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1 Introduction

It has been recently shown that 4d N = 2 Argyres-Douglas (AD) theories [1] can be

obtained by an intricate RG flow structure [2–8]. The analysis starts by considering a 4d

N = 2 SCFT Lagrangian with a gauge group G and hypermultiplets. Supersymmetry is

broken to N = 1 by coupling the chiral multiplets with some singlets. A nilpotent vev for

these singlets triggers an RG flow [2, 3]. In the IR a SCFT can be obtained by iterating a-

maximization [9], at the cost of introducing a set of accidental symmetries. The properties

of the SCFT under investigations are quite intriguing: it has been conjectured that there

are situations with rational central charge that in the IR enhance to AD theories.1 This led

to the conjecture that the N = 1 theory obtained in this way corresponds to the Lagrangian

description of AD theory.

An interesting consequence of the existence of such a Lagrangian formulation is that

one can reduce it to 3d and check if it reproduces correctly the expected reduction of AD

theories conjectured in [11]. Substantial evidence2 for the conjectures of [11] has been given

in [12] by reducing the 4d superconformal index to the three sphere partition function. In

addition, in [13] it was shown that expected RG flows following from the conjectured 3d

quivers of [11] were consistent with the form of the 4d index (see also [14]). Finally, the

latter result has been extended to some “generalized” AD theories in [15].

The idea has been recently pursued in [5–7] and it has been shown how to recover the

results of [11] by reducing the 4d Lagrangian description of AD. The main ideas that allow

the authors to obtain the desired result are abelianization, sequential confinement, and

1It has been shown that there are also cases with rational charges that do not enhance to N = 2 [10].
2We are grateful to Matthew Buican for precious comments on this issue.
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Figure 1. Relation between the relevant models describing the 3d (A1, A2n−1) AD theories reduced

to 3d. We also specify the degree of supersymmetry of the quivers under consideration. The double

circle denotes an SU(n) gauge theory while single circles refer to unitary cases with abelian factors.

Flavor symmetries are denoted by boxes.

chiral ring stability [16]. Many of these ideas are new and can potentially play a relevant

role in the future analysis of 3d dualities.

The relation between the Lagrangian description of the AD theories denoted as

(A1, A2n−1) reduced to 3d and their 3d N = 4 mirror dual has been discussed in [5, 6].

It has been shown that these two theories can be mapped through an intermediate step,

where the natural N = 4 mirror quiver is obtained through an abelianization procedure.

In figure 1 we show this chain of dualities involving the three models.

The relation between models (a) and (b) in figure 1 has been numerically checked at the

level of the partition function, showing that for small n (namely n = 2, 3) it is possible to

prove that the two theories have the same partition function providing a mapping between

the R-charges and the real mass parameter [6]. The relation is claimed to work for generic

values of the real masses and charges, and after F-maximization, the enhancement to N = 4

is expected. On the other hand, N = 4 mirror symmetry maps model (b) to (c), and the

equality between the N = 4 partition functions of the two models have been proven in [17].

One starts from a possible UV completion, that reduces to the model (a) in the IR

after an RG flow and to the model (c) after mirror symmetry and a cascade of sequential

confinements of the type discussed in [18]. In [6] it has been shown how to connect the

two models (a) and (c) in figure 1 in an indirect way. What is actually missing is a direct

connection between models (a) and (c) of figure 1.
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In this paper we obtain this direct connection by exploiting some mathematical iden-

tities among hyperbolic gamma functions and hyperbolic integrals. It turns out that the

equivalence of the (squashed) three sphere partition functions of models (a) and (c) in

figure 1 can be analytically proven for general n, hence corroborating the results of [6].

