

(cf. e.g. ref. [38]).

We believe that the mass splitting should not be too small, however. The non-

relativistic binding energy of the lightest bound state, E′
1, is negative. If it overcompensates

for the mass difference, so that 2∆M +E′
1 < 0, the lightest two-particle states in the dark

sector are the bound states formed by the coloured scalars. However these states are short-

lived. Therefore it seems possible that (almost) all dark matter converts into the scalars

and gets subsequently annihilated, so that the model may not be viable as an explanation

for the observed dark matter abundance. This domain has been excluded through the grey

bands in figure 4. If we close eyes to this concern and assume that chemical equilibrium is

maintained, then the value of M could be substantially larger than in figure 4, for instance

M ∼ 8TeV as shown in figure 3, and even more if we integrate down to lower temperatures.

We end by remarking that the model contains two portal couplings, λ3 and y. The

roles that these play are rather different. The value of λ3 at the scale µ̄ = 2M influences

the coefficient c3 which mediates the most efficient annihilations, cf. eq. (4.4). In contrast

y affects the rate of transitions between the Majorana fermions and coloured scalars, cf.

eq. (3.9), as well as the running of λ3, cf. eq. (A.7). As long as y is not miniscule, so that

the rate in eq. (3.9) remains in equilibrium, it has in practice little influence on our main

results in figure 4.
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A Fixing of vacuum and thermal couplings

We start by listing the 1-loop renormalization group (RG) equations satisfied by the model

of section 2. Apart from the couplings shown in eq. (2.1), the Higgs self-coupling λ1, the

Higgs mass parameter µ2H , the weak and strong gauge couplings g2w, g
2
s , and the Yukawa

coupling h associated with the quark flavour q appear. The hypercharge coupling is omitted

for simplicity. The number of colours is denoted by Nc = 3, and C
F
≡ (N2

c − 1)/(2Nc),
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whereas n
G
= 3, n

S
= 1 and n

W
= 1 refer to the numbers of fermion generations, strongly

interacting scalar triplets, and weakly interacting scalar doublets, respectively.

Parametrizing the MS renormalization scale µ̄ through

t ≡ ln µ̄2 , (A.1)

we find

∂tµ
2
H =

1

(4π)2

{[

6λ1 −
9g2w
4

+ |h|2Nc

]

µ2H + λ3NcM
2
η

}

, (A.2)

∂tM
2
η =

1

(4π)2

{

[

2λ2(Nc + 1)− 3g2sCF
+ |y|2

]

M2
η + 2λ3µ

2
H − 2|y|2M2

}

, (A.3)

∂tM
2 =

1

(4π)2

{

|y|2NcM
2

}

, (A.4)

∂tλ1 =
1

(4π)2

{[

12λ1 −
9g2w
2

+ 2|h|2Nc

]

λ1 +
λ23Nc

2
+

9g4w
16

− |h|4Nc

}

, (A.5)

∂tλ2 =
1

(4π)2

{

[

2λ2(Nc + 4)− 6g2sCF
+ 2|y|2

]

λ2

+ λ23 +
3(N3

c +N2
c − 4Nc + 2)g4s
8N2

c

− |y|4
}

, (A.6)

∂tλ3 =
1

(4π)2

{[

6λ1 + 2λ2(Nc + 1) + 2λ3 −
9g2w
4

− 3g2sCF
+ |y|2 + |h|2Nc

]

λ3

− 2|h|2|y|2
}

, (A.7)

∂t|y|2 =
|y|2
(4π)2

{ |y|2(Nc + 3)

2
+ |h|2 − 3g2sCF

}

, (A.8)

∂t|h|2 =
|h|2
(4π)2

{ |h|2(2Nc + 3)

2
+

|y|2
2

− 9g2w
4

− 6g2sCF

}

, (A.9)

∂tg
2
w =

g4w
(4π)2

{

n
W

6
+

4n
G

3
− 22

3

}

, (A.10)

∂tg
2
s =

g4s
(4π)2

{

n
S

6
+

4n
G

3
− 11Nc

3

}

. (A.11)

We note in particular that a non-zero value is generated for λ3 by the running induced by

Yukawa couplings, cf. eq. (A.7).

The only coupling that we need at a scale µ̄≪M is the strong coupling. Since it has

a large influence, we evaluate it at 2-loop level for µ̄ ≤M (nowadays running is known up

to 5-loop level [39–41]). Denoting by Nf the number of flavours and setting Nc = 3 for

brevity, the 2-loop running is given by

∂tas = −
{

β0a
2
s + β1a

3
s + . . .

}

, (A.12)

as ≡
g2s
4π2

, β0 =
1

4

{

11− 2Nf

3

}

, β1 =
1

42

{

102− 38Nf

3

}

. (A.13)
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The value of Nf = 3, . . . , 6 is changed when a quark mass threshold is crossed at µ̄ = mi,

where continuity is imposed. The initial value is αs(mZ) ≃ 0.118. For µ̄ > M , the

contribution of the coloured scalar is added and we switch over to 1-loop running, i.e.

eq. (A.11).

When we evaluate the static potential, a wide range of distance scales appears. At

short distances, inspired by refs. [42, 43], we evaluate the 2-loop coupling at the scale

µ̄ = e−γE/r. Since parametrically only the scales αM ≪M play a role in the Schrödinger

equation, the running does not include the coloured scalar in this domain.

At large distances, we employ effective thermal couplings. In the absence of NLO

computations for thermal quarkonium observables, we adopt effective couplings from an-

other context, that of dimensionally reduced field theories [44, 45]. There the Debye mass

parameter and an “electrostatic” coupling are expressed as [46]

m2
D
≡ T 2

[

g2s α
MS

E4 +
g4s

(4π)2
αMS

E6 +O(g6s)

]

, g2
E
≡ g2s +

g4s
(4π)2

αMS

E7 +O(g6s) . (A.14)

For general masses, only αMS

E4 and αMS

E7 are available at present:

αMS

E4 =
Nc

3
+ 4

Nf
∑

i=1

[

F2

(

m2
i

T 2
, 0

)

− m2
i

(4π)2 T 2
F3

(

m2
i

T 2
, 0

)]

, (A.15)

αMS

E7 =
22Nc

3

[

ln

(

µ̄eγE

4πT

)

+
1

22

]

− 2

3

Nf
∑

i=1

[

θ (µ̄−mi) ln

(

µ̄2

m2
i

)

+ F3

(

m2
i

T 2
, 0

)]

. (A.16)

Here the functions read (n̂
F
(x) ≡ 1/(ex + 1); chemical potentials have been set to zero)

F2(y, 0) ≡
1

4π2

∫ ∞

0
dx

[

x

x+ y

]
1

2

n̂
F

(√
x+ y

)

=
1

24
+O(y) , (A.17)

F3(y, 0) ≡ −2

∫ ∞

0
dx

[

x

x+ y

]
1

2 n̂
F

(√
x+ y

)

x
= ln

( y

π2

)

+ 2γE +O(y) . (A.18)

Given that αMS

E6 is not currently known for general masses, we estimate

m2
D
≃ T 2g2

E
αMS

E4 , (A.19)

inserting here PDG values for the quark masses [47]. The scale parameter is set to µ̄ = 2πT .
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