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The theoretical uncertainty of ðg − 2Þμ is currently dominated by hadronic contributions. In order to
express those in terms of directly measurable quantities, we consider a sum rule relating g − 2 to an integral
of a photoabsorption cross section. The sum rule, attributed to Schwinger, can be viewed as a combination
of two older sum rules: Gerasimov-Drell-Hearn and Burkhardt-Cottingham. The Schwinger sum rule has
an important feature, distinguishing it from the other two: the relation between the anomalous magnetic
moment and the integral of a photoabsorption cross section is linear, rather than quadratic. The linear
property makes it suitable for a straightforward assessment of the hadronic contributions to ðg − 2Þμ. From
the sum rule, we rederive the Schwinger α/2π correction, as well as the formula for the hadronic vacuum-
polarization contribution. As an example of the light-by-light contribution, we consider the single-meson
exchange.
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Introduction.—The anomalous magnetic moment
(AMM) of the muon, ϰμ ≡ 1/2ðg − 2Þμ, serves as a strin-
gent precision test of the Standard Model (SM). And at
present, it does not work out for the SM—the experimental
value is about 3σ away from the SM prediction [1,2]. While
the uncertainties of the SM and the experimental value are
comparable, the new Fermilab experiment [3,4] will, in a
few years, reduce the experimental error bar by nearly a
factor of 4. The prospects for reducing the SM (theory)
uncertainty are, on the other hand, more obscure. The SM
error bar is dominated by the hadronic contributions,
which are very difficult to compute in the SM due to the
nonperturbative nature of quantum chromodynamics
(QCD). In the present SM value, these contributions are
determined empirically, using general relations to other
experimental observables in combination with mesonic
model calculations, rather than from QCD directly. It is
the necessity of resorting to models—particularly in evalu-
ation of the so-called hadronic light-by-light (HLbL)
contributions [cf. Fig. 1(b)]—which makes it difficult to
reduce the uncertainty of the current SM value.
In the future, lattice QCD will deliver a sufficiently

precise ab initio calculation of the HLbL contribution;
for recent progress in this direction, see Refs. [5–8]. Until
then, the best hope for improvement is to replace the
model evaluations with model-independent, “data-driven”

approaches based on dispersion theory. The data-driven
approach is fairly well founded and routinely used for
the hadronic vacuum polarization (HVP) contribution
[Fig. 1(a)], since it can be written exactly as a dispersion
integral of the decay rate of a virtual timelike photon into
hadrons, which to a good approximation is expressed in
terms of the observed ratio μþμ−/eþe− → hadrons; see,
e.g., Refs. [9,10]. The HLbL contribution is much more
complicated from this point of view, because it involves the
dispersion relations for three- and/or four-point functions,
rather than for a two-point function as in the case of HVP;
see Refs. [11–14] and [15] for the two recent approaches to
this problem.
Here we consider yet another approach to a data-driven

evaluation of hadronic contributions rooted in dispersion
theory. It is based on sum rules for Compton scattering, of
which a famous example is the Gerasimov-Drell-Hearn
(GDH) sum rule [16–18]:

α

m2
ϰ2 ¼ 1

2π2

Z
∞

ν0

dν
σ3/2ðνÞ − σ1/2ðνÞ

ν
: ð1Þ

On the left-hand side (lhs), we have α ¼ e2/4π ≃ 1/137, the
fine-structure constant, and ϰ, the AMM of the spin-1/2

(a) (b)

FIG. 1. Hadronic contributions to ðg − 2Þμ: (a) HVP, (b) HLbL.
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target particle with mass m, whereas the rhs contains the
helicity-difference cross section of total photoabsorption on
that particle, integrated over the photon energy ν, starting
from the photoabsorption threshold ν0.
This is the sort of relation we are looking for: the cross