The paper is organized as follows. In section 2 we introduce the necessary main tools

for our analysis, the representation of the (squashed) three sphere partition function of 3d

N = 2 theories in terms of hyperbolic gamma functions and hyperbolic hypergeometric

integrals. In section 3 we provide a quick review of the derivation of 4d N = 1 Lagrangian

conjectured to enhance to (A1, A2n−1) in the IR, their reduction to 3d, the abelianization

and the mirror description. Then we derive the main result of this paper, the analytic

matching of the three sphere partition function between the reduced (A1, A2n−1) model

and its mirror 3d N = 4 theory with U(1) gauge group and n hypermultiplets. In section 4

we speculate on the analogous result for the (A1, D4) case. In this case abelianization works

in a different way and we have not been able to provide any analytical proof untill now.

We explain the nature of the problem and propose another dual description that may play

a useful role in the analysis. In section 5 we discuss a further application of the identities

among hyperbolic hypergeometric integrals. This is related to some integral identities for

the theories with symplectic gauge groups with antisymmetric and fundamental matter .

We restrict our analysis to the Sp(2) case, when the antisymmetric matter disappears. In

the subsection 5.1 we show that if we start from the identities among the 3d hyperbolic

integrals, it is possible to match the dual phases which discussed in [18], involving higher

powers in the monopole superpotential. In the subsection 5.2 we show that considering the

further real mass flow one can recover the limiting case of the usual Aharony duality [19] for

the U(2) theory with two flavors. In section 6 we conclude summarizing the main results

and mention the open questions.

2 Hyperbolic integrals and partition function

In this section we review the mathematical formalism of hyperbolic hypergeometric inte-

grals. Relation of these integrals with the partition function of 3d N = 2 supersymmetric

gauge theories computed from localization on the squashed three sphere S3
b , where b rep-

resents the squashing parameter. The partition function corresponds to a matrix integral

over the real scalar σ of the N = 2 vector multiplet, in the Cartan of the gauge group

G [20–22]. It has been shown that the 1-loop contributions of the vector and of the matter

fields to the partition function can be formulated in terms of hyperbolic Gamma functions

Γh(x) represented as follows

Γh(x) ≡
∞∏

m,l=1

(m+ 1)ω1 + (l + 1)ω2 − x
mω1 + l ω2 + x

. (2.1)

Let us consider one example that will play a prominent role in our analysis, a U(n) gauge

theory with f pairs of fundamentals and anti-fundamental flavors and one adjoint. The

– 3 –
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three sphere partition function of this model corresponds to the following matrix integral

Γh(τ)n

n!

∫ n∏
i=1

dσi√
−ω1ω2

e
2iπλσi
ω1ω2

∏
1≤i<j≤n

Γh(τ±(σi−σj))
Γh(±(σi−σj))

n∏
i=1

f∏
a,b=1

Γh(µa+σi;νb−σi) . (2.2)

The parameters ω1 and ω2 are associated to the squashing parameter b by ω1 = ib, ω2 = i/b.

This can be used to simplify the formula above, fixing ω1ω2 = −1. The shorthand notations

Γh(x)Γh(y) = Γh(x; y) and Γh(x)Γh(−x) = Γh(±x) have been used in (2.2). We will adopt

the definition ω ≡ (ω1 + ω2)/2 in the rest of the paper. We recall also a useful reflection

equation, satisfied by the hyperbolic Gamma functions, that plays an important role in our

analysis and it implies Γ(ω) = 1 as well,

Γh(2ω − x)Γh(x) = 1 . (2.3)

Let us now explain the various terms appearing in the formula above; the factor n! cor-

responds to the dimension of the Weyl group. The functions Γh(x) appearing in the

numerators correspond to the one loop determinants of the matter fields, while the ones

appearing in the denominator are associated to the vector multiplet. The arguments x in

Γh(x) represent the linear combination of the real scalars in the vector multiplets of the

gauge symmetry, denoted as σ, and of the weakly gauged global symmetries, here denoted

as µ, ν and τ . They have to be taken in the weight of the representation for each symmetry

under which the fields transform. Note that these mass parameters for the weakly gauged

global symmetries are generically complex, and the imaginary part represents the R-charge

of each multiplet.

The partition function in equation (2.2) contains also the contribution of a Fayet-

Iliopoulos (FI) term λ, which is computed as a classical contribution in localization. In (2.2)

we omit contributions of Chern-Simons (CS) terms to the partition function because we

will not consider them in our analysis.

Hyperbolic hypergeometric integrals as the one in formula (2.2) have been shown to

satisfy various classes of integral identities. It is remarkable to note that a given integral

can satisfy very different identities, depending on the constraints satisfied by the complex

parameters appearing in the argument of Γh(x). These constraints, defined as balancing

conditions in the mathematical literature, translate on the physical playground into the

presence of non-trivial superpotential interactions (often involving the presence of monopole

operators).

It has been shown that a large quantity of such integral identities, most of them are

listed in [23], corresponds to the matching of the three sphere partition function of 3d

N = 2 models, and these have been used to corroborate or in other case to derive 3d

N = 2 dualities. However, there exist other identities discussed in [23] that have yet

not been associated to any 3d duality. In the following we will focus on some of these

identities, discussing their connection with some dualities that appeared in the physics

literatures recently.

– 4 –
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3 The Lagrangian (A1, A2n−1) theory and its reduction

In this section we review the 3d reduction of the (A1, A2n−1) AD theories derived in [5, 6]

and show the analytic matching of its S3
b partition function with the one of its mirror dual.

The starting point is the 4d construction of [2–4]. One considers a 4d SU(n) N = 2 theory

with 2n flavors and couple them to a 2n×2n singlet M . The superpotential of the theory is

W = trQΦQ̃+ tr Q̃MQ . (3.1)

By assigning a vev to 〈M〉 that corresponds to the principal nilpotent orbit of the flavor

symmetry and by expanding around this vev it has been shown that the theory flows to

an IR fixed point if the contribution of accidental symmetries is included.

By following the prescription discussed in [24], in order to modify a-maximization

in presence of accidental symmetries. In this case one should modify the Lagrangian by

adding some extra fields as discussed originally in [25]. The explicit use of such extra fields

has appeared only very recently in [6], where the authors denoted them as flipping fields.

Supplementing this prescription with the chiral ring stability criterion, they obtained the

4d N = 1 Lagrangian description of AD with superpotential

W =

n−2∑
j=0

αitr qφ
iq̃ +

n∑
j=2

βitrφ
i . (3.2)

This is the theory whose central charge coincides with the one obtained in the (A1, A2n−1)

AD theory.

The 3d reduction of the theory mentioned above has been presented in [6]. Note that

unlike the discussion of [26, 27], the Kaluza Klein (KK) monopole superpotential which is

usually appearing when reducing 4d dualities to 3d ones [28], is not generated here. It is

expected that the dimensional reduction of this theory is mirror dual to the reduction of

the (A1, A2n−1) AD theories to 3d discussed in [11].

Mirror symmetry relates theories (b) and (c) in figure 1 [29]. It has been shown after

performing F-maximization that theory (a) is effectively equivalent to (b) [6]. The exact

R-charge for the adjoint field has been numerically found to be rφ = 0, while the exact

R-charge of the fundamentals is rq = rq̃ = 1
2 . The latter corresponds to the free field value,

and it is a necessary result for the N = 4 hypermultiplets.

The net effect of having a zero R-charge for the adjoint is that the SU(n) gauge sym-

metry abelianizes into a U(1)n−1 quiver. On the partition function this can be understood

because the one-loop determinant of the adjoint cancels out the one of the vector multiplet.