sections can in principle be measured in hadronic channels
separately (e.g., γμ → π0μ), and hence we can “measure”
the hadronic contributions to ϰ. Unfortunately, this strategy
would not work here, because the sum rule involves ϰ2 and
thus we would be probing a very tiny number—recall that
the hadronic contribution to ϰμ is of the order 10−8. In
powers of α, the hadronic contribution to ϰμ starts atOðα2Þ;
therefore, the lhs of the GDH sum rule is Oðα5Þ, whereas
the cross sections of hadronic photoproduction starts at
Oðα3Þ. This means there is a huge (at least 5 orders of
magnitude) cancellation under the GDH integral, and
therefore these cross sections would need to be measured
with unprecedented accuracy.
The same ϰ2 feature prevents this sum rule from being

useful in theoretical calculations: to compute ϰ to OðαnÞ,
one needs to know the cross sections toOðα2nþ1Þ, which in
fact is a more difficult calculation. This was explicitly
demonstrated by Dicus and Vega [19], who reproduced the
Schwinger’s correction (α/2π) through the GDH sum rule.
Taking a derivative of the GDH sum rule with respect to ϰ
linearizes the sum rule and hence simplifies the calculations
[20,21]. The drawback of the GDH-derivative method is
that the rhs loses a direct connection to experimental
observables: the helicity-difference cross section is
replaced by a derivative quantity which cannot be accessed
in experiment.
Therefore, in what follows we focus on a sum rule which

is linear in the AMM and involves an observable cross-
section quantity.
The Schwinger sum rule.—Consider the following rela-

tion, referred to as the Schwinger sum rule [22,23]:

ϰ ¼ m2

π2α

Z
∞

ν0

dν

�
σLTðν; Q2Þ

Q

�
Q2¼0

; ð2Þ

where σLTðν; Q2Þ—the longitudinal-transverse photoab-
sorption cross section—is an observable (response func-
tion) corresponding to an absorption of a polarized virtual
photon with energy ν and spacelike virtuality Q2 on the
target with mass m and AMM ϰ, whereby the spin of
the target flips. This response function is rather common in
the studies of nucleon spin structure via electron scattering.
For instance, it plays the central role in the evaluation of the
so-called δLT polarizability of the proton, and hence in the
“δLT puzzle” (cf. Ref. [24] for a recent review). One can
introduce it for the muon as well, and benefit from the fact
that the sum rule is linear in ϰ, rather than quadratic.
However, before applying it to the muon case, let us briefly
see how it comes about.

The Schwinger sum rule can be viewed as a consequence
of the Burkhardt-Cottingham (BC) and GDH sum rules, in
fact, a linear combination of those. Introducing the spin-
structure functions g1ðx;Q2Þ and g2ðx;Q2Þ of the spin-1/2
target, with x ¼ Q2/2mν being the Bjorken variable, the
BC sum rule reads as follows [25]:

R
1
0 dxg2ðx;Q2Þ ¼ 0.

Separating the structure functions into the parts accessed in
elastic and inelastic electron scattering, the elastic part is
expressed in terms of the Dirac and Pauli form factors,
F1ðQ2Þ and F2ðQ2Þ:

gel1 ðx;Q2Þ ¼ 1

2
F1ðQ2Þ½F1ðQ2Þ þ F2ðQ2Þ�δð1 − xÞ; ð3aÞ

gel2 ðx;Q2Þ ¼ −
Q2

8m2
F2ðQ2Þ½F1ðQ2Þ þ F2ðQ2Þ�δð1 − xÞ;

ð3bÞ

whereas the inelastic part, ḡi ¼ gi − geli , can be expressed
in terms of the response functions σLT and σTT ≡
1/2ðσ1/2 − σ3/2Þ; for more details, see, e.g., Sec. 5.2 of
Ref. [24]:

ḡ1ðx;Q2Þ ¼ 1

4π2α

mν3

ν2 þQ2

�
Q
ν
σLT þ σTT

�
; ð4aÞ

ḡ2ðx;Q2Þ ¼ 1

4π2α

mν3

ν2 þQ2

�
ν

Q
σLT − σTT

�
: ð4bÞ

In the limit of Q2 → 0, with F1ð0Þ ¼ 1 and F2ð0Þ ¼ ϰ,
the BC sum rule yields

ð1þ ϰÞϰ ¼ lim
Q2→0

8m2

Q2

Z
x0

0

dx ḡ2ðx;Q2Þ;