The abelian quiver is given in (b) with the following N = 4 superpotential

W = Φi(PiP̃i − Pi+1P̃i+1), (3.3)

where Pi and P̃i form the N = 4 bifundamental hypermultiplets. This quiver is mirror

dual to the one in (c), corresponding to an N = 4 theory with superpotential

W = γn

n∑
i=1

QiQ̃n−i+1, (3.4)

where Qi and Q̃n−i+1 form the N = 4 hypermultiplets and γn is a singlet.
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Another crucial result of [6] has been to obtain such a mirror dual description starting

from the UV 3d model, obtained before integrating out the massive deformations and

performing mirror symmetry at this stage. This gave rise to a 3d quiver theory with a

series of nodes sequentially confining, thanks to a new duality discovered in [18]. The final

quiver (c) has been obtained at the end of an intricate cascade of confinements.

As mentioned in the introduction, the direct connection between the models (a) and

(c) in figure 1 is still missing. In the following we will show that the equivalence of these

two theories can be obtained without any recursion to the ideas of abelianization as well as

sequential confinement of [6]. This would be a possible equivalence due to the analytical

matching of their partition function for generic values of the gauge rank n. The matching

is achieved by elaborating on an integral identity involving hyperbolic gamma functions

mentioned in [23].

To prove the equivalence of the partitions functions in the models (a) and (c)

Z
(a)

S3
b

= Z
(c)

S3
b

, we consider the Theorem 5.6.8 of [23] which states the following identity

Γh(τ)n

n!

∫ ∏
1≤j<k≤n

Γh(τ ± (xj − xk))
Γh(±(xj − xk))

n∏
i=1

Γh(µ− xi; ν + xi)e
iπλxidxi

=
n−1∏
j=0

Γh

(
(j + 1)τ ; jτ + µ+ ν;ω − jτ − µ+ ν

2
± λ

2

)
e
iπnλ

2
(µ−ν). (3.5)

Our first step would be to modify the Γh functions appearing on the r.h.s. of equation (3.5).

This modification will be done by considering the following identities, calculated through

the reflection relation (2.3)

n−1∏
j=0

Γh((j + 1)τ) =
Γh(τ)∏n−1

j=1 Γh(2ω − (j + 1)τ)
=

Γh(τ)∏n
j=2 Γh(2ω − jτ)

,

n−1∏
j=0

Γh(jτ + µ+ ν) =
Γh((n− 1)τ + µ+ ν)∏n−2
j=0 Γh(2ω − jτ − µ− ν)

. (3.6)

The second step is integrating both sides of identity (3.5) over
∫
dη where the paramters

are related as η = λ
2 . On the field theory side this corresponds to turning on a vector mul-

tiplet (i.e. gauging) for the topological symmetry. This gauging modifies the gauge group

on the l.h.s. of equation (3.5), converting the U(n) factor into SU(n) as done in [28, 30, 31].

This can be seen by noting that the integral over η on the l.h.s. corresponds to δ
(∑n

i=1 xi

)
.

On the r.h.s. of equation (3.5) the integration over η leaves a U(1) gauge group with n pairs

of fundamentals and anti-fundamentals, corresponding to the fields originally charged under

the topological symmetry. We arrive at the following equality

Γh(τ)n−1

n!

n∏
j=2

Γh(2ω − jτ)

n−2∏
j=0

Γh(2ω − jτ − µ− ν)

×
∫ ∏

1≤j<k≤n

Γh(τ ± (xj − xk))
Γh(±(xj − xk))

n∏
i=1

Γh(µ− xi; ν + xi)δ

(
n∑
l=1

xl

)
dxi (3.7)

= Γh((n− 1)τ + µ+ ν)

∫
dη

n∏
j=1

Γh

(
ω − (j − 1)τ − µ+ ν

2
± η
)
eiπnη(µ−ν).

– 6 –
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Observe that the l.h.s. is the 3d N = 2 SU(n) theory with one flavor, one adjoint and

the αj and βj singlets with superpotential (3.2). Indeed the one loop determinants of αj
and βj , and the zero roots of the SU(n) adjoint appear in front of the integral, and the

integrand has the flavors q and q̃ with real masses µ and ν, respectively. The real mass for

the adjoint has been identified with τ .