¼ m2

π2α

Z
∞

ν0

dν
�
σLT
Q

−
σTT
ν

�
Q2¼0

; ð5Þ

where x0 ¼ Q2/2mν0 is the inelastic threshold of the
Bjorken variable. [Here the explicit use of F1ð0Þ ¼ 1 limits
the applicability of the resulting sum rule in Eq. (2) to
charged particles, in contrast to, e.g., the GDH sum rule,
which holds as well for a neutral particle, such as the
neutron.] Now, the GDH sum rule allows us to cancel the ϰ2

on the lhs against the σTT term on the rhs, resulting in
Eq. (2). The latter can also be rewritten in terms of the
spin-structure functions as

ϰ ¼ lim
Q2→0

8m2

Q2

Z
x0

0

dx ½ḡ1 þ ḡ2�ðx;Q2Þ: ð6Þ

Thus, we “only” need to know how (a moment of) the
muon spin-structure function combination g1 þ g2 is
affected by hadronic contributions.
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Let us now examine the hadronic contributions to ðg − 2Þμ
using the Schwinger sum rule. The first thing to consider is
the hadron production on the muon shown in Fig. 2; i.e.,
γμ → μþ hadrons. Examples of these processes are:
γμ� → π0μ�, γμ� → πþπ−μ�. Here one can distinguish
two mechanisms: timelike Compton scattering [Fig. 2(a)],
and the Primakoff effect [Fig. 2(b)]. They add up incoher-
ently (i.e., there is no interference term) because of C-parity
conservation, viz. Furry’s theorem.
Both mechanisms begin to contribute at Oðα3Þ to σLT,

and hence atOðα2Þ to g − 2. The first mechanism (timelike)
corresponds with the HVP contribution [Fig. 1(a)], and
thus provides an alternative access to it; see below. On the
other hand, the leading-order contribution of the Primakoff
mechanism to g − 2 should vanish exactly, as it does not
correspond with the HVP contribution, and there is no other
hadronic contribution to g − 2 at this order. An explicit
proof of this statement [i.e., the vanishing effect of Fig. 2(b)
on g − 2] should be possible through the use of the light-by-
light scattering sum rules [26,27]. As a result, the Primakoff
mechanism can only contribute in interference with sub-
leading effects, such as the one shown in Fig. 3 for the case
of π0γ and π0 production.
The main advantage of using the Schwinger sum rule,

however, is that one need not be concerned with computing
the subleading effects of hadronic production—they all
can in principle be measured experimentally. This can be

achieved at an electron-muon collider with polarized beams
needed to access the spin-structure functions. Tagging is
not necessary, since we only need the quasireal-photon
limit. No separation of radiative corrections is necessary: as
long as hadrons are present in the final state, they are part of
the hadronic contributions to the spin-structure functions of
one of the leptons. In fixed-target experiments, one would
need to measure the recoil electron polarization.
Apart from the above mentioned hadron production

channels, the muon structure functions can be affected
by hadrons in the loops. The most important (in orders of α)
is the effect of HLbL on the Compton scattering (CS),
shown in Fig. 4, interfering with the tree-level Compton
effect (Fig. 5). Note that here the initial photon is quasireal,
whereas the final one is real. Thus, the evaluation of the
HLbL contribution to σLT involves the HLbL amplitude
with only two virtual photons. This is substantially simpler
than the corresponding HLbL contribution to g − 2 shown
in Fig. 1(b), which involves the LbL amplitude with three
virtual photons and one quasireal.
Another HLbL effect, of the same order in α, arises from

the interference of the diagrams in Fig. 6, describing the
hadronic contribution to the μγγ channel. Here the treat-
ment of the HLbL contribution is even simpler than in the
Compton channel, since the HLbL amplitude is not in the
loop and only one of the four photons is virtual.
Before considering these hadronic contributions further,

it is instructive to compute the leading QED contribution of
Fig. 5 by itself. A straightforward calculation yields

σγμ→γμ
LT ðν; Q2Þ ¼ πα2Qðs −m2Þ2

4m3ν2ðν2 þQ2Þ
�
−2 −

mðmþ νÞ
s

þ 3mþ 2νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þQ2

p arccoth
mþ νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þQ2

p
�
; ð7Þ

with s ¼ m2 þ 2mν −Q2. Substituting this expression into
the Schwinger sum rule, one obtains for κ the Schwinger
correction: α/2π. This exercise thus provides a check of the
sum rule in leading-order QED, similar to the one done by
Tsai et al. [28].

Hadronic vacuum polarization.—To reproduce the lead-
ing HVP contribution [Fig. 1(a)] through the hadron
photoproduction mechanism shown in Fig. 2(a), we fac-
torize the invariant mass distribution dσðγμ → μXÞ/dM2

X,
arising from Fig. 2(a), into the cross sections of timelike
Compton scattering σðγμ → γ�μÞ and of the subsequent

hadrons

(a) (b)

FIG. 2. Mechanisms of hadron photoproduction off a lepton:
(a) Timelike Compton scattering (crossed diagram omitted),
(b) Primakoff effect.

FIG. 3. Subleading mechanisms accompanying the single-
meson photoproduction.

FIG. 4. The HLbL contribution to Compton scattering.

FIG. 5. Tree-level Compton scattering diagrams.
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photon decay into hadrons σðγ� → XÞ. The latter is, by
unitarity, expressed via the absorptive part of the hadronic
contribution to vacuum polarization, ImΠhadðq02Þ. The

tree-level LT cross section of Compton scattering, with
initial and final photon virtualities given by q2 ¼ −Q2 and
q02 ¼ M2

X, respectively, is easily computed to yield

�
σγμ→γ�μ
LT ðν; Q2Þ

Q

�
Q2¼0

¼ πα2

2mν3

�
−ð5sþm2 þM2

XÞλþ ðsþ 2m2 − 2M2
XÞ log

β þ λ

β − λ

�
; ð8Þ

with s ¼ m2 þ 2mν, β ¼ ðsþm2 −M2
XÞ/2s, and λ ¼ ð1/2sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s − ðmþMXÞ2�½s − ðm −MXÞ2�

p
. From the Schwinger sum

rule, we then have

ϰ ¼ m2

π2α

Z
∞

4m2
π

dM2
X

Z
∞

ν0

dν

�
1

Q
dσγμ→μX

LT ðν; Q2Þ
dM2

X

�
Q2¼0

¼ 1

π

Z
∞

4m2
π

dM2
X
ImΠhadðM2

XÞ
M2

X

m2

π2α

Z
∞

ν0

dν

�
σγμ→γ�μ
LT ðν; Q2Þ

Q

�
Q2¼0

; ð9Þ

where ν0 ¼ MXð1þM2
X/2m

2Þ is the photoproduction threshold, while 4m2
π is set by the lightest produced state (here, the

π−πþ pair). Finally, performing the integration over ν, we obtain

m2

π2α

Z
∞

ν0

dν

�
σγμ→γ�μ
LT ðν; Q2Þ

Q

�
Q2¼0

¼ α

π
KðM2

X/m
2Þ≡ α

π

Z
1

0
dx

x2ð1 − xÞ
x2 þ ð1 − xÞðM2

X/m
2Þ ; ð10Þ

and hence the standard expression for the HVP contribution
(see, e.g., Ref. [9]),

ϰHVP ¼ α

π2

Z
∞

4m2
π

dsKðs/m2Þ ImΠhadðsÞ
s

; ð11Þ

is exactly reproduced.
In practice, a determination of the HVP contribution

through the Schwinger sum rule has an important con-
ceptual difference from the standard practice of measuring
eþe− → hadrons. The latter method involves an approxi-
mation of the single-photon exchange; the two-photon
exchange effects ought to be removed. In the sum-rule
method, the two-photon exchange and other subleading
effects need not be removed; they are part of the sought
hadronic contribution.