The complex parameter µ, ν and τ are unconstrained3 and can be expressed as

µ = mq + ω∆q, ν = mq̃ + ω∆q̃, τ = mφ + ω∆φ, (3.8)

where mi refers to the real mass of each field while ∆i to its R-charge.

We will now prove that the r.h.s. of equation (3.7) corresponds to the theory obtained

after sequential confinement and mirror symmetry. The dual theory is compatible with the

superpotential (3.4). Our approach to prove this equality begins by studying the relation

among the parameters µ, ν and τ . Each superpotential term has R-charge 2 and global

charges 0. In the case at hand the charges of the field γn can be read from the partition

function and we have

µγn = (n− 1)τ + µ+ ν (3.9)

while the j-th quark Qj and antiquarks Q̃j have charge

µQj = ω − (j − 1)τ − µ+ ν

2
+ η ,

µ
Q̃j

= ω − (j − 1)τ − µ+ ν

2
− η .

In this way each superpotential term is associated to the following combination as expected

µγn + µQj + µ
Q̃n+1−j

= 2ω. (3.10)

The identity (3.7) can be used to prove the results of [6] with respect of the enhancement

of supersymmetry when ∆φ = 0 and ∆q = ∆q̃ = 1/2. In this case we can set τ = 0 and

µ = ω
2 + b, ν = ω

2 − b.
Therefore, the r.h.s. of equation (3.7) becomes∫

dη eiπ 2nbη Γh

(
ω

2
± η
)n
, (3.11)

where the FI terms is nb. On the other hand, the limit τ → 0 on the l.h.s. is obtained

using the following identity [6]

lim
τ→0

Γh(τ)Γh(2ω − jτ) = j, (3.12)

such that the final contribution of the first two terms in equation (3.7) is n!, which cancels

the measure factor of SU(n). In the integrand the limit τ → 0 abelianizes the gauge group,

and one ends up with the partition function of model (b) as expected. We conclude that

the equivalence between the two sides of (3.7) in this limit corresponds to the equivalence

between the partition function of the two N = 4 mirror dual phases.

3This translates on the field theory side into the absence of a superpotential for the KK monopoles.
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We can also use the identity (3.7) to study the N = 2 case discussed in [6]. On the

field theory side the difference consists of keeping the interaction

αnqφ
n−1q̃, (3.13)

in the 3d UV Lagrangian. By performing F-maximization in this case the field αn should

not hit the unitary bound. On the dual side the field γn is massive, because of a mass

term of the form γnαn. Indeed the duality maps naturally the gauge invariant combination

qφn−1q̃ to the singlet γn. When αn appears on one side corresponds to γn disappearing on

the other side, this fact is common in the Seiberg like dualities.

We can describe this mechanism on ZS3 by exploiting the relation (3.7). The field αn
contributes to ZS3 with its one loop determinant. It corresponds to multiply both sides of

equation (3.7) by Γh(2ω − (n− 1)τ − µ− ν).

Using the reflection relation (2.3) on the r.h.s. of equation (3.7) we obtain

Γh(2ω − (n− 1)τ − µ− ν)Γh((n− 1)τ + µ+ ν) = 1. (3.14)

The final result corresponds to the identity between the partition functions of the expected

N = 2 dual theories which discussed in [6].

4 Comments on the (A1, D4) model in 3d

Another class of AD theories with anN = 1 Lagrangian description is denoted by (A1, D2n).

In the case of even n this theory has been constructed starting from the superpotential (3.1),

but with a vev 〈M〉 corresponding to a non-principal nilpotent orbit of the flavor symmetry

group. The final theory is SU(n) SQCD with two flavors, an adjoint and a set of αj and

βj fields interacting through the superpotential

W =

n−2∑
j=0

αjtr qφ
j q̃ + tr pφp̃+

n∑
j=2

βjtrφ
j . (4.1)

This model can be reduced to 3d, but in this case a monopole superpotential is generated [7].

The reduction has been studied for the (A1, D4) case and it has been shown that the theory

is dual to an abelian gauge theory. In this case the abelianization is not as simple as in

the (A1, A2n−1) case, essentially because the R-charge of the adjoint does not vanish. In

this case we have not been able to find any exact relation reproducing the matching of the

original partition function with the mirror dual theory.

One possible way to have an analytical proof of the abelianization at the level of the par-

tition function consists of considering an SU(2)×U(1) quiver with one bifundamental flavor

connecting the two gauge groups and two flavors in the SU(2) sector, with superpotential

W = M tr q12q21 + tr q21q12q2AqA2 + s tr q2BqB2 + T−U(1) . (4.2)

Here the indices 1 and 2 refer to the U(1) and to the SU(2) gauge groups, while A and B la-

bel the two flavors. The field T− corresponds to the anti-monopole of the U(1) gauge group.

– 8 –
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This theory is dual to the model discussed above and can be shown as follows; first we

dualize the U(1) node: it has two flavors and its dual is just given by the meson Φ22 = q21q12
interacting with a singlet S+ (having the same charges of the monopole T−U(1) of the electric

theory). This is one of the dualities derived in [18, 32]. The dual theory corresponds to

SU(2) with 2 flavors and superpotential

W = tr Φ22q2AqA2 + s tr q2BqB2 + S+ det Φ22 +M tr Φ22 . (4.3)

The field Φ22 is a composite bifundamental field. It is made out of a singlet ∼ φ× I2 and

an adjoint Φ. By using the matrix identity det Φ22 = −1
2tr Φ2 + φ2 and by integrating out

the massive fields φ and M we can rewrite equation (4.3) as

W = tr Φ22q2AqA2 + s tr q2BqB2 + S+ tr Φ2, (4.4)

corresponding to the superpotential of the (A1, D4) theory reduced to 3d, in absence of

the KK monopole superpotential. This term can be turned on in both the phases without

spoiling the duality just performed.

It should be possible directly prove of the abelianization starting from the original

SU(2)×U(1) quiver. In this case the absence of adjoint matter simplifies the problem and

it allows to use a larger web of 3d N = 2 dualities. We hope to come back to this issue in

the future.

5 Further applications

In this section we discuss some further examples of integral identities involving hyperbolic

hypergeometric integrals. The identities that we will discuss are listed in [23] and they

represent symplectic gauge groups with matter fields in the fundamental and in the an-

tisymmetric representations. Here we restrict our analysis to the case of SP (2) = SU(2)

gauge group, where the antisymmetric field disappears. We show that in the case with six

fundamentals the integral identity reduces to a modification of Aharony duality studied

in [18], with a quadratic monopole superpotential. We recover the identity for a limiting

case of Aharony duality for the case of four fundamentals.

5.1 An exact relation for a higher power monopole duality

Let us discuss one of the new dualities found in [18], involving power monopole superpoten-

tials. We show that, when the gauge group is U(2), the matching of the partition functions

of the dual theories can be derived from Formula 5.3.7 of [23]:

Γh(τ)n

2nn!

∫ n∏
i=1

dxi
∏

1≤i<l≤n

Γh(τ ± xi ± xl)
Γh(±xi ± xl)

n∏
i=1

∏6
a=1 Γh(µa ± xi)

Γh(±2xi)

=
n−1∏
j=0

Γh((j + 1)τ)
∏
a<b

Γh(jτ + µa + µb). (5.1)
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This identity holds provided that the complex parameters τ and µa satisfy the balancy

condition

2(n− 1)τ +
6∑

a=1

µa = 2ω. (5.2)

The l.h.s. of equation (5.1) corresponds to an SP (2n) theory with an antisymmetric and six

fundamentals. Furthermore, it is an interesting observation that (5.1) can be obtained in

a physical way. This follows from the circle reduction of a limiting case of “rank changing”

dualities for symplectic gauge theories with eight fundamentals and an antisymmetric,

recently discovered in [33]. This observation deserves further studies and it may be shed

some light on the four dimensional origin of the dualities with monopole superpotentials

having higher powers discovered in [18].