Further novel features of calculating the hadronic con-
tributions through the Schwinger sum rule can be seen in
the following example of the meson exchange contribution.
Pseudoscalar meson contribution.—The neutral pseu-

doscalar mesons π0 and η play a significant role in the
HLbL contribution through the mechanism shown in Fig. 7.
Let us see how this mechanism is evaluated using the
Schwinger sum rule.
In the hadronic channel, we need to know the LT cross

section for the single-meson photoproduction off the
lepton. This can in principle be measured directly, or
calculated to leading order by evaluating the diagrams in
Fig. 8. Note that, in addition to the Primakoff mechanism
(last diagram), we have here the subleading (in α) mech-
anisms of the type shown in Fig. 3. The latter mechanisms
are effectively represented by the first two graphs in Fig. 8,
where the meson-lepton-lepton (πll) coupling is fixed

FIG. 8. Single-meson photoproduction off a lepton.

FIG. 6. The HLbL contribution through two-photon produc-
tion. FIG. 7. π0-exchange HLbL contribution to ðg − 2Þμ.

FIG. 9. Pseudoscalar meson coupling to leptons.
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from the decay width of pseudoscalar mesons into leptons
(i.e., π0 → eþe− and η → μþμ−).
The same experimental information on pseudoscalar-

into-lepton decays fixes the counterterm needed to renorm-
alize the vertex calculation of the form factor in Fig. 9,
which is needed in the Compton channel calculation,
cf. Fig. 10(a). It is interesting that this πll form factor
enters profoundly in the calculation of π0 exchange in the
hyperfine splitting of muonic hydrogen [29–32]. The π0

effects in ðg − 2Þμ and muonic hydrogen are thus inter-
related.
It is important to realize that in calculating the π0

contribution through the diagrams in Figs. 8 and 10, we
do not need the transition from factor (TFF) with two
virtual photons. We only need the TFF for a single virtual
photon [i.e, Fπ0γγ� ðQ2Þ] in the box graphs of Figs. 10(b)
and 10(c), since the external photons are (quasi)real. The
doubly virtual TFFs could be used in evaluation of the πll
form factor in Fig. 9. However, their impact therein is
largely diminished by the renormalization and the use of
the empirical width.
Conclusion.—We have considered the hadronic contri-

butions (HVP and HLbL) to g − 2, and showed how they
can be assessed using the Schwinger sum rule. The sum
rule separates the hadronic contributions into two types:
(i) Hadron photoproduction (Fig. 2). (ii) HLbL contribution
to nonhadronic channels (Figs. 4 and 6). Type (i) has a clear
relation to observables. These are the spin-structure func-
tions of the lepton with hadrons in the final state (hadronic
channels) that could in principle be measured in electron-
muon collisions. This type of contribution is readily suited
for a model-independent, “data-driven” evaluation.
In type (ii), the hadrons may appear in the loops, similar

to the sought HLbL contribution to g − 2 [Fig. 1(b)].
However, the sum rule evaluation only requires the
HLbL for the situation of two virtual photons forming a
loop, rather than three virtual photons forming two loops as
required in the direct evaluation of Fig. 1(b). The former
evaluation, therefore, requires much less information about
HLbL, and is technically simpler. For example, the evalu-
ation of the neutral pion, and other single-meson contri-
butions, will only require the transition form factor to one
real and one virtual photon (M → γγ�), rather than two
virtual photons (M → γ�γ�), as required usually.

The Schwinger sum rule is thus a very promising tool for
a data-driven evaluation of the hadronic contributions to
ðg − 2Þμ. Despite being quite different from the existing
dispersive approaches, the present approach may benefit
from the dispersive analysis of the HLbL amplitude by
Colangelo et al. [11–14], trimmed to the narrower kin-
ematical range required for the evaluation of Fig. 4. In a
more distant perspective, the type-(ii) contribution will be
calculable in lattice QCD.
We have outlined how this program works for the

pseudoscalar meson contributions. With very few modifi-
cations it applies, of course, to the axion contributions to
g − 2, which have lately been receiving renewed attention
in connection with collider searches [34,35].
The advantages of evaluating the axion and other

beyond-SM contributions by using the Schwinger sum
rule are less obvious than in the hadronic case, where data-
driven approaches are generally desirable in the absence of
precise ab initio calculations. And, even in a more
advanced lattice-QCD era, the presented sum-rule approach
may be advantageous, if only for its clear-cut separation of
the explicit hadron production from the virtual hadronic
effects.
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