Here we restrict to the case n = 1. In this case the measure factor simplifies leaving

an SU(2) theory. We further choose the mass parameters as

µi = mi +mB +mA, µi+3 = ni −mB +mA for i = 1, 2, 3 (5.3)

with the further constraints
∑

imi =
∑

i ni = 0. This fixes mA = ω
3 , that will be crucial

in the following. So far we are just reassembling the real masses, with a parameterization

compatible with a global SU(3)L × SU(3)R × U(1)B symmetry. We can modify the SU(2)

gauge symmetry to U(2) by gauging the global U(1)B symmetry . This gauging corresponds

to integrate both sides of equation (5.1) over
∫
dmB. On the l.h.s. we also re-define the

integration variables as mB + x = σ1 and mB − x = σ2, while we denote mB = σ on the

r.h.s. . Thus we arrive at the following identity∫ 2∏
i=1

dσi

∏3
a=1 Γh(ma +mA + σi;na +mA − σi)

Γh(±(σ1 − σ2))
(5.4)

=
∏
a,b

Γh(ma + nb + 2mA)

∫
dσ

3∏
a=1

Γh(2mA −ma + σ; 2mA − na − σ).

This relation looks similar to the one expected for an Aharony duality between a U(2)

and a U(1) theory with three flavors, but without electric monopoles acting as singlets

and constraining the chiral ring of the dual phase. Moreover, differently from the ordinary

Aharony duality, here the dual quarks have real mass 2mA instead of −mA.

In order to study the field theory properties of the duality underlining the identity (5.4),

we make use of the constraint mA = ω/3. This signals the fact that the real part of mA

vanishes, while its imaginary part, corresponding to the trial R-charge, is fixed. This is

also the exact R-charge, because of the non-abelian nature of the other global symmetries.

In this case, the duality map implies that the electric quarks have R-charge ∆Q while

the magnetic quarks have R-charge ∆q = 2∆Q. It is different from the expected one in

the ordinary Aharony duality, 1 − ∆Q. However, the balancing condition gives ∆Q = 1
3 ,

compatible with ∆Q = 1−∆q.

We conclude the analysis by checking that, when the real masses and the R-charges are

constrained by condition (5.2), the relation (5.4) corresponds to the new duality conjectured
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in [18], involving monopole superpotentials with quadratic powers. This duality has been

formulated for 3d N = 2 U(n) SQCD with f flavors and superpotential

W = T 2
+ + T 2

−. (5.5)

The dual theory corresponds to 3d N = 2 U(f − n) SQCD with f dual flavors and

W = Mqq̃ + t2+ + t2−. (5.6)

The presence of a monopole superpotential imposes that

∆T± = f(1−∆Q)− n+ 1 = 1, ∆t± = f(1−∆q)− ñ+ 1 = 1. (5.7)

In our analysis we have studied the case with n = 2 and f = 3. In this case the duality

of [18] implies ñ = 1. Plugging these values in (5.7) we find

∆Q =
1

3
, ∆q =

2

3
(5.8)

that corresponds to the values obtained above from the analysis of the partition functions.

5.2 A limiting case of Aharony duality

As the last example of the hyperbolic identities with application to the 3d N = 2 dualities

we discuss the identity corresponds to Theorem 5.6.6 of [23] as follow

Γh(τ)n

2nn!

∫ n∏
i=1

dxi
∏

1≤i<l≤n

Γh(τ ± xi ± xl)
Γh(±xi ± xl)

n∏
i=1

∏4
a=1 Γh(µa ± xi)

Γh(±2xi)

=

n−1∏
j=0

Γh((j + 1)τ)

Γh((2n− 2− j)τ +
∑

r µr)

∏
a<b

Γh(jτ + µa + µb). (5.9)

Same as previous example, we fix n = 1 and then we observe that this identity can be

obtained as a limiting case of equation (5.1). This corresponds to a real mass flow on the

field theory side.

In addition, we parameterize the real masses µ as

µa = ma +mB +mA, µa+2 = na −mB +mA for a = 1, 2 (5.10)

with the further constraints
∑

imi =
∑

i ni = 0. So far we are just reassembling the real

masses, with a parameterization compatible with a global SU(2)L×SU(2)R×U(1)B×U(1)A
symmetry. The SU(2) gauge symmetry becomes U(2) provided that we gauge the U(1)B
symmetry and add the FI term. This is done by integrating both sides of the identity by∫

dmBe
4iπλmB , (5.11)

where the normalization on the FI is arbitrarily chosen for the future purposes.
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Redefine the integration variables as mB + x = σ1 and mB − x = σ2 we get∫ 2∏
i=1

dσie
2πiλxi

2∏
a=1

Γh(ma +mA + σi)Γh(na +mA − σi)Γ−1h (±(σ1 − σ2))

=

∏
a,b Γh(ma + nb + 2mA)

Γh(4mA)

∫
dσe2iπλσΓh(2mA ± σ). (5.12)

The integral on the r.h.s. corresponds to the partition function of U(1) with two flavors,

dual to the XYZ model [20]. In this case we can use the following identity∫
dσe2iπλσΓh(2mA ± σ) = Γh(4mA)Γh

(
±λ

2
− 2mA

)
, (5.13)

and substituting it into (5.12) and get the following equality∫ ∏2
i=1 dσie

2πiλxi
∏2
a=1 Γh(ma +mA + σi)Γh(na +mA − σi)

Γh(±(σ1 − σ2))
(5.14)

=
∏
a,b

Γh(ma + nb + 2mA)Γh

(
±λ

2
− 2mA

)
.

This equality corresponds to the limiting case of Aharony duality for the U(2) model with

two flavors [19]. Indeed in this case the expected dual has the following superpotential

W = v+v− detM = v+v−(M11M22 −M12M21). (5.15)

We can observe that the constraints imposed from this superpotential are exactly en-

coded in (5.14). The FI term λ corresponds to the real mass for the monopoles v± and

the SU(2)L × SU(2)R × U(1)A global charges reproduce the monopole and the mesons

contributions.

6 Conclusions

In this paper we studied 3d N = 2 theories arising from the reduction of 4d N = 1

Lagrangian theories, conjectured to enhance to (A1, A2n−1) AD theories. We provided a

check of the IR duality relating the model reduced to 3d and its mirror dual, matching

the three sphere partition functions. This corroborates the duality claimed among these

models in [5, 6]. This check has been possible thanks to an integral identity, listed in [23],

in terms of hyperbolic hypergeometric integrals. Meanwhile, we did not find an analogous

relation for the (A1, D4) case. We studied also other identities, associated to SP (2n) gauge

theories with fundamentals and an antisymmetric, showing that in the n = 1 case they

reduce to known 3d N = 2 dualities.

We believe that two main aspects of our analysis require a deeper analysis and may

lead to interesting results. The first aspects regards the (A1, D4) case. In section 4 we have

obtained a dual description of the Lagrangian reduction of the N = 1 theory that enhances

to AD. This 3d duality can be helpful in proving the abelianization and it deserves further

– 12 –



J
H
E
P
0
4
(
2
0
1
8
)
0
2
2

investigations. Another interesting connection that emerged in the analysis regards the

relation between the identity (5.1) and the dualities proposed in [33], based on the results

of [34]. We have seen how the relation can be interpreted, in a simplified case in absence

of antisymmetric matter, in terms of the dualities of [18] involving quadratic powers in the

monopole superpotential. It may be interesting to develop a more general analysis for the

3d dualities obtained from the S1 reduction of [33] and further real mass and Higgs flow.

We hope to report on progress in this direction in the next future.
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